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Abstract

Importance sampling, particularly sequential and adaptive importance sampling, have

emerged as competitive simulation techniques to Markov–chain Monte–Carlo techniques.

We compare importance sampling and the Metropolis algorithm as two ways of changing

the output of a Markov chain to get a different stationary distribution.

1 Introduction.

Let X be a finite set and π(x) be a probability on X . For f : X → R, we want to approximate

µ =
∑

x

f(x)π(x). (1)

Suppose we have available a reversible Markov chain K(x, y) on X with stationary distribution

σ(x) > 0 for all x in X . Two classical procedures are available.

Metropolis: Change the output of the K chain to have stationary distribution π by

constructing

M(x, y) =


 K(x, y)A(x, y) x �= y A(x, y) := min

(
π(y)K(y,x)
π(x)K(x,y) , 1

)
K(x, x) +

∑
z �=xK(x, z)(1 −A(x, z)) x = y

Generate Y1 from π and then Y2, . . . , YN from M(x, y). It follows that

µ̂M =
1
N

N∑
i=1

f(Yi) (2)

is an unbiased estimator of µ, the Metropolis estimate.

Importance sampling: Generate X1 from σ and then X2, . . . , XN from K(x, y). Then

µ̂I =
1
N

N∑
i=1

π(Xi)
σ(Xi)

f(Xi) (3)
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is an unbiased estimate of µ, the importance sampling estimate. Often one uses

µ̃I =
1∑N

i=1
π(Xi)
σ(Xi)

N∑
i=1

π(Xi)
σ(Xi)

f(Xi)

instead of µ̂I . The advantage for choosing µ̃I instead of µ̂I is that the importance sampling

ratios only need to be evaluated up to an unknown constant.

The Metropolis algorithm was introduced by Metropolis, Rosenbluth, Roseenbluth,

Teller and Teller in [12] and later generalized by Hastings [5] and Peskun [13, 14]. There exists

a large body of literature on Metropolis algorithm, the interested reader is referred to [19],

[10], [15] and references therein. For this introduction, we have started both Markov chains

out in their stationary distribution. For the study of the rate of convergence of Metropolis

algorithm see the survey [2]. The systematic development of importance sampling began in

the 1950’s with works by Khan [6, 7]. See also [17], [4], [11]. More recent references can be

found in [10].

Both µ̂M and µ̂I take the output of the Markov chain K and reweight to get an

unbiased estimate of µ. The work involved is comparable and it is natural to ask which

estimate is better.

In this note we address this question through examples; a random walk on binary d–

tuples with K based on changing a random coordinate (Section 3) and independence proposal

chain (Section 4). Moreover in Section 5 we discuss a problem of Knuth on non self intersecting

paths and develop the theory for monotone paths in fairly complete detail. In most of our

examples the Metropolis algorithm is either comparable or else dominates, sometimes by an

exponential amount. The proofs are based on explicit spectral decompositions which give

exact expression for variances as determined in the following section.

2 Variance computation.

Let P (x, y) be a reversible Markov chain on the finite set X with stationary distribution p(x).

Thus, p(x)P (x, y) = p(y)P (y, x). Throughout we assume all Markov chains are ergodic so

p is the unique stationary distribution for P . Let L2(p) = {f : X → R} with < f, g >p=

Ep(fg) =
∑

x f(x)g(x)p(x). Reversibility is equivalent to P : L2 → L2 being self–adjoint.

Here Pf(x) =
∑

y f(y)P (x, y). The spectral theorem implies that P has real eigenvalues

1 = β0 > β1 ≥ β2 ≥ · · · ≥ β|X |−1 > −1 with an orthonormal basis of eigen–functions
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ψi : X → R (Pψi(x) = βiψi(x), < ψi, ψj >p= δij).

Proposition 2.1 Let f ∈ L2(p) have
∑

x f(x)p(x) = 0, expand f(x) =
∑

i≥1 aiψi(x) (with

ai =< f,ψi >p). Let Z be chosen from p and Z1, . . . , ZN be a realization of the P (x, y) chain.

Then

µ̂P =
1
N

N∑
i=1

f(Zi)

has variance

V arp(µ̂P ) =
1
N2

∑
k≥1

|ak|2WN (k) (4)

with

WN (k) =
N + 2βk −Nβ2

k + 2βN+1
k

(1 − βk)2
. (5)

Proof. Because µ̂ has mean zero,

V arp = Ep(µ̂2
p) =

1
N2

∑
i,j

Ef(Yi)f(Yj).

For i ≤ j,

Ef(Yi)f(Yj) = Ep{(
∑

k

akψk(Yi))(
∑

l

alψl(Yl))} = Ep{(
∑

k

akψk(Yi))Ep(
∑

l

alψl(Yl)|Yi)}

= Ep{(
∑

k

akψk(Yi))(
∑

l

alβ
j−i
l ψl(Yi))} =

∑
k

a2
kβ

j−i
k .

The last equality uses orthonormality of ψj . The next to last equality uses Ep(ψl(Yj)|Yi) =

βj−i
l ψl(Yi). Summing over i, j, using the identity

∑
1≤i<j≤N xj−i = {(N − 1)x − Nx2 +

xN+1}/(1 − x)2, one gets

Ep(µ̂2
P ) =

1
N2

∑
k

a2
k{N + 2

∑
1≤i<j≤N

βj−i
k } =

1
N2

∑
k

a2
kWN (k).

Remark 1 (a) If βk = 1 − hk for N large and hk small, WN (k) ∼ 2N/hk and V arp(µ̂P ) ∼
2
N

∑
k≥1 a

2
k/hk. Of course this last is just heuristic. We will see that it is accurate in examples.

More formally,

σ2
∞(µ̂P ) := lim

N→+∞
NV arp(µ̂P ) =

∑
k≥1

|ak|2 1 + βk

1 − βk

≤ 2
1 − β1

‖f‖2
2,p.

(6)
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This last inequality is classical and it is the usual way of relating spectral gap to asymptotic

variance. It is used to compare proposal chains [13] and as a standard bound or rough estimate

of the actual variance of the estimator. For small state spaces and long runs, this is reasonable.

However, for large state spaces and runs a few multiples of the relaxation time, it can be badly

off.

(b) Laurent Saloff-Coste suggests that the asymptotic variance can also be bounded

by

σ2
∞(µ̂P ) ≤ 2|a∗|2

∑
k≥1

1
1 − βk

(7)

with a∗ := maxi≥1 |ai|.

The following examples show that both bounds (6) and (7) are useful.

Example 1 Let X = Zn, the integers modulo n, with n = 2m− 1 an odd number. Let

P (x, y) =


 1/2 if |x− y| = 1

0 otherwise

be the transition matrix for simple random walk. This has stationary distribution p(x) = 1/n,

and the eigenvalues and orthonormal eigen functions are well known:

β0 = 1, ψ0 = 1, βj = cos(2πj/n), ψc
j(h) =

√
2 cos(2πjh/n), ψs

j (h) =
√

2 sin(2πjh/n),

1 ≤ j ≤ (n− 1)/2 (the non–unit eigenvalues have multiplicity two). If f(h) = δ0(h)− 1
n , then

ac
j =

√
2/n, as

j = 0. The asymptotic variance is

σ2
∞ =

n−1
2∑

j=1

2
n2

1 + cos(2πj/n)
1 − cos(2πj/n)

∼ π2

3
.

The bound (6) is of order n2(1−1/n)/n ∼ n, thus here the easiest bound is off while the bound

(7) is bounded in n. Similar results hold for f(h) = δ[−a,a](h). Saloff-Coste has suggested that

the a∗ bound (7) will be better for one and two dimensional random walk problems but will

not be an improvement more generally.

Example 2 Let X = Z
d
2 be the hypercube. Let

P (x, y) =


 1/d if |x− y| = 1

0 otherwise
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be the transition matrix for the nearest neighbor random walk. This has stationary distri-

bution p(x) = 1/2d. The eigenvalues and othonormal eigenfunctions are well known. It is

convenient to index them by x ∈ Z
d
2:

βx = 1 − 2|x|
d
, ψx(y) = (−1)x·y.

Here |x| =
∑d

i=1 xi is the Hamming–weight. Note that 1−2j/d has multiplicity
(d

j

)
, 0 ≤ j ≤ d.

If f(x) = δ0(x)−1/2d, the fourier coefficients at x �= 0 are ax = 1/2d. The asymptotic variance

is

σ2
∞ =

1
22d

d∑
j=1

(d

j

)2 + 2j/d
2j/d

=
1

22d

d∑
j=1

[
d

j

(d

j

)
+ 2d] ≤ 4

2d
.

On the other hand ‖f‖2
2 = 1

2d (1− 1
2d ). The crude upper bound from (6) is 2d 1

2d (1− 1
2d ) which

is off by a factor of d. The a∗ bound from (7) for σ2
∞ is

2
22d

d−1∑
j=1

(d

j

) d
2j

≤ C

2d
.

This has the right order.

If f(x) =
∑d

j=1(−1)xj = d − 2|x|, ax = 0 if |x| > 1 and ax = 1 if |x| = 1. Thus

σ2
∞ = d 2−2/d

2/d = d(d− 1). Here, ‖f‖2
2 = d. The crude bound from Remark 1 is 2d/(2/d) = d2.

The a∗ bound is
d∑

j=1

(d

j

) d
2j

∼ c2d

for some c. This is wildly off.

3 The hypercube.

Let X = Z
d
2 be the set of binary d–tuples. Let

π(x) = θ|x|(1 − θ)d−|x|

with 1/2 ≤ θ ≤ 1 and |x| the number of ones in the d–tuple x. Let the base chain K(x, y) be

given by “from x, pick a coordinate at random and change it to one or zero with probability

p or 1 − p” (1/2 < p ≤ 1). The K–chain has stationary distribution

σ(x) = p|x|(1 − p)d−|x|.
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This example models a high–dimensional problem where the desired distribution π(x) is con-

centrated in a small part of the space. We have available a sampling procedure – run the chain

K(x, y)– where the stationary distribution is roughly right (if p is close to θ) but not spot on.

Let us begin by diagonalizing the Metropolis chain. This may be presented as

M =
1
d

d∑
i=1

Mi (8)

with Mi the Metropolis construction operating on the i–th coordinate. The transition matrix

restricted to the ith coordinate is

0 1

0

1


 p̄ p

pθ̄/θ 1 − pθ̄/θ


 with p̄ = 1 − p, θ̄ = 1 − θ.

This matrix has stationary distribution (θ̄, θ) on {0, 1}. The eigen–values are β0 = 1, β1 =

1 − p/θ, with normalized eigen–vectors

ψ0(0) = ψ0(1) = 1, ψ1(0) =
√
θ/θ̄, ψ1(1) = −

√
θ̄/θ. (9)

Proposition 3.1 The Metropolis chain (8) on Z
d
2 has 2d eigenvalues and eigenvectors which

will be indexed by ζ ∈ Z
d
2. These are

βζ = 1 − |ζ|p
dθ

(10)

ψζ(x) =
d∏

i=1

ψζi
(xi) =

d∏
i=1

(√
θ

θ̄

)ζi(1−xi)( −
√
θ̄

θ

)ζixi

(11)

with ψi defined in (9). The eigenvectors are orthonormal in L2(π).

Proof. This is a straight–forward verification from (9) and the basic structure of the product

chains. For more details, see [1] Sec. 5. ♦
Using these tools we may compute the variance of the Metropolis algorithm for a

variety of functions f . We take f to be the number of ones normalized to have mean zero.

Proposition 3.2 On Z
d
2, let

f(x) =
d∑

i=1

(xi − θ). (12)

Under the Metropolis chain (8), with µ̂M defined by (2) we have µ = 0 and

V arπ(µ̂M ) =
2d2θ̄θ2

Np
− dθθ̄

N
+

2d3θ3θ̄

N2p2
(1 − p

dθ
)N+1 +

2d3θ̄θ3

N2p2
(1 − p

dθ
).
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Here

σ2
∞(µ̂M ) ∼ 2d2θ̄θ2

p
(d→ +∞).

Proof. To use Proposition 2.1, we must compute the expansion of f in (12) with respect to

the eigenbasis ψζ of (11). For ζ �= 0 by orthogonality of ψζ with ψ0 ≡ 1,
∑

x ψζ(x)f(x)π(x) =∑
x(

∑
i xi)ψζ(x)π(x). For fixed i, write xi for (x1, . . . , xi−1, xi+1, . . . , xd). If ζi = 0,∑

x xiψζ(x)π(x) = 0. If ζi = 1,∑
x

xiψζ(x)π(x) =
∑
xi

π(xi)ψζi(xi)(0θ̄ψζi
(0) − θψzi

(1))

=


 −

√
θθ̄ if ζi = 0

0 otherwise.

Hence, aζ = −
√
θθ̄ if |ζ| = 1 and az = 0 otherwise. Now, Proposition 2.1 and (10) give

V arπ(µ̂M ) =
dθ̄θ

N2

(2Nh−Nh2 + 2(1 − h) + 2(1 − h)N+1

h2

)
with h = (θd)−1p. ♦

Consider next the importance sampling chain with the same K and σ considered

above. Represent K as

K =
1
d

d∑
i=1

Ki (13)

with Ki having matrix (restricted to the ith coordinate)

0 1

0

1


 p̄ p

p̄ p


 with p̄ = 1 − p.

This matrix has stationary distribution (p̄, p) on {0, 1}. The eigenvalues are β∗
0 = 1, β∗

1 = 0

with normalized eigenvectors ψ∗
0(0) = ψ∗

1(1) = 1, ψ∗
1(0) =

√
p/p̄, ψ∗

1(1) = −√
p̄/p. Arguing

as for Proposition 3.2 we have the following

Proposition 3.3 The Markov chain (13) on Z
d
2 has 2d eigenvalues and eigenvectors indexed

by ζ in Z
d
2. These are

β∗
ζ = 1 − |ζ|

d
(14)

ψ∗
z(x) =

d∏
i=1

ψ∗
ζi

(xi) =
d∏

i=1

(√
p

p̄

)ζi(1−xi)( −
√
p̄

p

)ζixi

. (15)

The eigenvectors are orthonormal in L2(σ) where σ(x) = p|x|(1 − p)d−|x|.
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The importance sampling estimate is

µ̂I =
1
N

N∑
i=1

π(Xi)
σ(Xi)

f(Xi) (16)

with
π(x)
σ(x)

= ab|x|

for a = ((1 − θ)/(1 − p))d, b = (θ(1 − p)/(p(1 − θ)))d.

To use the machinery above, we need to compute the spectral coefficients.

Proposition 3.4 Let ψ∗
ζ be defined as in (15) and

g(x) =
( d∑

i=1

(xi − θ)
)π(x)
σ(x)

.

Then < g, ψ∗
ζ >π= −α|ζ|β|ζ| with α := (θθ̄

√
p/p̄ + θ̄θ

√
p̄/p)/(θ̄

√
p/p̄ − θ

√
p̄/p) and β :=

θ̄
√
p/p̄− θ

√
p̄/p.

Proof. Write < g, ψ∗
ζ >π=

∑d
i=1Eσ

π(x)
σ(x)ψ

∗
ζ (x)(xi − θ). Under σ, the coordinates are indepen-

dent taking values one or zero with probability p and 1−p. The integrand is a product and we

may compute it componentwise. Consider the ith term in the sum. For j �= i, the expectation

of the jth term in the product is 1 if ζj = 0 and θ̄
√
p/p̄ − θ

√
p̄/p if ζj = 1. For j = i, the

expectation of the ith term in the product is 0 if ζi = 0 and −θθ̄√p/p̄ − θθ̄
√
p̄/p if ζi = 1.

Computing the product and summing in i gives the stated result. ♦
Combining these results gives a formula for the variance.

Proposition 3.5 For the Markov chain K of (13) and f(x) =
∑d

i=1(xi − θ), the importance

sampling estimate µ̂I of (16) has mean zero and variance

V arσ(µ̂I) =
α2

N2

d∑
i=1

(d

i

)
i2β2iW ∗

N (i),

with α and β from Proposition 3.4 and

W ∗
n(i) =

2Nd
i

−N +
2d2

i2
(1 − i/d) +

2d2

i2
(
1 − i/d)N+1.

Remark 2 (a) The lead term in V arσ(µ̂I) is

σ2

N2

d∑
i=1

(d

i

)
i2β2i 2Nd

i
=

2α2d

N

d∑
i=1

(d

i

)
iβ2i = 2β2α

2d2

N
(1 + β2)d−1.
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The last equality used d(1 + x)d−1x =
∑d

i=0

(d

i

)
ixi. For our running example, θ = 7/8,

p = 3/4, β = −0.2887, 1 + β2 = 1.0833; for large d and N , V arσ(µ̂I) is exponentially worse

(in d) than the Metropolis variance.

(b) The next term is

− α2

N2

d∑
i=1

(d

i

)
i2β2iN = −α

2

N
(1 + dβ2)sβ2(1 + β2)d−2

the sum of these two lead terms is

α2dβ2

N
(1 + β2)d−2{2(1 + β2)d− (1 + dβ2)}.

(c) For the next term we need

d∑
i=1

(d

i

)
i2β2i d

2

i2
(1 − i

d
) = d2((1 + β2)d − 1) − d2(1 + β2)d−1β2 = d2((1 + β2)d−1 − 1).

From this, the third term is 2d2α2((1 + β2)d−1 − 1)/N2.

(d) For the last term we need

2d2
d∑

i=1

(d

i

)
β2i(1 − i

d
)N+1 ≤ 2d2

d∑
i=1

(d

i

)
β2ie−i(N+1)/d

≤ 2d2((1 + β2e−(N+1)/d)d − 1).

From this the last term is positive and bounded above by 2d2α2((1 + β2e−(N+1)/d)d − 1)/N2.

(e) The bottom line;

V arσ(µ̂I) ∼ 2α2d2β2

N
(1 + β2)d−1.

This is exponentially worse (in d) than V arπ(µ̂M ) ∼ 2d2θ2θ̄
Np from Proposition 3.2.

(f) From Remark 2 (a), the variance of the importance sampling estimator blows up

as d2(1 + β2)d. With β2 = θ̄2p/p̄+ p̄/pθ2 − 2θθ̄. It is natural to ask how close p must be to θ

so that this doesn’t blow up. If p = θ + ε, a straightforward calculation gives

β2 =
ε2

θθ̄
+O(ε2).

It follows that ε of order 1/
√
d is required to keep the variance from exponential explosion.

For another example we take f(x) = δd(|x|) − θd. Again we compute the spectral

coefficients.
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Proposition 3.6 Let ψζ and ψ∗
ζ be defined as in (10) and (15). Let f(x) = δd(|x|) − θd and

g(x) = f(x)π(x)/σ(x), then µ = Eπ(f) = 0 and V arπ(f) = θd(1 − θd). Moreover

aζ :=< f,ψζ >π= (−1)d
(√

θ̄

θ

)|ζ|
θd

a∗ζ :=< f,ψ∗
ζ >π= (−1)d

(√
θ̄

θ

)|ζ|
θd

{
1 − (θ − p

1 − p

)|ζ|}
holds true for every ζ with |ζ| �= 0, and a0 = a∗0 = 0.

Proof. This is a straight–forward verification. Indeed, by orthogonality, < f,ψζ >π=<

δd(|x|), ψζ >π, and then < f,ψζ >π= θdψζ(1) where 1 = (1, 1, . . . , 1). Moreover, arguing as

in the proof of Proposition 3.4, we get

a∗ζ =< δd(|x|), ψ∗
ζ >π −θd < 1, ψ∗

z >π

= (−1)|ζ|
(√

p̄

p

)|ζ|
θd − θd(θ̄

√
p

p̄
− θ

√
p̄

p
)|ζ|

= (−1)|ζ|
(√

p̄

p

)|ζ|
θd(1 − (θ − p

1 − p

)|ζ|).
♦

Combining the previous results we get

Proposition 3.7 On Z
d
2, let f(x) = δd(|x|) − θd. Under the Metropolis chain (8), with µ̂M

defined by (2) we have µ = 0 and

V arπ(µ̂M ) =
θ2d

N2

d∑
i=1

(d

i

)( θ̄
θ

)i

W ∗
N (ip/θ),

with

W ∗
n(i) =

2Nd
i

−N +
2d2

i2
(1 − i/d) +

2d2

i2
(
1 − i/d)N+1.

Moreover for the Markov chain K of (13) the importance sampling estimate µ̂I of (16) has

mean zero and variance

V arσ(µ̂I) =
θ2d

N2

d∑
i=1

(d

i

)( p̄
p

)i(
1 − (θ − p

1 − p

)i
)2

W ∗
N (i).

Remark 3 (a) The lead term in V arπ(µ̂M ) is

θ2d

N

d∑
i=1

(d

i

)( θ̄
θ

)i

(
2dθ
p

1
i
− 1) =

2θ2dθ

Np
dAd(θ̄/θ) − θd(1 − θd)/N,
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with Ad(x) :=
∑d

i=1

(d

i

)
xi/i. Since Ad(x) = (x(d + 1))−1

∑d+1
i=2

(d+1

i

)
xii/(i − 1), for every

positive x, we can write

[(1 + x)d+1 − 1 − x(d+ 1)]
x(d+ 1)

≤ Ad(x) ≤ 2
[(1 + x)d+1 − 1 − x(d+ 1)]

x(d+ 1)
. (17)

Hence, the lead term in V arπ(µ̂M ) can be written as N−1(2θd+1dBd(θ̄/θ)/(pθ̄(d + 1)) −
V arπ(f)) with Bd(θ̄/θ) bounded in d. More exactly (17) gives [1 − θd+1 − θ̄θd(d + 1)] ≤
Bd(θ̄/θ) ≤ 2[1 − θd+1 − θ̄θd(d + 1)]. This suggests that NV arπ(µ̂M ) = O(V arπ(f)) for

d→ +∞. This will be formalized in the next proposition.

(b) The first term in V arσ(µ̂I) can be written as

2θ2dd

N

d∑
i=1

(d

i

)( p̄
p

)i 1
i

[
1 +

(θ − p

1 − p

)2i − 2
(θ − p

1 − p

)i
]

=
2θ2dd

N
[Ad(p̄/p) +Ad

( (θ − p)2

p(1 − p)

)
− 2Ad

(θ − p

p

)
]

=
2θdd

N(d+ 1)

(
θ

p

)d

B∗
d(p, θ)

with B∗
d(p, θ) = (d+ 1)pd[Ad(p̄/p) +Ad

(
(θ−p)2

p(1−p)

)
− 2Ad

(
θ−p

p

)
]. Again using (17), it is easy to

see that d �→ B∗
d(p, θ) is a bounded function. The second term in V arσ(µ̂I) is

−θ
d

N

(
θ

p

)d

[1 − 2θd +
(
pp̄+ (θ − p)2

p̄

)d

]

= −θ
d

N

(
θ

p

)d

[1 − 2θd +
(
p+ θ2 − 2θp

p̄

)d

]

= −θ
d

N

(
θ

p

)d

C∗
d(p, θ)

with C∗
d(p, θ) = [1 − 2θd +

(
p+θ2−2θp

p̄

)d]. If 1/2 < p < θ < 1, then (p + θ2 − 2θp)/p̄ <

1. Hence, C∗
d(p, θ) = 1 + o(1) for d → +∞. While some simple computations show that

θ(p+ θ2 − 2θp)/(p(1 − p)) < 1 if 1/2 < θ < p < 1.

Combining the previous remarks we get

Proposition 3.8 For f as in Proposition 3.7,

σ2
∞(µ̂M )/V arπ(f) =

2θ
pθ̄(1 − θd)

d

d+ 1
Bd(θ̄/θ) − 1 ∼ K1(θ, p)

with d �→ Bd(θ̄/θ) bounded, K1 being a suitable constant. Moreover,

σ2
∞(µ̂I)/V arπ(f) =

1
1 − θd

(
θ

p

)d

[
2d
d+ 1

B∗
d(p, θ) − C∗

d(p, θ)] ∼ K2(θ, p)
(
θ

p

)d

11



with d �→ [ 2d
d+1B

∗
d(p, θ) − C∗(p, θ)] bounded and strictly positive, for every p and θ such that

1/2 < p < θ < 1, while

σ2
∞(µ̂I)/V arπ(f) ∼ K3(θ, p)

[(
θp+ θ3 − 2θ2p

p(1 − p)

)d

+
(
θ

p

)d
]

with θp+θ3−2θ2p
p(1−p) < 1 if 1/2 < θ < p < 1. K2,K3 being suitable constants.

Remark 4 The last proposition shows that, for 1/2 < p < θ < 1, the normalized asymptotic

variance of µ̂I is exponentially worse (in d) than the normalized asymptotic variance of µ̂M ,

while it is exponentially better if 1/2 < θ < p < 1. On the one hand, this fact agrees with

the heuristic that the importance sampling estimator of π(A) performs better than the Monte

Carlo estimator, whenever the importance distribution σ puts more weight on A than π. On

the other hand, the last example shows that even a small ”loss of weight” in A can cause an

exponentially worse behavior.

4 Independence sampling.

In this section the proposal chain is a sequence of independent and identically distributed

variables with common probability density σ. Because of this, the structure of the state space

does not matter. Throughout we take X = {0, 1, . . . ,m− 1} with σ(i) > 0 fixed and π(i) the

desired distribution. Without loss, suppose the states are numbered so that the importance

weights π(i)/σ(i) are decreasing, i.e.

π(0)
σ(0)

≥ π(1)
σ(1)

≥ · · · ≥ π(m− 1)
σ(m− 1)

. (18)

This section makes use of an explicit diagonalization of the Metropolis chain due to Jun Liu

[9].

Metropolis. For the proposal chain of independent picks from σ, the Metropolis chain

starts with a pick from π. From state i it proceeds by choosing j from σ; if j ≤ i the chain

moves to j. If j > i the chain stays at j with probability (π(j)σ(i)/π(i)σ(j)) and remains at i

with probability (1− π(j)σ(i))/π(i)σ(j)). Liu [9] proves that this chain has eigenvalue 1 and,

for 1 ≤ k ≤ m− 1

βk =
∑
i≥k

(
σ(i) − π(i)

σ(k)
π(k)

)
, (19)

12



ψk = (0, . . . , 0︸ ︷︷ ︸
k−1

, Sπ(k + 1),−π(k), . . . ,−π(k)), Sπ(k + 1) :=
m−1∑

j=k+1

π(j). (20)

These eigen–vectors are orthogonal in L2(π). From these facts and Proposition 2.1 we get the

following

Proposition 4.1 For the Metropolis algorithm based on independent proposals with distri-

bution σ(i) and stationary distribution π(i), let f : X → R have representation f(i) =∑m−1
k=1 akψk(i), with µ =

∑m−1
i=0 f(i)π(i) = 0. Then the Metropolis estimator µ̂M of (2)

satisfies

V arπ(µ̂M ) =
1
N2

m−1∑
k=1

b2kWN (k) (21)

with WN (k) given by (5) using the eigenvalues of (19) and

bk := ζk

(
f(k)Sπ(k + 1)π(k) − π(k)

∑
j≥k

f(j)π(j)
)
, ζk := (π(k)Sπ(k)Sπ(k + 1))−1/2

The following lemma supplements J.Liu results

Lemma 4.2 With notation as above, the eigenvalues βk in (19) satisfy

1 − σ(0)
π(0)

≥ β1 ≥ β2 ≥ · · · ≥ βm−1 = 0

Proof. βk = σ(k) + · · · + σ(m− 1) − σ(k)
π(k) (π(k) + . . . π(m− 1)) ≥ σ(k + 1) + · · · + σ(m− 1) −

σ(k+1)
π(k+1) (π(k+1)+. . . π(m−1)) = βk. For β1, note that β1 = 1−σ(0)− σ(0)

π(0) (1−π(0)) ≤ 1− σ(0)
π(0) .

For βm−1 note that βm−1 = σ(m− 1) − σ(m−1)
π(m−1)π(m− 1) = 0. ♦

The variance of the importance sampling estimator is (for µ = 0)

V arσ(µ̂I) =
1
N2

∑
l

(π(l)
σ(l)

f(l)
)2

σ(l). (22)

We record a different expression for this, similar to J.Liu’s above.

Lemma 4.3 Let P be the Markov chain on {0, 1, . . . ,m− 1} with all rows equal to σ. Then,

P has one eigenvalue β0 = 1 with ψ0(i) ≡ 1 and m− 1 eigenvalues 0. An orthogonal basis for

the zero eigenspace in L2(σ) is

ψk = (0, . . . , 0, Sσ(k + 1),−σ(k), . . . ,−σ(k)), 1 ≤ k ≤ m− 1. (23)

Remark 5 If σ = π, this basis agrees with the Metropolis basis of (20). This must be because

then P commutes with the Metropolis chain.
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Proposition 4.4 Let g(i) satisfy
∑m−1

i=0 g(i)σ(i) = 0. Then

V arσ(g) =
m−1∑
i=0

g(i)2σ(i) =
m−1∑
i=1

(
g(i)Sσ(i+ 1) − σ(i)

∑
j≥i

g(j)σ(j)
)2

/(σ(i)Sσ(i)Sσ(i+ 1)).

Example 3 Let us compare the Metropolis and the importance estimator in the following

case. For X = {0, 1, . . . ,m − 1}, let π(i) = aic(a) for fixed a with 0 < a < 1 with c(a) =

(1− a)/(1− am). For the proposal chain take σ(i) = 1/m, 0 ≤ i ≤ m− 1. Take f(i) = (i−µ)

with µ = c(a)a(1 − am−1(a + (1 − a)m))/(1 − a)2, thus µ = Eπ(f) = 0. For a fixed and m

large µ ∼ a/(1 − a).

Metropolis. We must compute the expansion of f in the basis ψk, 1 ≤ k ≤ m− 1. We

have

ak =
∑

j

f(j)ψk(j)π(j) = (k − µ)Sπ(k + 1)π(k) − π(k)
m−1∑

j=k+1

(j − µ)π(j).

Here Sπ(k + 1) = c(a)(1 − am−k−1)ak+1/(1 − a),
∑m−1

j=k+1(j − µ)π(j) = c(a)(ak((k + 1)(1 −
a) − a) − am−1(m(1 − a) − a))/(1 − a)2. It follows that

ak = a2kb(a,m, k)

with b(a) bounded uniformly in m, k, (1−a)2. It thus follow that b2k in (21) equals a2kc(m, k)

with c(m, k) uniformly bounded. The eigenvalues βk of (19) become

βk = 1 − k

m
− 1
m

(1 − am−h

1 − a

)
.

Plugging into (21) yields the following proposition.

Proposition 4.5 Fix a with 0 < a < 1, for independent proposal Metropolis sampling with

uniform proposals on {0, 1, . . . ,m−1} for π(i) = aic(a) the metropolis algorithm has V arπ(µ̂M (f)) =

(m/N)A(a) with A continuous and bounded uniformly in m and N .

Importance sampling. From (22),

V arσ(µ̂I) =
1
N

m−1∑
i=0

(π(i)
σ(i)

(i− µ)
)2

σ(i) =
m

N

m−1∑
i=0

(
π(i)(i− µ)

)2

.

This expression is of the form
m

N
B(a)

with B(a) continuous in a and bounded uniformly in m for fixed a ∈ (0, 1). It follows that

importance sampling and the Metropolis algorithm are roughly comparable for this example.

14



Remark 6 The example above helps us to calibrate two obvious bounds. From (6) for inde-

pendent Metropolis sampling applied to f of mean zero

σ2
∞(µ̂M ) ≤ 2

‖f‖2
2,π

1 − β1
≤ 2

π(0)
σ(0)

‖f‖2
2,π,

V arσ(µ̂I) =
1
N

∑
i

(π(i)
σ(i)

f(i)
)2

σ(i) =
1
N

∑
i

π(i)2

σ(i)
f(i)2 ≤ 1

N

π(0)
σ(0)

‖f‖2
2,π.

5 Non–self intersecting paths.

Our interest in this area started with Donald Knuth’s [8] study of non–self intersecting paths

in a grid. Knuth considered a 10 × 10 grid. He wanted to estimate the number of non–self

intersecting lattice paths γ that start at (0, 0) and end at (10, 10). He used the following

sequential importance sampling (SIS) estimate: build a path γ starting at (0, 0) sequentially,

each time choosing one of the available nearest neighbors with equal probability. As the path

grows, the past is recorded and only non–self intersecting choices are considered. Thus, the

first step may go up or to the right with probability 1/2. Suppose it goes up. The next step

can go up or to the right. Suppose it goes to the right. The third step has three possibilities

(up, right, down) chosen with probability 1/3, and so on. If the algorithm gets stuck, it simply

starts again at (0, 0). Let σ(γ) be the probability of a successful path. Thus σ(γ) = 1
2

1
2

1
3 · · ·

in the example. This is easily computed as the path is created. Let Xi = 0 if the ith trial fails

and Xi = 1/σ(γ) if the ith trial produces a legal path γ. Observe that

E(Xi) =
∑

γ

1
σ(γ)

σ(γ) = number of paths.

Thus if X1, X2, . . . XN , is the result of N trials

µ̂ =
1
N

N∑
i=1

Xi

is an unbiased estimate of the number of paths. Knuth used this sequential importance

sampling algorithm to give the following estimates:

• number of paths = (1.6 ± 0.3)1024

• av. path length = 92 ± 5

• proportion of paths through (5, 5) = 81 ± 10 percent.
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In a personal communication he noted that usually 1/σ(γ) was between 1011 and 1017.

A few of his sample values were much larger, accounting for the 1024. It is hard to bound or

asses the variance of the sequential importance sampling estimator.

There is something to understand: D.Bressanini has found the exact answer to Knuth

problem in sequence A00764 in the on line version of Sloane’s handbook of integer sequences.

This contains further references [18]. The number of non–self intersecting paths in a 10 × 10

grid equals

1568758030464750013214106 = 1.5687 × 1024.

This is in good agreement with Knuth (1.6 ± 0.3)1024.

5.1 Monotone paths.

As a contribution to understanding Knuth’s use of sequential importance sampling we consider

an easier problem where all calculations can be carried out. Let X be the set of all monotone

paths from (0, 0) to (n, n) in the usual lattice. Here, paths are only allowed to go up or to the

right. Thus, if n = 2 there are 6 paths.

1/4 1/8 1/8

1/81/8 1/4

Figure 1:

In general, |X | =
(2n

n

)
. Shown underneath the example is σ(γ) for the sequential

importance sampling applied to this setting: choose one of the two available next steps with

probability 1/2 until the walk hits the top or right side of the n×n “box” when the remainder of

the walk is forced. If T (γ) is the first time the walk hits the top or right side, σ(γ) = 2−T (γ).

Both the uniform distribution π(γ) = 1/(2n
n ) and the distribution σ(γ) = 2−T (γ) have the

property that, conditional on T (γ) = j, they are uniformly distributed. Thus things are

determined by the behavior of the distribution of T (γ). The following Proposition determines

this for π and σ.

Proposition 5.1 For the monotone paths on an n× n grid:
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(a) Under the uniform distribution π

π{T (γ) = j} = 2

(j−1

n−1

)
(2n

n

) n ≤ j ≤ 2n− 1.

(b) For n large and any fixed k

π{T (γ) = 2n− 1 − k} → 1
2k+1

0 ≤ k < +∞.

(c) Under the importance sampling distribution σ

σ{T (γ) = j} = 21−j
(j−1

n−1

)
n ≤ j ≤ 2n− 1.

(d) For n large and any fixed positive x

σ{2n− 1 − T (γ)√
n

≤ x} → 1
π

∫ x

0

e−y2/4dy.

Proof. Paths with T (γ) = j may be coded as sequences of zeros and ones with n zeros and

n ones having all zeros (or all ones) before j. This is twice the number with all ones before

j. To count these, put zero at j and the remaining n− 1 zeros in the remaining j − 1 places.

This proves (a),(c). Part (b) is simple. For (d) we prove a local limit theorem. In (c), take

j = 2n− 1 − a. Then,

(j−1

n−1

)
=

(n− 1)(n− 2) . . . (n− 1 − a+ 1)
(2n− 2)(2n− 3) . . . (2n− a+ 1)

(2n−2

n−1

)
.

Using Stirling’s formula
(2n−2

n−1

)
22n−2 ∼ 1/

√
πn. What is left is 2a−1 times

(n− 1)(n− 2) . . . (n− 1 − a+ 1)
(2n− 2)(2n− 3) . . . (2n− a+ 1)

=
(1 − 1

n−1 ) . . . (1 − a−1
n−1 )

(1 − 1
2(n−1) ) . . . (1 − a−1

2(n−1) )
2a.

Write the product in the numerator as
a−1∏
i=1

(1 − i

n− 1
) = exp{

a−1∑
i=1

log(1 − i

n− 1
)} ∼ e−

1
n (a

2 )

where the asymptotics are valid for a 
 n2/3. This may be justified and refined as in [3]

Chapter 5. For the denomiator,
a−1∏
i=1

(1 − i

2(n− 1)
) = exp{

a−1∑
i=1

log(1 − i

2(n− 1)
)} ∼ e−

1
2n (a

2 ).

Putting things together, for j = 2n− 1 − a,

σ{T (γ) = j} ∼ 1√
πn

e−
1
4n a2

.

For a = x
√
n, this last is 1√

πn
e−x2/4. Further details are omitted. ♦
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Remark 7 Thus, under the uniform distribution π, T (γ) is close to its maximum 2n − 1.

Under the importance sampling distribution σ, T (γ) is usually
√
n away from 2n− 1. We see

below how our two algorithms deal with this. First, we treat the analog for estimating the

size of the state space |X |.

Let µ = |X | =
(2n

n

)
. Generate paths γi, 1 ≤ i ≤ N , independently from σ(x) and

set µ̂SIS = 1
N

∑N
i=1 1/σ(γ). As above, Eσ(µ̂SIS) = µ. The variance of the estimator µ̂SIS is

given next.

Proposition 5.2 For µ the number of monotone paths in an n× n grid

V arσ(µ̂SIS) =
1
N

16n

4
√
n

(1 +O(
1
n

)).

Proof. V arσ(µ̂SIS) = 1
N {Eσ(1/σ(γ)2 − µ2}. We have

Eσ(1/σ(γ)2) =
∑

γ

1/σ(γ) =
2n−1∑
j=n

2j+1
(j−1

n−1

)
.

This sum is dominated by its largest term. Thus

E(1/σ(γ)2) = 22n
(2n−2

n−1

)
(1 +O(

1
n

)).

On the other hand, µ2 =
(2n

n

) ∼ 16n/(πn) is of lower order. ♦

Remark 8 While the variance is exponentially large in n, the relative variance is

V arσ(
µ̂SIS

µ
) =

1
N

√
πn(1 +O(

1
n

)).

Thus a relatively small sample size N suffices to get a useful relative error.

We next compare importance sampling and the Metropolis algorithm for estimating

the mean of some simple functions of monotone paths. In our examples, the Metropolis

algorithm dominates.

Importance sampling. Again X is the set of monotone paths from (0, 0) to (n, n). Let

f : X → R be any function. Let γ1, . . . , γN be chosen independently using the sequential

importance distribution σ(γ) = 2−T (γ). Then,

µ̂SIS(f) :=
1
N

N∑
i=1

2T (γi)(2n

n

) f(γi)
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is an unbiased estimator of µ =
∑

γ
1(2n

n

)f(γ). We have

V arσ(µ̂SIS(f)) =
1
N

{
E

(2T (γ)(2n

n

) f(γ)
)2

− µ2
}
.

Using Proposition 5.2 above we may calculate this for simple functions f .

Example 4 Let f(γ) = T (γ) = the first hitting time of a uniformly chosen random path γ to

the top or right side of an n× n grid. Then

µ = Eπ(T ) = (2 − 2
n+ 1

)n

and

V arσ(µ̂SIS(T )) ∼
√
πn5/2

N
.

Indeed under the uniform distribution,

µ =
2n−1∑
j=n

2j
(j−1

n−1

)
/
(2n

n

)
= 2n

2n−1∑
j=n

(j

n

)
/
(2n

n

)
= (2 − 2

n+ 1
)n.

For the variance,

E
(2T (γ)(2n

n

) T (γ)
)2

=
1(2n

n

)2

∑
γ

22T (γ)T 2(γ)2−T (γ) =
2(2n

n

)2

2n−1∑
j=n

2jj2
(j−1

n−1

)
.

As before, the sum is dominated by its largest term. This is

22n(2n− 1)2
(2n−2

n−1

)
/
(2n

n

)2 ∼ √
πn5/2. ♦

Remark 9 Here, the expected squared relative error is

E(
µ̂

µ
− 1)2 ∼

√
πn

4N
.

Thus again, a sample size N of order only larger than
√
n suffices to give acceptable relative

error.

Metropolis sampling. Using independence Metropolis sampling as in Section 4 with

π(γ) = 1/
(2n

n

)
and proposal distribution σ(γ) = 2−T (γ), we may use Liu’s result. To proceed,

we must order the state space of paths with decreasing importance weights π(γ)/σ(γ) and

thus by largest values of T (γ). Using the binary coding of paths introduced in the proof
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of Proposition 5.2 we may order via γ ≤ γ′ if T (γ) ≥ T (γ′). If T (γ) = T (γ′), use the

lexiographical order. We break paths into groups by T (γ):

group one with T (γ) = 2n− 1 of size A1 := 2
(2n−2

n−1

)
group two with T (γ) = 2n− 2 of size A2 := 2

(2n−3

n−1

)
...

group i with T (γ) = 2n− i of size Ai := 2
(2n−1−i

n−1

)
group n with T (γ) = n of size An := 2

Proposition 5.3 The independence proposal Markov chain on monotone paths with pro-

posal distribution σ(γ) = 2−T (γ) and stationary distribution π(γ) = 1/
(2n

n

)
has n distinct

eigenvalues on each of the n groups above with multiplicity the size of the ith–group. If

s(i) = 2−(2n−1−i), the eigenvalues are

β1 = 1 − s(0)
(2n

n

)
, multiplicity A1 − 1

β2 = 1 − s(1)
(2n

n

)
+A0(s(1) − s(0)), multiplicity A2

. . .

βi = 1 − s(i− 1)
(2n

n

)
+A0(s(i− 1) − s(0)) + · · · +Ai−2(s(i− 1) − s(i− 2)), multiplicity Ai

. . .

Proof. This follows from equation (19) by elementary manipulations. ♦

Remark 10 (a) Using Stirling’s formula, for fixed j

βj = 1 − 2j

√
πn

+Oj(
1
n

)

From Lemma 4.2, β1 is the second largest eigen–value.

(b) The eigenvectors of this chain are simple to write down from (20). We do not do

this explicitly here. Using the eigenvalues, eigenvectors and convergence results from [16], we

have proved that the relaxation time of the Metropolis algorithm is of order n3/2 and there is

a sharp cut off.

To conclude this section we bound the asymptotic variance of the Metropolis estimator

of the function T (γ) and show that it improves on the importance sampling estimator of

Example 4. Recall from (6) σ2
∞(µ̂) = limN NV ar(µ̂).
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Example 5 Let f(γ) = T (γ) = the first hitting time of a uniformly chosen random path to

the top or right side of an n× n grid. Then,

σ2
∞(µ̂Met(T )) ≤ {8√πn3/2 +O(n).}

To prove the last claim, use (6) to write

σ2
∞(µ̂Met) ≤ 2

1 − β1
V arπ(T ).

We have shown above that 1/(1 − β0) ≤
√
πn+ o(1). Now,

V arπ(T ) = Eπ(T 2) − (2 − 2
n+ 1

)2n2,

Eπ(T 2) =
2n(2n

n

) n−1∑
i=0

(n+ i)
(n+1

n

)
.

By elementary calculations

4n2(1 − 1
n

)
(n+ 1

2

n+ 1

)
≤ Eπ(T 2) ≤ 4n3

n+ 1
.

Hence, V arπ(T ) = 4n+O(1). Combing bounds gives the result.

Remark 11 Roughly V arπ(µ̂SIS) � n5/2

N while V arπ(µ̂MET ) � n3/2

N .

Acknowledgments. We thank Joseph Blitzstein, D.Bressanini, Neal Madras, Ron

Peled, Mauro Piccioni and Laurent Saloff-Coste for their help with this paper.

References

[1] P. Diaconis and L. Saloff-Coste. Comparison techniques for random walk on finite groups.

Ann. Probab., 21(4):2131–2156, 1993.

[2] P. Diaconis and L. Saloff-Coste. What do we know about the Metropolis algorithm? J.

Comput. System Sci., 57(1):20–36, 1998. 27th Annual ACM Symposium on the Theory

of Computing (STOC’95) (Las Vegas, NV).

[3] W. Feller. An introduction to probability theory and its applications. Vol. I. John Wiley

and Sons, Inc., New York, 1968. 3nd ed.

[4] J. M. Hammersley and D. C. Handscomb. Monte Carlo methods. Methuen & Co. Ltd.,

London, 1965.

21



[5] W.K. Hastings. Monte carlo sampling methods using markov chains and their application.

Biometrika, 57:97–109, 1970.

[6] H. Kahn. Modification of the Monte Carlo method. In Proceedings, Seminar on Scientific

Computation, November, 1949, pages 20–27. International Business Machines Corp., New

York, N. Y., 1950.

[7] H. Kahn. Use of different Monte Carlo sampling techniques. In Symposium on Monte

Carlo methods, University of Florida, 1954, pages 146–190. John Wiley and Sons, Inc.,

New York, 1956.

[8] D. E. Knuth. Mathematics and computer science: coping with finiteness. Science,

194(4271):1235–1242, 1976.

[9] J. Liu. Metropolized independent sampling with comparisons to rejection sampling and

importance sampling. Statistics and Computing, 6:113–119, 1996.

[10] J. S. Liu. Monte Carlo strategies in scientific computing. Springer Series in Statistics.

Springer-Verlag, New York, 2001.

[11] N. Madras and M. Piccioni. Importance sampling for families of distributions. Ann. Appl.

Probab., 9(4):1202–1225, 1999.

[12] N. Metrpolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state

caluclations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.

[13] P. H. Peskun. Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60:607–

612, 1973.

[14] P. H. Peskun. Guidelines for choosing the transition matrix in Monte Carlo methods

using Markov chains. J. Comput. Phys., 40(2):327–344, 1981.

[15] C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer Texts in Statistics.

Springer-Verlag, New York, second edition, 2004.

[16] L. Saloff-Coste. Lectures on finite Markov chains. In Lectures on probability theory and

statistics (Saint-Flour, 1996), volume 1665 of Lecture Notes in Math., pages 301–413.

Springer, Berlin, 1997.

22



[17] D. Siegmund. Importance sampling in the Monte Carlo study of sequential tests. Ann.

Statist., 4(4):673–684, 1976.

[18] N. J. A. Sloane. The on-line encyclopedia of integer sequences. Published electronically

at http://www.research.att.com/∼njas/sequences.

[19] A. Sokal. Monte Carlo methods in statistical mechanics: foundations and new algorithms.
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