
Generating Test Inputs for Fault-Tree Analyzers

using Imperative Predicates

Saša Misailović Aleksandar Milićević

University of Belgrade

Belgrade, Serbia

{sasa.misailovic,aca.milicevic}@gmail.com

Sarfraz Khurshid

University of Texas

Austin, TX 78712

khurshid@ece.utexas.edu

Darko Marinov

University of Illinois

Urbana, IL 61801

marinov@cs.uiuc.edu

Abstract

This paper presents a case study on how Korat can

be used in system testing, specifically in testing a large

fault-tree analyzer developed for NASA. A fault-tree

analyzer takes as input a fault tree that models how

combinations of failures in the components of a sys-

tem produce overall failures of the system. Testing a

fault-tree analyzer requires generating fault trees. Ko-

rat is a previously developed testing tool that automates

generation of structurally complex test inputs. Fault

trees are structural in that they can be represented as

graphs, and the nodes in the graphs need to satisfy cer-

tain complex constraints. Korat allows the user to ex-

press these constraints in widely used imperative pro-

gramming languages such as Java. Previous research

has shown how to test a fault-tree analyzer using an-

other testing tool that requires the user to express con-

straints in a declarative language. This paper compares

these two approaches. The results show that Korat gen-

erates a larger number of inputs but does not prune out

non-equivalent inputs and thus can generate inputs that

reveal errors in the system under test.

1 Introduction

A fault-tree [41] models a system failure. Given a
fault-tree, a fault-tree analyzer computes the likelihood
that the system will fail over a given period of time.
Fault-trees and analyzers are typically used in mission
critical systems. Therefore, incorrect behavior of an
analyzer can be very costly. Checking the correct-
ness of an analyzer itself is hard. An analyzer typically
has tens of thousands of lines of code that performs
complex computations on fault trees. Checking rich
correctness properties for such a large piece of code is
beyond the reach of most current state-of-the-art tools

for automated testing.
In previous work [18,40], we showed how constraint-

based testing can be used to systematically test fault-
tree analyzers. We used the TestEra tool [25] to test
two fault-tree analyzers, Galileo [9] and NOVA [8].
TestEra is a tool that automates generation of struc-
turally complex test inputs and is thus suitable for gen-
eration of fault trees. Fault trees are structural in that
they can be represented with graphs, and the nodes in
the graphs need to satisfy certain complex constraints.

TestEra requires the user to describe the constraints
of desired test inputs as a formula in a relational, first-
order logic with transitive closure [16]. We call such
formulas declarative predicates since they are written
in a declarative language. TestEra also requires the
user to provide a bound on the input size. TestEra
then automatically (1) leverages the SAT-based Al-
loy tool-set [16] to enumerate solutions for the formula
within the given bound and (2) translates each solution
into an input for the program under test. TestEra per-
forms bounded-exhaustive testing by testing a program
on all inputs up to the given size. TestEra’s analysis
of Galileo and NOVA revealed several subtle errors in
both analyzers [40].

While TestEra successfully revealed errors in ac-
tual implementations of the two fault-tree analyzers,
TestEra required the user to write constraints in a
declarative language (first-order logic with extensions),
which has a different syntax and semantics from com-
monly used programming languages and thus can pose
a learning challenge. Writing constraints for enumerat-
ing fault trees as test inputs poses an additional chal-
lenge. Namely, there exist a very large number of fault-
trees even for very small sizes. This necessitates that
the user must write additional constraints that focus
generation to a smaller set of test inputs to make test-
ing feasible. Symmetry-breaking constraints are a com-
mon form of additional constraints, which rule out gen-
eration of isomorphic inputs. Manually writing symme-



try breaking constraints for complex inputs is tedious
and itself error-prone. Automatic synthesis of sym-
metry breaking constraints is possible in principle but
known SAT-based approaches [33, 34] do not scale for
constraints that represent complex inputs—the result-
ing SAT formulas tend to be impractically large [19].

The contribution of this paper is to use a solver for
imperative predicates to generate test inputs for fault-
tree analyzers. We use Korat, a solver that we have pre-
viously developed and used mostly for testing smaller
program units [2, 24, 28]. The Korat tool is available
for public download at http://mir.cs.uiuc.edu/korat.
Unlike TestEra that requires the user to write the con-
straints on test inputs as the first-order logic formu-
las, Korat allows the user to write the constraints in a
widely used programming language such as Java. Since
Java is an imperative language, we call the constraints
written in it imperative predicates. Like TestEra, Korat
requires the user to provide a finitization that bounds
the desired test input size. Also like TestEra, Ko-
rat automatically generates all test inputs (within the
bounds) that satisfy the constraints. Korat performs
a systematic search of the predicate’s input space and
attempts to prune equivalent inputs. Previous research
has shown how to use Korat for unit testing and how
to optimally prune some test inputs.

A key issue in generation of fault trees is that they
are not actually trees (in the sense of graph theory)
but directed acyclic graphs (DAGs): if a subsystem is
used in two different ways in the system modeled by a
fault tree, then the subsystem is shared in the “tree”.
When test inputs are indeed trees, Korat can prune
away all non-isomorphic test inputs, i.e., test inputs
that differ only in the identity of the nodes in the trees
but have the same shape of the trees and the same ele-
ments [2]. Korat is reimplemented in the Spec Explorer
tool [3] at Microsoft and has been successfully used for
detecting errors in several applications (for example in
a production-quality XPath compiler [38]). Scalability
of bounded-exhaustive testing tools does not depend
as much on the complexity/size of the tested code as it
depends on the complexity of inputs that the code op-
erates on. In all previous applications, the underlying
structure of test inputs was actual trees (for example,
parse trees of XML documents). This paper considers
how Korat works for DAGs. Our results show that Ko-
rat generates a larger number of inputs than TestEra
but does not prune out non-equivalent inputs.

2 Fault Trees

Fault trees [41] model system failures; a fault tree
represents the overall failure of a system as a combina-

A

B C

A

B C

(a) (b)

Figure 1. (a) Static fault tree; system level fail-
ure is an AND gate: if both events B and C oc-
cur, the system fails. (b) Dynamic fault tree;
system level failure is a priority AND gate: if
first event B occurs and then event C occurs,
the system fails.

tion of failures of basic components of the system. A
static fault tree models how boolean combinations of
component-level failure events produce system failures.
Every fault tree has a top-level event that represents
system level failure (and is graphically drawn as the
root of the tree). Figure 1(a) illustrates a static fault
tree. The interior nodes of a tree are boolean gates and
the leaves are basic events. The failure of basic events
is characterized probabilistically by basic event model

that consists of:

• the rate parameter (lambda) that defines the ex-
ponential distribution that characterizes the basic
event’s failure;

• the coverage model that defines the probabili-
ties that the component masks an internal failure
(res), that a component fails in a way that can be
detected by the system (cov), and that the com-
ponent fails and brings down the system (sing);
the sum of these three probabilities is 1; and

• the dormancy value (dorm) that defines the prob-
ability of failure if the basic event is used as an
input to a gate to replace one of its failed inputs.

A basic event may have a replication value (repl), which
allows the event to represent identical events connected
to the same location(s) in a fault tree.

Dynamic fault trees augment static fault trees with
constructs that allow modeling fault-tolerant systems;
these constructs allow modeling, for example, how a
sequence of events causes failure, and functional de-
pendencies, such as failure of a trigger event causes
failure of all dependent events. Figure 1(b) illustrates
a dynamic fault tree.



Fault trees can be represented graphically or with a
fault tree grammar [8]. For example, the tree in Fig-
ure 1(b) together with its basic event model can be
textually represented as:

toplevel A;
A pand B C;

B lambda=.01 cov=.75 res=0 repl=1 dorm=.25;
C lambda=.05 cov=.5 res=0.1 repl=1 dorm=.5;

A fault tree analyzer computes, for a given fault tree
and its failure models, the probability of system-level
failures.

2.1 Galileo and NOVA

In previous work [18, 40], bounded-exhaustive test-
ing was applied on two fault-tree analyzers, namely
Galileo [9] and NOVA [8]. They take as inputs strings
in fault-tree grammar. Galileo is a highly optimized,
dynamic fault-tree analyzer developed for NASA and
is in production use. The focus was on testing the core
analysis functionality of Galileo (excluding the user in-
terface or advanced modeling features); the core it-
self consists of 10,680 non-comment non-blank lines of
code.

NOVA is a more recently developed fault-tree an-
alyzer and has been based on a formal Z specifica-
tion [37] with the aim of using NOVA as a test oracle
for checking other fault-tree analyzers. Thus, NOVA
was made as simple as possible to reduce the potential
that NOVA itself has a fault. NOVA enables differ-

ential testing of fault tree analyzers: run NOVA and
another analyzer on the same set of test inputs, and
check if there is any test input for which the outputs
differ.

3 Generating fault-trees as test inputs

Systematic testing of a fault-tree analyzer requires
enumeration of (a large number of) fault-trees as test
inputs. Since fault-trees have complex structural con-
straints, a string that represents a valid fault-tree can-
not feasibly be generated at random, so a systematic
approach for generation is needed.

In previous work [18, 40], we explored such an ap-
proach using the test generation tool TestEra: a first-
order logic formula captured the desired structural con-
straints, which were solved using an off-the-shelf SAT
solver, and each solution was translated into a string in
fault-tree grammar. The resulting test suite uncovered
several errors in both Galileo and NOVA. A key fac-
tor that enabled TestEra to feasibly test these analyz-
ers was generation of non-isomorphic inputs. However,
TestEra requires users to manually write constraints,

so called symmetry-breaking predicates that rule out
generation of isomorphic inputs; such constraints are
usually quite complex and writing them is error-prone.

Generation of fault trees in previous work [18, 40]
used several steps to produce actual strings in the fault-
tree grammar from structural constraints on the de-
sired fault trees. In this paper, we focus on the crucial
first step that consists of generation of abstract fault

trees (AFTs) [40]. Each AFT represents a skeleton
of a fault tree: it represents the structure of the tree
that consists of the interior nodes, called gates, and the
leaves, called basic events (Section 2). AFTs do not
contain information about basic event model. Instead,
the second step post-processes AFTs to add that infor-
mation and to create concrete fault trees. Finally, the
concrete fault trees are printed from the internal for-
mat into the actual string inputs for the tools. More
details about these steps are available in [40].

3.1 Abstract fault trees

Figure 2 shows code that can represent abstract
fault trees and check their structural constraints. Each
object of class AFT is an abstract fault tree, which has
toplevel events as its root, and the total number of
events is size. Each object of class Event represent an
event. For brevity of code, we use the same class to
encode both basic events and gates. Gates are the in-
ternal nodes and can have a number of children nodes
stored in the array tail.

In general, one can create an arbitrary object graph
consisting of AFT and Event nodes (subject to typing
constraints). The methods repOK check that such a
graph indeed encodes a valid abstract fault tree. (We
follow Liskov [23] in using the name repOK for the
methods that check representation invariants of data
structures that implement abstract data types.) These
repOK methods are imperative predicates that check
the desired structural constraints of the AFTs. As
mentioned earlier, (abstract) fault trees are not nec-
essarily trees but allow structures that have sharing
between nodes. Effectively, the methods repOK check
that the object graph is a connected, rooted, directed,
and acyclic graph. The methods use a standard depth-
first traversal of the graph to check this property. The
methods keep the set of already traversed events in
visited and keep the set of nodes traversed along one
path in stack to ensure that there are no direct cycles.
This code is simple enough that an undergraduate stu-
dent researcher (the second paper author) produced it
in a few hours.

Korat [2, 24, 28] is our tool that can generate ob-
ject graphs that satisfy the properties expressed with



public class AFT {

private Event toplevel;
private int size;

public boolean repOK() {
if (toplevel == null)

return (size == 0);
Set<Event> visited = new HashSet<Event>();

visited.add(toplevel);
if (!toplevel.repOK(visited, new Stack<Event>()))

return false;
return visited.size() == size;

}

}

public class Event {
private Event[] tail; // if length is 0, it’s a basic event;

// otherwise, it’s a gate

public boolean isBasic() { return tail.length == 0; }

public boolen repOK(Set<Event> visited,
Stack<Event> stack) {

stack.push(this);
for (int i = 0; i < tail.length; i++) {

Event e = tail[i];

for (int j = 0; j < i; j++)
if (e == tail[j])

return false;
if (e.isBasic()) {

visited.add(e);

} else {
if (stack.search(e) != -1) // e is on stack

return false; // directed cycle
if (visited.add(e)) {

if (!e.repOK(visited, stack))
return false;

}

}
}

stack.pop();
return true;

}

}

Figure 2. Code that represents abstract fault
trees and checks their structural properties.

imperative predicates given in the repOK methods. Be-
sides repOK methods, Korat takes as input a finitization

that bounds the size of the graphs. Figure 3 shows the
finitization for AFTs. It bounds the total number of
events in each tree and the size of the tree. The finiti-
zation uses the Korat library classes and methods that
construct sets of objects and assign these objects to
fields.

Given specific values for the bounds, Korat can
generate all valid AFTs within the given bound. As
mentioned, translating all these structures into con-
crete test inputs and using them to test code is called
bounded-exhaustive testing. Clearly, it is not necessary
to exhaustively use the tests, and one can always choose
to sample in some way, either randomly or guided by
some test coverage criteria. However, using all possi-
ble inputs with the given bounds provides a guarantee
that there is no error in the code under test, within the
bounds.

public static IFinitization finAFT(int numEvents,

int minSize, int maxSize) {
IFinitization f = FinitizationFactory.create(AFT.class);

IObjSet events = f.createObjSet(Event.class, numEvents);
IArraySet tails = f.createArraySet(Event[].class,

f.createIntSet(0, numEvents),

events, numEvents);
f.set("toplevel", events);

f.set("size", f.createIntSet(minSize, maxSize));
f.set("Event.tail", tails);

return f;
}

Figure 3. Finitization that bounds the size of
the generated abstract fault trees, giving the
total number of events in the tree and the
bounds for the tree size.

Korat can write the generated objects into files or
graphically show them. For example, the command:

java korat.Korat --visualize --class AFT --args 3,3,3

instructs Korat (1) to generate all AFTs with exactly
three nodes and (2) to display graphically the gener-
ated structures. Figure 4 shows the visualization of
some examples of generated structures. The visual-
ization in Korat was inspired by Alloy [16], the lan-
guage used for TestEra. Our current Korat implemen-
tation [28] leverages the Alloy Analyzer’s visualization
facility as Korat automatically translates object graphs
into the Alloy representation. The visualization can as-
sist users in writing correct repOK methods and also in
understanding any errors revealed in the code tested
with the Korat-generated inputs.

3.2 Non-equivalent test inputs

It is desirable to test the code only with non-
equivalent test inputs: if two test inputs either both
expose the same error or none exposes the error, we
need to test the code with only one of the two inputs.
It is hard in general to know a priori which test inputs
expose (the same) errors: omitting any test input from
a test suite may omit the only input that exposes an
error. However, isomorphic inputs are almost always
equivalent [24]. We call two inputs, represented as Java
object graphs, isomorphic if and only if they have the
same shape of the structure and the same primitive
values but differ only in the identity of the objects in
the structure. Consider, for example, the first AFT in
Figure 4. Reordering the identity of the nodes Event1,
Event2, and Event3 (while keeping the same shape of
the graph), results in isomorphic AFTs.

Korat automatically generates only non-isomorphic
structures when test inputs are rooted and determin-
istically edge-labeled (object) graphs. (Details of the



Figure 4. Example Korat-generated abstract
fault trees with three events.

Korat algorithm and the proof of non-isomorphic gen-
eration are presented in [24]). However, Korat can
generate some isomorphic structures when the inputs
are general graphs, i.e., a node/object can have sev-
eral outgoing edges/fields with the same label. At the
concrete level, object graphs in Java do not have such
nodes since objects cannot have repeated field names.
However, there can be such nodes if inputs are not
rooted (in which case, we can introduce a special root
node and connect it to every other node with edges
that share the same label) or more broadly, when we
view sets at the abstract level (such that one objects
can have fields that are sets of objects). The latter is
the case for AFTs: every Event has effectively a set of
children nodes, but in our example code this set is at
the concrete level stored in the array tail. Therefore,
Korat treats different orders of elements in the array
as different inputs, even when they represent the same
set.

In theory, TestEra can automatically generate only
non-isomorphic structures even for general graphs. For
general graphs with n nodes, thus, TestEra could au-
tomatically generate up to n! less graphs than Ko-
rat, and hence TestEra would be more practical than
Korat when inputs are general graphs. To gener-
ate non-isomorphic inputs, TestEra can use automatic
symmetry breaking [33], but breaking all symmetries
can significantly slow down TestEra’s generation (and
would correspond to generating all inputs with Ko-
rat and then filtering out isomorphic ones). In prac-
tice, TestEra automatically breaks some symmetries
for structures and general graphs.

Experimental results for several structures [18] show
that the number of structures that TestEra with default
symmetry breaking generates is from 1.5 times to 177
times larger than the actual number of non-isomorphic
structures. The user of TestEra can manually pro-
vide symmetry-breaking predicates to efficiently break
all symmetries, for example following the methodology
that we previously proposed [19] which works when
structures have a tree backbone [29]. However, it is
not clear how to break all symmetries for more general
graphs, such as AFTs, when structures have no tree
backbone.

The previous study [40] on fault trees used TestEra
to generate test inputs for bounded-exhaustive testing.
A TestEra expert (the third paper author) developed
the constraints for AFTs and also a symmetry-breaking
predicate that eliminates most isomorphic AFTs. In
this study, we develop a corresponding Java predicate
for this constraint, and we use Korat for generation.
Our use of Korat has revealed that the symmetry-
breaking predicate written for TestEra was incorrect:



size time [s] explored generated non-isom.
1 2.0 1 1 1
2 2.1 5 1 1
3 2.2 24 4 3
4 2.3 288 57 16
5 3.0 17767 3399 164
6 239.9 6177272 1026729 3341

Figure 5. Korat’s generation of abstract fault
trees of various sizes.

it eliminated not only non-isomorphic inputs but also
some valid inputs! Thus, TestEra could miss some er-
rors in the fault-tree analyzers Galileo and NOVA. This
anecdotal evidence shows that manually breaking sym-
metries is an error-prone task even for Alloy/TestEra
experts.

3.3 Results

Figure 5 shows the results of Korat’s generation of
abstract fault trees. For AFTs of various size, we tabu-
late the time that Korat took for generation, the num-
ber of structures that Korat internally explored dur-
ing search (some of which are not valid AFTs), the
number of AFTs that Korat actually generated as its
output (all of which are valid AFTs), and the num-
ber of non-isomorphic AFTs among those generated
by Korat. We have performed all timing experiments
on a Pentium III 866MHz machine running Sun’s JVM
1.5.0 07. (We limited each run to 800MB of memory,
but note that the amount of memory that Korat uses
does not grow with the length of the search since Korat
does not perform a stateful search.)

Korat’s search generates candidate structures and
invokes repOK on them to check their validity [24].
If repOK returns true, Korat generates the structure.
Note that when repOK returns true, it means that the
structure is valid and can be used as a test input for
the code under test; it does not mean that this partic-
ular test input will reveal an error. Korat then creates
the next candidate structure based on the monitoring
of dynamic execution of repOK. The column with the
number of explored structures presents how many can-
didates Korat tried while generating the valid AFTs.
Note that the ratio of explored and generated struc-
tures is fairly small, around 6 times, attesting to the
quality of Korat’s search.

The last column shows the number of non-
isomorphic AFTs among those that Korat generates.
We use the nauty tool [27] to count the number of non-
isomorphic AFTs. The sequence of non-isomorphic

AFTs appears in the Sloane’s Encyclopedia of Integer
Sequences [36] (as a subsequence in A122078), which
gives some confidence that the repOK methods are cor-
rect. (We have customarily used the Encyclopedia
to verify the number of structures that Korat gen-
erates [2]). Our inspection of all graphs for several
smaller sizes shows that Korat indeed does not miss
any (non-isomorphic) AFT, which further increases our
confidence. However, Korat does generate a large num-
ber of isomorphic AFTs. For AFTs with 6 nodes, for
example, Korat generates over a million of AFTs, but
only 3,341 of them are non-isomorphic.

For comparison, TestEra generates a smaller num-
ber of AFTs for all sizes [40, page 6, Table 1 for rows
with Seqs and FDeps being 0]: 3 for size 3; 16 for size
4; 176 for size 5; 4,229 for size 6; and 230,470 for size
7. (We estimate that Korat would generate over 1010

AFTs for size 7, which would require quite a lot of
time.) This means that TestEra (with manually writ-
ten symmetry breaking) can generate larger AFTs that
Korat (without manually written symmetry breaking)
can generate. However, as already mentioned, we have
found that TestEra misses some valid AFTs. The rea-
son is that the manually written symmetry-breaking
predicates for TestEra eliminate some non-isomorphic
AFTs.

In summary, our results show that Korat can gen-
erate structures that are not trees and can generate
test inputs that can detect errors in important, real
applications. The results also show some complemen-
tary features of Korat and TestEra. In particular, it
is worthwhile to investigate how to combine the auto-

matic, full isomorphism elimination that Korat does
for some structures with the manual, partial isomor-
phism elimination that TestEra does for all structures.
The methodologies from these tools could enhance each
other, enabling automatic breaking of (1) some sym-
metries for general graphs in Korat and (2) all symme-
tries for Java-like object graphs in TestEra (without
slowing down the generation by generating too many
symmetry-breaking predicates). We leave this investi-
gation as future work.

4 Related work

Using constraints to represent inputs is not a new
idea and dates back at least three decades [7,15,20]; the
idea has been implemented in various tools including
EFFIGY [20], TEGTGEN [21], and INKA [11]. But
the focus of prior work has been to solve constraints
on primitive data, such as integers and booleans, and
not to solve constraints on complex structures, which
requires very different constraint solving techniques.



Korat [2, 24] and TestEra [18, 25] are among the first
frameworks to support constraint-based generation of
complex structures.

One of the earliest works to emphasize the impor-
tance of specification-based testing is by Goodenough
and Gerhart [10]. Various projects automate test case
generation from specifications, such as Z specifica-
tions [14,37,39], UML statecharts [30,31], ADL specifi-
cations [4,32], or AsmL specifications [12]. These spec-
ifications typically do not involve structurally complex
inputs.

The first version of the Spec Explorer tool (then
called AsmLT) [12] was internally based on finite-state
machines (FSMs): an AsmL [13] specification is trans-
formed into an FSM, and different traversals of FSM
are used to construct test inputs. Korat adds structure
generation to the generation based on finite-state ma-
chines [12]. AsmLT was successfully used for detecting
faults in a production-quality XPath compiler [38].

There are many tools that produce test inputs from
a description of tests. QuickCheck [6] is a tool for test-
ing Haskell programs [17]. It requires the tester to
write Haskell functions that can produce valid test in-
puts; executions of such functions with different ran-
dom seeds produce different test inputs. DGL [26] and
lava [35] generate test inputs from production gram-
mars. They were used mostly for random testing, al-
though they can also systematically generate test in-
puts. However, they cannot easily represent structures
with complex invariants. Even though DGL is Turing-
complete and in theory it is possible to specify complex
structures, doing so for a structure would essentially be
the same as (and require as much effort as) writing a
dedicated generator for that particular structure.

Cheon and Leavens developed jmlunit [5] for testing
Java programs. They use the Java Modeling Language
(JML) [22] for specifications; jmlunit translates JML
specifications into test oracles for JUnit [1]. This ap-
proach automates execution and checking of methods.
However, the burden of test generation is still on the
tester who has to provide sets of possibilities for all
method parameters and construct complex data struc-
tures using a sequence of method calls.

5 Conclusions

This paper has presented how Korat can be used to
test a large piece of code such as the the core analysis
functionality of the Galileo fault-tree analyzer that has
over 10,000 lines of C++ code. Korat is a tool that
can generate structurally complex test inputs and is
suitable for generating fault trees that are the test in-
puts for fault-tree analyzers. Korat requires the user to

provide an imperative predicate (written in a common
programming language such as Java) that specifies the
desired structural constraints of test inputs and a fini-
tization that bounds the desired size of test inputs.
Korat generates all test inputs (within the bounds)
that satisfy the constraints. Using such test inputs
constitutes bounded-exhaustive testing. Previous re-
search has shown how to use the TestEra tool, based on
declarative predicates, for bounded-exhaustive testing
of Galileo. Our results show that Korat and TestEra
are complementary in their current uses: Korat gener-
ates a larger number of inputs than TestEra, but Korat
does not prune out non-equivalent inputs. These initial
results are positive, and the future work is to explore
how to prune away non-equivalent inputs in Korat.

Acknowledgments

We thank Dragan Milićev for discussions on the ini-
tial design of the current Korat implementation, Ne-
manja Petrović for discussions on generating graphs
with Korat, and Vladeta Jovović for sharing with us
his expertise in using the Sloane’s Encyclopedia. This
material is based upon work partially supported by the
NSF under Grant Nos. 0438967, 0613665, and 0615372.
We also acknowledge support from Microsoft Research.

References

[1] K. Beck and E. Gamma. Test infected: Programmers
love writing tests. Java Report, 3(7), July 1998.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Au-
tomated testing based on Java predicates. In Proc. In-
ternational Symposium on Software Testing and Anal-
ysis (ISSTA), July 2002.

[3] C. Campbell, W. Grieskamp, L. Nachmanson,
W. Schulte, N. Tillmann, and M. Veanes. Model-
based testing of object-oriented reactive systems with
Spec Explorer. Technical report, Microsoft Re-
search, May 2005. http://research.microsoft.com/
specexplorer/.

[4] J. Chang and D. J. Richardson. Structural
specification-based testing: Automated support and
experimental evaluation. In Proc. 7th ACM SIGSOFT
Symposium on the Foundations of Software Engineer-
ing (FSE), Sept. 1999.

[5] Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
Proc. European Conference on Object-Oriented Pro-
gramming (ECOOP), June 2002.

[6] K. Claessen and J. Hughes. Testing monadic code with
QuickCheck. In Proc. ACM SIGPLAN workshop on
Haskell, 2002.

[7] L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Transactions
on Software Engineering, Sept. 1976.



[8] D. Coppit. Engineering Modeling and Analysis: Sound
Method and Effective Tools. PhD thesis, The Univer-
sity of Viginia, Charlottesville, VA, 2003.

[9] D. Coppit and K. J. Sullivan. Galileo: A tool built
from mass-market applications. In Proc. 22nd Inter-
national Conference on Software Engineering (ICSE),
Limerick, Ireland, June 2000.

[10] J. Goodenough and S. Gerhart. Toward a theory of
test data selection. IEEE Transactions on Software
Engineering, June 1975.

[11] A. Gotlieb, B. Botella, and M. Rueher. Automatic test
data generation using constraint solving techniques.
In Proc. International Symposium on Software Testing
and Analysis (ISSTA), Clearwater Beach, FL, 1998.

[12] W. Grieskamp, Y. Gurevich, W. Schulte, and
M. Veanes. Generating finite state machines from ab-
stract state machines. In Proc. International Sympo-
sium on Software Testing and Analysis (ISSTA), July
2002.

[13] Y. Gurevich. Evolving algebras 1993: Lipari guide. In
Specification and Validation Methods. Oxford Univer-
sity Press, 1995.

[14] H.-M. Horcher. Improving software tests using Z spec-
ifications. In Proc. 9th International Conference of Z
Users, The Z Formal Specification Notation, 1995.

[15] J. C. Huang. An approach to program testing. ACM
Computing Surveys, 7(3), 1975.

[16] D. Jackson. Software Abstractions: Logic, Language
and Analysis. The MIT Press, Cambridge, MA, 2006.

[17] S. P. Jones. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, Cam-
bridge, UK, 2003.

[18] S. Khurshid. Generating Structurally Complex Tests
from Declarative Constraints. PhD thesis, Dept. of
Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Dec. 2003.

[19] S. Khurshid, D. Marinov, I. Shlyakhter, and D. Jack-
son. A case for efficient solution enumeration. In Proc.
Sixth International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2003), Santa
Margherita Ligure, Italy, May 2003.

[20] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7), 1976.

[21] B. Korel. Automated test data generation for pro-
grams with procedures. In Proc. International Sympo-
sium on Software Testing and Analysis (ISSTA), San
Diego, CA, 1996.

[22] G. T. Leavens, A. L. Baker, and C. Ruby. Prelimi-
nary design of JML: A behavioral interface specifica-
tion language for Java. Technical Report TR 98-06i,
Department of Computer Science, Iowa State Univer-
sity, June 1998.

[23] B. Liskov and J. Guttag. Program Development in
Java: Abstraction, Specification, and Object-Oriented
Design. Addison-Wesley, 2000.

[24] D. Marinov. Automatic Testing of Software with
Structurally Complex Inputs. PhD thesis, Computer
Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, 2004.

[25] D. Marinov and S. Khurshid. TestEra: A novel frame-
work for automated testing of Java programs. In Proc.
16th Conference on Automated Software Engineering
(ASE), San Diego, CA, Nov. 2001.

[26] P. M. Maurer. Generating test data with enhanced
context-free grammars. IEEE Software, 7(4), July
1990.

[27] B. D. McKay. Practical graph isomorphism. In Con-
gressus Numerantium, volume 1, pages 45–87. 1981.

[28] A. Milicevic, S. Misailovic, D. Marinov, and S. Khur-
shid. Korat: A tool for generating structurally com-
plex test inputs. In Proc. ICSE Research Demos (ICSE
Demo 2007), Minneapolis, MN, May 2007. (To ap-
pear.).

[29] A. Moeller and M. I. Schwartzbach. The pointer asser-
tion logic engine. In Proc. SIGPLAN Conference on
Programming Languages Design and Implementation,
Snowbird, UT, June 2001.

[30] J. Offutt and A. Abdurazik. Generating tests from
UML specifications. In Proc. Second International
Conference on the Unified Modeling Language, Oct.
1999.

[31] J. Rumbaugh, I. Jacobson, and G. Booch. The Uni-
fied Modeling Language Reference Manual. Addison-
Wesley Object Technology Series, 1998.

[32] S. Sankar and R. Hayes. Specifying and testing
software components using ADL. Technical Report
SMLI TR-94-23, Sun Microsystems Laboratories, Inc.,
Mountain View, CA, Apr. 1994.

[33] I. Shlyakhter. Generating effective symmetry-breaking
predicates for search problems. In Proc. Workshop on
Theory and Applications of Satisfiability Testing, June
2001.

[34] I. Shlyakhter. Declarative Symbolic Pure Logic Model
Checking. PhD thesis, MIT, February 2005.

[35] E. G. Sirer and B. N. Bershad. Using production gram-
mars in software testing. In Proc. 2nd conference on
Domain-specific languages, 1999.

[36] N. J. A. Sloane, S. Plouffe, J. M. Borwein, and R. M.
Corless. The encyclopedia of integer sequences. SIAM
Review, 38(2), 1996. http://www.research.att.com/
∼njas/sequences/Seis.html.

[37] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice Hall, second edition, 1992.

[38] K. Stobie. Advanced modeling, model based test
generation, and Abstract state machine Language
(AsmL). Seattle Area Software Quality Assur-
ance Group, http://www.sasqag.org/pastmeetings/
asml.ppt, Jan. 2003.

[39] P. Stocks and D. Carrington. A framework for
specification-based testing. IEEE Transactions on
Software Engineering, 22(11), 1996.

[40] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and
D. Jackson. Software assurance by bounded exhaus-
tive testing. In Proc. International Symposium on
Software Testing and Analysis (ISSTA), 2004.

[41] United States Nuclear Regulatory Commission. Fault
Tree Handbook, 1981. NUREG-0492.


