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Abstract: In this contribution, a control scheme based on multi input multi output 
Fuzzy Sliding Mode control (MIMO-FSMC) for linear speed regulation of winding 
system is proposed. Once the decoupled model of the winding system is obtained, a 
smooth control function with a threshold was chosen to indicate how far the state from 
to the sliding surface is. However, the magnitude of this control function depends 
closely on the upper bound of uncertainties, and this generates chattering. So, this 
magnitude has to be chosen with great care to obtain high performances. Usually the 
upper bound of uncertainties is difficult to known before motor operation, so, a Fuzzy 
Sliding Mode controller is investigated to solve this difficulty, a simple Fuzzy inference 
mechanism is used to reduce the chattering phenomenon by simple adjustments. A 
simulation study is carried out and shows that the proposed fuzzy sliding mode 
controllers have great potential for use as an alternative to the conventional sliding 
mode control. 
 
Keywords: winding system, induction machine Proportional-integral (PI), sliding mode 
control, Fuzzy logic.  

 
I.  Introduction 
 The systems handling web material such as textile, paper, polymer or metal are very 
common in the industry. The modelling and the control of web handling systems have been 
studied already for several decades [1].The increasing requirement on control performance, 
however, and the handling of thinner web material led us to search for more sophisticated 
control strategies. One of the objectives in such systems is to increase web velocity as much as 
possible, while controlling web tension over the entire production line. This requires 
decoupling between web tension and speed, so that a constant tension can be maintained during 
speed changes [2] [3].  Since the decentralized PI control method can be applied easily and is 
widely known, it has an important place in control applications, where many industrial web 
transport systems have used this type of controllers [4]. But this method is insensitive to 
parameter changes. A H ∞ robust control strategy for web tension control and linear transport 
velocity control are presented in [5], an adaptive algorithm to compensate web tension 
disturbances caused by the eccentricity and non-circularity of the reel and rolls in web winding 
systems is presented in [6]. In this work the design of fuzzy sliding-mode (FSMC) to control a 
winding system are proposed in order to improve the performances of the control system, 
which are coupled mechanically, and Synthesis of the robust control and their application to 
synchronize the five sequences and to maintain a constant mechanical tension between the 
rollers of the system [7]. The advantage of an FSMC is its robustness and ability to handle the 
non-linear  behaviour  of  the  system.  In  this  contribution,  based  on fuzzy variable structure  
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control concept, the authors introduced a control scheme for the design and the tuning of fuzzy 
logic controllers with an application to winding system. To show the benefits of the proposed 
fuzzy sliding mode control algorithm, simulation results comparing the performance of the 
proposed fuzzy model based control with that of conventional sliding mode control are 
presented. The results obtained confirm that the proposed control structure improves the 
performance and the robustness of the drive system. 
The model of the winding system and in particular the model of the mechanical coupling are 
developed and presented in Section II. Section III shows the development of sliding mode 
controllers design for winding system. The proposed Fuzzy sliding mode control is given in the 
section IV. Section V shows the Simulation results using MATLAB SIMULINK of different 
studied cases. Finally, the conclusions are drawn in Section VI. 
 
2. System Models 
 In the mechanical part, the motor M1 carries out unreeling, M3 drives the fabric by friction 
and M5 is used to carry out winding, each one of the motors M2 and M4 drives two rollers via 
gears “to grip” the band (Figure 1). Each one of M2 and M4 could be replaced by two motors, 
which each one would drive a roller of the stages of pinching off. The elements of control of 
pressure between the rollers are not represented and not even considered in the study. The stage 
of pinching off can make it possible to isolate two zones and to create a buffer zone. [8, 9].  
 
 The objective of these systems is to maintain the tape speed constant and to control the 
tension in the band.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Five motors web transport system 
 
 The used motor is a three phase induction motor type (IM) supplied by an inverter voltage 
controlled with Pulse Modulation Width (PWM) techniques. A model based on circuit 
equivalent equations is generally sufficient in order to make control synthesis. The dynamic 
model of three-phase, Y-connected induction motor can be expressed in the d-q synchronously 
rotating frame as [13]: 
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roll is given by: 
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 Where μ is the friction coefficient, and Lt = a + g + L. The tension change occurs on the 
sliding zone. The web velocity is equal to the roll velocity on the sticking zone. 
 
C. Mass conservation law 
 Consider an element of web of length  )1(0 ε+= LL   
 With a weight density ρ, under an unidirectional stress. The cross section is supposed to be 
constant. According to the mass conservation law, the mass of the web remains constant 
between the state without stress and the state with stress 
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ρ
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D. Tension model between two consecutive rolls. 
 The equation of continuity, cf. [8], applied to the web gives: 
 

 

( ) 0V
t x
ρ ρ∂ ∂

+ =
∂ ∂                                      (5) 

 
 By integrating on the variable x from 0 to Lt (cf. Figure 2), taking into account (4), and 
using the fact that a + g << L, we obtain 
 

 .
21

2
11

1
21 εεε +

−
+

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

VVL
dt
d  

 
Therefore: 
 

 
.)21(2

11

2)21(
1

2 ε
ε
εε

+−
+

+
=− VV

dt
d

L
 

(6) 

 
This equation can be simplified by using the approximation 
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And using Hook’s law, we get: 
 

 
.)12(
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 k = 2, 3, 4, 5. 
 
where LK-1 is the web length between roll k−1 and roll k, TK is the tension on the web between 
roll k−1 and roll k, VK is the linear velocity of the web on roll k, ΩK is the rotational speed of 
roll k, RK is the radius of roll k, E is the Young modulus and S is the web section.  
 
E. Roll velocity calculation 
 The law of motion can be obtained with a torque balance: 
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 Where kkk RV /=Ω , is the rotational speed of roll k kCem  is the motor torque (if the 
roll is driven) and Cf is the friction torque. 
 
F. Complete model of the five motors system 
 Figure 1 shows a typical five motors system with winder, unwinder, and three tractors. 
The complete model of this system is given by the following equations: 
 

.22)12(2
1 VTVVES

dt
dT

L −−=  

 

.3322)23(3
2 VTVTVVES

dt
dT

L −+−=  

.4433)34(4
3 VTVTVVES

dt
dT

L −+−=  

.5544)45(5
4 VTVTVVES

dt
dT

L −+−=   (10) 

 

1 1
1 2 1 1 1

( ( ) ) ( ) ( ) .em
d J t R t T C f t

dt
Ω

= + − Ω  

.2)(22)23(2
)22(

Ω−+−=
Ω

tfemCTTR
dt

Jd
 

.)()(
)(

333343
33 Ω−+−=

Ω
tfCTTR

dt
Jd

em  

.)()(
)(

444454
44 Ω−+−=

Ω
tfCTTR

dt
Jd

em  

5 5
5 5 5 5 5

( ( ) ) ( )( ) ( ) .em
d J t R t T C f t

dt
Ω

= − + − Ω     (11) 

 
 

Fuzzy Sliding-Mode Control for a five drive web-winding System



 

88  
 

G. State space representation 
 The nonlinear state-space model is composed of (10) for the different web spans and of (11) 
for the different rolls. Under the assumption that Jk Rk (k = 2, 3, 4, 5) is varying only slowly, 
which is the case for thin webs, Vk can be chosen as a state variable in (11), leading to the 
following linear model: 

XtCY
BUXtAXmE

)(
)(

=
+=

•
                                   (12) 
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Figure 3. Electrical part of the five  drive system 
 
3. Sliding Mode Control 
 The sliding mode control consists in moving the state trajectory of the system toward a 
predetermined surface called sliding or switching surface and in maintaining it around this 
latter  with  an  appropriate switching  logic. In  the  case  of  the  nth-order  system,  the sliding  
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surface could be defined as [12]: 
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 Concerning the development of the control law, it is divided into two parts, the equivalent 
control Ueq and the attractivity or reachability control Us. The equivalent control is determined 
off-line with a model that represents the plant as accurately as possible. If the plant is exactly is 
exactly identical to the model used for determining Ueq and there are no disturbances, there 
would be no need to apply an additional control Us. However, in practice there are a lot of 
differences between the model and the actual plant. Therefore, the control component Us is 
necessary which will always guarantee that the state is attracted to the   switching   surface   by   

satisfying   the   condition 0)( . )(
.

<xSxS  [12,13]. Therefore, the basic switching law is of the 
form: 
  
   swUeqUU +=                                       (16) 
 

 eqU  is the equivalent control, and swU  is the switching control. The function of  eqU  is 

to maintain the trajectory on the sliding surface, and the function of swU  is to guide the 
trajectory to this surface. 
Let the sliding surface vector be given by: 
 
   [ ]54321 SSSSSS =          
 
With Usw=-M (.) sgn(S (.)) 
M(S): The magnitude of the attractivity control law Usw and sgn: the sign function 
 In a conventional variable structure control, Un generates a high control activity. It was first 
taken as constant, a relay function, which is very harmful to the actuators and may excite the 
unmodeled dynamics of the System. This is known as a chattering phenomenon. Ideally, to 
reach the sliding surface, the chattering phenomenon should be eliminated [12,13]. However, 
in practice, chattering can only be reduced. 
 The first approach to reduce chattering was to introduce a boundary layer around the sliding 
surface and to use a smooth function to replace the discontinuous part of the control action as 
follows : 
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 The constant K is linked to the speed of convergence towards the sliding surface of the 
process (the reaching mode). Compromise must be made when choosing this constant, since if 
K is very small the time response is important and 
the robustness may be lost, whereas when K is too big the chattering phenomenon increases. 
 
4. Fuzzy Sliding Mode Control (FSMC) 
 The disadvantage of sliding mode controllers is that the discontinuous control signal 
produces chattering dynamics; chatter is aggravated by small time delays in the system. In 
order to eliminate the chattering phenomenon, different schemes have been proposed in the 
literature [15, 16, 17, 18, 19]. However, this does not solve the problem completely. In this 
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section, a fuzzy sliding surface is introduced to develop a sliding mode controller, where the 

parameters iλ are adjusted by a fuzzy system mechanism to reduce the chattering 
phenomenon. 
Consider the class of nonlinear time varying systems described by the equations  
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 In (17) the function if , the control gain jb  and the disturbance jd  are assumed to be 
unknown. The dynamics of (17) describe a large number of nonlinear systems encountered in 
practice, including a vast class of controllable nonlinear systems that could be converted into 
(17) by using appropriate transformations. 

 Then we can write a state space representation of (17) in terms of jj xre −=  , and its 
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Then we can rewrite (19) as follows: 
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 Where )(Ef j  is a shifted replica of )(Λjf . The systems of nonlinear equations in (20) 
are highly coupled. Considering the nonlinear coupling terms in (20) as disturbances, we can 
introduce the sliding mode into the system and reject the disturbance by the various design 
procedures based on the invariance property of the sliding mode. Therefore, the coupled 
systems of (20) can be written as q set of m independent differential equations as follows: 
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 Where ),( tED j is the sum of the disturbances )(td j  and all the nonlinear coupling terms 
in (20) or equivalently     
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Where ia  and ih   are in general time varying and ib  and  ig , are the nonlinear 

Define a set of sliding surfaces jS  in the jE  space by the equations  

    0)( == jEjCjEjS                           (23)               

 mj ,...,1=                                     
 
Finally the proposed MIMO sliding Mode Fuzzy control law is  
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Where  i
fi

i S
s

e
_

1
λ+

=  are tracking errors and fi−λ  are positive scalar design parameters 

which control the bandwidth of the closed-loop system.  
    Thus, the tracking error eventually enters neighborhoods of ie =0, the sizes of which are 

inversely proportional to iλ . Therefore, if iλ  is larger, tracking errors are smaller. 
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 In order to improve tracking performance while avoiding chattering under physical 
limitations, effort is made to improve the sliding mode controller via fuzzy logic. In this work, 
individual Mamdani fuzzy systems are used to adjust control bandwidths iλ based on the 
corresponding tracking errors. 
 The fuzzy system rule base for control bandwidths iλ   is defined as follows; 
The fuzzy sets R1, R2, R3, R4, R5, and R6 are characterized by the membership functions 
shown in Figure 04 where  
 d1=-0.04, d2=-0.03, d3=-0.02, d4=-0.01 
 d5=-0.005, d6=0.005, d7=0.01, d8=0.02,  
 d9=0.03, d10=0.04  
 Since only five fuzzy subsets, R1, R2, R3, R4, R5 and R6, are defined for ie , the fuzzy 
inference mechanism contains five rules for the FLC output. The resulting fuzzy inference 
rules for the output variable j

iλ  are as follows: 

 Rule 1: IF ,11
iiii THENRe λλ =∈   

 Rule 2: IF ,2 j
iiii THENRe λλ =∈           (29)  

                                    
      Rule j: IF ,j

ii
j

ii THENRe λλ =∈  

 irj ,....,1=  
 Where ie  is the tracking error for the ith system variable, and ir  is the total number of 

rules for the ith  system variable. In (2.29), j
iR  is the jth fuzzy set on the ith universe of 

discourse, characterized by membership function ( )i
j

i eμ . 
 
 
 
 
 
 
 

Figure 4. Input membership function of the fuzzy system. 
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Figure 5. Block diagram for multi motors web winding system with MIMO-FSMC control. 

 
5. Simulation Results 
 The winding system we modeled is simulated using MATLAB SIMULINK software and 
the simulation is carried out on 10s. 
 To evaluate system performance we carried out numerical simulations under the following 
conditions: 

• Start with the linear velocity of the web of 5m /s. 
• The motor M1 has the role of Unwinder a roll radius R1 (R1 = 2.25 m). 
• The motors M2, M3, M4 are the role is to pinch the tape. 
• The motor M5 has the role of winding a roll of radius R5. The aims of the   STOP 

block is to stop at the same time the different motors of the system when a radius 
adjust to a desired value (for example R5 = 0.8 m), by injecting a reference speed 
zero. 

 
 The comparison between the two controllers FSMC-SISO and  FSMC-MIMO is achieved 
in the two cases: 

• Comparison of the control performances: it has been made by the comparison of the 
average speeds of the five motors Vavg, for each controller this average is expressed 
by the equation (47). 

• Comparison of synchronism between the speeds of the five motors: in this point one 
makes a comparison between the deviation standard of speeds of five motors Vstd, for 
each controller this average is expressed by the equation (48). 

 

∑
=

=
n

i iV
n

avgV
1

1
                                         (47)                         

  
2
1

)
2

)
1
(

1
( avgV

n

i iV
n

stdV ∑
=

−=                   (48)                         

 
 As shown in Figure (6-8). An improvement of the linear speed is registered, and has 
follows the reference speed for both PI controller and FSMC control, but in case of PI 
controller, the overshoot in linear speed of Unwinder is 25%. Figure (7) and Figure (8) show 
that with the FSMC MIMO controller the system follows the reference speed after 0.3 sec, in 
all motors, however, in the FSMC SISO and PI controller the system follows after 1.3 sec and 
2 sec respectively.    
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Figure 6. The linear speed of unwinder M1 

 
 From the Figures (5-7), we can say that: the effect of the disturbance is neglected in the 
case of the FSMC MIMO controller. It appears clearly that the classical control with PI 
controller is easy to apply. However the control with fuzzy sliding mode MIMO controllers 
offers better performances in both of the overshoot control and the tracking error.  

 
Figure 7. The linear speed of motors M2, M3 and M4 

 
 

 
Figure 8. The linear speed of winder M5 
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Figure 9. The Tension between two rolls With PI Controller 

 
 

 
Figure 10. The Tension between two rolls With FSMC-SISO Controller  

 
 

 
Figure 11. The Tension between two rolls With FSMC-MIMO Controller  

 
 Figure 9 shows that applying PI controller, the duration of the oscillations of the tension 
between rolls is 2 to 7 sec, with an amplitude equals 0.01 while, when applying FSMC-MIMO 
controller these values are enhanced and become 0.5 sec and 0.00025 N respectively is shown 
in Figure 11. 
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 Figure 12 and Figure 13 shows the comparison between the FSMC-MIMO controller, the 
FSMC-SISO controller and the PI- MIMO controller. After this comparison we can judge that 
the FSMC-MIMO controller presents a clean improvement to the level of the performances of 
control, compared to the PI-MIMO controller, the synchronism between the five motors is 
improved with FSMC-MIMO controller compared to FSMC-SISO controller. 

 
Figure 12. Comparison between the FSMC MIMO, FSMC SISO and PI MIMO with average 

speeds of five motors 
 

 

 
 

Figure 13. comparison between the FSMC MIMO, FSMC SISO and PI MIMO with the 
deviation standard of speeds of five motors 

 
4. Conclusion 
 The sliding mode control of the field oriented induction motor was proposed. To show the 
effectiveness and performances of the developed control scheme, simulation study was carried 
out. Good results were obtained despite the simplicity of the chosen sliding surfaces. The 
robustness and the tracking qualities of the proposed control system using sliding mode 
controllers appear clearly. 
 Furthermore, in order to reduce the chattering, due to the discontinuous nature of the 
controller, fuzzy logic controllers were added to the sliding mode controllers. 
These gave good results as well and simplicity with regards to the adjustment of parameters. 
The simulations results show the efficiency of the FSMC-MIMO controller technique, however 
the strategy of FSMC-MIMO Controller brings good performances, and she is more efficient 
than the FSMC-SISO controller and classical PI-MIMO controller. 
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