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Abstract

Let P(A) be the following property, where A is any infinite set of natural numbers:

(∀X)[X ⊆ A ∧ |A − X| = ∞ ⇒ A �≤m X].

Let (R,≤) be the partial ordering of all the r.e. Turing degrees. We propose the study of the order theoretic

properties of the substructure (Sm,≤Sm ), where Sm =dfn {a ∈ R: a contains an infinite set A such that P(A) is true},
and ≤Sm is the restriction of ≤ to Sm. In this paper we start by studying the existence of minimal pairs in Sm.
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1. Introduction

For every infinite set A let us formulate the following property P(A):

(∀X)[X ⊆ A ∧ |A − X| = ∞ ⇒ A �≤m X], (1)

where ≤m denotes the many-one reducibility. Sets with the property (1) are known as m-introimmune sets. This

terminology was introduced in (Cintioli & Silvestri, 2003) to denote those sets that fail to be m-introreducible

in a strong way, namely, those infinite sets that are not many-one reducible to any of their co-infinite subsets.

In particular, every infinite set A satisfying property (1) does not contain subsets of higher many-one degree.

The study of sets with no subsets of higher Turing degree began with Soare (1969) and Cohen (unpublished),

and continued with Jockusch (1973) and Simpson (1978). This study was then reconsidered for some strong

reducibilities in (Cintioli & Silvestri, 2003) and (Ambos-Spies, 2003).

Let (R,≤) be the partially ordered structure of all the r.e. Turing-degrees. Let us define Sm =dfn {a ∈ R : a contains

an infinite set which has the property (1)}. In this paper we propose the study of the partially ordered substructure

(Sm,≤Sm ), where ≤Sm denotes the order ≤ restricted to Sm. We know that 0′ ∈ Sm (Cintioli, 2005), that Sm contains

a low1 Turing degree (Cintioli, 2011), and that 0 � Sm (Cintioli & Silvestri, 2003). What other properties hold for

(Sm,≤Sm )? In particular, what order theoretic properties hold for (Sm,≤Sm )? For example:

1) is (Sm,≤Sm ) dense?

2) is (Sm,≤Sm ) an upper/lower semi-lattice?

3) does (Sm,≤Sm ) has minimum element? or minimal elements?

and so on. This problematic collapses if it is true that Sm = R−{0}: essentially all the order theoretic properties true

in (R,≤) will be inherited by (Sm,≤Sm ) but at most some exception, due to the fact that 0 � Sm. However, this study

could be extended to substructures (Sr,≤Sr ) for other strong reducibilities ≤r with ≤r�≤T , where Sr = {a ∈ R : a
contains an infinite set which has the property (1) with ≤r in place of ≤m}. The reason why ≤r must be different

from ≤T is that we know by the results contained in (Jockusch,1973) and (Simpson,1978) that ST = ∅. We do not

know if S r � ∅ for strong reducibilities ≤r�≤m.

In this paper we start by studying the existence of minimal pairs in Sm. The existence of minimal pairs in Sm follows

by known results: such pairs are constituted of two high1 Turing degrees. The class of high1 Turing degrees is an

important class of Turing degrees below 0′. Another important class of Turing degrees below 0′ is that one of low1
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Turing degrees. We recall that a Turing degree a < 0′ is low1 if a′ = 0′. In this paper we provide a minimal pair in

Sm constituted of two low1 Turing degrees.

2. Notations

Throughout the paper we will use some concepts of Computability Theory without define them. We refer to

Odifreddi (1999), Rogers (1967) and Soare (1987) for a full exposition on the subject.

Letter N denotes the set of natural numbers. Given two sets A, B ⊆ N, A − B denotes the set theoretic difference of

A and B, and |A| denotes the cardinality of A. We fix an acceptable numbering {ϕe}e≥0 of all the Turing computable

unary functions. {We}e≥0 is the corresponding enumeration of all the recursively enumerable (r.e.) sets. For every

e, s ∈ N, We,s is the finite approximation of We obtained by performing s steps in the enumeration of We. For every

e ∈ N and every X ⊆ N, ϕX
e : N → N denotes the unary partial function computable by the e-th oracle Turing

machine with the aid of the oracle X. For every e, s, x ∈ N and for every oracle X, ϕX
e,s(x) denotes ϕX

e (x) if the e-th

oracle Turing machines with oracle X on input x halts in t ≤ s steps, and in this case we write ϕX
e,s(x) ↓; otherwise,

we say that ϕX
e,s(x) is undefined. We assume here that if ϕX

e,s(x) ↓ then x, e < s and the elements asked to the oracle

X in the computation of ϕX
e,s(x) are less than s. Finally, given two sets A, B ⊆ N, A is many-one reducible to B, in

short A ≤m B, if there exist a recursive function f : N → N such that for every x ∈ N, x ∈ A ⇔ f (x) ∈ B. In this

case we say that f m-reduces A to B.

3. Main Result

We know that (Sm,≤Sm ) has the maximum element 0′ because every cohesive co-r.e. set, actually every cohesive set,

satisfies the property (1) (Lemma 3.2 below), and we know of the existence of maximal sets that are Σ0
1
-complete

w.r.t. the Turing reducibility ≤T (Yates, 1965). For what concerns the width of Sm we can say at the moment that

Sm ⊃ {a ∈ R : a is high1}, (2)

because every high1 r.e. Turing degree contains sets which have the property (1), for example the co-maximal

sets of the high1 r.e. Turing degree. The inclusion (2) is proper, because there are low1 r.e. Turing degrees in Sm

(Cintioli, 2011), and the present paper.

In this paper we propose the study of the order theoretic properties of the substructure (Sm,≤Sm ). To begin with,

we study here the existence of minimal pairs in Sm. We recall that two nonrecursive Turing degrees a and b form a

minimal pair if for every Turing degree c, c ≤ a and c ≤ b implies c = 0. By the existence of minimal pairs in Sm

we derive two consequences about the structure (Sm,≤Sm ):

(i) there is not minimum, because 0 is not in Sm,

(ii) (Sm,≤Sm ) is not a lower semi-lattice, because such minimal pair does not have greater lower bound in Sm.

We must say that we got (ii) in an unusual way, and even in some sense opposite to the usual way of proving that

a certain partially ordered structure of r-degrees is not a lower semi-lattice. In fact, if the structure has minimum,

then two r-degrees forming a minimal pair are nontrivial examples of elements having greatest lower bound, and

such elements typically do not certify that the structure is not a lower semi-lattice.

Actually, we observe that the existence of minimal pairs in Sm is a consequence of known results, mainly of a result

contained in Lachlan (1966). Exactly, we are referring to the following theorem:

Theorem 3.1 (Lachlan, 1966, cf. Theorem 2, p. 545) There exist maximal r.e. sets A, B, the greatest lower bound
of whose degrees is 0.

The Turing degrees of the two sets of Theorem 3.1 form a minimal pair in Sm, because every cohesive set possesses

property (1), as stated in the following lemma.

Lemma 3.2 (Cintioli, 2005) Let C be a cohesive set. Then, for every X ⊆ C with |C − X| = ∞, C �≤m X.

The Turing degrees of the two sets A and B of Theorem 3.1 are high1, because of the maximality of A and B
(Martin, 1966). We now prove the existence of a minimal pair in Sm constituted of two low1 Turing degrees, and

this is our main contribution of this paper.

Theorem 3.3 There are two low1 Turing degrees in Sm which form a minimal pair.

Proof. By the minimal-pair method we will construct two co-immune low1 r.e. sets A and B with both A and B
satisfying property (1), and such that their Turing degrees form a minimal pair. Namely:
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• P(A): for every subset X of A with |A − X| = ∞, A �≤m X,

• P(B): for every subset Y of B with |B − Y | = ∞, B �≤m Y ,

• for every set C, if C ≤T A and C ≤T B then C is recursive.

The two sets A and B will be constructed by infinitely many stages. At every stage s ≥ 0 we will define two finite

sets As and Bs, with A0 = B0 = ∅, As ⊆ As+1 and Bs ⊆ Bs+1. Our final sets will be A =
⋃

s≥0 As and B =
⋃

s≥0 Bs.

We now describe our strategy.

3.1 Strategy

The construction of the two sets A and B is perfectly symmetric. It suffices to meet the following requirements, for

every e, i, j ∈ N:

• P9e: |We| = ∞ ⇒ We � A, (immunity of A, together with requirement N9e+2)

• P9e+1: |We| = ∞ ⇒ We � B, (immunity of B, together with requirement N9e+3)

• N9e+2: (∃x)[x ≥ e ∧ x ∈ A], (co-infinity of A)

• N9e+3: (∃x)[x ≥ e ∧ x ∈ B], (co-infinity of B)

• N9e+4: [(∃∞s)(ϕAs
e,s(e) is defined)]⇒ ϕA

e (e) is defined (lowness of A),

• N9e+5: [(∃∞s)(ϕBs
e,s(e) is defined)]⇒ ϕB

e (e) is defined (lowness of B),

• R9e+6: (∀X ⊆ A)[|A−X| = ∞ ⇒ ϕe does not m-reduce A to X] (A does not contain subsets of higher m-degree),

• R9e+7: (∀Y ⊆ B)[|B−Y | = ∞ ⇒ ϕe does not m-reduce B to Y] (B does not contain subsets of higher m-degree),

• N9〈i, j〉+8: (ϕA
i = ϕ

B
j = C)⇒ C is recursive, (minimality).

The definitions of the requirements N9e+4 and N9e+5 are justified by the following known lemma.

Lemma 3.4 If D =
⋃

t≥0 Dt is a recursively enumerable set and for every n ∈ N

[(∃∞t)ϕDt
n,t(n) ↓]⇒ ϕD

n (n) is defined,

then D is low1.

Furthermore, by an argument of Posner, to satisfy all the requirements {N9〈i, j〉+8}i, j≥0 it suffices to satisfy all the

requirements {N′9e+8}e≥0 formulated in a simpler way. Precisely:

Lemma 3.5 For every e ≥ 0, let N′
9e+8

be the requirement

(ϕA
e = ϕ

B
e = C)⇒ C is recursive.

If all the requirements P9e, P9e+1,N9e+2,N9e+3 and N′9e+8 are met for every e ≥ 0, then all the requirements N9〈i, j〉+8

are met for every i, j ≥ 0.

Proof. From the hypothesis it follows that both A and B are not recursive, and this implies that A � B. Without

loss of generality assume that A � B, and let x0 ∈ A − B. For the sake of contradiction, assume that there are i0
and j0 such that

ϕA
i0 = ϕ

B
j0 = C with C not recursive. (3)

Let e = e(x0, i0, j0) be such that for every oracle X and every x ∈ N

ϕX
e (x) =

⎧
⎪⎪⎨
⎪⎪⎩

ϕX
io

(x) if x0 ∈ X,

ϕX
jo

(x) if x0 � X.

Then clearly ϕA
e = ϕ

A
i0

and ϕB
e = ϕ

B
j0

. It follows from (3) that ϕA
e = ϕ

B
e = C with C not recursive, contrary to the

hypothesis that N′9e+8 is met. �
By the above lemma we can replace each requirement N9〈i, j〉+8 with the requirement

• N9e+8: (ϕA
e = ϕ

B
e = C)⇒ C is recursive.

Requirements P9e and P9e+1 are positive, because to satisfy them we will enumerate numbers into A and B. Re-

quirements N9e+2, N9e+3, N9e+4, N9e+5 and N9e+8 are negative, because to satisfy them we will keep numbers out
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of A and B. Requirements R9e+6 and R9e+7 are positive and negative, because to satisfy them we will keep some

numbers out of A and B, and we will enumerate some others numbers into A and B.

3.2 Actions to Fulfill the Requirements

In this subsection we give a description of the actions to fulfill all the requirements. These actions will be formally

stated in the subsequent subsections Requirements requiring attention and Active requirements. We will use a

restraint function r : N×N → N with r(n, 0) = −1 for every n ∈ N. To fulfill requirements P9e and P9e+1 we do not

need to restrains elements, being both P9e and P9e+1 positive, thus we conventionally set r(9e, s) = r(9e+1, s) = −1

for every e, s ∈ N. We said above that the construction of the two sets A and B is symmetric. Therefore, except for

N9e+8, we describe the actions to fulfil requirements relative to one set, say A.

The actions to fulfill P9e, N9e+2 and N9e+4 are the usual.

• For P9e, we wait for an opportune stage s + 1 ≥ 9e, if it exists, such that

− We,s ∩ As = ∅, and

− there is a number x ∈ We,s not restrained by requirements of higher priority than P9e.

Then, we enumerate x into As+1. If We is infinite, then eventually We � A.

• For N9e+2 we wait for an opportune stage s + 1 ≥ 9e + 2 such that no number x ≥ e is restrained yet, that is

r(9e + 2, s) = −1, and we set r(9e + 2, s + 1) = the minimum number x ∈ As with x ≥ e. If x will not enumerated

into A later, then such x will certificate that N9e+2 is met.

• For N9e+4, we wait for an opportune stage s+1 ≥ 9e+4, if it exists, such that ϕAs
e,s(e) is defined and the elements

used in the computation of ϕAs
e,s(e) are not restrained yet, that is r(9e+4, s) = −1. Then it suffices to set the restraint

function r(9e+ 4, s+ 1) = s, by remembering that the computation of ϕAs
e,s(e) ↓ uses only elements less than s. This

guarantees that ϕA
e (e) is defined, if no numbers x ≤ s will be enumerated into A after stage s + 1.

For what concerns requirement R9e+6, we describe first the strategy to meet it. Strategy: to prevent that ϕe m-
reduces A to some its subset X with |A − X| = ∞ it is enough to have a number y such that

y ∈ A and ϕe(y) � A. (4)

Therefore, we do the following actions: we wait for an opportune stage s+ 1 ≥ 9e+ 6 such that for some y ≤ s+ 1

ϕe,s(y) ↓� y and y ∈ As, (5)

with ϕe,s(y) not restrained by requirements of higher priority than R9e+6. Then we force ϕe to be wrong by enumer-

ating ϕe,s(y) into As+1 and keeping y out of A by setting r(9e + 6, s + 1) = y. If ϕe is a potential m-reduction of A
to some X ⊆ A with |A − X| = ∞, then the certainty that s and y of (5) exists is a consequence of the immunity of

A, as stated in the following lemma.

Lemma 3.6 Let C be any immune set and let X be a subset of C with |C − X| = ∞. Let us suppose that C ≤m X via
a recursive function f . Then, the set { f (x): f (x) � x ∧ x ∈ C} is infinite.

Proof. By hypothesis C ≤m X via f , in particular for every x ∈ C − X is f (x) � x. Hence, it suffices to prove that

f (C − X) is infinite. Observe that

C − X ⊆ f −1( f (C − X)) ⊆ C (6)

with C − X infinite by hypothesis. So f (C − X) cannot be finite, otherwise f −1( f (C − X)) would be an infinite r.e.

subset of C, contrary to the hypothesis that C is immune. �
For the requirement N9e+8 we employ the minimal-pair method, which is based on the particular definition of the

restraint function, in our case the definition of r(9e + 8, s), for every e, s ≥ 0. For a full exposition of the minimal-

pair method see for example either (Odifreddi, 1999, p. 543 et seq.), or (Soare, 1987, p. 152 et seq.). At every

stage s of the construction of the two sets A and B we define the length-agreement function l(e, s), for every e ≥ 0,

in the following way:

l(e, s) =dfn max{x : (∀y < x)[ϕAs
e,s(y) ↓= ϕBs

e,s(y) ↓]}. (7)

Furthermore, at every stage s we define the restraint function r(9e + 8, s) by induction on e ≥ 0.
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Definition 3.7 For every stage s ≥ 0, let us define

r(9 · 0 + 8, s) =

⎧
⎪⎪⎨
⎪⎪⎩

0, if s is a 0-expansionary stage,

max{t : t < s and t is a 0-expansionary stage}, otherwise,

where a stage s is 0-expansionary if either s = 0 or

l(0, s) > max{l(0, t) : t < s}.
Given r(9e + 8, s), define r(9(e + 1) + 8, s) as the maximum of:

1) r(9e + 8, s),

2) {t : t < s and r(9e + 8, t) < r(9e + 8, s)},
3) {t : t < s, r(9e + 8, t) = r(9e + 8, s) and stage t is (e + 1)-expansionary, if s is not an (e + 1)-expansionary

stage},
where a stage s is (e + 1)-expansionary if either s = 0 or

(∀t < s)[r(9e + 8, t) = r(9e + 8, s)⇒ l(e + 1, t) < l(e + 1, s)].

It is possible to prove that for every e ≥ 0

lim inf
s→∞ r(9e + 8, s) < ∞. (8)

From Definition 3.7 clearly it follows that for every e, s ≥ 0

r(9e + 8, s) ≥ max
i<e
{r(9i + 8, s)}. (9)

Therefore, for every e ≥ 0

lim inf
s→∞(max

i≤e
{r(9i + 8, s)}) < ∞, (10)

and (10) will allows us to prove that all the P-requirements and R-requirements are met. Moreover, the minimal-

pair method guarantees that to satisfy each requirement N9e+8 two conditions are sufficient:

C1: every P-requirement and R-requirement requires attentions at most finitely often, and

C2: at every stage s > 0 at most one side of the equality ϕAs
e,s(y) ↓= ϕBs

e,s(y) ↓ in the definition (7) of the

length-agreement function change its values.

We will construct our sets A and B in such a way that both C1 and C2 above are satisfied.

3.3 Requirements Requiring Attention

As a direct consequence of the descriptions contained in the previous subsection we make the following formal

definitions. We say that:

• Requirement P9e requires attention at stage s + 1 ≥ 9e if

We,s ∩ As = ∅ and there is x ∈ We,s with x > max
i<9e
{r(i, s)}. (11)

• Requirement P9e+1 requires attention at stage s + 1 ≥ 9e + 1 if the condition (11) holds with B and 9e + 1

respectively in place of A and 9e.

• Requirement N9e+2 requires attention at stage s + 1 ≥ 9e + 2 if r(9e + 2, s) = −1.

• Requirement N9e+3 requires attention at stage s + 1 ≥ 9e + 3 if r(9e + 3, s) = −1.

• Requirement N9e+4 requires attention at stage s + 1 ≥ 9e + 4 if ϕAs
e,s(e) ↓ and r(9e + 4, s) = −1.

• Requirement N9e+5 requires attention at stage s + 1 ≥ 9e + 5 if ϕBs
e,s(e) ↓ and r(9e + 5, s + 1) = −1.

• Requirement R9e+6 requires attention at stage s + 1 ≥ 9e + 6 via x ≤ s + 1 if r(9e + 6, s) = −1 and

[x ∈ As ∧ ϕe,s(x) ↓� x ∧ ϕe,s(x) > max
i<9e+6

{r(i, s)}. (12)
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• Likewise, requirement R9e+7 requires attention at stage s + 1 ≥ 9e + 7 via x ≤ s + 1 if r(9e + 7, s) = −1 and

condition (12) holds with B and 9e + 7 respectively in place of A and 9e + 6.

3.4 Active Requirements

From now on, the letter R will denote any one of the requirements. At every stage s and for every n ≤ s, n � 9e+8

for every e ≥ 0, we define Rn active if it requires attention at stage s and it has the highest priority, that is

n = min{m : Rm requires attention at stage s}. In particular, at every stage s at most one P-requirement or R-

requirement is active, and this feature allows to satisfy condition C2 above.

3.5 Injured Requirements

The negative requirement N9e+2 is injured at stage s + 1 if the number x = r(9e + 2, s) is enumerated into As+1. In

this case we set r(9e + 2, s + 1) = −1. We set r(9e + 2, s + 1) = r(9e + 2, s) otherwise. Likewise for the negative

requirement N9e+3.

The negative requirement N9e+4 is injured at stage s + 1 if a number x ≤ r(9e + 4) is enumerated into As+1. In

this case we set r(9e + 4, s + 1) = −1. Otherwise we set r(9e + 4, s + 1) = r(9e + 4, s). Likewise for the negative

requirement N9e+5.

The positive and negative requirement R9e+6 is injured at stage s + 1 if the number x = r(9e + 6, s) is enumerated

into As+1. In this case we set r(9e + 6, s + 1) = −1. Otherwise we set r(9e + 6, s + 1) = r(9e + 6, s). Likewise for

the negative requirement R9e+7.

The negative requirement N9e+8 is injured at stage s + 1 if a number x < r(9e + 8, s) is enumerated into either As+1

or Bs+1.

3.6 Construction of A and B

Stage 0. Set A0 = B0 = ∅, and set r(n, 0) = −1 for every n ≥ 0.

Stage s + 1. Let As and Bs be the sets constructed up to the stage s. See if there is some requirement requiring

attention. If not, then do nothing (Note 1). Otherwise, let Rn be the active requirement.

• If Rn = P9e for some e, then let x be the minimum for which P9e requires attention. Set As+1 = As ∪ {x} and

Bs+1 = Bs.

• If Rn = P9e+1 for some e, then let x be the minimum for which P9e+1 requires attention. Set set Bs+1 = Bs ∪ {x}
and As+1 = As.

• If Rn = N9e+2 for some e, then let x be the minimum number in As such that x ≥ e. Set r(9e + 2, s + 1) = x,

As+1 = As and Bs+1 = Bs.

• If Rn = N9e+3 for some e, then let x be the minimum number in Bs such that x ≥ e. Set r(9e + 3, s + 1) = x,

As+1 = As and Bs+1 = Bs.

• If Rn = N9e+4 for some e, then set r(9e + 4, s + 1) = s. Set As+1 = As and Bs+1 = Bs.

• If Rn = N9e+5 for some e, then set r(9e + 5, s + 1) = s. Set As+1 = As and Bs+1 = Bs.

• If Rn = R9e+6 for some e, then let x ≤ s + 1 be the minimum number via the which R9e+6 requires attention.

Set As+1 = As ∪ {ϕe,s(x)} and set r(9e + 6, s + 1) = x. Set Bs+1 = Bs.

• If Rn = R9e+7 for some e, then let x ≤ s + 1 be the minimum number via the which R9e+7 requires attention.

Set Bs+1 = Bs ∪ {ϕe,s(x)} and set r(9e + 7, s + 1) = x. Set As+1 = As.

End construction of A and B.

Let us pose A =
⋃

s≥0 As and B =
⋃

s≥0 Bs. We have to prove that every requirement is satisfied. We prove first that

each requirement R9e+i with e ≥ 0 and i ≤ 7 requires attention at most finitely often. From now on, for every set X
and every n ∈ N, X|n denotes the set X ∩ {0, 1, . . . , n}.
Lemma 3.8 For every e ≥ 0 and i ≤ 7, requirement R9e+i requires attention at most finitely often. In particular, for
every e ≥ 0 and i ≤ 7, lims→∞ r(9e + i, s) < ∞.

Proof. The proof is by complete induction on n = 9e+ i, for every e ≥ 0 and i ≤ 7. Given n, let s0 be the minimum

stage after which no requirement of higher priority than Rn requires attention. We consider only the cases n = 9e,

n = 9e + 2, n = 9e + 4 and n = 9e + 6, because the other cases are similar.
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• Case Rn = P9e. We conventionally defined r(9e, s) = −1 for every s, and trivially lims→∞ r(9e, s) = −1. If

We,s0
∩ As0

� ∅, then it will be We,t ∩ At � ∅ for every t ≥ s0 and P9e will not require attention after s0. So, let

us suppose that We,s0
∩ As0

= ∅. Let s ≥ s0 be the minimun stage such that P9e requires attention. By hypothesis

P9e is active at stage s, so a number x ∈ We,s is enumerated into As, which implies that for every t ≥ s will be

We,t ∩ At � ∅ and P9e will not require attention anymore after s.

• Case Rn = N9e+2. Let us suppose that N9e+2 requires attention at stage s + 1 ≥ s0. Then it becomes active and

we set r(9e + 2, s + 1) = x for the minimum x ∈ As with x ≥ e. By hypothesis after stage s + 1 ≥ s0 N9e+2 will

not be injured, thus for every t ≥ s + 1 will be r(9e + 2, t) = r(9e + 2, s + 1) = x > −1, and N9e+2 will not require

attention after s + 1.

• Case Rn = N9e+4. Let us suppose that N9e+4 requires attention at some stage s + 1 ≥ s0. Then ϕAs
e,s(e) ↓, N9e+4

is active and we set r(9e + 4, s + 1) = s. The computation of ϕAs
e,s(e) will not be destroyed anymore after s + 1,

because As|s = A|s, and r(9e + 4, t) = r(9e + 4, s + 1) for every t ≥ s + 1.

• Case Rn = R9e+6. Let us suppose that R9e+6 requires attention at stage s + 1 ≥ s0. Then, there is a number

x ∈ As with ϕe,s(x) ↓� x. At the end of this stage the value of r(9e + 6, s + 1) is x. By hypothesis after stage

s + 1 ≥ s0 R9e+6 will not be injured anymore, hence for every t ≥ s + 1 will be r(9e + 6, t) = r(9e + 6, s + 1) = x
and x � At. �
By (10) and Lemma 3.8 just proved it follows

Corollary 3.9 For every n ∈ N, lim inf s→∞(maxi≤n{r(i, s)}) is finite.

We prove now that every requirement is met.

Lemma 3.10 Every requirement is met.

Proof. Given n ∈ N, let s0 be the minimum stage such that for every s ≥ s0 no requirement Rm with m < n is

active at stage s. We prove only the cases Rn = P9e, Rn = N9e+2, Rn = N9e+4, Rn = R9e+6 and Rn = N9e+8, because

the other cases are similar.

• Rn = P9e. Let We be infinite. If We,s0
∩ As0

� ∅ then for all t ≥ s0 is We,t ∩ At � ∅ and P9e is met. If

We,s0
∩ As0

= ∅, then let

k9e = lim inf
s→∞(max

i<9e
{r(i, s)}). (13)

By Corollary 3.9 such k9e exists and is finite , and in particular there are infinitely many stages s′ ≥ s0 with

maxi<9e{r(i, s′)} = k9e. Let s1 ≥ s0 be the minimum stage such that there is a number x ≤ s1 with

x ∈ We,s1
and x > k9e. (14)

If We,s1
∩ As1

= ∅, then P9e become active at stage s1 + 1 and the minimum x of (14) is enumerated into As1+1.

Hence We,t ∩ At � ∅ for every t ≥ s1 + 1 and P9e is met.

• Rn = N9e+2. If r(9e + 2, s0) = x ≥ e, then by hypothesis no requirement of higher priority than N9e+2 will be

active after s0, so x ∈ A and N9e+2 is met. If r(9e + 2, s0) = −1, then at the stage s0 + 1 requirement N9e+2 is active,

hence r(9e + 2, s0 + 1) = x′ ≥ e for the minimum such x′ ∈ As0
. By hypothesis no requirement of higher priority

than N9e+2 will be active after s0 + 1: x′ will be permanently in A and N9e+2 is met.

• Rn = N9e+4. Let us suppose that there are infinitely many stages s such that ϕAs
e,s(e) is defined. Let us assume

first that r(9e+ 4, s0) = −1. Then, there is a minimum stage s′ + 1 ≥ s0 such that ϕ
As′
e,s′ (e) is defined. At stage s′ + 1

N9e+4 requires attention and by hypothesis it becomes active. At this stage s′ + 1 we set r(9e + 4, s′ + 1) = s′ and

N9e+4 will not be injured after stage s′ + 1, in particular

r(9e + 4, t) = r(9e + 4, s′ + 1) = s′

for every t ≥ s′ + 1. Furthermore As′ = A|s′, so

ϕ
As′
e,s′ (e) ↓= ϕA|s′

e,s′ (e) ↓= ϕA
e,s′(e) ↓= ϕA

e (e),

that is ϕA
e (e) is defined, which implies that N9e+4 is met.

If r(9e + 4, s0) = s′′ > −1, then N9e+4 has been active at s′′ + 1 < s0 and it was not injured after s′′ + 1; for the

same argument above, N9e+4 is met.
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• Rn = R9e+6. For the sake of contradiction, let us suppose that R9e+6 is not met. So, there is a subset X of

A with |A − X| = ∞ and A ≤m X via ϕe. Then necessarily it has to be r(9e + 6, s0) = −1. In fact, if it were

r(9e + 6, s0) = x > −1 for some x, then at some stage s′ + 1 < s0 the number ϕe,s′(x) has been enumerated into

As′+1. Since by hypothesis R9e+6 will not be injured anymore after s0, it would be x ∈ A and ϕe(x) � A, contrary to

the assumption that ϕe m-reduces A to X. Let

k9e+6 = lim inf
s→∞( max

i<9e+6
{r(i, s)}).

Requirements P9e and N9e+2 are met for every e ≥ 0, hence the set A is immune. By Lemma (3.6) the set

{ϕe(x) : ϕe(x) � x ∧ x ∈ A} is infinite. Let s′ + 1 ≥ s0 be the minimum stage such that

(i) maxi<9e+6{r(i, s′)} = k9e+6,

(ii) there exists x ≤ s′ + 1 with x ∈ As′ , ϕe,s′ (x) ↓� x and ϕe,s′(x) > k9e+6.

Let x′ be the minimum x satisfying (ii). This means that R9e+6 requires attention at stage s′ + 1 via x′ and R9e+6

has the highest priority by hypothesis, that is R9e+6 is active. At stage s′ + 1 the number ϕe,s′ (x′) is enumerated

into As′+1 and r(9e + 6, s′ + 1) = x′. After stage s′ + 1 R9e+6 will not be injured anymore, therefore x′ ∈ A and

ϕe(x′) � A, contrary to the assumption that A ≤m X via ϕe.

• Rn = N9e+8. Let us suppose that

ϕA
e = ϕ

B
e = C. (15)

We have to prove that C is recursive, and this is possible by the known technique developed in the minimal-pair

method. If e > 0, then let

k9e+8 = lim inf
s→∞ r(9(e − 1) + 8, s) (16)

and let

S = {s : r(9(e − 1) + 8, s) = k9e+8}. (17)

If e = 0 then let k9e+8 = 0 and S = N. In any case S is recursive. Given x, decide “x ∈ C” by looking for a stage

s′ ≥ s0 such that s′ ∈ S , l(e, s′) > x and s′ is e-expansionary. In S there are infinitely many e-expansionary stages

by (15). Then

C(x) = ϕ
As′
e,s′ (x), (18)

where (18) follows by the following claim.

Claim 3.11 Let s1 = s′ < s2 < s3 < · · · be all the infinite e-expansionary stages in S from s′ onwards. Let
y = ϕ

As1
e,s1

(x) = ϕ
Bs1
e,s1

(x). Then, for every n ≥ 1 and for every stage t with s1 ≤ t ≤ sn at least one of 1) and 2) below
occur:

1) ϕAt
e,t(x) = y,

2) ϕBt
e,t(x) = y.

Claim 3.11 can be proved by the definition of r(9e + 8, s) and assuming the following two conditions (see either

Soare, 1987, Lemma 3, p. 155 et seq., or Odifreddi, 1999, p. 545):

• requirement N9e+8 is not injured after s′, and

• at every stage s + 1 at most one of the two sets As and Bs changes.

These two conditions are satisfied respectively by the choice of s′ ≥ s0 and by the fact that at every stage s + 1 at

most one of either P-requirement or R-requirement is active; it follows that N9e+8 is met. �
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Notes

Note 1. That is, set As+1 = As, Bs+1 = Bs, and r(n, s + 1) = r(n, s) for every n � 9e + 8, e ≥ 0.
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