
Constructing Minimal Ancestral Recombination Graphs

YUN S. SONG∗ and JOTUN HEIN

Department of Statistics, University of Oxford,

1 South Parks Road, Oxford, OX1 3TG, UK

Abstract

By viewing the ancestral recombination graph as defining a sequence of trees, we

show how possible evolutionary histories consistent with given data can be constructed

using the minimum number of recombination events. In contrast to previously-known

methods, which only yield estimated lower bounds, our method of detecting recombi-

nation always gives the minimum number of recombination events if the right kind of

rooted trees are used in our algorithm. A new lower bound can be defined if rooted

trees with less constraints are used. As well as studying how often it actually is equal

to the minimum, we test how this new lower bound performs in comparison to some

other lower bounds. Our study indicates that the new lower bound is an improvement

on earlier bounds. Also, using simulated data, we investigate how well our method can

recover the actual site-specific evolutionary relationships. In the presence of recombi-

nation, using a single tree to describe the evolution of the entire locus clearly leads to

lower average recovery percentages than our method. Our study shows that recovering

the actual local tree topologies can be done more accurately than estimating the actual

number of recombination events.

Keywords: ancestral recombination graph, minimum number, lower bound, recombina-

tion, tree topology

Running head: Constructing Minimal Ancestral Recombination Graphs

1 Introduction

A central point in the analysis of within-species genetic variation is recombination. While

creating new genetic types in the population, recombination has far-reaching consequences

on the genealogy of chromosomes. As a result of recombination, different regions in DNA

sequences can have different evolutionary histories and correlation between alleles at differ-

ent loci can therefore be reduced. Finding out where in the sequence recombination is likely

to have occurred and how much recombination rates vary is crucial for many important

areas of study such as disease gene mapping.

The primary goal of our work is to construct possible evolutionary histories of DNA

sequences which may have undergone recombination. Although reconstructing the true

evolutionary history of sample sequences with certainty is not possible, it is possible to find

a set of evolutionary histories that are consistent with the observed sequences. Here, one

should note that the meaning of the word “consistent” depends on the assumed model of

evolution. Furthermore, in general the more constraints the assumed model of evolution

has, the more informative the data can be, thus reducing the number of consistent histories.

In our work, we assume the infinite-sites model of mutation, which is equivalent to saying

that at most one mutation event can occur at each site in the entire evolutionary history.

∗Corresponding Author. E-mail: song@stats.ox.ac.uk

1

As a consequence of this assumption, we limit our study to the case where at most 2 distinct

nucleotides occur at every site in the data. Note that, by arbitrarily assigning 0 or 1 to

the distinct nucleotides appearing at each site, such data can easily be transformed into

binary form, which we shall use in this paper. Throughout this paper, we let S be a set of

n binary sequences each of length `, i.e. S = {sα}, sα = cα
1 , cα

2 , . . . , cα
` , where cα

i ∈ {0, 1}

for every α ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , `}. The entry cα
i is called the ith character of

sequence sα, and the n-tuple ci := (c1
i , c

2
i , . . . , c

n
i) of ith characters is called the ith character

column. A character column ci is called informative if it contains at least two 0s and two

1s. Otherwise, it is called non-informative.

One of the reasons why it is in general impossible to reconstruct the true evolutionary

history of sample sequences is that some recombination events are not detectable. That

is, some recombination events do not lead to any betokening polymorphism in sampled

sequences, and therefore there is no trace in the data that indicates the occurrence of such

events in the past. Although it is impossible to know exactly how many recombination

events have occurred in the evolutionary history of sample sequences, it is meaningful,

however, to ask at least how many recombination events must have occurred in the evolu-

tionary history. The goal of our present work is thus twofold; to find the minimum number

Rmin(S) of recombination events and to construct possible evolutionary histories with ex-

actly Rmin(S) recombination events. For a given data set S, the minimum number Rmin(S)

of recombination events is defined by the property that there exists no evolutionary history

with less than Rmin(S) recombination events that can generate the observed data S under

the infinite-sites model of mutation. We sometimes use the adjective “minimal” to describe

evolutionary histories with the minimum number of recombination events.

Finding the minimum number Rmin(S) of recombination events for an arbitrary data

set S is a difficult problem, and therefore several methods for estimating Rmin(S) have

been devised. The problem of finding a lower bound on Rmin(S) was first considered by

Hudson and Kaplan (1985), and that particular problem of counting recombination events

is currently receiving a renewed interest. Myers and Griffiths (2003) recently proposed an

integer linear programming approach for constructing new lower bounds on the number of

recombination events, whereas the present authors proposed a set theoretical method to

define a new lower bound (Song and Hein, 2004). None of these methods can always yield

the minimum number; for some data set S, the computed lower bound may be less than

the minimum number Rmin(S). In contrast, as we later describe in detail, the method we

use in our present work always yields the minimum number of recombination events if the

so-called ordered trees are used in our algorithm.

The algorithmic ideas and some technical issues underlying our work have recently been

announced at the WABI 2003 conference (Song and Hein, 2003). In the present paper,

we further elaborate the method described there and investigate how well our method

performs. We have implemented our algorithm in the programming language C++ and our

software, called RecMinPath, is available upon request. We define a lower bound based on

rooted trees with less constraints than that in ordered trees and show that this lower bound

generally performs better than some other presently-available lower bounds. In addition,

using simulated data generated under the infinite-sites model of mutation, we investigate

how well our method can recover the actual local evolutionary relationships. Our study

shows that using a single tree, instead of using a sequence of trees as in our method, to

2

describe the evolution of the entire locus leads to lower average recovery percentages. Also,

we can conclude from our study that recovering the actual local tree topologies can be done

more accurately than estimating the actual number of recombination events.

The approach we take in our method is to find a sequence of trees—where the ith tree

in the sequence describes the evolution of the ith site in the data—such that, as one moves

along the sequence, changes in tree topology can be seen as signalling recombination events.

To correctly quantify the number of recombination events, we have properly defined in (Song

and Hein, 2003) the so-called subtree-prune-and-regraft (SPR) operations on ordered trees,

where internal vertices are totally ordered. The SPR-distance between two ordered trees—

defined as the minimum number of SPR operations required to transform one tree to the

other—correctly encodes the number of recombination events required to put the two trees

into an ancestral recombination graph (Griffiths and Marjoram, 1997). In addition, we can

explicitly construct evolutionary histories that are consistent with the data by combining

the trees which appear in the sequence of trees.

This paper is organised as follows. In Section 2, we briefly sketch the main idea underly-

ing our work. The reader is recommended to browse through this section to obtain a rough

picture of what we are trying to achieve. More technical aspects of our work are discussed

in Section 3, where, for ease of reference, we also provide the algorithms from (Song and

Hein, 2003). The reader may skip this section in the first reading and return to it later.

In Section 4, we test the performance of our method on simulated data. We compare our

method to some other currently-existing methods, in regard to both detecting recombina-

tion events and recovering local evolutionary relationships. Our analysis of Kreitman’s 1983

data, consisting of 11 alleles of the alcohol dehydrogenase locus of Drosophila melanogaster

(Kreitman, 1983), is also discussed in that section. In Section 5, we suggest a few concrete

directions for extending our work, and we conclude with some remarks in Section 6.

2 An overview of the main idea

Consider the following five sequences:

s1 = 0 0 0 0

s2 = 0 0 1 1

s3 = 0 1 0 1

s4 = 1 1 0 0

s5 = 1 1 1 1

(1)

Within the framework of the infinite-sites model of mutation, two character sites are said

to be incompatible if all four gametic types—00, 01, 10 and 11—appear in the two sites.

In the above data, there are four pairs of incompatible sites. Namely, they are sites 1

and 3; sites 1 and 4; sites 2 and 3; and, sites 2 and 4. Whenever two sites i and j are

incompatible, it implies that there must have occurred at least one recombination event

with its corresponding breakpoint somewhere between i and j. In that regard, our goal can

be rephrased as finding the minimum number of recombination events needed to explain all

incompatibilities present in the data.

The reader is encouraged to check that there exists no evolutionary history with only one

recombination event that could have generated the above five sequences under the infinite-

3

��

� �
��
��

�� �� �� �	�

��
��

��
� �

� � � �

Figure 1: A minimal ancestral recombination graph corresponding to the data S =

{s1, s2, . . . , s5} shown in (1). Exactly 2 recombination vertices are present in the graph.

Open circles ◦ denote recombination events, and the notation (i, i + 1) accompanying a

recombination event indicates that its corresponding breakpoint occurs between sites i and

i + 1. By convention, when recombination occurs, the part to the left (resp. right) of the

breakpoint gets descended from the left (resp. right) edge. Filled circles • indicate mutation

events. The notation mi denotes a mutation event at character site i; it corresponds to

a change of 0 to 1 or vice versa. The root is denoted by •©. In this particular ARG, the

ancestral sequence at the root is 1 1 0 0.

�� �� �� ���� �� �� �� ���� �� �� �� ����

� � �� ��

Figure 2: Trees embedded in the ARG shown in Figure 1.

sites model of mutation. In fact, at least two recombination events must have occurred in

the evolutionary history of the sequences. Shown in Figure 1 is an ancestral recombination

graph (ARG) with exactly two recombination vertices; it represents one of several minimal

evolutionary histories consistent with the data S = {s1, s2, . . . , s5}.

In our work, we distinguish trees according to their topologies and the ordering of their

internal vertices. The space Tn of leaf-labelled rooted binary trees with n leaves therefore is

a discrete space. We defer a more precise definition of a tree until Section 3. An ARG defines

a collection of trees and carries the information about which tree describes the evolution of

which character site. In our present example, the ARG shown in Figure 1 contains three

inequivalent trees, namely the three shown in Figure 2. The evolution of character sites

1 and 2 is represented by the tree Ti, whereas Tj describes the evolution of site 3 and Tk

that of site 4. Hence, we can think of the ARG as giving a sequence P = Ti, Ti, Tj , Tk of

4

�� �
�

�
�

�
�

�

Figure 3: A schematic depiction of a path. This path arises from the sequence of trees

associated with the ARG shown in Figure 1. The enclosed region represents the space T5

of leaf-labelled rooted binary trees with 5 leaves, and a point in this space corresponds to

a tree.

trees, which in turn gives rise to a “path,” also denoted P , in the space T5 as depicted in

Figure 3. In what follows, we sometimes use the two terminologies “sequence of trees” and

“path” interchangeably.

In general, to each ARG corresponding to a set of length-` DNA sequences, one can

associate a unique length-` sequence P of trees such that the ith tree in P describes the

evolution of the ith character site. Suppose that we are given an arbitrary data set S of n

sequences and that H is an ARG consistent with S. Let P = Ti1 , Ti2 , . . . , Ti` denote the

unique sequence of trees corresponding to H. As before, the corresponding path in the

space Tn of trees with n leaves is also denoted by P . Now, if we can define a notion of

distance between any pair of points in Tn, i.e. if the distance d(Ta, Tb) is defined for all

Ta, Tb ∈ Tn, then we can define the length L(P) of the path P by adding up the pair-wise

contributions along the path as follows:

L(P) :=

`−1
∑

k=1

d(Tik , Tik+1
). (2)

Let P(S) denote the set of all paths whose corresponding ARGs are consistent with S.

The gist of our work lies in finding the right kind of trees (i.e. Tn) and the right kind of

metric (i.e. d(·, ·)) so that the following equality holds:

min
P∈P(S)

L(P) = Rmin(S). (3)

In summary, instead of working with ARGs directly, we can work with sequences of

trees or, equivalently, paths in the space of trees as shown in Figure 4. As we discuss later,

this change in perspective allows us to use dynamic programming to find solutions to (3).

Note that our method does two things for us. First of all, we can find the minimum number

of recombination events using (3). Secondly, for each minimal path (i.e. a solution to (3))

��

Figure 4: A schematic illustration of paths in the space Tn of trees with n-leaves.

5

we find, we can construct a set of minimal evolutionary histories (i.e. minimal ARGs)

consistent with the data by combining the trees which arise in the minimal path.

3 Methods

In this section, we elaborate on the ideas sketched in the previous section. As well as

discussing what kind of trees should be used, we describe how the distance between trees

should be measured to reflect the number of recombination events. The algorithm for finding

minimal paths is restated here for ease of reference. We refer the reader to (Song and Hein,

2003) for precise definitions and for a more in-depth description of our algorithm. As an

additional application, we discuss how our work can be used to define haplotype blocks.

3.1 Trees

In this paper, we consider leaf-labelled rooted binary trees whose edge lengths are not

specified. When we say a tree without any qualification, we shall mean a leaf-labelled

rooted binary tree. In a rooted tree, time flows from the root to the leaves. In our way of

drawing trees, time should flow vertically from top to bottom; horizontal lines in a tree do

not carry any temporal meaning and their lengths are chosen arbitrarily.

The set {v1, v2, . . . , vn−2} of degree-3 vertices in an n-leaved rooted binary tree is a

partially ordered set whose binary relation denoted < is given by ancestral relation. More

precisely, vi < vj if vi is an ancestor of vj . Two degree-3 vertices vi and vj are incomparable

if there exists no ancestral relation between them. An ordered tree is a leaf-labelled rooted

binary tree whose corresponding set {v1, v2, . . . , vn−2} of degree-3 vertices is a totally ordered

set; that is, for any two vertices vi and vj , either vi < vj or vj < vi. In this case, the binary

relation < is given by age ordering. As before, vi < vj if vi is an ancestor of vj . If there

exists no ancestral relation between vi and vj, then either vi < vj or vj < vi is allowed.

Furthermore, we impose the condition that vi 6= vj if i 6= j. The space of plain rooted trees

and that of ordered trees are denoted by T r
n and T o

n , respectively.

Two trees equivalent as rooted trees are distinct as ordered trees if the ordering of their

degree-3 vertices are different. For example, the two trees shown in Figure 5 are equivalent

as plain rooted trees but inequivalent as ordered trees. The number of inequivalent ordered

trees corresponding to a fixed plain rooted tree T depends on the topology of T .

A tree T is said to be compatible with the informative column ci if there exists an edge

in T such that cutting the edge decomposes T into two connected components, one labelled

�� �� ���� �� �� ����

Figure 5: Examples of four-leaved trees. These trees are equivalent as plain rooted trees

but inequivalent as ordered trees.

6

� �
�� �� ������

� �
�� �� ������

�	
�� ������ ��

Figure 6: Trees with 5 leaves. If T2 and T3 are viewed as plain rooted trees, then

dSPR(T2, T3) = 1. If they are viewed as ordered trees, then dSPR(T2, T3) = 2.

by the sequences sα with cα
i = 0 and the other by the sequences sβ with cβ

i = 1. If the

column ci is not informative, then every n-leaved tree is considered compatible with ci. In

relation to evolutionary history, if a tree is compatible with a character column ci, then

at most one mutation event is necessary for the tree to represent the evolutionary history

of sample sequences at the character site i, i.e. the tree is consistent with the character

column under the infinite-sites model of mutation.

3.2 SPR operations and the SPR-distance between trees

A type of distance between trees widely used in biology is that defined in terms of certain

operations which rearrange trees; the distance between two trees is defined as the minimum

number of operations required to transform one tree to the other. A particular kind of op-

eration that we employ in our work is the so-called subtree pruning and regrafting (Swofford

and Olsen, 1990). In a subtree-prune-and-regraft (SPR) operation, one detaches an edge

from a tree T , thus “pruning” a subtree t from T , and “regrafts” t to somewhere else on

the remaining part of T . In (Song and Hein, 2003), we properly defined SPR operations

for plain rooted trees and ordered trees so that they can be used to quantify recombination

events.

The precise definition of an SPR operation depends on the type of the tree on which the

operation is being performed. The reader should refer to (Song and Hein, 2003) for details.

In general, the more characteristics a tree has, the more restrictive the definition of an SPR

operation has to be. For instance, SPR operations on ordered trees are more restricted than

SPR operations on plain rooted trees. Consider the trees T2 and T3 shown in Figure 6. If

these trees are viewed as plain rooted trees, then the 2-leaved subtree in T2 containing s2

and s3 can be pruned and then regrafted onto the edge incident with the leaf labelled s4.

Hence, only one SPR operation is required to transform T2 to T3 if they are thought of as

plain rooted trees. If the two trees are viewed as ordered trees, however, the SPR operation

just described is not an allowed operation. In this case, at least 2 SPR operations—for

example, one moving the leaf labelled s2 and the other moving the leaf labelled s3—are

needed to transform T2 to T3, or vice versa.

For any pair of trees, say T and T ′, their SPR-distance dSPR(T, T ′) is a non-negative

integer defined as the minimum number of SPR operations necessary to transform T into T ′.

7

In practice, determining the SPR-distance between two arbitrary rooted trees can be quite

difficult, especially so for ordered trees. A combinatorial analysis of SPR operations on

plain rooted trees has been carried out in (Song, 2003), and we are currently investigating

analogous questions for ordered trees.

3.3 Why SPR operations?

Given a sequence P = Ti1 , Ti2 , . . . , Ti` of trees, equations (2) and (3) together imply that

we should define the distance between two consecutive trees Tik and Tik+1
so that it is equal

to the number drec(Tik , Tik+1
) of recombination events needed to combine the two trees into

an ARG. As one moves along the sequence, tree topology can change, and such topology

changes can be seen as being obtained from SPR operations. A subtree that gets pruned and

regrafted in an SPR operation corresponds to the descendant subtree of a recombination

vertex in an ARG. Hence, the essential point is that the SPR-distance can correctly quantify

the number of recombination events. For example, recall that the trees shown in Figure 2

are embedded in the ARG shown in Figure 1, and that the sequence P = Ti, Ti, Tj , Tk of

trees can be associated to the ARG. The tree Ti can be transformed into Tj through a single

SPR operation involving the leaf labelled s2. Likewise, the tree Tj can be transformed into

Tk through a single SPR operation involving the leaf labelled s3. Thus, the minimum total

number of required SPR operations is indeed equal to the number of recombination events

in the minimal ARG.

3.4 Why ordered trees?

In an ARG, coalescent events and recombination events occur in certain order and ignoring

the time ordering of these events can lead to contradictions. For example, biologically a

recombinant cannot be older than its parents. Let us return to the trees shown in Figure 6.

Suppose that T1, T2, T3 describe the evolutionary history of the first, the second and the

third character sites, respectively. If these trees are viewed as plain rooted trees, then

dSPR(T1, T2) = 1 and dSPR(T2, T3) = 1, and therefore we would obtain 2 as the number of

recombination events needed for combining the trees into an ARG. But, there exists no

proper ARG with only 2 recombination vertices such that it is consistent with the sequence

T1, T2, T3. The reader is strongly encouraged to think about why this is so. As a specific

case, consider the graph shown on the left hand side of Figure 7. This graph does have

T1, T2, T3 as its associated sequence of plain rooted trees, but the direction of time flow in

the edge labelled e is reversed, i.e. the time flow in that edge is from bottom to top instead

of from top to bottom. Hence, this graph is not a proper ARG.

On the other hand, if the three trees are viewed as ordered trees, with the particular or-

dering of internal vertices as shown in Figure 6, then we would conclude that dSPR(T1, T2) = 1

and that dSPR(T2, T3) = 2, thus obtaining 3 as the number of recombination events needed.

Shown on the right hand side of Figure 7 is a self-consistent ARG with 3 recombination

vertices; it correctly describes the change of T1 to T2, which in turn changes to T3.

We emphasise that, in general, using plain rooted trees in our method can lead to an

underestimation of the number of recombination events. If ordered trees are used, however,

we always have dSPR(T, T ′) = drec(T, T ′).

8

��
������ �� 	
������
��� � ���������������� 	
������
��� �������

�� �� ���� �� �� ������

�� ���

����������

�� ���

�� ���

�

Figure 7: An important difference between using plain rooted trees and using ordered trees.

Contradictions can arise if plain rooted trees are used in the algorithm, whereas using

ordered trees always leads to consistent ARGs.

3.5 The original algorithm

The algorithm for finding minimal paths in the general case was first proposed by one of us

in (Hein, 1990). In the case of the infinite-sites model of mutation, the original algorithm

can be rephrased as follows. For each character column ci of S, where i ∈ {1, 2, . . . , `}, let

W o
i denote the set of all ordered trees in T o

n that are compatible with ci. The main idea of

the algorithm is to evaluate a sequence of functions f1, f2, . . . , f`, where fi is a non-negative-

integer-valued function defined on W o
i . The first function f1 is defined to be identically zero,

i.e. f1(T) = 0 for all T ∈ W o
1 , and every subsequent function fi+1 is recursively defined in

terms of fi and the recombination distance drec(·, ·). More exactly, the algorithm can be

stated as constructing a weighted graph G as follows.

1. Introduce ` clusters, with the ith cluster containing |W o
i | vertices labelled by the trees

in W o
i .

(a) For all T ∈ W o
1 , let f1(T) = 0.

(b) For all 1 ≤ i < `, recursively determine

fi+1(Ta) = min
Tb∈W o

i

[fi(Tb) + drec(Tb, Ta)] (4)

for every tree Ta ∈ W o
i+1.

(c) In the weighted graph G, vertices Ta ∈ W o
i+1 and Tb ∈ W o

i are joined by an edge

if fi+1(Ta) − fi(Tb) = drec(Ta, Tb), and the weight of the edge is drec(Ta, Tb).

2. The number defined as

Ro(S) = min
Ta∈W o

`

f`(Ta) (5)

gives the minimum number Rmin(S) of recombination events. A connected path from

any tree Ta ∈ W o
1 to a tree Tb ∈ W o

` with f`(Tb) = Ro(S) is called a minimal path in

G.

9

Note that a heuristic implementation of the algorithm was made about a decade ago

(Hein, 1993). An exact implementation of the idea, however, could not be carried out so far

due to several difficulties, the major one being the complexity involved in computing the

recombination distance drec(T, T ′) between two arbitrary trees T and T ′. In (Hein, 1993),

unrooted trees were used in the implementation of the algorithm and it was assumed that

at most one recombination event occurs between any two adjacent character columns. In

our present work, we have implemented the above algorithm for ordered trees, without any

heuristic assumptions. Note that dSPR(T, T ′) = drec(T, T ′) if T, T ′ are ordered trees.

We stress that the algorithm described here always gives Ro(S) = Rmin(S). On the

contrary, as discussed in Subsection 3.4, if plain rooted trees are used in the algorithm—

that is, if W r
i , the set of plain rooted trees in T r

n compatible with ci, are used instead of

W o
i —to obtain

Rr(S) := min
Ta∈W r

`

f`(Ta), (6)

then this number Rr(S) may or may not be equal to the minimum Rmin(S). In general,

Rr(S) ≤ Ro(S) = Rmin(S). As we discuss later, however, for less than or equal to 9

sequences, our investigation shows that Rr(S) = Rmin(S) for most cases of S. A possible

explanation of this phenomenon can be found in Subsection 4.2.

As discussed in (Song and Hein, 2003), it is important to note that the number of

ordered trees grows much faster than the number of plain rooted trees. For instance, there

are over 57 million 9-leaved ordered trees, whereas there are about 2 million plain rooted

trees with 9 leaves. So, for n ≥ 9, it would be a good strategy to use plain rooted trees

first to compute Rr(S) and try to construct possible evolutionary histories. If a consistent

history can be constructed using only Rr(S) recombination events, then we can conclude

that Rr(S) = Rmin(S).

3.6 A modified algorithm

Since computing the distance drec(T, T ′) for arbitrary T, T ′ ∈ T o
n is rather difficult, step

1(b) in the above algorithm is computationally intensive. For example, working with trees

with many restrictions and computing the distance between two arbitrary such trees can

be very complicated. As described in (Song and Hein, 2003), however, our newly proposed

algorithm, together with our way of viewing recombination events as properly defined SPR

operations on trees, can allow us to overcome some computational difficulties which have

hitherto prevented an exact implementation of the dynamic programming idea.

In (Song and Hein, 2003), we showed that, for all Ta, Tb ∈ W o
i , where i ≥ 2, the function

fi defined in (4) satisfies |fi(Ta) − fi(Tb)| ≤ drec(Ta, Tb). It follows from this result that (4)

can be replaced by

fi+1(Ta) =

{

fi(Ta), if Ta ∈ W o
i ,

minTb∈W o
i

[fi(Tb) + drec(Tb, Ta)] , otherwise.

The same result holds if plain rooted trees (i.e. W r
i) are used in the algorithm. In addition,

we proposed an alternative way of carrying out the dynamic programming algorithm. The

new method can be applied to either plain rooted trees or ordered trees, depending on

whether one wishes to compute Rr(S) or Ro(S), respectively. As mentioned before, the

10

relations Rr(S) ≤ Ro(S) = Rmin(S) hold true for all S. In what follows, we describe our

modified algorithm using the notations for ordered trees.

Although determining the SPR-distance between two arbitrary rooted trees can be quite

difficult, it is not very difficult to determine whether two trees are one SPR operation away.

Hence, our approach is to determine first which trees are distance one away from each other

and then use that information to compute dSPR(T, T ′) for arbitrary T and T ′.

By the adjacency-set of a tree T ∈ T o
n we mean the set

U(T) := {T ′ ∈ T
o

n | dSPR(T, T ′) = 1} .

For X ⊂ T o
n , let N0(X) = X and, for r ≥ 1, define the r-neighbourhood of X as

Nr(X) :=
{

T ∈ T
o

n dSPR(T, T ′) ≤ r for some T ′ ∈ X
}

.

In the implementation of our algorithm, we pre-compute the adjacency-set U(T) for all

T ∈ T o
n and store them in a file which can be accessed by our program, and therefore

computing Nr(X) can easily be done. We define the diameter dn of T o
n as the maximum

value of dSPR(T, T ′) over all trees T, T ′ ∈ T o
n . As shown in (Song, 2003), dn ≤ n− 2. In the

following discussion, define N (T,m, i) := N1({T}) ∩ Nm(W o
i). Note that N1({T}) is none

other than {T} ∪ U(T).

Let f1,0(T) = 0 for all T ∈ T o
n . For all 1 ≤ i < `, recursively compute the following

quantities:

For all 1 ≤ r < dn and Ta ∈ Nr(W
o
i), find

fi,r(Ta) =

{

fi,r−1(Ta), if Ta ∈ W o
i ,

min
Tb∈N (Ta,r−1,i)

[fi,r−1(Tb) + 1 − δa,b] , otherwise, (7)

and, for all Ta ∈ W o
i+1, find

fi+1,0(Ta) =

{

fi,dn−1(Ta), if Ta ∈ W o
i ,

min
Tb∈N (Ta,dn−1,i)

[fi,dn−1(Tb) + 1 − δa,b] , otherwise. (8)

Here, δa,b denotes the Kronecker delta, which is 1 if a = b or 0 if a 6= b. The minimum

number of recombination events is given by Ro(S) := minT∈W o
`

f`,0(T), which is equal to

the value minT∈W o
`

f`(T) defined in (5).

There are several advantages to the algorithm just described over the original algorithm.

First of all, note that for each tree Ta in (7), we just need to compare previous function

values at at most |N1(Ta)| = |U(Ta)| + 1 trees. As discussed in (Song and Hein, 2003), the

maximum size of |U(T)| does not grow nearly as fast as the number of trees compatible

with a character column. Secondly, we do not need to compute the SPR-distance explicitly;

the algorithm effectively computes the SPR-distance for us and correctly updates fi+1,0(T),

for all 1 ≤ i < `.

Note that a weighted graph G, analogous to that described in the original algorithm, can

be constructed with straightforward extra bookkeeping. A minimal path in G is a connected

path from any tree Ta ∈ W o
1 to a tree Tb ∈ W o

` with f`,0(Tb) = Ro(S).

11

3.7 Data reduction

In performing our algorithm, some character columns do not influence the determination

of Ro(S) and therefore can be ignored. Also, identical sequences can be merged into one,

thus significantly reducing the complexity of the algorithm. It is straightforward to show

that, before one carries out any analysis on S, reducing the data as follows does not change

the value of Ro(S); i.e., if S′ denotes the reduced data, then Ro(S) = Ro(S
′). Define

c̄i := (c̄1
i , c̄

2
i , . . . , c̄

n
i), where c̄α

i = 0 if cα
i = 1 and c̄α

i = 1 if cα
i = 0.

1. Collapse identical sequences into one.

2. Remove all non-informative columns from S. Let c′1, c
′
2, . . . , c

′
`′ denote the character

columns in the resulting data.

3. Collapse all consecutive columns c′i, c
′
i+1, . . . , c

′
i+k where c′i+j = c′i or c′i+j = c̄′i, for

all j = 1, 2, . . . , k, into a single column c′i.

4. Sequentially repeat steps 1 ∼ 3 until none of them is possible.

Note that the number of sequences in the reduced data S′ can be much less than the

number of sequences in S. Our current implementation of the algorithm can analyse up to

8 (resp. 9) sequences in the reduced data if ordered (resp. plain rooted) trees are used in

the algorithm.

3.8 The number of ARGs corresponding to a minimal path

In general, more than one ARG corresponds to a minimal path. There are two reasons

for this many-to-one correspondence. First of all, there can be more than one inequivalent

set of SPR operations that can transform one tree to another. Secondly, the ordering of

internal vertices in an ARG is not completely fixed by the ordering of internal vertices in

ordered trees.

Let us demonstrate these points through an explicit example. Consider the path P =

T, T ′ where T and T ′ are shown in Figure 8. The SPR-distance between T and T ′ is 1, i.e.

the ordered tree T can be transformed into T ′ by a single SPR operation. Note, however,

that there is more than one inequivalent SPR operation that can transform T into T ′. More

exactly, the subtree used can be a 1-leaved subtree—containing either s1 or s2—or it can

be the 2-leaved subtree containing s3 and s4.

If the 1-leaved subtree containing s1 is pruned and regrafted, then, as shown in Fig-

ure 9(a), there are 2 inequivalent ARGs corresponding to this choice. This results from the

� ��

�� ���� ���� �� ����

Figure 8: Ordered trees appearing in the path P = T, T ′.

12

���

���

�� �
�� �� �� �� �� ���	 �	 �	�� �� ��

���� �� ���� ���	 �����	 �����	 �����	

Figure 9: Inequivalent ARGs that can be constructed from combining the trees shown in

Figure 8.

fact that there are 2 possibilities in ordering the recombination vertex with respect to the

root of the subtree containing s3 and s4. If the 1-leaved subtree containing s2 is pruned and

regrafted, then we can construct 4 inequivalent ARGs, which are illustrated in Figure 9(c).

In addition to the 2 possible choices of ordering described in the previous case, there is an

additional freedom in choosing the ordering of some coalescent vertices. On the contrary,

if the 2-leaved subtree containing s3 and s4 undergoes an SPR operation, then there exists

a unique corresponding ARG. This unique ARG is shown in Figure 9(b).

In the simple example just described, only a single recombination vertex appears. If more

than one recombination vertices are present, then relative ordering of the recombination

vertices will, in general, lead to additional inequivalent ARGs.

3.9 Haplotype blocks

Perhaps the most interesting recent finding in haplotype analysis is the discovery of the

possible existence of haplotype block structures in the human genome (Daly et al., 2001;

Johnson et al., 2001; Gabriel et al., 2002), where a block is roughly characterised by the

existence of high linkage disequilibrium and limited haplotype diversity. In this subsection,

we propose a new way of defining haplotype blocks. Unlike previous proposals, our proposal

explicitly takes possible evolutionary histories into account.

For each minimal path our algorithm finds, in addition to knowing which trees are used,

we know exactly where in the sequence each tree is supported. Hence, we can associate a

candidate haplotype block structure to each minimal path. That is, we define a block as

the maximal set of consecutive positions in the sequence where the same tree is supported.

As there could be many minimal paths, it is possible that there are many inequivalent

candidate haplotype block structures predicted by our algorithm. By studying all inequiv-

alent candidate block structures, however, we may be able to learn something useful. For

example, many or all structures may share one or more common blocks, thus indicating the

13

robustness of those particular blocks.

Although in general we cannot find a unique haplotype block structure, we can still ask

the following question, to which there exists a unique answer for a given data set S: If a

block is obtained as described above, what is the minimum number of haplotype blocks

that can be defined by a minimal path? We address this question in Subsection 4.4, where

we consider a real biological application of our method.

4 Results

In this section, we apply our method to analyse some data, both simulated and real. All

simulated data were generated using Hudson’s program ms (Hudson, 2002). The program

ms assumes the Wright-Fisher neutral model of evolution and the infinite-sites model of

mutation. Input parameters relevant for our purpose are the scaled mutation rate θ = 4N0µ

and the scaled recombination rate ρ = 4N0r. Here, N0 denotes the effective population size

and µ (resp. r) denotes the mutation (resp. recombination) rate per generation for the entire

locus being simulated. In addition, the program uses a finite-sites uniform recombination

model (Hudson, 1983), and therefore the number of sites in-between which recombination

can occur must be specified. This number is denoted nsites. In our simulation, we used a

constant population size with no migration.

4.1 Comparisons of lower bounds

Myers and Griffiths (2003) proposed an integer linear programming approach for construct-

ing new lower bounds on the number of recombination events. Their algorithm uses local

bounds for sub-intervals to construct a global bound for the entire data. Conforming to their

notation, we let Rh(S) denote their “haplotype bound,” which is obtained from applying

the aforementioned integer linear programming algorithm on a set of inequalities relating

the number of recombination events, the number of distinct haplotypes and the number of

segregating sites. Their alternative lower bound based on simulation of sample history is

denoted here by Rs(S). In general, Rs(S) is a sharper lower bound than Rh(S); that is,

Rh(S) ≤ Rs(S) ≤ Rmin(S).

Myers and Griffiths showed that their lower bounds significantly improve on Hudson

and Kaplan’s earlier bound (Hudson and Kaplan, 1985), which is based on a coarse analysis

of incompatibility patterns of character sites. In what follows, we investigate how our

lower bound Rr(S) (defined in (6)) performs in comparison to the bounds proposed by

Myers and Griffiths. As always, n denotes the number of sequences in the data S. In our

simulations, we fixed n = 8 and θ = 15. Note that, because we are using the neutral model

of evolution with the infinite-sites model of mutation, fixing n and θ fixes the expected

number of segregating sites generated (Hudson, 1983). We used 9 different values of ρ and

fixed nsites=3000 for all simulations. For each value of ρ, 1000 runs of simulation were

performed. Our investigation here is not meant to be extensive. Rather, our goal is to

capture the rough relative behaviour of the lower bounds in comparison.

In computing Rs(S) and Rh(S), we set both the maximum subset size and the maximum

width value to 300, which is larger than the length of any simulated data; this high number

was chosen to ensure that Rs(S) and Rh(S) are as large as possible. Also, we assumed that

14

Table 1: A summary of relative performance of the lower bounds on simulated data.

Rr vs Rh Rr vs Rs Rs vs Rh

ρa > = < > = < > = <

5 34 966 0 12 988 0 22 972 0

10 108 892 0 52 948 0 59 941 0

15 163 837 0 94 906 0 72 928 0

20 202 798 0 122 878 0 89 911 0

25 271 729 0 186 813 1 99 901 0

35 372 628 0 282 718 0 123 877 0

45 433 567 0 341 659 0 121 879 0

50 456 551 0 368 638 1 126 872 0

60 511 489 0 413 586 1 139 861 0

70 552 448 0 477 523 0 125 875 0

75 601 399 0 530 470 0 130 870 0

Note — Under R vs R′, the column labelled by “>” reports the number of cases (out of 1000)

where the relation R > R′ holds. Columns labelled by “=” and “<” are similarly defined. We fixed

n = 8, θ = 15 and nsites=3000 in all simulations. For ease of notation, we omit the dependence on

S and simply write Rr, etc. In each column labelled “=,” the number of cases that R = R′ = 0 is

351, 180, 88, 57, 30, 13, 4, 6, 1, 2, 0 for ρ = 5, 10, 15, 20, 25, 35, 45, 50, 60, 70, 75, respectively.
a Scaled recombination rate.

�

��

��

��

��

��

��

��

� �� �� �� �� �� �� �� ��

	

��
� � � �� �

�
�

�
�

�

�
� �

�
�

�
�

��
� � � �� �

�
�

� �
�

�
� �

�
�

�
�

��
�� � �� �

�
� � � � � � � � � �

�

Figure 10: Relative sharpness of the lower bounds for n = 8 and θ = 15. These percentages

were computed using the numbers from Table 1.

the ancestral allele type is unknown. See (Myers and Griffiths, 2003) for details. For ease

of notation, we sometimes omit the dependence on S and simply write Rr, etc. Results of

our study are summarised in Table 1 and are illustrated in Figure 10. We use N(R > R′) to

denote the number of cases (out of 1000) where the relation R > R′ holds. The notations

N(R = R′) and N(R < R′) are similarly defined.

There are several things to be noted from this study. First of all, Table 1 shows that

N(Rr < Rh) = 0 for every value of ρ we used. In other words, our lower bound Rr(S)

is sharper than or equal to the haplotype bound Rh(S), i.e. Rr(S) ≥ Rh(S), for all data

15

Table 2: Mean numbers of detected recombination events in the simulated data for n = 8

and θ = 15.

ρa E(Rr) E(Rs) E(Rh)

5 1.09 1.08 1.06

10 1.95 1.89 1.84

15 2.62 2.52 2.45

20 3.18 3.06 2.97

25 3.82 3.63 3.52

35 4.89 4.58 4.46

45 5.36 4.98 4.85

50 5.74 5.33 5.21

60 6.47 5.98 5.84

70 7.08 6.48 6.34

75 7.21 6.57 6.43

Note — E(R) denotes the mean of the lower bound R. All numbers are based on our analysis

of the simulated data used in Table 1.
a Scaled recombination rate.

S we generated. Furthermore, for each case of ρ = 25, 50 and 60, the bound Rs(S) from

simulation of sample history is sharper than our lower bound Rr(S) in only 1 out 1000

simulations; for all other values of ρ, we have Rr(S) ≥ Rs(S) for all S.

Secondly, Figure 10 shows that, as ρ increases, the advantage of using Rs over using Rh

ceases to depend on ρ. More precisely, as ρ increases, the height (%) of the points marked

by “+” signs tends to increase initially but fluctuates between 12% and 14% for ρ > 35.

This seems to indicate that the change in the frequency that Rs is sharper than Rh has

little dependence on the recombination rate ρ for large ρ. In contrast, as the points marked

by “∗” and “×” in Figure 10 clearly show, the frequency that Rr is sharper than Rs or Rh

significantly increases as ρ increases.

Lastly, we can compare the mean number of recombination events detected. Shown in

Table 2 is a summary of this mean for the simulated data. For every value of ρ we used, it is

clear that E(Rh) < E(Rs) < E(Rr), where E(R) denotes the mean value of the lower bound

R. Moreover, as illustrated in Figure 11, the differences [E(Rr)−E(Rs)] and [E(Rr)−E(Rh)]

tend to increase as ρ increases, whereas the difference [E(Rs)−E(Rh)] does not vary as much

with respect to ρ. Hudson and Kaplan (1985) showed that the expected number of actual

recombination events is given by

E(Ra) = ρ

n−1
∑

j=1

1

j
, (9)

whereas the expected number of recombination events causing topology changes in local

trees, seen as unrooted trees, is given by

E(Rt) = 16ρ

n
∑

k=4







1

(k + 1)k2(k − 1)2

k−2
∑

i=2





1

i

i
∑

j=2

j2(j + 1)











. (10)

16

�

�

�

�

�

�

�

�

�

� �� �� �� �� �� �� �� ��

	
� �

� �� � �
� ��� �
� �� � �

�

�
�

�
�

�
�

�
�

� �

�
� �� � ��

�
�

�
�

�
�

�
�

� �

�
� ��� ��

�
�

�
�

�
�

�
�

� �

�

Figure 11: Comparisons of the mean number of detected recombination events for n = 8

and θ = 15. The dotted line is the mean number of actual recombination events, whereas

the solid line is the mean number of recombination events that change local tree topology.

For n = 8, (9) and (10) give E(Ra) ≈ 2.59ρ and E(Rt) ≈ 0.65ρ, respectively; these functions

are also plotted in Figure 11. In agreement with Hudson and Kaplan’s finding regarding

their lower bound, Figure 11 shows that in general both E(Ra) and E(Rt) are much larger

than the mean of any of the lower bounds we consider here. Note that E(Ra) and E(Rt)

do not depend on θ, whereas the mean number of detected recombination events should

increase as θ increases. We expect the mean number of detected recombination events to

get closer to E(Rt) as θ increases.

In order to capture how what has been discussed in this subsection depends on θ, we

repeated the above study for θ = 40 and ρ = 5, 10, 20, 35, 45, 60, 70. For all values of ρ, we

obtained Rr(S) ≥ Rh(S). For ρ = 10, there was exactly one case where Rr(S) < Rs(S); for

all other values of ρ, we obtained Rr(S) ≥ Rs(S). Relative sharpness of the lower bounds

for θ = 40 are shown in Figure 12, while the mean number of detected recombination events

are shown in Figure 13. In comparison to the plots shown in Figures 10 and 11, the points

shown in Figures 12 and 13 are shifted upward, but general characteristics are the same as

before. Note that the scale of the vertical axes has changed.

4.2 Ro(S) versus Rr(S)

In the previous subsection, we compared Rr(S) with the lower bounds proposed by Myers

and Griffiths. As discussed in Subsection 3.5, Ro(S) is always equal to the minimum

number of recombination event, whereas Rr(S) is in general only a lower bound, i.e. Rr(S) ≤

Ro(S) = Rmin(S) for all S. In this subsection, we wish to examine how often Rr(S) actually

is equal to the minimum number of recombination events.

To obtain the minimum number of recombination events, we used ordered trees in our

program to analyse the simulated data from the previous subsection. We only considered

the θ = 15 case to save computation time. For each value of ρ = 5, 10, 15, 20 and 25, less

17

�
��
��
��
��
��
��
��
��
	�

� �� �� �� �� �� �� �� ��

�

�
 �� � � �� �

�
�

�

�
�

�
��

�
 �� � � �� �

�
�

�

�
�

�
�

�
�
 ��� � �� �

�
�

�
� � � �

�

Figure 12: Relative sharpness of the lower bounds for n = 8 and θ = 40. This figure should

be compared with Figure 10.

�

�

�

�

�

��

��

� �� �� �� �� �� �� � ��

! "# $

%

& '() *
& '(+ *
& '(, *

-
-

-

-

-

-
-

-
& '(. */

/

/

/

/

/
/

/& '(0 *1
1

1

1
1

1
1

1

Figure 13: Mean numbers of detected recombination events for n = 8 and θ = 40. This

figure should be compared to Figure 11.

than or equal to 3 (out of 1000) simulated data actually had Rr(S) < Ro(S)—in terms of

the notation introduced in the previous subsection, N(Rr < Ro) ≤ 3. For other values of

ρ shown in Table 1, N(Rr < Ro) was between 6 and 10. Hence, this study indicates that,

for the number of sequences and the mutation rate we used, our lower bound Rr(S) is very

likely to give the minimum Rmin(S).

A reason why in general so few cases have Rr(S) < Ro(S) can be explained as follows.

Let Pr(S) (resp. Po(S)) denote the complete set of minimal paths in the space of plain

rooted (resp. ordered) trees corresponding to a particular data set S. For each path

P r = T r
i1

, T r
i2

, . . . , T r
i`

∈ Pr(S), we can associate a path ϕ(P r) = T o
i1

, T o
i2

, . . . , T o
i`

in the

space of ordered trees such that the following two conditions hold:

(i) For all 1 ≤ j ≤ `, T o
ij

is equivalent to T r
ij

as plain rooted trees.

18

(ii) The ordering of the internal vertices T o
ij

are chosen so that the path length L(ϕ(P r)) :=
∑`−1

k=1 dSPR(T o
ik

, T o
ik+1

) is as small as it can be.

Note that L(ϕ(P r)) may not be equal to L(P r). If Rr(S) = Ro(S), however, then there

must exist a path P r ∈ Pr(S) such that L(P r) = L(ϕ(P r)). As discussed in Subsection

3.4, the definition of an SPR operation for ordered trees is more restrictive than that for

plain rooted trees. When there are only a small number of leaves in a tree, however, SPR

operations usually involve subtrees with only few leaves. Furthermore, as a 1-leaved subtree

contains no internal vertices, there is no restriction on where a pruned 1-leaved subtree can

be regrafted back onto the remaining part of the tree. When the total number of leaves n

is small, the property just described often allows one to find a minimal path P r ∈ Pr(S)

such that L(P r) = L(ϕ(P r)) and ϕ(P r) ∈ Po(S). In general, as n increases, the percentage

%N(Rr < Ro) is expected to increase as well.

4.3 Recovery of local trees

As mentioned in Section 2, the objective of our work is twofold: to find the minimum

number Rmin(S) of recombination events and to construct possible evolutionary histories

with exactly Rmin(S) recombination events (i.e. minimal ARGs). The algorithm described

in Subsection 3.5 actually solves these two problems simultaneously. Namely, the quantity

shown in (5) gives Rmin(S) and minimal ARGs can be obtained from minimal paths; more

exactly, trees which arise in a minimal path can be put together to construct a set of minimal

ARGs. As discussed in Subsection 4.1, however, one should note that Rmin(S) is, in fact,

likely to be much less than the number of recombination events which occurred in the actual

evolutionary history of the sequences in S. Hence, the ARG describing the actual evolution

of sample sequences is most likely to be very different from the minimal ARGs one finds

using our method. Nevertheless, it is still possible that the trees embedded in a minimal

ARG, i.e. the trees in a minimal path, can capture reasonably well how sample sequences

are actually related at different character sites. In this subsection, we examine how well our

method can recover such local evolutionary relationships.

The program ms can include in its output a set of weighted ordered trees which together

describe the simulated evolution of the entire locus. We therefore have a complete infor-

mation about which tree actually describes the evolution of each polymorphic site in the

simulated data. The trees we use in our method are unweighted, i.e. their branch lengths

are not specified. We therefore ignore branch lengths when we compare local evolutionary

relationships. Furthermore, we shall ignore the position of the root and only compare the

sets of bipartitions defined by tree topologies.

The leaves of an n-leaved tree are bijectively labelled by a finite set L of n elements.

Cutting an edge in a tree T decomposes T into two connected components, one containing

the leaves labelled by X (L and the other the leaves labelled by L \ X. Hence, to each

edge in a tree, one can associate a bipartition of the label set L into two proper subsets.

Let B(T) denote the set of all inequivalent bipartitions defined by the edges in T . For an

n-leaved binary tree, there are 2n − 3 inequivalent bipartitions. We define the bipartition

match score between two n-leaved binary trees T and T ′ as

β(T, T ′) =
|B(T) ∩ B(T ′)| − n

n − 3
. (11)

19

Here, |B(T)∩ B(T ′)| gives the number of identical bipartitions in B(T) and B(T ′), whereas

“−n” subtracts from it the n always-occurring bipartitions, each consisting of a single leaf

{l} and its complement L \ {l}. Note that (11) is normalised so that β(T, T ′) = 1 if and

only if B(T) = B(T ′) and β(T, T ′) < 1 otherwise.

For a general data set S, there can be many minimal paths—in some cases as many as

a few millions—and therefore it may not be practical to store all such paths in memory,

although enumerating them can be done without much difficulty. Hence, we have written

our program RecMinPath so that it randomly chooses only one minimal path for each T ∈ W`

that satisfies f`(T) = minT ′∈W`
f`(T

′).

Suppose we perform r number of simulations to generate r independent sets of samples

S1, S2, . . . , Sr. In what follows, for each a ∈ {1, 2, . . . , r}, `a denotes the number of poly-

morphic sites in the sample Sa and the actual local trees describing the evolution of the

polymorphic sites are denoted by t msa,1, t
ms

a,2, . . . , t
ms

a,`a
. We use ka to denote the number of

minimal paths reported in the output of RecMinPath. For every i ∈ {1, 2, . . . , ka}, a mini-

mal path we find is of the form Pa,i = Ta,i,1, Ta,i,2, . . . , Ta,i,`a
. Now, we define the average

local tree recovery percentage for our method as

β
RMP

:=
1

r

r
∑

a=1







1

ka

ka
∑

i=1





1

`a

`a
∑

j=1

β(Ta,i,j , t
ms

a,j)











× 100%, (12)

where β(Ta,i,j , t
ms

a,j) is defined in (11). For the results reported in this subsection, plain

rooted trees were used in RecMinPath.

If one does not take recombination events into account and tries to describe the evolution

of all polymorphic sites by a single tree, then the corresponding average local tree recovery

percentage is defined as

β
ST

:=
1

r

r
∑

a=1





1

`a

`a
∑

j=1

β(τa, t
ms

a,j)



 × 100%,

where τa is the single optimal tree used to describe the evolution of the sequences in Sa.

In what follows, we compare our method to the single tree method based on parsimony.

The program RecPars, originally written by Jotun Hein (Hein, 1993) and later rewritten

by Kim Fisker, was used to obtain the most parsimonious tree for each data set.

For n = 7, we used θ = 15, 25, 50, 75 and ρ = 10, 20, 50 in our simulations. We fixed

nsites=3000 for the finite-sites recombination model. For each pair of θ and ρ values, we

generated 1000 sets of simulated data, each with Rmin(S) > 0. Just to get an idea of how

β
RMP

and β
ST

may depend on the number of sequences, we performed a similar set of tests

for n = 8. Numerical values of β
RMP

and β
ST

for these simulations are shown in Table 3,

and, for ease of comparison, these results are illustrated in Figure 14. We clearly see that

β
RMP

> β
ST

for every pair of θ and ρ. Moreover, the gain in β
RMP

as θ increases is clearly

larger than that in β
ST

. As expected, for fixed θ and ρ, both β
RMP

and β
ST

tend to decrease

as n increases from 7 to 8.

Suppose we have r simulated data sets each with exactly ` polymorphic sites. Then,

β
RMP

defined in (12) can be written as β
RMP

= 1
`

∑`
j=1 β

RMP,j, where

β
RMP,j :=

1

r

r
∑

a=1

[

1

ka

ka
∑

i=1

β(Ta,i,j , t
ms

a,j)

]

× 100%.

20

Table 3: Average local tree recovery percentages.

ρ = 10 ρ = 20 ρ = 50

n θ β
RMP

β
ST

β
RMP

β
ST

β
RMP

β
ST

7 15 74 60 68 50 58 41

25 78 61 72 52 63 43

50 84 64 79 54 70 43

75 87 65 81 56 74 44

8 15 73 57 65 47 55 38

25 77 61 69 48 59 38

50 82 62 75 52 65 39

75 87 65 81 54 68 39

Note — This is a comparison between our method and the method which finds the single most

parsimonious tree. The notations βRMP and βST are defined in the text.

��

��

��

��

��

��

��

�� 	� �� �� �� �� �� ��

�

�
� ������ �� � ��

� � ��

�
�

� �

�
� � 	�

�
�

� �

�
� � ��

�
�

�
�

�

��

��

��

��

��

��

��

�� 	� �� �� �� �� �� ��

�

��� !� "��� ������ �� � ��

� � ��

� � � �

�
� � 	�

� � � �

�
� � ��

� � � �

�

��

��

��

��

��

��

��

�� 	� �� �� �� �� �� ��

�

�
� ������ �� � ��

� � ��

�
�

�
�

�
� � 	�

�
�

�
�

�
� � ��

�
�

� �

�

��

��

��

��

��

��

��

�� 	� �� �� �� �� �� ��

�

��� !� "��� ������ �� � ��

� � ��

�
� � �

�
� � 	�

� �
� �

�
� � ��

� � � �

�

Figure 14: A comparison of average local tree recovery percentages.

Whereas β
RMP

reflects an average local tree recovery percentage first averaged over the

entire locus, β
RMP,j gives an average local tree recovery percentage per site. To investigate

how β
RMP,j behaves, we first need to decide on the fixed length `, for which we use the

21

��

��

��

��

��

��

� �� �� �� �� ��� ��� ��� ��� ���

� �	
 ��

�������� �������� �� �

�
���
�������
�������������

��������������
���

����������������������
���

Figure 15: Average local tree recovery percentage per site. This result is based on 2000

simulations, each with 184 segregating sites. The parameters we used are n = 7, ρ = 10,

θ = 75 and nsites=3000.

formula E(s) = θ
∑n−1

j=1 1/j for the expected number of segregating sites (Hudson, 1983).

For n = 7 and θ = 75, E(s) ≈ 184.

Using n = 7, θ = 75, ρ = 10 and nsites=3000, we ran the program ms until 2000

simulated data sets each with 184 polymorphic sites were generated. The result of our

study of β
RMP,j is shown in Figure 15. A notable feature of this figure is the arch-like

shape of the plot, indicating that the recovery percentage is higher around the middle than

near the ends of the sequence. We can offer two related plausible explanations of this

phenomenon.

First of all, note that recovering evolutionary relationships, or tree topology, is not pos-

sible without mutation events that generate polymorphism in the data. Furthermore, to be

able to recover all bipartitions associated to a tree, we need at least one informative poly-

morphic site for every internal edge. Now, near the left (resp. right) end of the sequence,

neighbouring informative polymorphic sites are concentrated only on the right (resp. left)

hand side. In contract, at a position towards the middle of the sequence, neighbouring infor-

mative polymorphic sites appear both to its left and right. Secondly, dynamic programming

itself can be partially responsible. In the dynamic programming algorithm described in Sub-

section 3.5, there is a forward propagation of information because the (i + 1)th column is

analysed by looking at the information from the ith column, and there is a backward prop-

agation of information because whether a tree in W o
i appears in a minimal path depends

on what happens in the (i + 1)th column. Hence, near the ends of the sequence, there is

not as much information from dynamic programming as in the middle of the sequence. An

interplay between the two factors mentioned above might explain the arch-like shape shown

in Figure 15.

4.4 Kreitman’s data

In this subsection, we apply our method to study a classic biological data set. This par-

ticular example was used at the WABI 2003 conference as well (Song and Hein, 2003). We

22

Wa-S = 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fl-1S = 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Af-S = 0 1 0 0 0 0 1 0 1

Fr-S = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0

Fl-2S = 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Ja-S = 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0

Fl-F = 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

Fr-F = 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

Wa-F = 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

Af-F = 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

Ja-F = 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

Figure 16: Kreitman’s data in binary form. Also shown is a minimal haplotype block

structure we found. There are 6 blocks, whose boundaries are indicated by vertical solid

lines.

consider Kreitman’s 1983 data which consist of 11 alleles of the alcohol dehydrogenase locus

of Drosophila melanogaster (Kreitman, 1983). The alleles were sampled from 5 geograph-

ically distinct populations; they were taken from Washington (Wa), Florida (Fl), Africa

(Af), France (Fr) and Japan (Ja). Kreitman’s work was the first to study genetic variation

in alleles obtained from nature. The aligned sequence length is 2800 base-pairs, of which,

ignoring insertions and deletions, 43 sites are polymorphic. We have transformed the poly-

morphism data into binary sequences as shown in Figure 16. Note that Fr-F, Wa-F and

Af-F are identical; there are 9 distinct sequences in the reduced data (c.f. Subsection 3.7).

Hence, we relabel the sequences as follows:

s1 := Wa-S s2 := Fl-1S s3 := Af-S

s4 := Fr-S s5 := Fl-2S s6 := Ja-S

s7 := Fl-F s8 := Fr-F = Wa-F = Af-F s9 := Ja-F

As discussed in Subsection 3.5, we performed our analysis on S = {s1, . . . , s9} first

using plain rooted trees, obtaining Rr(S) = 7. We then checked that it is indeed possible

to construct an ARG with exactly 7 recombination events. A minimal ARG constructed

from combining the trees arising in a minimal path is shown in Figure 17. Recombination

breakpoints are shown in the caption of the figure. As always, our convention is that when

a recombination event occurs, the part to the left (resp. right) of the breakpoint gets

descended from the left (resp. right) edge. Note that 2 recombination events occur between

character columns 3 and 4, as well as between character columns 35 and 36. Positions

3, 4, 15, 16, 17, 35, 36, 37 in S correspond to positions 63, 170, 847, 950, 1030, 1691, 1730, 1827,

respectively, in the actual data.

As mentioned in Subsection 3.9, we can ask what the minimum number of haplotype

blocks that can be defined by a minimal path is. For Kreitman’s data, the answer is 6. We

remind the reader that we define a block as consecutive positions in the sequence where the

same tree is supported. A haplotype block structure with 6 blocks is shown in Figure 16,

where block boundaries are indicated by vertical solid lines. For there to be only 6 blocks,

only the second boundary is allowed to vary; all other block boundaries shown in Figure 16

must be fixed. The second block boundary occurs between character columns 15 and 16.

23

�

�

�

�

�

�

�

���	 �
 �� ���
�� �� ��

Figure 17: A minimal ancestral recombination graph for Kreitman’s data. Recombination

vertices are denoted by ◦ and their corresponding breakpoints are as follows. a: (3, 4), b:

(3, 4), c: (15, 16), d: (16, 17), e: (35, 36), f : (35, 36), g: (36, 37).

This block boundary can shift to left up to 6 columns. This freedom is not surprising at all

since every character column between 10 and 15 is compatible with column 16.

In regard of detecting recombination events in Kreitman’s data, we can compare our

method with other currently-existing methods. Hudson and Kaplan’s algorithm described

in (Hudson and Kaplan, 1985) gives 5 as a lower bound on the number of recombination

events. If one uses the method developed by Myers and Griffiths (2003) one would obtain

6 as both the haplotype bound Rh(S) and the bound Rs(S) based on simulation of sample

history. In (Song and Hein, 2004), the present authors analysed Kreitman’s data using a

method based on set theory and obtained 7 as a lower bound. Note that none of these

alternative methods can explicitly construct possible evolutionary histories consistent with

the data.

5 Possible extensions

In this section, we describe some possible extensions of our work. It should be easy to

modify our source code for RecMinPath to incorporate the first two extensions.

5.1 Missing data

In our method, working with missing data is straightforward. The reader should refer back

to Subsection 3.5 for cross reference. Suppose that a character column ci has some missing

characters, i.e. it is not known whether cα
i is 0 or 1 for some α ∈ {1, 2, . . . , n}—where

n denotes the total number of sequences present in the data set S. Let c̃i consist of the

characters in ci that are known. Then, in the algorithm, for each character column ci with

missing characters, use the following set of trees:

Mo
i = {T ∈ T

o
n T is compatible with c̃i} .

24

For character columns cj without any missing character, use W o
j as usual. We can then

carry out the rest of the algorithm without any further change. Note that the only practical

change in the algorithm is that the size |Mo
i | is larger than what |W o

i | would be if the missing

characters in ci were actually known.

5.2 Finite-sites model of mutation

As in the original algorithm for finding the most parsimonious history (Hein, 1990; Hein,

1993), the dynamic programming idea can be extended to consider back and recurrent mu-

tations. In the case of the finite-sites model of mutation, one has to include in the dynamic

programming algorithm mutation cost m(i, T), which could be defined in terms of the mini-

mum number of mutation events required for the tree T to represent the evolutionary history

of character site i. More generally, a weighted mutation cost w(i, T) can be used to reflect

its relative weight with respect to the recombination cost. Note that the infinite-sites model

is equivalent to setting w(i, T) = 0 if T is compatible with ci and w(i, T) = ∞ otherwise.

The algorithm for the finite-sites model of mutation can be stated as constructing a

weighted graph G as follows.

1. Introduce ` clusters, with the ith cluster containing |T o
n | vertices labelled by the trees

in T o
n . Denote the ith cluster by Ao

i . (The letter “A” stands for “all” trees.)

(a) For all T ∈ Ao
1, let f1(T) = w(1, T).

(b) For all 1 ≤ i < `, recursively determine

fi+1(Ta) = w(i + 1, Ta) + min
Tb∈Ao

i

[fi(Tb) + drec(Tb, Ta)]

for every tree Ta ∈ Ao
i+1.

(c) In the weighted graph G, vertices Ta ∈ Ao
i+1 and Tb ∈ Ao

i are joined by an edge

if fi+1(Ta) − fi(Tb) = drec(Ta, Tb) + w(i + 1, Ta), and the weight of the edge is

drec(Ta, Tb) + w(i + 1, Ta).

2. The number defined as

Co(S) = min
Ta∈Ao

`

f`(Ta)

gives the minimum cost. A minimal path in G is a connected path from any tree

Ta ∈ Ao
1 to a tree Tb ∈ Ao

` with f`(Tb) = Co(S).

As we have done for the infinite-sites model of mutation, we can use plain rooted trees

to obtain a lower bound. If plain rooted trees are used in the above algorithm, then the

minimum cost would be defined as Cr(S) = minTa∈Ar
`
f`(Ta). In general, Cr(S) ≤ Co(S). A

comparison between the number |W o
i | of trees compatible with a column ci and the total

number of |T o
n | of n-leaved trees can be found in (Song and Hein, 2003). Since most of |W o

i |

are only very small fractions of |T o
n |, using the finite-sites model of mutation is significantly

more computationally intensive than using the infinite-sites model.

Note that the idea of using adjacency-sets, as discussed in Subsection 3.6, can be applied

to the present case as well. Firstly, let f1,0(T) = w(1, T) for all T ∈ Ao
1. Then, instead of

(7) and (8), we just need to perform the following steps recursively for all 1 ≤ i < `:

25

For all 1 ≤ r < dn and Ta ∈ Ao
i , find

fi,r(Ta) = min
Tb∈N1({Ta})

[fi,r−1(Tb) + 1 − δa,b] ,

and, for all Ta ∈ Ao
i+1, find

fi+1,0(Ta) = w(i + 1, Ta) + min
Tb∈N1({Ta})

[fi,dn−1(Tb) + 1 − δa,b] .

5.3 Combining with Myers & Griffiths’s algorithm

One limitation of our method is that, as it stands, it becomes infeasible to analyse more than

9 sequences in the reduced data; when there are many trees, it takes an inordinate amount

of memory to store the adjacency-sets. As mentioned before, the algorithm proposed by

Myers and Griffiths (2003) uses local lower bounds for small regions to construct a global

bound for the entire data. Hence, for more than 9 sequences, we can try the following. If

we focus on small regions, there may not be so many distinct sequences in the reduced data,

and therefore we can use our algorithm to compute exact local bounds, which can then be

used in Myers and Griffiths’s integer linear programming algorithm to find a global bound.

Combining the two methods as just described should perform quite well.

6 Conclusion

As well as finding the minimum number of recombination events which must have occurred

in the evolutionary history of sampled sequences, our algorithm can be used to construct

minimal evolutionary histories that are consistent with the data. The approach we take is

to view recombination events as inducing SPR operations on local trees. If the right kind

of trees are used, the SPR-distance between two such trees correctly encodes the number

of recombination events. The method introduced in (Song and Hein, 2003) for computing

the SPR-distance between trees has allowed us to overcome some difficulties which have

hitherto prevented an exact implementation of the dynamic programming idea.

When there are not too many sequences in the reduced data so that our method can be

applied, we have shown that our lower bound Rr(S) is an improvement on the haplotype

bound Rh(S) and the bound Rs(S) from simulation of sample history (Myers and Griffiths,

2003). As discussed in Subsection 4.3, however, the minimum Rmin(S) is likely to be much

less than the number of recombination events which occurred in the actual evolutionary

history. Hence, merely counting the number of detectable recombination events does not

seem to be sufficient for inferring what actually happened in the evolutionary history. Nev-

ertheless, we have shown in this paper that local evolutionary relationships can be recovered

more accurately. In other words, the average local tree recovery percentage β
RMP

based on

our method is much larger than the percentage of E(Rmin) relative to E(Ra).

In (Wang et al., 2001), it was shown that, under the infinite-sites model of mutation,

the problem of constructing possible evolutionary histories with the minimum number of re-

combination events is NP-hard. Moreover, the authors of that paper considered a restricted

version of the problem, investigating which data are representable by an ARG where all

recombination cycles are node-disjoint. This restricted problem was recently completely

26

solved by Gusfield et al. (2004), who constructed a polynomial-time algorithm for obtain-

ing such a restricted ARG when it exists. Not surprisingly, no polynomial-time algorithm is

known for the general case. Insightful results from (Wang et al., 2001) and (Gusfield et al.,

2004) may prove useful for devising an algorithm for the general case that is more efficient

than the one presented in the present paper.

In recent years, several fairly strong evidences have emerged supporting that gene con-

version may play an important role in human evolutionary genetics (Ardlie et al., 2001;

Jeffreys and May, 2004). In light of these important findings, it would be interesting to

generalize our method to study gene conversion, possibly in conjunction with the study of

single cross-over recombination considered in this paper. We believe that much of what we

laid out in this paper can be carried over to that case.

Acknowledgments

We thank S. Myers for useful discussions and the Oxford Supercomputing Centre for allow-

ing us to use their CPU time. This research is supported by EPSRC under grant HAMJW

and by MRC under grant HAMKA. Y.S.S. is partially supported by a grant from the Danish

Natural Science Foundation (SNF-5503-13370).

References

Ardlie, K., Liu-Cordero, S.N., Eberle, M.A., Daly, M., Barrett, J., Winchester, E., Lan-

der, E.S., and Kruglyak, L. 2001. Lower-than-expected linkage disequilibrium between

tightly linked markers in human suggests a role for gene conversion. Am. J. Hum.

Genet. 69, 582–589.

Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., and Lander, E.S. 2001. High-

resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232.

Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins,

J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo, A.,

Cooper, R., Ward, R., Lander, E.S., Daly, M.J., and Altshuler, D. 2002. The structure

of haplotype blocks in the human genome. Science 296, 2225–2229.

Gusfield, D., Eddhu, S., and Langley, C. 2004. Optimal, efficient reconstruction of phyloge-

netic networks with constrained recombination. J. Bioinf. Comp. Biol. 2, 173–213.

Griffiths, R.C. and Marjoram, P. 1997. An ancestral recombination graph, 257–270. In Don-

nelly, P. and Tavaré, S., eds., Progress in Population Genetics and Human Evolution.

IMA Volumes in Mathematics and its Applications 87, Springer-Verlag, Berlin.

Jeffreys, A.J. and May, C.A. 2004. Intense and highly localized gene conversion activity in

human meiotic crossover hot spots. Nat. Genet. 36, 151–156.

Johnson, G.C., Esposito, L., Barratt, B.J., Smith, A.N., Heward, J., Di Genova, G., Ueda,

H., Cordell, H.J., Eaves, I.A., Dudbridge, F., Twells, R.C., Payne, F., Hughes, W.,

Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S.C.,

27

Clayton, D.G., and Todd, J.A. 2001. Haplotype tagging for the identification of common

disease genes. Nat. Genet. 29, 233–237.

Hein, J. 1990. Reconstructing evolution of sequences subject to recombination using parsi-

mony. Math. Biosci. 98, 185–200.

Hein, J. 1993. A heuristic method to reconstruct the history of sequences subject to recom-

bination. J. Mol. Evol. 36, 396–405.

Hudson, R.R. 1983. Properties of a neutral allele model with intragenic recombination.

Theor. Pop. Biol. 23, 183–201.

Hudson, R.R. 2002. Generating samples under a Wright-Fisher neutral model of genetic

variation. Bioinformatics 18, 337–338.

Hudson, R.R. and Kaplan, N.L. 1985. Statistical properties of the number of recombination

events in the history of a sample of DNA sequences. Genetics 11, 147–164.

Kreitman, M. 1983. Nucleotide polymorphism at the alcohol dehydrogenase locus of

Drosophila melanogaster. Nature 304, 412–417.

Myers, S.R. and Griffiths, R.C. 2003. Bounds on the minimum number of recombination

events in a sample history. Genetics 163, 375–394.

Song, Y.S. 2003. On the combinatorics of rooted binary phylogenetic trees. Annals of Com-

binatorics 7, 365–379.

Song, Y.S. and Hein, J. 2003. Parsimonious reconstruction of sequence evolution and hap-

lotype blocks: Finding the minimum number of recombination events, 287–302. In

Benson, G. and Page, R., eds., Algorithms in Bioinformatics. Lecture Notes in Bioin-

formatics, Springer-Verlag, Berlin.

Song, Y.S. and Hein, J. 2004. On the minimum number of recombination events in the

evolutionary history of DNA sequences. J. Math. Biol. 48, 160–186.

Swofford, D.L. and Olsen, G.J. 1990. Phylogeny reconstruction, 411–501. In Hillis, D.M.,

Moritz, C., and Mable, B.K., eds., Molecular Systematics, Sinauer Associates, Mas-

sachusetts.

Wang, L., Zhang, K., and Zhang, L. 2001. Perfect phylogenetic networks with recombina-

tion. J. Comp. Biol. 8, 69–78.

28

