
INSIDEINSIDE

∆ Evolution of Code
∆ Metamorphic Virus Detection Examples
∆ Possible Future Virus Developments

Hunting For Metamorphic
by Péter Ször

Architect

Peter Ferrie
Principle Software Engineer

WHITE PAPER

Symantec Security Response

2

Symantec HUNTING FOR METAMORPHIC

Contents

Abstract .3

Introduction .3

Evolution of code .4

32-bit Encrypted Viruses .4

32-bit Oligomorphic Viruses .5

32-bit Polymorphic Viruses .5

32-bit Metamorphic Viruses .6

Metamorphic Virus Detection Examples .17

Geometric Detection .18

Disassembling Techniques .19

Use of Emulators for Tracing .19

Possible Future Virus Developments .22

Conclusion .23

References .23

About the Authors .24

√ Abstract

As virus writers developed numerous polymorphic engines, virus scanners became stronger in their

defense against them. A virus scanner that used a code emulator to detect viruses looked like it was

on steroids compared to those without an emulator- based scanning engine.

Nowadays, most polymorphic viruses are considered boring. Even though they can be extremely

hard to detect, most of today’s products are able to deal with them relatively easily. These are the

scanners that survived the DOS polymorphic days. For some of the scanners, DOS polymorphic

viruses meant the “end of days.” Other scanners died with the macro virus problem. For most

products, the next challenge to take is 32-bit metamorphosis.

Metamorphic viruses are nothing new. We have seen them in DOS days, though some of them, like

ACG, already used 32-bit instructions. The next step is 32-bit metamorphosis under Windows

environments. Virus writers already took the first step in that direction.

In this paper, we will examine metamorphic engines to provide a better general understanding

of the problem that we are facing. The authors also provide detection examples of some of the

metamorphic viruses.

√ Introduction

Remember the first time we were faced with MtE (The Dark Avenger Mutation Engine)? Initial

research showed that most products were not able to detect the MtE-based viruses with complete

accuracy. The product tests that Vesselin Bontchev executed at VTC showed that most scanners

missed a certain percentage of infected files that was occasionally as high as 10%. If infected files

are replaced from backups, sooner or later this initial 10% miss can build up to 100% on a particular

system. Everything could be infected on the machine but the scanner would not be able to detect a

single infection!

Virus writers developed numerous polymorphic engines and, as a result, virus scanners became

stronger in order to handle them. Virus code started to become more and more complex from

the beginning.

We will examine the various ways virus writers challenged our scanning products over the last

decade. Although most of these techniques are used to obfuscate file infector viruses, we can surely

expect similar techniques to appear in modern Windows worms in the future.

Evolution of code has come a long way in binary viruses over the years. If someone checks the

development result of viruses, it might appear that almost everything possible was already done and

problems are not escalating. However, there are still computing distribution models that have not

been seen in viruses.

New Windows worms do appear and seem to dominate the field in their complexity. Some of the

recent worms support a plug-in mechanism to evolve and introduce new changes and functionality

in their code. Certainly such update mechanisms are the basics of the future models.

In this paper we will try to predict the next steps taken by the dark side.

33

Symantec HUNTING FOR METAMORPHIC

Symantec HUNTING FOR METAMORPHIC

√ Evolution of Code

Virus writers continuously challenge AntiVirus (AV) products. In particular their biggest enemies are

the virus scanner products that are the most popular of all antivirus software today. Generic

AV solutions, such as integrity checking and behavior blocking, never managed to take over the

popularity of the antivirus scanner.

The fact is that such generic virus detection models need a lot more thinking and technology in place

under Windows platforms. Some of the old DOS viruses beat these technologies. As a result, some

people draw the incorrect conclusion that these techniques are not useful.

Scanning is the accepted solution of the market regardless of its drawbacks. Thus it needs

to be able deal with the escalating complexity and emerging number of distributed and

self-distributing malware.

While modern computing developed extremely quickly, binary virus code could not catch up with the

technology challenges for a long time. In fact, the DOS viruses evolved into a complex level until

1996. However, 32-bit Windows started to dominate the market from that point.

As a result, virus writers had to go back years in binary virus developments. The complexity of DOS

polymorphism peaked when Ply was introduced in 1996 with a new permutation engine. These

developments could not continue. The pioneer virus writers needed to discover the new 32-bit

infection techniques on Win32 platforms.

Some virus writers still find the Windows platforms far too challenging, especially when it comes to

Windows NT/2000/XP. However, the basic infection techniques were already introduced, and

stand-alone virus assembly sources are highly distributed on the Internet. These sources provide the

basis of new mass-mailing worms that do not take major skill, but rather cut and paste abilities.

In this section we will examine the basic virus code obfuscation techniques from encrypted viruses

up to the modern metamorphic techniques.

32-BIT ENCRYPTED VIRUSES

Virus writers tried to implement virus code evolution early on. One of the easiest ways to hide the

functionality of the virus code was encryption. One of the first DOS viruses that implemented

encryption was Cascade. The virus starts with a constant decryptor that is followed by the encrypted

virus body. Such a simple code evolution method also appeared early in 32-bit Windows viruses.

Win95/Mad and Win95/Zombie use exactly the same technique as Cascade. The only difference is

the 32-bit implementation.

Detection of such viruses is still possible without trying to decrypt the actual virus body. In most cases

the code pattern of the decryptor of these viruses is unique enough for detection. Obviously such

detection is not exact. However, the repair code can decrypt the encrypted virus body and deal with

the minor variants easily.

4

Symantec HUNTING FOR METAMORPHIC

32-BIT OLIGOMORPHIC VIRUSES

Unlike encrypted viruses, oligomorphic viruses do change their decryptors in new generations.

Win95/Memorial had the ability to build 96 different decryptor patterns. Thus the detection of the

virus, based on the decryptor’s code, was not a practical solution, though possible. Most products

tried to deal with the virus by dynamic decryption of the encrypted code instead. Thus the detection

is still based on the constant code of the decrypted virus body.

Interestingly, some products that we tested could not detect all instances of Memorial, because such

viruses need to be examined down to their finest details to find and understand the oligomorphic

decryptor generator. Without such a careful manual analysis the slow oligomorphic virus tech-

niques are impossible to detect reliably. Obviously they are a great opportunity for automated virus

analysis centres.

32-BIT POLYMORPHIC VIRUSES

Win95/Marburg and Win95/HPS were the first viruses that used real 32-bit polymorphic engines.

Polymorphic viruses can create an endless number of new decryptors that use different encryption

methods to encrypt the constant part (except their data areas) of the virus body (see Figure 1).

Some of the polymorphic viruses such as Win32/Coke use multiple layers of encryption. Other newer

polymorphic engines such as the Win32/Crypto, built by a Czech virus writer, used a random

decryption algorithm (RDA)-based decryptor, which implemented brute-force attack against its

constant but variably encrypted virus body in a multi-encrypted manner. Manual analysis of such

viruses might provide great surprises. Often there are inefficiencies of randomness in such

polymorphic engines that provide an easy solution for detection, as long as algorithmic scanning is

an available scanning option. Sometimes even a single wildcard string can do the magic of

perfect detection.

Back in those days, most virus scanner products already had a code emulator capable of emulating

32-bit Portable Executable (PE) files. Other virus researchers only implemented dynamic decryption

to deal with such viruses, which worked as in the previous cases because the virus body was still

constant under the encryption. According to the various AV tests some vendors were still sorry not to

have support for difficult virus infection techniques.

Virus writers used the combination of entry point obscuring techniques with 32-bit polymorphism to

make the scanner’s job even more difficult. In addition, they tried to implement anti-emulation

techniques to challenge code emulators.

5

Symantec HUNTING FOR METAMORPHIC

Figure 1. Generations of a polymorphic virus

32-BIT METAMORPHIC VIRUSES

Virus writers still need to waste weeks or months to create a new polymorphic virus that often does

not have a chance to appear in the wild because of its bugs. On the other hand, a researcher might

be able to deal with the detection of such a virus in a few minutes or few days. One of the reasons is

that there are a surprisingly low number of efficient external polymorphic engines.

Obviously, virus writers try to implement various new code evolution techniques in order to make the

researchers’ job more difficult. The Win32/Apparition virus was the first known 32-bit virus that did

not use polymorphic decryptors to evolve itself in new generations. Rather, the virus carries its source

and drops it whenever it can find a compiler installed on the machine. The virus inserts junk code

into and removes it from its source, and then recompiles itself. This way a new generation of the virus

will look completely different. It is fortunate that Win32/Apparition did not become a major problem.

However, such a method would be more dangerous if implemented in a Win32 worm. Furthermore,

these techniques are even more dangerous on platforms such as Linux, in which C compilers are

commonly installed with the standard system, even if the system is not used for development.

6

Symantec HUNTING FOR METAMORPHIC

The technique of Win32/Apparition is not surprising. It is much simpler to evolve the code in source

format instead of binary. Not surprisingly, many macro and script viruses use junk insertion and

removal techniques to evolve themselves in new generations.

What is a metamorphic virus?

Igor Muttik explained metamorphic viruses in the shortest possible way: “Metamorphics are

bodypolymorphics.” Metamorphic viruses do not have a decryptor, or a constant virus body.

However, they are able to create new generations that look different. Metamorphic viruses do not use

a constant data area filled with string constants but have one single code body that carries data

as code.

Material metamorphosis (Figure 2) does exist in real life. For instance, shape memory polymers have

the ability to transform back to their parent shape when heated. Metamorphic computer viruses have

the ability to change their shape by themselves from one form to another, but usually they avoid

generating instances that are very close to their parent shape. Figure 3 illustrates the problem of

metamorphic virus bodies as multiple shapes.

Figure 2. Material metamorphosis: when heated, biodegradable shape-memory polymer transforms from a temporary

shape (left) to its parent shape (right) within 20 seconds

Although there are some DOS metamorphic viruses such as Amazing Code Generator (ACG), they

did not become a significant problem for end users. In only a few months we will know more

metamorphic 32-bit Windows viruses than metamorphic DOS viruses. The only difference between

the two is the potential. The networked enterprise allows metamorphic binary worms to cause major

problems. As a result, we will not be able to turn a blind eye to them and say “we do not need to

handle them since they are not causing problems to our users.” They will.

7

Symantec HUNTING FOR METAMORPHIC

Figure 3: Virus body changes in different generations of metamorphic virus

Simple metamorphic viruses

In December 1998, Vecna, a notorious virus writer, created the Win95/Regswap virus. Regswap

implemented metamorphosis via register usage exchange. Any part of the virus body will use

different registers but the same code. Obviously the complexity of this is not high. Figure 4 shows an

example of code fragments selected from two different generations of Win95/Regswap.

8

Symantec HUNTING FOR METAMORPHIC

Figure 4: Win95/Regswap using different registers in new generations

The bold areas show the common areas of the two code generations. Thus, a wildcard string could

be useful to detect the virus. Moreover, support for half-byte wildcard bytes such as 5? B? (as

described by Frans Veldman) could lead to an even more accurate detection. However, depending

on the actual ability of the scanning engine, such a virus might need an algorithmic detection

because of the missing support of wild card search strings. If algorithmic detection is not supported

as a single database update, the product update might not come out for several weeks or months for

all platforms!

Figure 5. Example of module reordering with eight modules

9

Symantec HUNTING FOR METAMORPHIC

Other virus writers tried to recreate older permutation techniques. For instance, the Win32/Ghost

virus has the ability to reorder its subroutines similarly to the BadBoy DOS virus family (Figure 5).

The order of the subroutines will be different from generation to generation and this leads to n!

different virus generations, where n is the number of subroutines. BadBoy had eight subroutines, 8!

= 40320 different generations. Win32/Ghost (discovered in May 2000) had 10 functions, 10! =

3628800 combinations. Both of them can be detected with search strings, however, some scanners

need to deal with such a virus algorithmically.

Two different variants of the Win95/Zmorph virus appeared in January of 2000. The polymorphic

engine of the virus implements a build and execute code evolution. The virus rebuilds itself on the

stack with push instructions. Blocks of code decrypt the virus instruction by instruction and push

them to the stack. The build routine of the virus is already metamorphic. The engine supports jump

insertion and removal between any instructions of the build code. Regardless, code emulators can

be used to deal with the virus easily. A constant code area of the virus will provide identification since

the virus body is decrypted on the stack.

More complex metamorphic viruses and permutation techniques

The Win32/Evol virus appeared in early July, 2000. The virus implements a metamorphic engine.

Evol is capable to run on any major Win32 platform. Figure 6 shows an example code fragment as

mutated to a new form in a new generation of the same virus.

Figure 6: Example of code metamorphosis of Win32/Evol

10

Symantec HUNTING FOR METAMORPHIC

Even the “magic” DWORD values (5500000Fh, 5151EC8Bh) are changed in newer generations of

the virus as shown in Figure 6c. Therefore, any wild card strings based on them will not detect

anything above the third generation of the virus. Win32/Evol’s engine is capable of inserting garbage

in between core instructions.

Variants of the Win95/Zperm family appeared in June and September of 2000, respectively. The

method used is known from the Ply DOS virus. The virus inserts jump instructions into its code. The

jumps will be inserted to point to a new instruction of the virus. The virus body is built in a 64K buffer

that is originally filled with zeroes. The virus will not use decryption to decrypt itself. In fact, it will not

regenerate a constant virus body anywhere. Instead, it creates new mutations by the removal and

addition of jump instructions and garbage instructions. Thus, there is no way to detect the virus with

search strings in the files, or in the memory either.

Most polymorphic viruses decrypt themselves to a single constant virus body in memory. However,

metamorphic viruses do not. Therefore, the detection of the virus code in memory needs to be

algorithmic because the virus body does not become constant even there. Figure 7 explains the code

structure changes of Zperm-like viruses.

Figure 7. Zperm.A inserts JMP instruction into its code

Sometimes, the virus replaces instructions with other equivalent instructions. For example, "sub eax,

eax," which also zeroes the contents of the eax register, will replace the instruction, "xor eax, eax. The

opcode of these two instructions will be different.

The core instruction set of the virus has the same execution order; however, the jumps are inserted in

random places. The B variant of the virus also uses garbage instruction insertion and removal such

as “nop” (a “do nothing” instruction). It is easy to see that the number of generations can be at least

n! where n is the number of core set instructions in the virus body.

Zperm introduced the Real Permutating Engine (RPME). RPME is available for other virus writers to

create new metamorphic viruses. We should note here that permutation is only a single item on the

list of metamorphic techniques. In order to make the virus truly metamorphic, instruction opcode

changes are introduced. Encryption can be used in combination with anti emulation and

polymorphic techniques.

11

Symantec HUNTING FOR METAMORPHIC

In October 2000, two virus writers created a new permutation virus, Win95/Bistro, based on the

sources of Zperm virus and the RPME. To further complicate the matter, the virus uses a random

code block insertion engine. A randomly activated routine builds a “do nothing” code block at the

entry point of the virus body prior to any active virus instructions. When executed, the code block can

generate millions of iterations to challenge the code emulator’s speed.

Simple permutating viruses and complex metamorphic viruses can be very different in their

implementation complexity. In any case, both permutating viruses and metamorphic viruses are

different than the traditional polymorphic techniques.

In the case of polymorphic viruses, there is a particular moment when we can make a snapshot of the

completely decrypted virus body, as illustrated in Figure 8. Typically, antivirus software uses a

generic decryption engine (based on code emulation) to abstract this process. It is not a requirement

to have a complete snapshot to provide identification in a virus scanner, but it is essential to find a

particular moment during the execution of virus code when a complete snapshot can be made, in

order to classify a virus as a traditional polymorphic virus. It is efficient to have a partial result as long

as there is a long enough decrypted area of each possible generation of the virus.

Figure 8: A partial or complete snapshot of polymorphic virus during execution cycle

On the contrary, a complex metamorphic virus does not provide this particular moment during its

execution cycle. This is true even if the virus uses metamorphic techniques combined with

traditional polymorphic techniques.

12

Symantec HUNTING FOR METAMORPHIC

Mutating other applications: The ultimate virus generator?

Win95/Bistro not only mutates itself in new generations. It also mutates the code of its host by a

randomly executed code-morphing routine. This way the virus might generate new worms and

viruses. Moreover, the repair of the virus cannot be done perfectly because the entry point code area

of the application could be different. The code sequence at the entry point of the host application will

be mutated for a 480 bytes long range. Figure 9 shows an original and a permutated code sequence

of a typical entry point code.

Figure 9: Example of Win95/Bistro entry point code permutation

Thus, "or esi, esi" (the equivalent format of "test esi, esi") can replace an instruction, such as "test esi,

esi. A “push ebp, mov ebp, esp” sequence (common in high-level language applications) can be

permutated to "push ebp, push esp, pop ebp." Obviously it would be more complicated to replace

the code with different opcode sizes, but it would be possible to shorten longer forms of some of the

complex instructions and include “do nothing” code as a filler.

This is a problem for all scanners. Heuristic scanners typically cannot deal with worms written in

high-level languages yet. Obviously, some of these worms could be easily morphed to a new format.

In a previous conference paper, we introduced the problem of new virus variants being generated

accidentally as a result of a Portable Executable file repair. It is unfortunate that such mutations can

appear, but it remains feasible to deal with that particular problem. On the other hand, code

permutations of worms and viruses, as done by Win95/Bistro, will be much more difficult to

deal with.

13

Symantec HUNTING FOR METAMORPHIC

A major problem could result if a virus or a 32-bit worm were to implement a similar morphing

technique. New mutations of old viruses and worms would be morphed endlessly! Thus, a virtually

endless number of not-yet-detectable viruses and worms would appear without any human

intervention, leading to the ultimate virus generator.

An even more advanced technique was developed in the Win95/Zmist virus, which is described in

the following sections.

At the end of 1999, the Win32/Smorph trojan was developed. It implements a semi-metamorphic

technique to install a backdoor to the system. The stand-alone executable is completely regenerated

during the installation of the Trojan. The PE header will be recreated also, and will include new

section names and section sizes. The actual code at the entry point is metamorphically generated.

The code will allocate memory then decrypt its own resources, which contain a set of other

executables. The Trojan uses API calls to its own import address table. The import table is filled with

many non-essential API imports as well as some essential ones. Thus everything in the stand-alone

Trojan code will be different in new generations.

Advanced metamorphic viruses engines

Zmist

During VB 2000, Dave Chess and Steve White demonstrated their research results on Undetectable

Viruses. Early this year the Russian virus writer Zombie released his Total Zombification magazine,

with a set of articles and viruses of his own. One of the articles in the magazine was entitled

“Undetectable Virus Technology”.

Zombie has already demonstrated his set of polymorphic and metamorphic virus writing skills. His

viruses have been distributed for years in source format, and other virus writers have modified them

to create new variants. Certainly this will be the case with Zombie’s latest creation, W95.Zmist.

Many of us have not seen a virus approaching this complexity for a few years. We could easily

call Zmist one of the most complex binary viruses ever written. W95.SK, One_Half, ACG, and a

few other virus names came to mind for comparison. Zmist is a little bit of everything: it is an Entry

Point-Obscuring (EPO) virus that is metamorphic. Moreover, the virus randomly uses an additional

polymorphic decryptor.

The virus supports a unique new technique: code integration. The Mistfall engine contained in the

virus is capable of decompiling Portable Executable files to its smallest elements, requiring 32MB

of memory. Zmist will insert itself into the code: it moves code blocks out of the way, inserts

itself, regenerates code and data references (including relocation information), and rebuilds the

executable. This is something that has not been seen in any previous virus.

Zmist occasionally inserts jump instructions after every single instruction of the code section, each of

which will point to the next instruction. Amazingly, these horribly modified applications will still run as

before, just like the infected executables do, from generation to generation. In fact we have not seen

a single crash during the test replications. Nobody expected this to work, not even its author Zombie.

Although it is not foolproof it seems to be good enough for a virus. It takes time for an individual

to find the virus in infected files, due to Zmist's extreme camouflage, making it the perfect

anti-heuristics virus.

14

Symantec HUNTING FOR METAMORPHIC

As the saying goes, a picture is worth a thousand words. The T-1000 model of Terminator 2 (Figure

10) is the easiest possible analogy to use. Zmist integrates itself into the code section of the infected

application, as the T-1000 model can hide itself on the floor.

Initialization

Zmist does not alter the entry point of the host. Instead, it merges itself with the existing code,

becoming part of the instruction flow. However, the random location of the code means that

sometimes the virus will never receive control. If the virus does run, then it will immediately launch

the host as a separate process, and hide the original process (if the RegisterServiceProcess()

function is supported on the current platform) until the infection routine completes. Meanwhile, the

virus will begin searching for files to infect.

Figure 10: T-1000 of Terminator 2

Direct Action Infection

After launching the host process, the virus will check whether there are at least 16 MB of physical

memory installed and whether it is not running in console mode. If these checks pass, then it will

allocate several memory blocks, including a 32 MB area for the Mistfall workspace, permutate

the virus body, and begin a recursive search for Portable Executable .EXE files. This search will

take place in the Windows directory and all subdirectories, the directories referred to by the

PATH environment variable, then in all the fixed or drives from A: to Z:. This is a brute-force approach

to spreading.

Permutation

The permutation is fairly slow because it is done only once per infection of a machine. It consists of

instruction replacement, such as the reversing of branch conditions, register moves replaced by

push/pop sequences, alternative opcode encoding, xor/sub and or/test interchanging, and garbage

15

Symantec HUNTING FOR METAMORPHIC

instruction generation. It is the same engine, Real Permutating Engine (RPME), which was used in

several viruses (including W95.Zperm) and written by Zombie.

Infection of Portable Executable Files

A file can be infected if it smaller than 448 KB, begins with “MZ” (Windows does not support “ZM”

format applications), is not infected already (the infection marker is “Z” at offset 0x1C in the MZ

header. Windows applications do not generally use this field), and is a Portable Executable file.

With a one in ten chance:

• Only jump instructions will be inserted between every existing instruction (if the instruction
was not already a jump), and the file will not be infected.

• An unencrypted copy of the virus will infect the file; otherwise, a polymorphically encrypted
copy of the virys will infect the file.

An unencrypted copy of the virus will infect the file; otherwise, a polymorphically encrypted copy of

the virys will infect the file. After the rebuilding of the executable is completed, the original file is

deleted and the infected file is created in its place. However, if an error occurs during the file cre-

ation, then the original file is lost and nothing will replace it.

The polymorphic decryptor consists of “islands” of code that are integrated into random locations

throughout the host code section and linked together by jumps. The decryptor integration is

performed in the same way in which the virus body integration is performed – existing instructions

are moved to either side, and a block of code is placed in between them. The polymorphic decryptor

uses absolute references to the data section, but the Mistfall engine will update the relocation infor-

mation for these references, too. An anti-heuristic trick is used for decrypting the virus code: instead

of making the section writable in order to alter its code directly, the host is required to have, as one of

the first three sections, a section containing writable, initialized data. The virtual size of this section is

increased by 32 KB, large enough for the decrypted body and all variables used during decryption.

This allows the virus to directly decrypt code into the data section and transfer control there.

If such a section cannot be found, then the virus will infect the file without using encryption. The

decryptor will receive control in one of four ways: via an absolute indirect call (0xFF 0x15), a relative

call (0xE8), a relative jump (0xE9), or as part of the instruction flow itself! If one of the first three

methods is used, the transfer of control will appear soon after the entry point. In the case of the last

method, though, an island of the decryptor is simply inserted into the middle of a subroutine,

somewhere in the code (including before the entry point). All used registers are preserved before

decryption and restored afterward, so the original code will behave as before. Zombie calls this last

method “UEP,” perhaps an acronym for Unknown Entry Point, because there is no direct pointer to

the decryptor anywhere in the file.

When encryption is used, the code is encrypted with one of ADD/SUB/XOR with a random key,

and ADD/SUB/XOR, with a second random key, alters this key on each iteration. In between the

decryption instructions are various garbage instructions, using a random number of registers, and a

random choice of loop instruction, all produced by the Executable Trash Generator (ETG) engine,

also written by Zombie. Randomness features very heavily in this virus.

16

Symantec HUNTING FOR METAMORPHIC

Code Integration

The integration algorithm requires that the host has fixups, in order to distinguish between offsets

and constants; however after infection, the virus does not require the fixup data. Therefore, though it

is tempting to look for a ~20 Kb long gap in the fixup area, which would suggest that the virus body is

located there, it would be dangerous to rely on this during scanning.

If another application (such as one of an increasing number of viruses) were to remove the fixup

data, then the infection will be hidden. The algorithm also requires that the name of each section in

the host be one of the following: ‘CODE,” “DATA,” “AUTO,” “BSS,” “TLS,” “.bss,” “.tls,” “.CRT,”

“.INIT,” “.text,” “.data,” “.rsrc,” “.reloc,” “.idata,” “.rdata,” “.edata,” “.debug,” “DGROUP.”

The most common compilers and assemblers in use have produced these section names. The

names are not visible in the virus code, because the strings are encrypted.

A block of memory is allocated that is equivalent to the size of the host memory image, and each

section is loaded into this array at the section’s relative virtual address. The location is noted of every

interesting virtual address (import and export functions, resources, fixup destinations, and the entry

point), and then the instruction parsing begins.

This is used in order to rebuild the executable. When an instruction is inserted into the code, all

the following code and data references must be updated. Some of these references might be branch

destinations, and in some cases the size of these branches will increase as a result of the

modification. When this occurs, more code and data references must be updated, some of which

might be branch destinations, and the cycle repeats. Fortunately – at least from Zombie’s point of

view – this regression is not infinite, so that, while a significant number of changes might be required,

the number is limited. The instruction parsing consists of identifying the type and length of each

instruction. Flags are used to describe the types, such as instruction is an absolute offset requiring a

fixup entry, or instruction is a code reference, etc.

There are cases where an instruction cannot be resolved in an unambiguous manner to either code

or data. In that case, Zmist will not infect the file. After the parsing stage is completed, the mutation

engine is called, which inserts the jump instructions after every instruction, or generates a decryptor

and inserts the islands into the file. Then the file is rebuilt, the relocation information is updated, the

offsets are recalculated, and the file checksum is restored. If there are overlay data appended to the

original file, then they are copied to the new file, too.

√ Metamorphic Virus Detection Examples

There is a level of metamorphosis beyond which a reasonable number of strings cannot be used

to detect the code that it contains. At that point, other techniques must be used, such as an

examination of the file structure or the code stream, or analysis of the code’s behavior.

In order to detect a metamorphic virus perfectly, a detection routine needs to be written that is

capable of regenerating the essential instruction set of the virus body from the actual instance of the

infection. Other products use shortcuts to try to solve the problem but such shortcuts often lead to an

unacceptable number of false positives. In this section we give an introduction to some of the

techniques that can be useful.

17

Symantec HUNTING FOR METAMORPHIC

GEOMETRIC DETECTION

Geometric detection is the technique of virus detection based on alterations that a virus has made to

the file structure. It could also be called the “shape heuristic”, since it is far from exact and prone to

false positives. An example of a geometric detection can be demonstrated using W95/ZMist. This

virus, when it infects a file using its encrypted form, increases the virtual size of the data section by at

least 32 KB, but does not alter the physical size of the section.

Thus, a file might be reported as being infected by W95/ZMist if the file contains a data section whose

virtual size is at least 32 KB larger than its physical size. However, such a file structure alteration can

also be an indicator of a runtime-compressed file. Very often file viruses do rely on a virus infection

marker to detect already infected files and avoid multiple infections. Such an identifier can be useful

for the scanner to use in combination with the other geometric changes of the file caused by the virus

infection. This makes the geometric detection more reliable but the risk of false positive only gets

smaller, it never gets nullified.

DISASSEMBLING TECHNIQUES

To assemble means to bring together, so to disassemble is to separate or take apart. In the context of

code, to disassemble is to separate the stream into individual instructions. This is useful for detecting

viruses which insert garbage instructions between their core instructions. Simple string searching

cannot be used for such viruses because instructions can be quite long and there is a possibility that

a string can appear “inside” an instruction, instead of being the instruction itself. For example,

suppose that one wished to search for the instruction CMP AX, “ZM.” This is a common instruction in

viruses, and is used to test if the file is of executable type. Its code representation is:

66 3D 4D 5A

and it can be found in the stream:

90 90 BF 66 3D 4D 5A

However when disassembled and displayed:

NOP

NOP

MOV EDI, 5A4D3D66

it can be seen that what was found is not the instruction at all. The use of a disassembler would

prevent such mistakes, and if the stream were examined further:

90 90 BF 66 3D 4D 5A 90 66 3D 4D 5A

when disassembled and displayed:

NOP

NOP

MOV EDI, 5A4D3D66

NOP

CMP AX, “ZM”

18

Symantec HUNTING FOR METAMORPHIC

it can be seen that the true string follows shortly afterwards.

When combined with a state machine, perhaps to record the order in which are encountered

“interesting” instructions, and even combined with an emulator, a powerful tool is presented that

makes a comparatively easy task of detecting viruses such as W95/ZMist, and the more recent

W95/Puron which is based on the Lexotan engine.

Lexotan and W95/Puron execute the same instructions in the same order, with only garbage

instructions, and jumps inserted between the core instructions, with no garbage subroutines. This

makes them easy to detect using only a disassembler and a state machine.

Sample detection of W95/Puron:

ACG, by comparison, is a quite complex metamorph that requires an emulator combined with a state

machine. Sample detection is included in the next section.

USE OF EMULATORS FOR TRACING

A CPU emulator is an application that simulates the behavior of a CPU. It is very useful for working

with viruses, as it allows virus code to execute in an environment from which it cannot escape. Code

that runs in an emulator can be examined periodically or when particular instructions are executed.

For DOS viruses, INT 21h is a common instruction to intercept.

Sample detection of ACG

A short example code of an instance of ACG:

When the INT 21 is reached, the registers contain ah=4a and bx=1000. This is constant for one class

of ACG viruses. Trapping enough similar instructions is the basis for detection of ACG.

19

Symantec HUNTING FOR METAMORPHIC

Surprisingly, not all antivirus scanner products support such detection. ACG is used regularly in Virus

Bulletin tests. Nevertheless, the majority of the antivirus software misses it from time to time.

This shows that traditional code emulation logic in older virus scanner engines might not be used “as

is” to trace code on such a level. It is evident that all antivirus scanners need to go in the direction of

interactive scanning engine developments.

An interactive scanning engine model is particularly useful to build algorithmic detections of the kind

that ACG needs. We strongly recommend this technique be used for those scanner developers that

are currently unable to detect ACG with their existing technology.

Sample Detection of Evol

Previously we discussed the complexity of the Evol virus. Evol is a perfect example of a virus that

deals with the problem of hiding constant data as variable code in itself from generation to

generation. It is easy to see that code tracing can be particularly useful to detect even such a level of

changes. Evol builds the constant data on the stack from variable data, before it passes them to the

actual function or API that needs them.

At a glance it seems that emulation cannot deal with such viruses effectively. However, the reality is

that, with appropriate break points, emulators can be our best friend again. The only thing that it

takes is a p-code language that can be used to write algorithmic detections. If the pcode is capable of

emulating the applications from anywhere till a given set of break points, the stack can be analyzed

for the data that are built by the virus. Stack analysis can be very helpful to deal with complex

metamorphic viruses that often decrypt data on the stack.

Using Negative and Positive Features

In order to make the detection faster, the scanners can use negative detections. Unlike a positive

detection that checks for a set of patterns that does exist in the virus body, negative detections check

for the opposite. It is often enough to identify a set of instructions that do not appear in any of the

instances of the actual metamorphic virus.

Such a negative detection can be used to stop the detection process once a common negative

pattern is encountered.

Using Emulator-Based Heuristics

Heuristics were discussed in detail over the last decade. The method that covers ACG in our example

(3.3.1) is essentially very similar to a DOS heuristics detector. If the DOS emulator of the scanner is

capable of emulating 32-bit code (which is generated by ACG), it can easily cover that virus

heuristically. The actual heuristics engine might track the interrupts or even implement a deeper

level of heuristics using a Virtual Machine (VM) that simulates some of the functions of the operating

system. Such systems can even “replicate” the virus inside their Virtual Machine on a virtual file

system built into the VM of the engine. Such a system was implemented in some of the AV scanner

solutions and found to be very effective. They also provide a better false positive ratio.

20

Symantec HUNTING FOR METAMORPHIC

Nowadays it is easy to think of an almost perfect emulation of DOS. The actual computing speed of

today’s processors and the relatively simple single-threaded OS allows this to happen. However, it is

more difficult to emulate Windows on Windows built into a scanner! Emulating multithreaded

functionality and not having problems with synchronizations is a very challenging task. Such a

system cannot be as perfect as a DOS emulation because of the complexity of the OS. Even if we can

think to use a system such as VMWARE to solve most of the challenges, there can be plenty of

problems remaining. Emulation of third-party DLLs is one of the possible problems that can arise.

Performance is another problem. A scanner needs to be fast enough otherwise people will not use it.

Fast is not always better when it comes to scanners. However the thing is that in real life people often

get the impression that faster is better. Thus even if we have all the possible resources to develop

such a perfect Virtual Machine to emulate Windows on Windows inside a scanner, we would need to

compromise regarding speed. This will result in an imperfect system. In any case, extending the level of

Windows emulation inside the scanner’s system is a good idea and leads to better heuristics reliability.

Unfortunately, EPO viruses (such as Zmist) can easily challenge such a system.

Moreover, there is a full class of anti-emulation viruses. Even ACG used tricks to challenge emulators.

The virus often does replicate only on certain days and in case of other similar conditions. Therefore,

perfect detection is more difficult to be done by using pure heuristics without paying some attention

to virus-specific details.

If an implementation ignores such details the virus could be missed in case of many different entities.

Imagine running a detection test on a Sunday against a few thousand samples that only replicate

during Monday to Friday. Depending on the heuristics implementations the virus can be easily

missed. There are viruses like W32/Magistr that do not infect without an active Internet connection.

What if the virus looks for www.antiheuristictrick.com? What would be the proper answer for such a

query? Someone could claim that a proper real world answer could be provided for such a query, but

could you really do that from a scanner during emulation?

Certainly it is not possible to be done perfectly. There will be viruses that cannot be detected with any

emulated environments, no matter how good the emulator of the system. Some of these viruses will

be metamorphic too. For such viruses only specific virus detection can provide a solution. Thus

heuristics systems can only reduce the problem against masses of viruses. It is a good feeling if your

product handles VCG (VCG is a DOS metamorphic without major anti-emulation tricks but buggy

code) and many others.

Typically with metamorphic viruses we often see different infection methods implemented in the

same virus. In the next section we discuss some other possible trends.

21

Symantec HUNTING FOR METAMORPHIC

√ Possible Future Virus Developments

Over the last decade a couple of strong polymorphic engines were developed in the form of an

external engine. We can expect that a number of metamorphic engines will be written during the next

couple of years also, and polymorphic virus development will continue in the foreseeable future.

Even though our paper focuses primarily on file-infector viruses, we should not forget about the

possibility of using metamorphic techniques in computer worms. The Hybris worm is a very good

example of how virus-writing techniques developed to an updatable technology over the years.

Such concepts were already considered from the very early years of virus developments. For

instance, the old Yankee Doodle virus supports the repair of older versions of itself. After removing its

previous copy it infects the same file with the newer version of the virus. Basically the same is

happening in case of computer worms such as Hybris, but in a much faster way using networked

models in a secure manner using public key infrastructure.

Hybris has a module that supports metamorphic file infections, but this module was developed for

testing purposes and has not been found in the wild yet. There is major potential to deliver a

metamorphic engine to thousands of already compromised systems, from one day to the next.

Most of the major virus creators such as Spanska, Zombie, and Sandman were involved in this worm

project and helped Vecna. They are the same guys who developed DOS metamorphic and

polymorphic viruses in the past.

Unfortunately, Hybris shows that virus writers can get together to form a project. Such projects are

often more complicated to deal with than regular viruses written by a single person.

It is very likely that virus writers will develop models in which a set of viruses are able to communicate

with each other, exchange information about compromised systems (exchange password and user

information, IP addresses to remotely execute code via a backdoor, etc), or evolve each other by

exporting and importing code modules.

We already encountered cases of dangerous viruses in a natural combination. For instance, the

W32/FunLove virus infected W32/HLLW.QAZ. QAZ carries a backdoor feature that was used to break

into large US corporations. W32.FunLove is capable of reducing the security of IA32-based Windows

NT systems, by patching the OS kernel file. When QAZ gets infected with FunLove and infects a

Windows NT system, the attacker will likely have an even better control over the compromised system.

A new level of code evolution could appear in viruses via communication. It only takes a standard

and an interface. In theory, viruses could evolve to a level where a virus would be able to export a

polymorphic or metamorphic engine of itself for use in another virus or worm. Similarly, viruses would

be able to exchange trigger routines and appear in newer combinations. This sounds superficial but

the technology is out there to support these kinds of models.

22

Symantec HUNTING FOR METAMORPHIC

√ Conclusion

The evolution of metamorphic viruses is one of the great challenges of this decade. Clearly, virus

writing is evolving towards the direction of modern computer worms. It will be an interesting time for

antivirus researchers.

It is more important than ever to realize how important team work is. Virus detection is not a one-man

heroic job any more. The QA people need to understand the virus detection problems better than

ever and work more closely with the virus researchers toward the goal of a faster-scanning speed.

Now is the time when detecting a single zoo virus can easily cause a 5–15% slowdown of scanning

speed, assuming that the scanning engine and the virus researchers can handle the detection at the

first place. We have not even mentioned the complexity of the repairs. This is a worrying result.

Metamorphic viruses are one of many techniques that virus writers employ to attack systems, and as

such, they should not be ignored any longer.

√ References

[1] Cohen, Frederick B., “A short course on computer viruses,” 1994.

[2] Szor, Peter, “The New 32-bit Medusa,” Virus Bulletin, December 2000, pp.8–10.

[3] Marinescu, Andrian, “ACG in the Hole,” Virus Bulletin, July 1999, pp.8–9.

[4] Ferrie, Peter and Szor, Peter, “Zmist Opportunities,” Virus Bulletin, March 2001, pp.6–7.

[5] Nachenberg, Carey, Chief Architect, Symantec Corporation.

[6] Ferrie, Peter, “Magisterium Abraxas,” Virus Bulletin, May 2001, pp.6–7.

[7] Szor, Peter, “Attacks On Win32 – Part II,” VB Conference Proceedings, September 2000,

pp.101–121.

[8] Bontchev, Vesselin, “MtE Detection Test,” Virus News Int., January, 1992, pp.26–34.

[9] Nikishhin, Andy, “Harnessing Hybris,” Virus Bulletin, January, 2001, pp.6–7.

[10] “Shape Shifters,” Scientific American, May 2001, pp.20–21.

23

√ About the Authors

Péter Ször graduated from the University of Veszprem Hungary in 1991. He is the author of a popular

Hungarian virus scanner called Pasteur, which he developed between 1990 and 1995. Szor's

interest in computer viruses began in 1990. He worked on various antivirus scanning engines over

the last decade including F-PROT, AVP, and Norton AntiVirus.

Peter was invited to join the Computer Antivirus Research Organisation (CARO) in 1997. He is a

frequent speaker at Virus Bulletin, EICAR, and ICSA conferences, as well as a regular contributor to

Virus Bulletin magazine. In 1999, Szor joined Symantec Corporation where he designs and develops

antivirus technologies for the Norton AntiVirus product line. He is the author of several pending

U.S. patents.

Peter Ferrie is a Senior Virus Researcher at Symantec Security Response. He specializes in the

detection and repair of Win32 malware, reverse-engineering file formats, and the development of

engine enhancements for Symantec AntiVirus products.

Peter contributes to Virus Bulletin magazine. He joined the Computer Antivirus Research

Organisation (CARO) in 2001.

SYMANTEC, THE WORLD LEADER IN INTERNET SECURITY TECHNOLOGY, PROVIDES A BROAD RANGE OF CONTENT AND NETWORK

SECURITY SOFTWARE AND APPLIANCE SOLUTIONS TO INDIVIDUALS, ENTERPRISES AND SERVICE PROVIDERS. THE COMPANY IS A

LEADING PROVIDER OF VIRUS PROTECTION, FIREWALL AND VIRTUAL PRIVATE NETWORK, VULNERABILITY ASSESSMENT,

INTRUSION PREVENTION, INTERNET CONTENT AND EMAIL FILTERING, AND REMOTE MANAGEMENT TECHNOLOGIES AND SECURITY

SERVICES TO ENTERPRISES AND SERVICE PROVIDERS AROUND THE WORLD. SYMANTEC’S NORTON BRAND OF CONSUMER

SECURITY PRODUCTS IS A LEADER IN WORLDWIDE RETAIL SALES AND INDUSTRY AWARDS. HEADQUARTERED IN CUPERTINO,

CALIF., SYMANTEC HAS WORLDWIDE OPERATIONS IN 38 COUNTRIES.

FOR MORE INFORMATION, PLEASE VISIT WWW.SYMANTEC.COM

The information in this document is subject to change without notice and must not be construed as a commitment on the part of Symantec Corporation.
Symantec assumes no responsibility for any errors that may appear in this document. Symantec and the Symantec logo are U.S. registered trademarks of
Symantec Corporation. Other brands and products are trademarks of their respective holders. Copyright © 2003 Symantec Corporation. All rights reserved.
Printed in the U.S.A. 06/03 10061876

WORLD HEADQUARTERS

20330 Stevens Creek Blvd.

Cupertino, CA 95014 U.S.A.

408.517.8000

800.721.3934

www.symantec.com

For Product Information

In the U.S., call toll-free

800.745.6054

Symantec has worldwide

operations in 38 countries.

For specific country

offices and contact numbers

please visit our Web site.

Symantec HUNTING FOR METAMORPHIC

