
WebOS: Operating System Services for Wide Area Applications

Amin Vahdat, Paul Eastham, Chad Yoshikawa, Eshwar Belani, Thomas Anderson, David Culler
Computer Science Division

University of California, Berkeley
and

Michael Dahlin
University of Texas, Austin

Abstract
In this paper, we argue for the power of providing a com-

mon set of OS services to wide area applications, including
mechanisms for resource discovery, a global namespace, re-
mote process execution, resource management, authentica-
tion, and security. On a single machine, application developers
can rely on the local operating system to provide these abstrac-
tions. In the wide area, however, application developers are
forced to build these abstractions themselves or to do without.
This ad-hoc approach wastes programmer effort and system
resources. To address these problems, WebOS provides basic
operating systems services needed to build applications that
are geographically distributed, highly available, incrementally
scalable, and dynamically reconfiguring. Experience with a
number of applications developed under WebOS indicates that
it simplifies system development and improves resource uti-
lization. In particular, we use WebOS to implement Rent-A-
Server to provide dynamic replication of overloaded services
across the wide area in response to client demands.

1 Introduction

Operating systems were originally developed to provide
a set of common system services, such as I/O, commu-
nication, and persistent storage, to simplify application
programming. With the advent of multiprogramming,
this charter expanded to include abstracting shared re-
sources so that they were as easy to use (and sometimes
easier) as dedicated physical resources. The introduc-
tion of local area networks in the 80’s expanded this
role even further. A goal of network operating systems
such as Locus [Popek et al. 1981], Mach [Accetta et al.
1986], Sprite [Nelson et al. 1988], Amoeba [Mullen-
der et al. 1990], and V [Cheriton 1988] was to make re-

This work was supported in part by the Defense Advanced Research
Projects Agency (N00600-93-C-2481, F30602-95-C-0014), the National Sci-
ence Foundation (CDA 9401156), Sun Microsystems, California MICRO,
Novell, Hewlett Packard, Intel, Microsoft, and Mitsubishi. Anderson was
also supported by a National Science Foundation Presidential Faculty Fellow-
ship. The source code for our system is publically available at http://-
now.cs.berkeley.edu/WebOS.

mote resources over the LAN as easy to use as local re-
sources, in the process simplifying the development of
distributed applications.

With analogy to these systems, this paper argues that
it is time to provide a common set of services for wide
area applications, in effect to make wide area resources
as easy to use as those on a LAN. The past few years
has seen a dramatic increase in the number and variety
of services that are available over the Internet, beyond
simple documents to a wide variety of on-line services,
such as search engines, real-time news, weather fore-
casts, interactive games and chat rooms, airplane reser-
vations and ticketing, to name just a few.

Today, although the World Wide Web has made ge-
ographically distributed read-only data easy to use, ge-
ographically distributed computing resources are not.
The result is that wide area applications that require
access to remote CPU cycles, memory, or disk must
be programmed in an ad hoc and application-specific
manner. For example, many popular services, such as
Digital’s Alta Vista [Dig 1995] or Netscape’s download
page [Net 1994], are geographically replicated to im-
prove bandwidth, reduce latency, and improve availabil-
ity – no single connection onto the Internet can support
tens of millions of users. This replication is managed by
hand on both the server and the client side – users are
forced to do manual polling between essentially equiv-
alent services. This situation will only get worse; it is
currently predicted that the number of Internet users will
increase by an order of magnitude to over 100 million in
less than 5 years [Rutkowski 1995].

To address these problems, we have built WebOS,
a framework for supporting applications that are geo-
graphically distributed, highly available, incrementally
scalable, and dynamically reconfiguring. WebOS in-
cludes mechanisms for resource discovery, a global
namespace, remote process execution, resource man-
agement, authentication and security. We use WebOS
to demonstrate the synergy of these services in simpli-
fying the development of wide area distributed applica-



tions and in providing more efficient global resource uti-
lization.

The WebOS framework enables a new paradigm for
Internet services. Instead of being fixed to a single
location, services can dynamically push parts of their
responsibilities out onto Internet computing resources,
and even even all the way to the client. These dynami-
cally reconfiguring and geographically mobile services
provide a number of advantages, including: (i) better
end-to-end availability (service-specific extensions run-
ning in the client mask Internet or server failures), (ii)
better cost-performance (by dynamically moving infor-
mation closer to clients, network latency, congestion,
and cost can all be reduced while maintaining server
control), and (iii) better burst behavior (by dynami-
cally recruiting resources to handle spikes in demand).
For example, many Internet news services were over-
whelmed on the night of the last U.S. presidential elec-
tion; our framework would enable those services to han-
dle the demand through dynamic replication. Note that
many popular Internet services already are statically set
up to run at third party sites to pro-rate the cost of a fault
tolerant, high bandwidth Internet connection over mul-
tiple services [Brewer 1997]; we are merely arguing that
with the right support, these arrangements can be made
dynamically.

In addition to demonstrating the synergy of a com-
mon framework for wide area distributed applications,
we make a number of specific contributions. First,
we demonstrate an extensible mechanism for running
service-specific functionality on client machines and
show that this allows for more flexible implementation
of name resolution, load balancing, and fault tolerance.
Second, we provide a file system abstraction that com-
bines persistent storage with efficient wide-area com-
munication patterns; we demonstrate that this simplifies
the implementation of a number of wide area applica-
tions. Next, we present a methodology for coherently
caching program results through the file system, speed-
ing the performance of applications which must repeat-
edly execute programs with common inputs. Finally, we
demonstrate how Rent-A-Server, an application devel-
oped in our framework, both improves system perfor-
mance and more efficiently utilizes system resources for
Web server access.

Of course, the point can be made that the growth of
the Internet can be partially attributed to its lack of cen-
tral control, making the whole concept of an Internet
operating system a contradiction in terms. Tradition-
ally, Internet applications and protocols are developed
and deployed without the intervention of any central-
ized authority. We are not arguing for strict central con-
trol. Rather, we believe that OS services should abstract
the requirements of wide area applications. For exam-

ple, TCP provides flow control, in-order, and reliable
delivery over congested, unreliable medium without re-
quiring each application programmer to understand ex-
ponential backoff, slow start, or round-trip time vari-
ance estimation [Jacobson 1988]. TCP’s success is a tes-
tament to the ability to win widespread acceptance by
providing a simple, convenient interface to network re-
sources. We believe that system abstractions to other
global resources can be adopted in a similar fashion,
hiding the details of cache consistency, load balancing,
fault tolerance, authentication, replication, resource al-
location, and so on.

The rest of this paper discusses these issues in more
detail. We present an overview of WebOS system com-
ponents in Section 2, before delving into more detail
in Sections 3-6, which describe: (i) Smart Clients for
fault tolerant, load balanced access to Web services, (ii)
WebFS, a global cache coherent filesystem, (iii) authen-
tication for secure access to global Web resources, and
(iv) a process control model supporting secure program
execution and mechanisms for resource allocation. Sec-
tion 7 demonstrates how this framework simplifies the
implementation of four sample wide area applications.
Section 8 describes in detail the design, implementation,
and performance of one application built on WebOS,
Rent-A-Server. Section 9 presents related work, lead-
ing to our discussion of future work in Section 10 and
our conclusions in Section 11.

2 WebOS Overview

In this section, we provide a brief overview of the ma-
jor WebOS components; together, they provide the wide
area analogue to local area operating system services,
to make using geographically remote resources easier to
use. Each of these components is operational in our cur-
rent prototype.

� Resource Discovery: Many wide area services
are geographically distributed. To provide the
best overall system performance, a client applica-
tion must be able to dynamically locate the server
able to deliver the highest quality of service. In
WebOS, resource discovery includes mapping a
service name to multiple servers, an algorithm for
balancing load among available servers, and main-
taining enough state to perform fail-over if a server
becomes unavailable. These operations are per-
formed through Smart Clients, which flexibly ex-
tend service-specific functionality to the client ma-
chine.

� Wide Area File System: To support replication
and wide-scale sharing, WebOS provides a cache



coherent wide area file system. WebOS extends
to wide area applications running in a secure
HTTP name space the same interface, caching,
and performance of existing distributed file sys-
tems [Walsh et al. 1985, Nelson et al. 1988,
Howard et al. 1988, Kistler & Satyanarayanan
1992, Terry et al. 1995, Anderson et al. 1995]. In
addition, we demonstrate the benefit of integrating
the file system with application-controlled efficient
wide area communication.

� Security and Authentication: To support applica-
tions operating across organizational boundaries,
WebOS defines a model of trust providing both se-
curity guarantees and an interface for authenticat-
ing the identity of principals. A key enabling fea-
ture is fine-grained control of capabilities provided
to remote processes executing on behalf of princi-
pals.

� Process Control: In WebOS, executing a process
on a remote node should be as simple as the corre-
sponding local operation. The underlying system is
responsible for authenticating the identity of the re-
quester and determining if the proper access rights
are held. Precautions must be taken to ensure that
the process does not violate local system integrity
and that it does not consume more resources than
allocated to it by local system administrators.

As an explicit design choice, we leverage as much
functionality as possible from existing low level ser-
vices. For example, for compatibility with existing ap-
plications, we adopt IP address and URL’s for the global
name space. TCP is used to provide reliable communi-
cation, while SSL [Freier et al. 1996] is used for link
level security.

3 Resource Discovery

In this section, we discuss how WebOS clients locate
representatives of geographically distributed and dy-
namically reconfiguring services, while providing load
balancing and end-to-end high availability.

Our approach consists of a number of components.
First, a service name must be mapped onto the repli-
cated service representatives. Next, a load balancing de-
cision must be made to determine which server is able
to deliver the best performance; this evaluation is dy-
namic and non-binding to cope with potentially bursty
client access patterns. Finally, enough state (e.g. re-
quest content) is maintained to perform fail over if a
service provider becomes unavailable. This section de-
scribes limitations associated with current approaches

to resource discovery and shows how WebOS addresses
these limitations through the use of Smart Clients. Our
discussion focuses on resource discovery in the context
of HTTP service accessed through URL’s. However, our
techniques extend to other domains in a straightforward
manner.

3.1 Current Approaches

To address increasing demand, some popular services
such as the Alta Vista search engine [Dig 1995] or
the Netscape download page [Net 1994] are geograph-
ically distributed by being replicated manually by the
service provider. Load balancing across the wide area
is achieved by instructing users to access a particu-
lar “mirror site” based on their location. To distribute
load across servers, techniques such as HTTP redi-
rect [Berners-Lee 1995] or DNS Aliasing [Brisco 1995,
Katz et al. 1994] can be used to send user requests to
individual machines. With HTTP redirect, a front end
machine redirects the client to resend the request to an
available worker machine. This approach has the disad-
vantage of either adding a round trip message latency to
each request or of binding the client to a single server
for the duration of a session. Further, the front-end ma-
chine serving redirects is both a single point of failure
and a central bottleneck for very popular services.

DNS Aliasing allows the Domain Name Service to
map a single hostname (URL) to multiple IP addresses
in a round robin fashion. Thus, DNS aliasing does
not suffer from the added latency and central bottle-
necks associated with HTTP redirect. However, cur-
rently load balancing with DNS aliasing is restricted to
round-robin, making it difficult to use service-specific
knowledge such as load information. Further, because
clients cache hostname to IP address mappings, a single
server can become overloaded with multiple requests
while other servers remain relatively idle [Dias et al.
1996].

3.2 Smart Clients

In WebOS, we address the shortcomings of exist-
ing solutions for resource discovery through Smart
Clients [Anonymous 1997]. Smart Clients enable exten-
sions of server functionality to be dynamically loaded
onto the client machine. Java’s [Gosling & McGilton
1995] portability and availability in all major Internet
browsers allow us to distribute these extensions as Java
applets. We believe that performing naming, load bal-
ancing, and fail over from the perspective of the client
has a number of fundamental advantages over server-
side implementations. We demonstrate these advan-
tages by using our Smart Clients prototype to implement



Request

Response/
State update

GUI
Thread

Director
Thread

User
Requests

Client-Side Applet
Nearby
Mirror

Distant
Mirror

Figure 1: Two cooperating threads make up the Smart
Client architecture. The GUI thread presents the ser-
vice interface and passes user requests to the Director
Thread. The Director is responsible for picking a ser-
vice provider likely to provide best service to the user.
The decision is made in a service-specific manner. In
this case, the nearest mirror site is chosen.

scalable access to services such as FTP, chat, and the
Rent-A-Server application described in Section 8.

The Smart Client architecture is summarized in Fig-
ure 1. A typical applet’s code is composed of two co-
operating threads: a customizable graphical interface
thread implementing the user’s view of the service and
a director thread responsible for performing load bal-
ancing among service representatives and maintaining
the necessary state to transparently mask individual fail-
ures. Both the interface and director threads are exten-
sible in a service-specific manner.

One outstanding issue with this architecture is the
choice of load balancing algorithm. For example, a front
end machine serving HTTP redirects to clients has the
advantage of current knowledge of load on each worker
process. In the case of Smart Clients, it is impracti-
cal to keep all clients abreast of changes in load of all
servers. Given the high variability of load in the con-
text of the Internet, clients using out of date information
may make strictly worse choices than clients making
random decisions [Mitzenmacher 1996]. Fortunately,
Smart Clients can use more static state information to
influence the load balancing decision, such as available
servers, server capacity, server network connectivity,
server location, and client location.

While the specific load balancing algorithm is
service-specific, we implement the following algorithm
by default. Service state is piggybacked with some
percentage of server responses (i.e. as part of the HTTP
header). The client then chooses a server based on
distance from the client, biased by server load. The
influence of load information is decayed as the infor-
mation becomes stale, with the fallback to random load
balancing in the case where load information is stale
and all other considerations are equal. Thus, clients

service://chat

Java
Browser

User Request

Certificate
Request

Search
Engine

Chat Certificate

Site: site1
Location: CA
Capacity: 100

Site: site2
Location: MA
Capacity: 24
...

site2site1

Applet
Request

1

2

3

Figure 2: Bootstrapping applet retrieval in Smart
Clients. A new service name space is introduced. In step
1, a name is translated into a certificate request from
highly-available search engines in step 2. The certifi-
cate contains hints as to initial service group member-
ship. The Smart Client applet is retrieved from one of
these sites in step 3. Both the certificate and applet are
cached to disk to avoid future bootstrapping.

actively interacting with a service can use current
information to make load balancing decisions, while
inactive clients must initially discount their outdated
notion of load.

3.3 Bootstrapping Applet Retrieval

While the Smart Client architecture provides a portable
mechanism for fault tolerant and load balanced access
to Web services, bootstrapping Smart Client startup re-
mains to be described. Naively, services would be
named through URL’s, with the applet downloaded each
time the service is to be accessed. This would imply a
central bottleneck, a single point of failure, and effec-
tively doubling latency for small requests.

Figure 2 summarizes our approach to addressing
these issues. A meta-applet runs in a Java enabled
browser and is responsible for bootstrapping access-
ing to Web services. A new service namespace is in-
troduced, allowing users to make requests of the form
service://URL; we leverage the URL name space
to simplify integration with existing browsers. The
meta-applet translates these names into requests to a
well-known and highly available Internet name service
to fetch a service certificate—the list of servers capa-
ble of providing the service, along with individual server
characteristics. Currently, we use Alta Vista to per-
form this operation, however we plan to switch to a
more lightweight technique, such as DNS [Mockapetris
& Dunlap 1988]. The service’s Smart Client applet is
downloaded from one of these sites and operation pro-
ceeds normally as described in Section 3.2. The service



certificate, the Smart Client applet, and any service state
are cached to disk (with timeouts) by the meta-applet to
avoid bootstrapping on subsequent accesses.

4 Global Namespace

Today, many distributed applications share state and
transfer control using the network communication ab-
straction. Using the analogy that it is often simpler
to program parallel applications using shared memory
as opposed to message passing, the implementation of
many applications can be simplified by the use of a
global cache coherent filesystem for communication and
synchronization. As empirical evidence, the implemen-
tation of chat (section 7.1) was simplified by the encap-
sulation of current conversations in secure globally ac-
cessible files. Combining caching with this interface has
the added benefit of improving performance for appli-
cations accessing popular files. In this section, we dis-
cuss the implementation of our global file system and its
integration with Transparent Result Caching (TREC),
which allows the caching of dynamically generated Web
content.

4.1 WebFS

WebFS is our prototype of a URL-based cache coher-
ent file system. WebFS has been in day to day use for
approximately six months by twenty users at the au-
thors’ site. It is publically available for download and
has been successfully installed by a number of users un-
affiliated with the authors. WebFS allows UNIX pro-
grams to take URL’s (and URL’s in a pathname syntax)
in place of conventional file names (e.g., ls /http-
/www.cs.washington.edu/sosp16). We chose
to use URL’s as the global namespace because of
its wide deployment and our desire to provide back-
ward compatibility with existing distributed applica-
tions. Once a more scalable, fault tolerant naming
mechanism, such as URNs [Sollins & Masinter 1994], is
defined and widely deployed, it will be straightforward
to incorporate the new mechanism into WebFS.

A fundamental difference between WebFS and ex-
isting Internet naming and caching proposals is that
WebFS is designed to be used by programs, not just by
individuals accessing widely-shared, infrequently up-
dated data. Web users have demonstrated tolerance
for out-of-date data with manual revalidation. By con-
trast, we believe distributed applications require com-
plete and well-defined file system semantics. Since
the choice of consistency semantics implies tradeoffs in
performance, consistency, and availability, WebFS pro-
vides application-controllable and dynamically adapt-

Phase NFS(s) WebFS(s)
I Create 1 1
II Copy 7 7
III Stat 3 10
IV Scan 5 6
V Compile 15 14
Total 31 38

Table 1: This table describes the performance of WebFS
relative to the performance of NFS on the Modified An-
drew Benchmark suite.

able cache consistency policies. For example, invalida-
tion driven optimistic consistency could be used for files
shared between two geographically distributed sites im-
plementing a service [Kistler & Satyanarayanan 1992,
Terry et al. 1995], while weaker consistency could be
used for widely-shared files at client machines. As an-
other example, to support service migration, WebFS
may initially use large block sizes or prefetching to
reduce cold-start misses and then convert to smaller
blocks for minimizing false sharing. Finally, a list
of user-extensible properties is associated with each
WebFS file, extending basic properties such as owner
and permissions with cache consistency policy and en-
cryption policy. These properties are set and accessed
through the UNIX ioctl system call.

Currently, WebFS implements the last writer
wins [Howard et al. 1988] cache consistency proto-
col to support traditional file access as well as an IP
multicast-based [Deering 1991] update/invalidate pro-
tocol for widely-shared, frequently updated data files.
Once IP multicast becomes widely deployed, its use
will increase the efficiency of popular “Internet push”
applications [Poi 1996]. We believe that providing
IP multicast support at the filesystem interface will
simplify the development of these applications. To
demonstrate this point, we have implemented a stock
ticker application that regularly distributes (through
multicast file writes) updated stock prices to interested
clients performing blocking read operations. In addition
to last-writer wins and IP multicast updates, we are in
the process of extending WebFS to support optimistic
reintegration [Kistler & Satyanarayanan 1992] to deal
with the disconnected operation endemic to today’s
Internet.

WebFS is implemented as a dynamically loadable
Solaris file system extension interfacing at the vnode
layer [Kleiman 1986]. The vnode layer makes upcalls to
a user level WebFS daemon for file accesses not cached
in virtual memory. The WebFS daemon uses HTTP for
access to standard Web sites. If the remote site is also
running WebFS, then authenticated read/write access is



enabled through our own custom extensions to HTTP.
To validate the performance of our system, we ran the

modified Andrew Benchmark suite [Ousterhout 1990]
for both WebFS and NFS [Walsh et al. 1985]. The NFS
measurements were taken on a Sun Ultra Server making
requests to an Auspex NFS server over Ethernet. For
WebFS, a Sun Ultra Server made requests to a WebFS
server running on a second Ultra Server also over Ether-
net. The performance results are summarized in Table 1.
Given the largely untuned nature of the code and the ex-
tra overhead associated with making upcalls to the user
level, the performance of WebFS is reasonable for most
phases of the benchmark. Significant slowdown is ap-
parent in phase III, which executes a stat operation on 70
files. The factor of 3 slowdown is caused by the upcall
that is made to the user level for every operation. We are
in the process of modifying the code to store these val-
ues in the kernel when the file is initially copied, which
should result in improved WebFS performance.

4.2 Transparent Result Caching

In developing WebFS, we observe that one fundamen-
tal obstacle to aggressive caching in the Internet is the
widespread use of dynamic objects. These objects are
generated on the fly by HTTP servers (e.g. through
CGI-bin programs) and are marked uncacheable by both
caching proxies and clients. Caching dynamic objects
can result in a performance improvement when there is
locality of reference and the objects are fairly expen-
sive to generate. We have implemented transparent re-
sult caching (TREC) to enable caching of a certain class
of dynamic objects. TREC allows program results to
be stored as WebFS files, as in the Semantic File Sys-
tem [Gifford et al. 1991]. After the initial request for
a particular program result, WebOS is able to return the
cached contents of the file rather than re-executing the
program.

Using the Solaris /proc filesystem, TREC gener-
ates dependency graphs of target programs by record-
ing the name, environment, parent process, child pro-
cesses, input, and output files. Once an object’s profile is
complete (the process and its children exit), TREC com-
mits the profile to persistent storage and then executes
a blocking WebFS system call to put “watchpoints” on
both the program executable and its input files [Bershad
& Pinkerton 1988]. The system call returns on modifica-
tion to any of the target files, allowing TREC to inform
WebFS of the change. On notification, WebFS unlinks
the dynamic object results and sends invalidation mes-
sages to all sites caching the object.

Of course, TREC cannot cache all classes of dynamic
objects. For example, programs may base results on ran-
dom numbers or interaction with remote servers, mak-

ing program results uncacheable. We use a WebFS file
property to allow administrators to mark such program
results as uncacheable. However, we believe that a sig-
nificant class of Web dynamic objects can be cached
using TREC. Further, if sites using TREC demonstrate
performance improvements, structuring dynamic ob-
jects to be “TREC compliant” (cacheable) is straightfor-
ward. For example, a news service might generate its
“front page” as HTML referencing the most timely ar-
ticle blurbs. The front page can be cached by remote
proxies, and invalidated when the front page changes.
This front page can be cached at both clients and prox-
ies, potentially resulting in reductions in both server
load and Internet congestion.

Our measurements of TREC show a uniform 30%
overhead in performance for three benchmarks executed
on an Ultra Server running Solaris 2.5.1: the modified
Andrew Benchmark, compilation of 4000 lines of C
code, and running latex on a 20 page document. The
slowdown is caused by the multiple context switches as-
sociated with bouncing necessary system calls to TREC.
We believe that this overhead can be largely eliminated
by integrating TREC with an in-kernel system call inter-
position tool [Jones 1993, Bershad et al. 1995].

To demonstrate the utility of TREC, we take the com-
mon example of performing a query to an Internet search
engine such as Alta Vista or HotBot [Brewer & Gauthier
1995]. Queries returning a large number of results are
by default truncated to display the first 10-20 matches.
However, if the next � matches are later requested, the
entire query is re-executed [Brewer 1997]. Using TREC
to cache search results for a short period of time can im-
prove search overhead. To demonstrate this point, we
measured the overhead of executing a simple CGI-bin
program that returns 10 KB of HTML. For the Apache
HTTP server, this operation took approximately 200 ms
between 2 Ultra Servers on shared Ethernet. After mod-
ifying apache to check for TREC-generated program re-
sults before executing CGI bin programs, the same op-
eration averaged 110 ms. The performance improve-
ment results from avoiding the fork and exec oper-
ations Apache executes for CGI programs. The perfor-
mance improvement assumes a no-op CGI program; the
improvements would be more dramatic if the CGI pro-
gram did real work. To further investigate this, we plan
to take TREC measurements for search queries to an in-
dex of our local site produced by Excite [Exc 1997], a
publically available indexing tool and search engine.

We note that TREC may also be useful outside of
the context of WebOS. For example, it can be used to
build a transparent make utility: by observing a program
compilation once, TREC can generate the appropriate
dependencies to automatically recompile program exe-
cutables (perhaps with a user prompt) if any of the input



Figure 3: WebOS Security Model. First, users transfer
some portion of their access rights to a WebOS server.
When attempting to access a remote resource, WebOS
servers communicate using SSL (step 2). Finally, the re-
mote server checks if the proper credentials are held in
local ACL’s.

files change, including any nested ones, such as include
files, or implicit dependencies, such as the executables
for the compiler and assembler. As another example, if
TREC were used to profile all local programs, it would
allow users to query the file system for the origins of a
given data file (e.g. determine the program and inputs
used to generate the file in question). However, the use
and implementation of TREC in such contexts is beyond
the scope of this paper.

5 Security and Authentication

Applications operating across the wide area are suscep-
tible to a variety of potential attacks by sophisticated ad-
versaries. For users to trust their sensitive computation
to WebOS, a well-defined and easily validated model of
trust must be defined and implemented. The goal of our
implementation is to make issues of security as transpar-
ent as possible for common operations while still allow-
ing for arbitrary levels of paranoia for programs that re-
quire it. In this section, will describe such a a model and
show how it is used for secure, authenticated access to
global resources.

WebOS provides security at a number of levels. First,
two principals communicating at the link layer believe
one another’s identity and trust that the data cannot be
compromised by a third party. Next, principals are able
to have fine-grained control over which capabilities are
transferred to remote WebOS processes running on their
behalf. Finally, WebOS provides an interface for reg-
istering users and for specifying access rights to indi-
vidual system resources. The WebOS security model is
summarized in Figure 3.

5.1 Link Layer

WebOS relies upon a hierarchy of certification author-
ities (CA’s). These authorities are responsible for pro-
ducing X.509 certificates [CCITT 1988] mapping prin-
cipals to their public keys [Diffie & Hellman 1977,
Rivest et al. 1978]. These certificates are generated by
the CA and contain the following information: the iden-
tity of the CA, the name of the principal, its public key,
the period during which the mapping is valid, and a digi-
tal signature of the entire certificate by the CA. By using
these certificates and by placing trust in the CA’s, we are
able to guarantee that any data successfully decrypted by
a given public key was in fact generated by the associ-
ated principal.

We use the Secure Socket Layer (SSL) [Freier et al.
1996] to authenticate the identity of communicating
servers to one another. SSL uses the public keys from
a WebOS server’s X.509 certificate to establish an RC4
symmetric key for session communication, and an MD5
hash of chunks of the byte stream to allow the principals
to determine if an adversary is attempting to patch their
communication. Symmetric keys are used for encryp-
tion because of their computational simplicity relative
to public key cryptography. WebOS manages a cache
of available connections to remote servers to avoid the
overhead of establishing a secure connection for each
logical operation.

5.2 Transfer of Rights

Principals register with WebOS and are able to control
the transfer of portions of their rights to servers acting
on their behalf [Burrows et al. 1989, Lampson et al.
1991, Wobber et al. 1993]. For example, a principal
might register with a remote WebOS compute engine,
transferring to the server the right to access a particu-
lar sub-directory containing the relevant data files. The
server would be able to access the files necessary to
carry out any computation on the principal’s behalf but
would be prevented from accessing the principal’s pri-
vate financial information located in another directory.
A WebOS server can recursively transfer rights to a sec-
ond server by signing the appropriate transfer certificate,
unless a transfer right is not granted by the user.

In WebOS, principals transfer rights by creating a
transfer certificate that specifies the resources in ques-
tion (for example, all files in a particular WebFS sub-
directory), the identity of the target WebOS server, and
a time period during which the transfer certificate is
valid. This transfer certificate is attached to the princi-
pal’s X.509 certificate (identifying the principal) and an
MD5 hash [Rivest 1992] of both the X.509 and transfer
certificates encrypted in the user’s private key. This en-



crypted hash certifies that the user actually created the
transfer certificate. Using this scheme, a WebOS server
is able to prove to other sites that it is authorized to act
on the principal’s behalf when accessing the resources
specified in the transfer certificate. Note that the pro-
gram generating the transfer certificate requires the prin-
cipal’s private key; however, this registration program is
distributed as source and runs on a principal’s local ma-
chine.

5.3 Specifying and Validating Rights

WebOS access rights are specified through Access Con-
trol Lists (ACL’s). These access rights specify the list
of principals which possess read, write, modify, and ex-
ecute permission on a given resource. When a princi-
pal attempts to access a resource, WebOS sends the re-
quest with the proper transfer certificate to the site that
owns the resource. The destination site takes the follow-
ing steps in validating access to the resource in question:
(i) it checks for a valid timestamp in the transfer certifi-
cate, (ii) it determines if the requesting WebOS server
has the proper authority to act on the principal’s behalf
for the requested resource, as described in the transfer
certificate, and (iii) it checks its local ACL’s to deter-
mine whether the principal has the proper access permis-
sions for the requested resource.

We chose to use ACL’s because of their relative con-
ceptual simplicity both from the principal’s and imple-
mentor’s point of view. A capability based system is
more manageable in a global context where the access
rights of potentially millions of users must be moni-
tored. However, capabilities present complications for
rights revocation and transfer. To partially address the
issues of scale associated with ACL’s, WebOS allows
for global group access rights and implements an effi-
cient storage/lookup mechanism for its ACL’s. Based
on the assumption that many resources will have iden-
tical groups of principals associated with them, WebFS
resources point to unique “buckets” containing the ap-
propriate rights specification. Lookups are executed by
performing a hash of the requesting principal into the
buckets.

6 Process Control

To simplify development of wide area applications,
WebOS makes execution of processes on remote nodes
as simple as forking a process on the local processor. As
with the local case, the WebOS process control model
addresses issues with safety and fairness. On local ma-
chines, safety is provided by execution in a separate
address space, while fair allocation of resources is ac-

complished through local operating system scheduling
mechanisms.

A resource manager on each WebOS machine is re-
sponsible for job requests from remote sites. Before ex-
ecuting any job, the resource manager authenticates the
remote principal’s identity and determines if the proper
access rights are held. To maintain local system in-
tegrity and to ensure that running processes do not in-
terfere with one another, the resource manager creates a
virtual machine for process execution.

We use Janus [Goldberg et al. 1996] to create such
a virtual machine. Processes in the virtual machine ex-
ecute with limited privileges, preventing them from in-
terfering with the operation of processes in other virtual
machines. Janus uses the Solaris /proc filesystem to
intercept the subset of system calls that could potentially
violate system integrity, forcing failure if a dangerous
operation is attempted. A Janus configuration script de-
termines access rights to the local file system, network,
and devices. These configuration scripts are set by the
local system administrator on a per-principal basis.

WebOS also uses the virtual machine abstraction as
the basis for local resource allocation. On startup, a
process’s runtime priority is set using the System V
priocntl system call, and setrlimit is used to set
the maximum amount of memory and maximum CPU
usage. In the future, we hope to integrate more robust
policies allowing fine-grained control over allocation,
allowing WebOS to provide quality of service guaran-
tees. For example, techniques such as reverse lotter-
ies [Waldspurger & Weihl 1994] might be used to more
flexibly allocate physical memory pages.

7 WebOS Applications

This section provides an overview of four applications
built using the WebOS framework. The applications
demonstrate that WebOS services enable and simplify
their implementation. The first two applications have
been completed, while the last two are under develop-
ment. In the next section, we describe in detail the
design and performance of a fifth application, Rent-A-
Server.

7.1 Internet Chat

Internet chat allows for individuals to enter and leave
chat rooms to converse with others co-located in the
same logical room. In our implementation, chat rooms
are modeled as WebFS files accessed by Smart Clients.
The file system interface is well-matched to chat seman-
tics in a number of ways: (i) A simple file append ab-
stracts the required network communication necessary



to send messages, (ii) the chat file provides a persis-
tent log of chat activity, and (iii) access control lists
allow for private and secure (through WebFS encryp-
tion) chat rooms. For scalability, we allow multiple
WebFS servers to handle client requests for a single
file (room). Each WebFS server accumulates updates,
and periodically propagates the updates to other servers
in the WebFS group, who in turn transmit the updates
to local clients. Smart Clients choose the least loaded
WebFS server for load balancing and connect to alterna-
tive servers on host failure or network partition for fault
transparency.

To quantify the benefits available from the WebOS
framework, we implemented two versions of chat with
identical semantics, both with and without WebOS. The
initial implementation consisted of 1200 lines of Java
code in the client and 4200 lines of C++ code in the
server. By using WebFS to handle message transmis-
sion, failure detection, and storage, the size of the chat
client code was reduced to 850 lines, while the WebFS
interface entirely replaced the 4200 lines of chat server
code. The main reason for this savings in complex-
ity was the replacement of separate code for managing
communication and persistent storage of chat room con-
tents with a single file. As an added benefit, the WebFS
interface becomes available for similarly structured dis-
tributed applications. For example, we are currently im-
plementing a shared distributed whiteboard application
using this interface.

7.2 Remote Compute Engine

Sites with unique computing resources, such as super-
computer centers, often wish to make their resources
available over the Internet. Using WebOS, we allow re-
mote programs to be invoked in the same way as local
programs and can allow access to the same files as lo-
cal programs. WebOS functionality is used to address a
number of issues associated with such access: the iden-
tity of requesting agents is authenticated, programs are
provided secure access to private files on both local and
remote systems, and programs run in a restricted virtual
machine isolated from other programs to protect the lo-
cal system from malicious users. At our site, WebOS
provides compute access to a research cluster of 100 ma-
chines. Resource allocation within the virtual machine
allows external users to take advantage of the aggregate
computing resources, while ensuring system developers
have the requisite priority.

7.3 Wide Area Cooperative Cache

We are using WebOS to build a geographically dis-
tributed Web cooperative cache [Dahlin et al. 1994]

to both validate our design and to provide an imme-
diate benefit to the Internet by doing more intelligent
caching of Web content. Existing proposals for hierar-
chical caching of the Web suffer from an inability to dra-
matically grow the cache size and processing power at
each level of the hierarchy [Chankhunthod et al. 1996].
With cooperative caching among peer servers, the ag-
gregate capacity grows dramatically with the distance
from the client. Thus, while caches above the first level
in existing hierarchical designs have very low hit rates
and simply increase the latency to end clients, a coop-
erative cache is more likely to successfully retrieve a
cached copy from a peer. We plan to explore tradeoffs
associated with maintaining directories of peer cache
contents [Anderson et al. 1995, Feeley et al. 1995],
hints [Sarkar & Hartman 1996], or using simple IP
muilticasts or broadcasts.

WebOS simplifies the implementation of the cooper-
ative cache in a number of ways. First, Smart Clients
are used to determine the appropriate proxy cache to
contact. WebFS is used to transport cache files among
the proxies and to securely share any necessary (pri-
vate) state among the proxies. Finally, the authenti-
cation model allows proxies to validate their identities
both to one another and to the client.

7.4 Internet Weather

A number of sites are currently attempting to provide
regular updates of congestion, latency, and partitions in
the Internet [Mat 1996, Int 1997]. Such information
is invaluable for services making placement and load
balancing decisions. However, all current efforts take
network measurements from a centralized site, mak-
ing it difficult to measure network characteristics be-
tween two arbitrary sites. We are addressing this limi-
tation by using the WebOS framework to generate more
comprehensive snapshots of Internet conditions. In our
implementation, a centralized server provides Smart
Client applets for those wishing to view the current
Internet weather. In exchange for the weather report,
the user implicitly agrees to allow the applet to exe-
cute traceroute to a subset of server-determined
sites and to transmit the result back to the server. Us-
ing these results from multiple sites, the service is able
to construct fairly comprehensive snapshots of Internet
weather.

8 Rent-A-Server

This section describes the design, implementation, and
performance of Rent-A-Server, an application demon-
strating the power of using a unified system interface to



wide area resources and of moving a service out across
the Internet.

8.1 Motivation

Rent-A-Server is a general model for graceful scaling
across temporal and geographic spikes in client demand
for a particular service. Our particular implementation
focuses on Web service, and enables overloaded HTTP
servers to shed load onto idle third-party servers called
surrogates that use the WebOS framework to coherently
cache data from the primary server. The surrogate is
able to satisfy the same HTTP requests as the original
server, including requests for both static and dynami-
cally generated objects (e.g. data pages vs. CGI script
results).

Rent-A-Server allows sites to deal with peak loads
that are much higher than their average loads by “rent-
ing” hardware to deal with peaks. For example, the
Internal Revenue Service site (http://www.irs.-
ustreas.gov) is overwhelmed by requests around
April 15, but providing the computation power and net-
work bandwidth necessary to handle peak levels of de-
mand year round is a waste of resources. The benefits
for Rent-A-Server can be summarized as follows:

� Geographic Locality: In addition to distributing
load, Rent-A-Server improves performance by in-
creasing locality. Rather than satisfying requests
from a centralized site, a system can distribute its
requests across geographically distributed servers,
each of which satisfies nearby clients.

� Dynamic Reconfiguration: The location and num-
ber of sites representing a service can be deter-
mined dynamically in response to client access pat-
terns. Rent-A-Servers can be spawned to locations
“near” current spikes in client demand, and torn
down once client activity subsides.

� Transparent End-to-End Availability: Once a ser-
vice is replicated with Rent-A-Server, users can
transparently access whichever replica is available,
routing around both Internet and service failures.

� Secure Coherent Data Access: To address limita-
tions associated with caching proxies which are un-
able to generate dynamic Web pages (e.g. results
of cgi-bin programs) and often serve stale data,
Rent-A-Server uses WebOS to provide authenti-
cated, coherent global file access to data pages,
CGI scripts, and internal server state needed by
CGI scripts.

� Safe Remote Execution: Surrogate sites securely
execute service programs and associated service

scripts (such as CGI programs) without violating
the surrogate’s system integrity.

8.2 Current Approaches

Current efforts to distribute HTTP server load focus on
either distributing load across a fixed set of machines
maintained by the owner of the data or distributing data
across (proxy) caches under client (not server) control.
Many HTTP server implementations achieve scalabil-
ity by replicating their data across a fixed set of servers
at a single site and then using the Domain Name Ser-
vice (DNS) to randomly distribute requests across the
servers [Katz et al. 1994]. Unfortunately, this ap-
proach requires that each site purchase enough comput-
ing power and network bandwidth to satisfy peak de-
mand.

“Mirror sites” are also used to improve locality and to
distribute load, but this manual approach requires more
effort to set up the mirrors and to maintain data con-
sistency across the mirrors. Further, users must specify
which mirror to use, which is both inconvenient and un-
likely to yield a balanced load across sites. Finally, as
with the approach of running multiple servers at one site,
mirror sites are allocated statically. The system must
always maintain enough mirrors to deal with its peak
loads, and the location of mirrors cannot be shifted to
address shifts in geographic hotspots.

Another approach to distributing load, caching prox-
ies, is used to reduce server load and to improve net-
work locality. To use a proxy, groups of clients send
all of their requests to their proxy machine. The proxy
machine attempts to satisfy the requests from its local
cache, sending the requests to the remote server if the
cache cannot supply the data. If proxies satisfy many
requests to the server through their caches, both server
load and network congestion are reduced.

However, proxies are conceptually agents of Web
clients rather than of Web servers. Thus, in some in-
stances they provide a poor match to the requirements
of overloaded services. First, proxy servers cache only
data pages. A proxy must send all requests for CGI
scripts to the original server. Second, because servers
regard proxies as ordinary clients, the proxy can sup-
ply stale data to its clients because of the limitations of
HTTP cache consistency protocols. As an example of
the importance of having server-controlled rather than
client-controlled load distribution, some sites have re-
cently asserted that proxy caches violate copyright laws
by storing site content [Luotonen & Atlis 1994]. In ef-
fect, the proxies are reducing generated advertising rev-
enues by hiding page access counts.



Figure 4: Rent-A-Server Architecture. HTTP servers
periodically send load information to a load daemon. In
response to an update, the load daemon transmits the
state of all servers. In turn, the HTTP servers trans-
mit this state information as part of the HTTP header
to Smart Clients. The Smart Clients can use this infor-
mation to determine which server to contact for its next
request. When the load daemon notices that the service
as a whole is becoming overloaded, it contacts the re-
source manager on an available surrogate to create an-
other server replica. WebFS is used to securely transmit
any executables or data files needed to start the server.

8.3 System Design

In this subsection, we demonstrate how WebOS services
simplify the implementation of this application. The
architecture of the Rent-A-Server is described in Fig-
ure 4. Smart Clients access HTTP services. Periodically
(currently every tenth response), servers piggyback ser-
vice state information to Smart Clients in the HTTP re-
ply header. This state information includes a list of all
servers currently providing the service. The following
information is included for each server: its geographic
location, an estimate of its processing power, an esti-
mate of current load, and a time period during which the
server is guaranteed to be active. The last field is de-
termined with short term leases that are periodically re-
newed if high demand persists. The short leases prevent
clients with stale state information from trying to access
inactive surrogates (or worse, surrogates acting on be-
half of a different service).

Each Rent-A-Server maintains information about
client geographic locations (location is sent by Smart
Clients as part of the HTTP request) and its own load in-
formation in the form of requests per second and bytes
transmitted per second. Each Rent-A-Server periodi-
cally transmits this state information to a centralized

load daemon. For software engineering reasons, the
load daemon is currently a separate process, however its
functionality could be rolled into an elected member of
the server group. The load daemon is responsible for
determining the need to spawn or to tear down Rent-A-
Servers based on current load information and client ac-
cess patterns. It also transmits server group state (e.g.
membership and load information) to each member of
the server group, which is in turn piggybacked by the
servers to Smart Clients as part of HTTP replies, as de-
scribed above.

Once the load daemon determines the need to spawn
an additional server, it first determines a location for the
new Rent-A-Server. The new server should be located
close to any hotspots in client access patterns to both
conserve bandwidth and to minimize client latency (this
policy has not yet been implemented). Once the tar-
get machine is selected, the load daemon establishes an
SSL channel with the surrogate’s resource manager. The
load daemon then adds the surrogate to the necessary
ACL’s allowing it access to WebFS files containing the
executables (e.g. HTTP server) or internal service state
(e.g. CGI scripts or internal database). In addition, the
load daemon provides a signed certificate (with an expi-
ration date) granting the surrogate the right to serve data
on behalf of the service. This certificate is transmitted to
Smart Clients on demand to prevent spoofing of the ser-
vice by malicious sites.

When setup negotiation is completed, the surrogate
site builds a Janus virtual machine to execute the neces-
sary programs (in our case an arbitrary HTTP server) to
establish a service identity at the surrogate. The virtual
machine ensures that the surrogate’s system integrity
is not violated by a buggy executable or a malicious
server. Both the service executable and any necessary
service state are securely accessed and cached on de-
mand through WebFS. The load daemon propagates the
identity of the new surrogate to other members of the
server group, which in turn transmit the identity and lo-
cation of the new server to Smart Clients. Tear down of a
surrogate is accomplished when client demand subsides
and the load daemon decides not to renew leases with a
surrogate. The load daemon removes the surrogate from
the appropriate ACL’s.

8.4 Performance

To demonstrate the power of dynamic resource recruit-
ment available from our approach, we measure the per-
formance of Rent-A-Server when placed under a heavy
synthetic load. Our experiments are conducted on a
cluster of Sun Ultra Servers interconnected by 10 Mbps
switched Ethernet. Seven Ultra Servers are designated
as surrogates available to provide HTTP service on be-



0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Time (s)

L
at

en
cy

 (
s)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Time (s)

L
at

en
cy

 (
s)

(a) Rent-A-Server (b) Fixed Server

Figure 5: Rent-A-Server Performance. The graphs plot average client latency as a function of time for the operation
of retrieving a 2.5 KB HTML file over HTTP. In the Rent-A-Server graph, dark columns correspond to spawning of
Rent-A-Servers onto surrogates while the lighter lines mark the start of a new group of 8 clients. The same experiment
is run for the Fixed Server graph with static allocation of 6 HTTP servers.

half of an eighth machine designated as the primary. All
eight server machines run WebOS, including the file sys-
tem and the resource manager responsible for process
control. Another 32 machines are used to generate grad-
ually increasing load to the HTTP service. All machines
are running Solaris 2.5.1, and Apache 1.2b6 is used for
the HTTP server.

During the experiment, each client machine starts 15
Smart Client processes that continuously retrieve copies
of the same 2.5 KB (a typical size today) HTML file.
Smart Clients use random load balancing to pick from a
changing list of available HTTP servers. To simulate in-
creasing load, all 32 client machines do not begin mak-
ing requests at the same time. Rather, clients start in
four groups of eight machines each, with the start time
of each group staggered by two minutes. Thus, all 32
clients are running after six minutes.

The results of our tests are summarized in Figure 5.
The graphs plot average client-perceived latency in sec-
onds as a function of elapsed time, also in seconds.
Initially, only a single HTTP server is available; how-
ever, the load daemon spawns new servers onto avail-
able surrogates as service load increases. The thick dark
columns correspond to execution of new HTTP servers,
while the lighter thin lines correspond to the startup of a
new group of eight client machines, with the first eight
clients starting at time 0. For example, the Rent-A-
Server graph shows that a third surrogate server was
started at

�������	�
, shortly after the second group of

eight clients start. The experiment reaches steady state
at approximately

�
���	
	

seconds after the last group

of client machines start running at
�����	�	


seconds.
The graph is truncated at

������
	

seconds. In summary,

Figure 5(a) shows that Rent-A-Server is able to dynami-
cally recruit resources in response to increased client de-
mands. As clients increase server load over time, Rent-
A-Server is able to dynamically recruit needed surro-
gates to maintain relatively steady quality of service, de-
livering 800 ms average latency.

While the number of active HTTP servers varies from
between one and eight, on average 5.7 servers are ac-
tive. To contrast the performance of Rent-A-Server with
static server allocation, the experiment is executed with
identical parameters, with the exception that 6 fixed
servers are allocated for the duration. Figure 5(b) de-
picts the results. Between

����

and
��������


with rela-
tively light client demand, static allocation outperforms
Rent-A-Server, delivering an average latency of approx-
imately 600 ms. However, it can be argued that re-
sources are wasted because measurements indicate that
three servers could deliver the same performance for
eight clients. When all 32 clients are running between�����	��


and
�����	
�


, Rent-A-Server’s ability to dy-
namically recruit resources results in improved perfor-
mance. During this time period, clients see 850 ms av-
erage latency while the statically allocated resources be-
come constrained, delivering 965 ms average latency.
Thus, Rent-A-Server outperforms static resource alloca-
tion even when the average amount of consumed service
resources stays constant.

The performance of Rent-A-Server demonstrates the
power of dynamically recruiting resources for wide



area services. However, it is equally important to pro-
vide a convenient interface for application development.
Our implementation of Rent-A-Server in WebOS con-
sists solely of the load daemon and additions to the
Apache HTTP server to transmit state information to the
load daemon and to transmit aggregate service state (in
HTTP headers) to Smart Clients. The load daemon con-
sists of 1000 lines of C++ code, and we added 150 lines
of C code to Apache. Beginning with the WebOS frame-
work, our prototype of Rent-A-Server was operational
in less than one week.

9 Related Work

A number of recent efforts exploit computational re-
sources available on the Internet for wide area par-
allel programming, including Wax [Stout 1994], Le-
gion [Grimshaw et al. 1995], Atlas [Baldeschwieler
et al. 1996], Globus [Foster & Kesselman 1996], and
NetSolve [Casanova & Dongarra 1996]. WebOS shares
a need for similar underlying technology with these sys-
tems (such as the need for a global name space and file
system). However, these systems focus on a program-
ming model for computing across the wide area, while
our work focuses on system level support for building
and running wide area applications.

Our work draws upon a large body of previous work
in file systems exporting a global namespace, includ-
ing AFS [Howard et al. 1988], Alex [Cate 1992],
Coda [Kistler & Satyanarayanan 1992], Bayou [Terry
et al. 1995], and UFO [Alexandrov et al. 1997]. The
main differentiating point between WebFS and these
earlier works is backward compatibility with the HTTP
name space and a security model appropriate for wide
area access. We plan to build on the work done in Coda
and Bayou to address issues of replication and fault tol-
erance in the wide area.

Harvest [Chankhunthod et al. 1996], Squid [Squ
1996], and other Web caching efforts have focused on
methods of extending the client cache across the Inter-
net to caching proxies. Caching proxies in general are
limited by a number of ways. Proxies are unable to pro-
duce dynamic Web content (i.e. the results of cgi-bin
programs). Further, proxies are logical extensions of the
client making it difficult for service providers to track
such things as hit counts. Rent-A-Server addresses the
limitations of proxy caching mechanisms by allowing
full replication of overloaded services at locations deter-
mined by client access patterns.

The V kernel [Cheriton 1988] uses multicast for client
communication to multiple members of a server group
for load balancing and fault tolerance. This mecha-
nism is related to our use of Smart Clients for extending

service functionality onto the client. However, Smart
Clients allow service-specific naming and load balanc-
ing algorithms. For example, the quality of the network
fabric is non-uniform in the wide area, making it im-
portant to distinguish sites based on the client’s latency
to each of the sites. Further, our approach enables mi-
gration of more general service functionality as demon-
strated by the Internet Weather application described in
Section 7.4.

The recent Active Networks proposal is to modify
Internet routers to be dynamically programmable, ei-
ther at the connection or packet level [Tennenhouse &
Wetherall 1996]. The goal is to make it easier to ex-
tend network protocols to provide new services, such as
minimizing network bandwidth consumed by multicast
video streams. As in our work, a major motivation is to
move computation into the Internet to minimize network
latency and congestion. WebOS can be seen as a logical
extension of Active Networks, where the active comput-
ing elements in the Internet can be servers in addition to
the individual processors inside of routers operating on
packet streams.

10 Future Work

The goal of our work is to demonstrate that providing
operating system services across the wide area will both
simplify application development and more efficiently
manage global resources. However, the WebOS proto-
type is only a single point in a large space of possible de-
sign alternatives. Preliminary results from the applica-
tions we have built demonstrate that WebOS is capable
of simplifying application development and of efficient
resource utilization. However, many questions remain
before determining the “correct” organization for a wide
area operating system.

To explore this design space, it is necessary to de-
ploy our system in the wide area. While we believe our
fundamental design decisions to be sound, their rami-
fications and their impact on application performance
can only be determined when taking measurements in
real-world situations. To this end, we are making our
software publically available; a number of sites have al-
ready agreed to participate in our wide area testbed.

Using this testbed, we plan to determine filesystem
consistency requirements in the face of host/network
failure. We will begin with the Coda model of opti-
mistic concurrency. Another avenue we will explore is
Smart Client load balancing algorithms that efficiently
utilize network resources (e.g. bandwidth), minimize
server load, and deliver the highest performance to the
end clients. We also plan to explore placement policies
of dynamically spawned Rent-A-Servers when clients



are geographically distributed. Finally, our implementa-
tion is currently restricted to Solaris machines. To truly
support wide area applications, WebOS services must be
ported to support heterogenous platforms.

11 Conclusions

In this paper, we have demonstrated the synergy avail-
able from exporting traditional operating system func-
tionality to wide area applications. Our prototype imple-
mentation, WebOS, describes one possible organization
of these system services. In this framework, we make
the following contributions. First, we show that ex-
tending server functionality onto client machines allows
for more flexible implementation of name resolution,
load balancing, and fault tolerance. Second, by pro-
viding a file system abstraction combining communica-
tion and persistence, we simplify the implementation of
a number of wide area applications. Next, we present
a methodology for coherently caching program results
through the file system, speeding the performance of ap-
plications which must repeatedly execute programs with
common inputs. Finally, we demonstrate how Rent-A-
Server, an application developed in our framework, both
improves system performance and more efficiently uti-
lizes system resources for Web server access.

Acknowledgments

Both the content and presentation of this paper has
greatly benefited from many discussions with members
of the UC Berkeley NOW project. In addition, we
would like to specifically thank Eric Anderson, Remzi
Arpaci-Dusseau, Doug Ghormley, Ken Goldberg, Steve
Lumetta, Steve McCanne, John Ousterhout, Dave Pat-
terson, and Marvin Theimer for their feedback on the
ideas presented in this paper.

References

[Accetta et al. 1986] M. Accetta, R. Baron, W. Bolosky, D.
Golub, R. Rashid, A. Tevanian, and M. Young.
“Mach: A New Kernel Foundation For UNIX
Development”. In Proceedings of the 1986
USENIX Summer Conference, pp. 93–112, June
1986.

[Alexandrov et al. 1997] A. D. Alexandrov, M. Ibel, K. E.
Schauser, and C. J. Scheiman. “Ufo: A Personal
Global File System Based on User-Level Exten-
sions to the Operating System”. In Proceedings
of the 1997 USENIX Technical Conference, Ana-
heim, CA, January 1997.

[Anderson et al. 1995] T. E. Anderson, M. D. Dahlin, J. M.
Neefe, D. A. Patterson, D. S. Roselli, and R. Y.
Wang. “Serverless Network File Systems”. In
Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles, pp. 109–126, De-
cember 1995.

[Anonymous 1997] Anonymous, 1997. This reference de-
scribes the initial Smart Clients architecture, but
was omitted to maintain anonymity.

[Baldeschwieler et al. 1996] E. Baldeschwieler, R. Blumofe,
and E. Brewer. “Atlas: An Infrastructure for
Global Computing”. In Proc. of the Seventh ACM
SIGOPS European Workshop: Systems Support
for Worldwide Applcations, September 1996.

[Berners-Lee 1995] T. Berners-Lee. “Hypertext Transfer
Protocol HTTP/1.0”, October 1995. HTTP
Working Group Internet Draft.

[Bershad & Pinkerton 1988] B. N. Bershad and C. B. Pinker-
ton. “Watchdogs — Extending the UNIX File
System”. Computing Systems, 1(2):169–188,
Spring 1988.

[Bershad et al. 1995] B. N. Bershad, S. Savage, E. G. S.
P. Pardyak, M. Fiuczynski, D. Becker, C. Cham-
bers, and S. Eggers. “Extensibility, Safety and
Performance in the SPIN Operating System”. In
Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles, December 1995.

[Brewer & Gauthier 1995] E. Brewer and P. Gauthier.
“The Inktomi Search Engine”. http://-
www.inktomi.com, 1995.

[Brewer 1997] E. Brewer. Personal Communication, March
1997.

[Brisco 1995] T. Brisco. “DNS Support for Load Balancing”,
April 1995. Network Working Group RFC 1794.

[Burrows et al. 1989] M. Burrows, M. Abadi, and R. Need-
ham. “A Logic of Authentication”. In Pro-
ceedings of the Twelfth ACM Symposium on Op-
erating Systems Principles, pp. 1–13, December
1989.

[Casanova & Dongarra 1996] H. Casanova and J. Dongarra.
“NetSolve: A Network Server for Solving Com-
putational Science Problems”. In Proceedings of
Supercomputing ’96, November 1996.

[Cate 1992] V. Cate. “Alex – a Global Filesystem”. In Pro-
ceedings of the 1992 USENIX File System Work-
shop, pp. 1–12, May 1992.

[CCITT 1988] CCITT. “The Directory — Authentication
Framework”. Recommendation X.509, 1988.

[Chankhunthod et al. 1996] A. Chankhunthod, P. Danzig, C.
Neerdaels, M. Schwartz, and K. Worrell. “A Hi-
erarchical Internet Object Cache”. In Proceed-
ings of the 1996 USENIX Technical Conference,
January 1996.



[Cheriton 1988] D. R. Cheriton. “The V Distributed Sys-
tem”. In Communications of the ACM, pp. 314–
333, March 1988.

[Dahlin et al. 1994] M. Dahlin, R. Wang, T. Anderson, and D.
Patterson. “Cooperative Caching: Using Remote
Client Memory to Improve File System Perfor-
mance”. In Proceedings of the 1st USENIX Sym-
posium on Operating Systems Design and Imple-
mentation, pp. 267–280, November 14–17 1994.

[Deering 1991] S. E. Deering. “Multicast Routing in a Data-
gram Internetwork”. PhD thesis, Stanford Uni-
versity, December 1991.

[Dias et al. 1996] D. Dias, W. Kish, R. Mukherjee, and R.
Tewari. “A Scalable and Highly Available Web
Server”. In Proceedings of COMPCON, March
1996.

[Diffie & Hellman 1977] W. Diffie and M. Hellman. “New
Directons in Cryptography”. In IEEE Trans-
actions on Information Theory, pp. 74–84, June
1977.

[Dig 1995] Digital Equipment Corporation. Alta Vista, 1995.
http://www.altavista.digital.com/.

[Exc 1997] Excite Corporation. Excite for Web Servers,
1997. http://www.excite.com/navigate/AT-
helpdoc.html.

[Feeley et al. 1995] M. M. Feeley, W. E. Morgan, F. H.
Pighin, A. R. Karlin, H. M. Levy, and C. A.
Thekkath. “Implementing Global Memory Man-
agement in a Workstation Cluster”. In Proceed-
ings of the 15th ACM Symposium on Operating
Systems Principles, December 1995.

[Foster & Kesselman 1996] I. Foster and C. Kesselman.
“Globus: A Metacomputing Infrastructure
Toolkit”. In Proc. Workshop on Environments
and Tools, 1996.

[Freier et al. 1996] A. Freier, P. Karlton, and P. Kocher. Se-
cure Socket Layer. Netscape, March 1996.

[Gifford et al. 1991] D. K. Gifford, P. Jouvelot, M. Sheldon,
and J. O’Toole. “Semantic File Systems”. In 13th
ACM Symposium on Operating Systems Princi-
ples, October 1991.

[Goldberg et al. 1996] I. Goldberg, D. Wagner, R. Thomas,
and E. Brewer. “A Secure Environment for Un-
trusted Helper Applications”. In Proceedings
of the Sixth USENIX Security Symposium, July
1996.

[Gosling & McGilton 1995] J. Gosling and H. McGilton.
“The Java(tm) Language Environment: A White
Paper”. http://java.dimensionx.com/whitePaper-
/java-whitepaper-1.html, 1995.

[Grimshaw et al. 1995] A. Grimshaw, A. Nguyen-Tuong,
and W. Wulf. “Campus-Wide Computing:
Results Using Legion at the University of Vir-
ginia”. Technical Report CS-95-19, University
of Virginia, March 1995.

[Howard et al. 1988] J. Howard, M. Kazar, S. Menees, D.
Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. “Scale and Performance in a Dis-
tributed File System”. ACM Transactions on
Computer Systems, 6(1):51–82, February 1988.

[Int 1997] Internet Weather Report, 1997. http://-
www.internetweather.com/.

[Jacobson 1988] V. Jacobson. “Congestion avoidance and
control”. In Proceedings of ACM SIGCOMM
’88, pp. 314–329, August 1988.

[Jones 1993] M. B. Jones. “Interposition Agents: Transpar-
ently Interposing User Code at the System Inter-
face”. In Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles, pp. 80–
93, December 1993.

[Katz et al. 1994] E. D. Katz, M. Butler, and R. McGrath. “A
Scalable HTTP Server: The NCSA Prototype”.
In First International Conference on the World-
Wide Web, April 1994.

[Kistler & Satyanarayanan 1992] J. J. Kistler and M. Satya-
narayanan. “Disconnected Operation in the Coda
File System”. ACM Transactions on Computer
Systems, 10(1):3–25, February 1992.

[Kleiman 1986] S. R. Kleiman. “Vnodes: An Architecture
For Multiple File System Types in SUN UNIX”.
In Proceedings of the 1986 USENIX Summer
Technical Conference, pp. 238–247, 1986.

[Lampson et al. 1991] B. Lampson, M. Abadi, M. Burrows,
and E. Wobber. “Authentication in Distributed
Systems: Theory and Practice”. In The 13th
ACM Symposium on Operating Systems Princi-
ples, pp. 165–182, October 1991.

[Luotonen & Atlis 1994] A. Luotonen and K. Atlis. “World-
Wide Web Proxies”. In First International Con-
ference on the World-Wide Web, April 1994.

[Mat 1996] Matrix Information and Directory Services, Inc.
MIDS Internet Weather Report, 1996. See http://-
www2.mids.org/weather/index.html.

[Mitzenmacher 1996] M. Mitzenmacher. The Power of Two
Choices in Randomized Load Balancing. PhD
dissertation, University of California, Berkeley,
1996.

[Mockapetris & Dunlap 1988] P. Mockapetris and K. Dun-
lap. “Development of the Domain Name Sys-
tem”. In Proc. SIGCOMM 88, volume 18, pp.
123–133, April 1988.

[Mullender et al. 1990] S. J. Mullender, G. van Rossum,
A. S. Tanenbaum, R. van Renesse, and H. van
Staveren. “Amoeba: A Distributed Operating
System for the 1990s”. IEEE Computer Maga-
zine, 23(5):44–54, May 1990.

[Nelson et al. 1988] M. Nelson, B. Welch, and J. Ouster-
hout. “Caching in the Sprite Network File Sys-
tem”. ACM Transactions on Computer Systems,
6(1):134–154, February 1988.



[Net 1994] Netscape Communications Corporation.
Netscape Navigator, 1994. http://www.-
netscape.com.

[Ousterhout 1990] J. Ousterhout. “Why aren’t operating sys-
tems getting faster as fast as hardware?”. In Pro-
ceedings of the 1990 Summer USENIX Confer-
ence, pp. 247–256, Anaheim, CA, June 1990.

[Poi 1996] PointCast. The PointCast Network, 1996.
http://www.pointcast.com.

[Popek et al. 1981] G. Popek, B. Walker, J. Chow, D. Ed-
wards, C. Kline, G. Rudisin, and G. Thiel. “LO-
CUS: A Network Transparent, High Reliability
Distributed System”. In Proceedings of the 8th
ACM Symposium on Operating Systems Princi-
ples, pp. 169–177, December 1981.

[Rivest 1992] R. L. Rivest. “The MD5 Message Digest Al-
gorithm”. RFC 1321, April 1992.

[Rivest et al. 1978] R. L. Rivest, A. Shamir, and L. Adelman.
“A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems”. In Communications
of the ACM, volume 21, February 1978.

[Rutkowski 1995] A. Rutkowski. “Testimony Before the
U.S. House of Representatives Committee on
Science”. Available as http://www.isoc.org/-
rutkowski/ht hearing html, July 26 1995.

[Sarkar & Hartman 1996] P. Sarkar and J. Hartman. “Effi-
cient cooperative caching using hints”. In Op-
erating Systems Design and Implementation, pp.
35–46, October 1996.

[Sollins & Masinter 1994] K. Sollins and L. Masinter.
“Functional Requirements for Uniform Re-
source Names”. RFC 1737, December 1994.

[Squ 1996] Squid Internet Object Cache, 1996. http://-
squid.nlanr.net/Squid/.

[Stout 1994] P. D. Stout. Wax: A Wide Area Computation Sys-
tem. PhD dissertation, Carnegie Mellon Univer-
sity, 1994. CMU-CS-94-230.

[Tennenhouse & Wetherall 1996] D. Tennenhouse and D.
Wetherall. “Towards an Active Network Ar-
chitecture”. In ACM SIGCOMM Computer
Communication Review, pp. 5–18, April 1996.

[Terry et al. 1995] D. B. Terry, M. M. Theimer, K. Petersen,
A. J. Demers, M. J. Spreitzer, and C. H. Hauser.
“Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System”. In Pro-
ceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pp. 172–183, De-
cember 1995.

[Waldspurger & Weihl 1994] C. A. Waldspurger and
W. E. Weihl. “Lottery Scheduling: Flexible
Proportional-Share Resource Management”. In
Operating Systems Design and Implementation,
pp. 1–11, Novemeber 1994.

[Walsh et al. 1985] D. Walsh, B. Lyon, G. Sager, J. M. Chang,
D. Goldberg, S. Kleiman, T. Lyon, R. Sandberg,
and P. Weiss. “Overview of the Sun Network File
System”. In Proceedings of the 1985 USENIX
Winter Conference, pp. 117–124, January 1985.

[Wobber et al. 1993] E. Wobber, M. Abadi, M. Burrows, and
B. Lampson. “Authentication in the Taos Oper-
ating System”. In Proceedings of the Fourteenth
ACM Symposium on Operating Systems Princi-
ples, pp. 256–269, December 1993.


