Tuning RED for Web Traffic

Mikkel Christiansen, Kevin Jeffay, David Ott, F. Donelson Smith
University of North Carolina at Chapel Hill
Department of Computer Science
Chapel Hill, NC 27599-3175 USA
http://www.cs.unc.edu/Research/dirt

Abstract of early congestion notification,have thepotential to im-
We study the effects of RED on the performance of \bietws- ~ Prove overall network performance as well as that seen by
ing with a novel aspect afur work being theuse of a user- individual TCP connections. In thisvork we testthis claim
centric measure ofperformance — response timfer HTTP and explore the impact of RED on the performance ofntlost

request-response pairs. We empirically evallRED across a dominant subset ofCP connections orthe Internettoday:
range of parameter settings and offered loads. Our resutte Web traffic. In particular, weareinterested in measuring the
that: (1) contrary teexpectations,compared to &IFO queue, effect of RI_ED on a user-centric measurepefformance — the
RED has a minimal effect oHTTP response time$or offered ~ résponse time for an HTTP 1.0 request. Although peeorm-
loads up to 90% ofink capacity, (2) response times dbads ance ofRED andother earlycongestion notification mecha-

in this range are not substantially effected by REDameters, ~ NiSMS continue to be the subject of much study, etaluation

(3) between 90% and 100% load, RED can be carefully tuned tgnetrics haye Iarggly .been network-centric measures such as
yield performance somewhat superior to FIFO, however, re-network link utilization or aggregateTCP throughput.
sponse timesre quitesensitive tothe actualRED parameter ~ Moreover, as argued in Section 2 below, most of these evalua-
values selectedand (4) in suchheavily congestechetworks, tion studies focused on simulations of long-liveé@P connec-
RED parameters that provide the béek utilization produce tions such as (huge) fildransfers. In contrast, measurement
poorer response times. Wenclude that forinks carrying studies have shown that the majority T®P connections are
only web traffic, RED queuemanagement appears foovide HﬁP conngctloné andthat many of theseonnections are

no clear advantage over tail-drépFO for end-userresponse ~ duite short-lived, often orthe order of afew TCP segments.

times. More importantly, given that the performance of théernet
is becoming synonymouwith the performance of th&Veb,

1. Introduction understanding the impact of router forwardibghaviors on
L) user-visible performancemeasures is animportant (and

A recent IETF publication strongly recommended thewide- largely ignored) aspect of the evaluation of argngestion

spread dep[oyment of active queue managertestinology in control proposal.

routers to improve the performance of today’s Interfgit]

Active queuemanagement refers to the practicenmnipulat- At a high-level, we seek to compare the performanceiiofP
ing the queue at amutbound interface in a router to bias the reguest-response paiwsnder RED and more traditional tail-
performance of flows that transit the rout&he goals of ac- drop FIFO queuing. Unfortunately, measuring gerformance
tive queue management are to (&flucethe averagdength of of HTTP underRED is acomplex problem. First, as described

queues inrouters and thereby decrease the end-to-erdklay in more detail in Section 3RED is ageneral mechanisrthat
experienced by packets, and (2) ensure that netnesiurces IS controlled by (at least) 5 separate control parameTérsre
are usednore efficiently by reducing the packdbss that oc- €Xist rules-of-thumifor assigningvalues to mosparameters
curs when queues overflow. [14], butlittle is known abouthow (or if) one canoptimize

) . RED performance for ajiven traffic class. Second, even if
The recommendedctive queuemanagement to be deployed is optimal RED parametersettings were known, generating or
random earlydetection better known asRED [12]. Under simylating HTTP behaviors in a meaningfukay is problem-
RED, arouter will probabilistically drop anarriving packet atic. Thereare few models of HTTP traffic and it islikely the
even though theueuefor the appropriate outboundnterface case thatWeb traffic dynamics €.g, the mix betweerHTTP

is not full. The motivation for this “early” drop comesfrom 1.0 and 1.1 protocols)are evolving faster thanour current
the fact that packet loss is the primary indicatocofigestion ability to measure and model the traffic.

for aTCP connection. By dropping packetefore arouter’s) o]
queue fills, the TCRonnections sharinghe queuewill reduce ~ Our general approach is to conduct a “lisienulation” of Web
their transmission rates and (ideally) ensure the queue does ndifowsing in a laboratory environment. By live simulation, we
overflow. The claim (borne out bgignificant empiricaldata) ~ Mean that we simulate a large collection of usemavsing the

is that dropping packets prior to the overflow of the quetie Web at aset of sites dlstrlbgted throughout tbentmental
reducethe overall rate of packdbss. Given that TCP traffic United States. The HTTP traffic generated by the simulated
dominates on Internet backbones [2RED, andother forms

* Work_supported by grants from the National Scierfeaundation
(grant CDA—9624662¥, the Intel Corp., and the North Carohet-
Permission tolmake digital or hard CV%%i]es toff all or pgrmdﬁwtork for working Initiative.
personal or classroom use is granteithout fee providedthat copies - . ; ; .
are not Qﬁa?t%_or dlt_stnbut%dtfhor rﬁflt_tort_comm%[lua%[atdvantag% and thayengeur{:ergtdﬁf%gﬁasr's Q/aelb%)r gglg%rgg)xa?g(ﬂarténegér%ggm%elg Sci
copies_beartthis notice and the full citation on the first page. Topy : ; e Pt o ; -
otherwise, or republish, tpost onservers or to redistribute tists, re- yearzi ye(r)ffolr\lrg%% Vc\égrlg"tr?ae first author wasvisiting student at thdJni
quires prior specific permission and/or a fee.)
, ! For example, recent measurements on M@l backbone show that
SIGCOMM'0Q Stockholm, Sweden. about 95% of the bytes transmitted across the netamekcarried by
Copyright 2000 ACM 1-58113-224-7/00/0008...$5.00. TCP and of these, 50-70% are HTTP messages [24].

139

users will traverse &aboratory network with routers thatup-
port both RED andraditional tail-dropFIFO queuing. A num-

literature in the performance evaluation RED and related
active queuemanagement schemes. Section 3 describes our

ber of instances of the user-browsing simulation program are experimental methodand the designand calibration of our

run to generate a configurableffered load on @ottleneck

experiments. Section 4 presents the performancauo$imu-

network link. The user HTTP requests will be delivered to a setlated Web browsing sessionsinder FIFOqueuing; Section 5

of servers that will respond with responses of dpgropriate
sizes. Bothrequest andesponse packetare artificially de-
layed to simulate the round trip tim¢RTT) experiencedvhen
communicating with machines distributed across the Tifis

is done to ensureur end-to-endresponse-time measurements
reflect the full range of effects GfFCP congestion control and
retransmissionsexperienced by real users. When the re-
sponses are delivered back to the usersrewerd theelapsed
time for each simulated HTTP request/response pair.

This experimental setup provides a bafis comparing the
effect of REDv. FIFO queuing on thaesponse timdor HTTP
requests. We performed a seriesegperiments teempirically
determine the FIFQueuelength andcombination ofRED pa-
rametersettings thatresult in the best performance for our
network and oursimulation ofWeb traffic. From our experi-
ments we observe the following:

« Contrary toexpectations,when compared to groperly
configured) tail-dropFIFO queueRED has a minimal ef-
fect on HTTPresponse timesor offered loads up to 90%
of link capacity.

* Response timefor loads inthis rangeare not substan-
tially effected by values of RED parameters.

» Between loads of 90% to 100% of link capaciBED can
be carefully tuned toyield performance somewhat supe-
rior to FIFO. However, response timase quitesensitive
to the actualRED parameter values selected. dnr ex-
periments recommended parametesettings resulted in
poorer performance than FIFO. Worse, the “optimsét-
tings that resulted in the best RED performanege non-
obvious and arrived at only through exhaustikial-and-
error experimentation.

* For loads of 90% to 100% of link capacity where RED has

presents resultfor RED queuing. Section 6 comparg¢hese
results. We conclude in Section 7 with a discussion of the re-
sults, the limitations of our experiments and reswuts] some
comments on future work.

2. Background and Related Work

The RED algorithm uses a weighted average of the tptalie
length to determine when to drggackets.When a packet ar-
rives at the queue, if the weighted averggeuelength isless
than a minimum threshold valumin,, no drop action will be
taken and the packet will simply be enqueued. If the average is
greater tharmin,, but less than a maximuthreshold, max;,

an early droptest will be performed as described below. An
average queue length in the range betweerthtesholdsindi-
cates some congestion has begun and flows shoulbtifed
via packet drops. If the average is greater than the maximum
threshold value, &orced dropoperation will occur. Amraverage
queue length in this range indicatpsrsistent congestion and
packets must be dropped to avoidpersistently full queue.
(Theforced dropis also used when thgueue isfull but the av-
eragequeuelength is still below the maximumthreshold.)
Note that by using a weighted averag®ED avoids over-
reaction to burstsaand instead reacts to longer-terirends.
Furthermore, because thehresholds are compared to the
weighted average (with a typicaleighting factor, w,, of
1/512), it is possible that no forced drops will take plagen
when the instantaneous queue length is quite large.

Theearly dropaction in theRED algorithm probabilistically
drops theincoming packetwhen the weighted averagpieue
length is between thenin, andmayx, thresholds. Ircontrast,
the forced dropaction in theRED algorithm isguaranteed to
drop the incoming packet. In the case of early dropsptiod-
ability that the packet will be dropped is dependentsereral

the potential to provide better performance, performanceother parameters of the algorithm. An initiatop probability

becomes a subjective measuFar loads inthis range
there exists atrade-off betweenimproving response
times of short-lived connections and improvingsponse
times of long-lived connections.Both cannot beopti-
mized simultaneously.

* In such heavily congested networks, there existaade-
off between networlutilization and HTTP transaction re-
sponse timesRED parameters values that provide the
best link utilization produce poorer response times.

We have considerednly HTTP traffic in our experiments and
hence our resultare best interpreted as representingverst-
case scenario fORED performance on real Internéinks that
carry a mix of HTTP and other trafficlasses. Nonetheless, we
conclude that for links carrying only web traffiRED appears
to provide no clear advantage over tail-drop FIFO for end-user:
whose primary metric ofsatisfaction is responsdime.
Moreover, given the lack of engineering practicegtode the
setting of RED parameter valuesand ourdemonstrationthat
“reasonable,”but nonetheless sub-optimaRED parameters
values can result in poorer performance tHdRO queuing,
without furtheranalysis it is possible thawidespread RED
deployment may not provide the expected benefits.

The remainder of this paper is organized as follows. Section 2

provides a more in-depth introduction RED andreviews the

140

P, = max(avg — min,)/(max, — min,), is computed, where
may, is the maximum droprobability (an additionalcontrol
parameter) andvg is the weighted averaggueuelength. The
actual drop probability is a function of theitial probability
and acount of the number of packet&hqueuedince thelast
packet was droppe®, = P,/(1 —countP,). Note thatgiven a
weighted averagegueuesize, the impact ofmin, is dependent
on bothmay, andmax,. This means that one may findvalue
for min,, that results in good performance, but it mayy be
in combination with certain values afax, and max,. In prin-
ciple, this is the case for all the parametdise main control
parameters for RED are summarized in Table 1.

The design oRED is such that during the drop phases of the
algorithm, high bandwidth flows will have a higher number of

Spackets dropped since their packets arrive at a highethate

lower bandwidth flows (and thus are mdileely to be dropped
in an early dropaction). However, all flows experience the
same lossate under RED. Byusing probabilistic drops, RED
maintains a shorteaveragequeuelength, avoidinglockout
andrepeatedpoenalization ofthe same flows when a burst of
packets arrives.

The original RED paper [12] presentednalysis and several
simulations toshow the results oRED usage and develop

Table 1: RED control parameters.

len The maximum number of packets that
q can be enqueued.
mi Queue length threshold for triggering
M probabilistic drops.
ma Queue length threshold for triggering
% forced drops.
W Weighting factor for the average queug
q length computation.
ma The maximum probability of performing
% an early drop.

insights into the effects differentRED parameters have on

see its effect ooss ratesand averagequeuelength. The re-
sults show that the “best” value farax, is dependent on the
number ofconnectionsand, for anysetting, the drop rate is
not significantly different from that of a tail-droplFO queue.
The argument is alsanadethat the effectiveness dRED de-
creases as the number ofnnections sharinghe queue in-
creases. This is because a small numbesooiectionsactu-
ally receive and act on RED-induced congestion indications.

Results reported in [22] fasimulations of RED with persis-
tent (continuously sendingJCP connections (ranging from
10-1,000 connections)showed that routerqueue lengths
(measured in the total buffer space consunveste at orbelow
the minimum threshold for a small number agfnnections and

performance. They arrived at suggested guidelines for usefulstabilized around the maximum threshold for a large number of

ranges of parameter valuasd explanations othe considera-
tions thatwould influence tuning parameters to achieve de-
sired results for particular trafficharacteristics.Subsequent
analysis byRED's designersand others led to the current
guidelines ([14]) that are discussed later in this paper.

One of the earliest experiments with REIAs reported in[25]
andgives the results of liveéesting with a RED implementa-
tion in a router ahead of a bottleneck DS3 link itramsconti-
nental network. These testgere conducted with amall num-
ber of continuously sending high-bandwidt@CP connec-
tions. Total throughput of th&'CP connectionswas the pri-
mary measure gbperformanceand delays were not measured.
The results showedhat, in general,RED achieved better
throughput and better link utilization for multiple connec-
tions than comparable tail-droplFO. RED was also effective
in preventing congestion collapsghen the TCP windows
were configured to exceed the storage capacity oh#tevork.

connections. Simulationsere also conducted with more “re-
alistic” traffic by using a largenumber of TCP connections
(2,000-3,500) totransfer random size files with a sidéstri-

bution derived from measurements ®¥eb transfers [5]. Be-
tween file transfers, theTCP connections were idle for a

“think time” also based on the sanuata (butwith the mean

reduced by a factor of 10 to generate a heavier IGEt.only

results reported fromsimulations with these traffic condi-

tions, however,werefor buffer occupancy in theRED router

which again demonstrated a tendency to stabibizeund the
maximum threshold for larger numbers of active flows.

Recent work at INRIA has used analytic modatsl simulation
[19] along with live testing on aommercialRED implemen-
tation [18] toquantify the performance effects &ED. The
emphasiswas onquantifying howRED influences lossrates,
patterns of consecutive losmean delayanddelay jitter for
mixes of “bursty” (TCP) and“smooth” (UDP) traffic, when

A very important result showed that the interface queue (buffer)compared with tail-drog-IFO queuemanagementThe results

size is a critical parameter even wiRED andshould be 1-2
times the bandwidth-delay product at a bottleneck link.

A number of research efforts haf@cused onpossible short-
comings of the algorithms iRED and have proposednodifi-
cations and alternatives, among th&JE [11], SRED (Sta-
bilized RED) [22], Adaptive RED [10], FRED (Flow Random
Early Drop) [16], and BRED (BalancedRED) [1]. We do not
comment here on theontributions and merits of thesepro-
posals except to note argnalysis or simulations that ex-
amine the behaviorand performance of “classic’RED. For
example, in [16]simulations are used todemonstratesitua-
tions in which RED does not provideprotection from non-
adaptive flows, and situations in which RED does paoimote
fair sharing of link bandwidth betweeRCP connectionswith
long RTT or small windows, and other competing flows.

In [11] there are a suite of results frans simulations of RED
with ECN (explicit congestionnotification [13]) enabled in
both routers and end-systeRCP implementations.The simu-
lations focusedprimarily on the effects of the parameter,
used to smooth measurements of the avecpgeesize. Inter-
estingly, some of thesesimulations use alarge number of
sources (1,000-4,000) that generate traffic with Paoettff
periods and might providelues tobehavior in web-like traf-
fic. Unfortunately, because all th@mulations use ECN mark-
ing instead of packet drops, and end-to-end delays arearot
sidered, the results are not directly comparableuwowork on
packet-drop RED. Fenet al. presentsns simulations of RED
with packet drops irsituations where a moderate number (32
or 64) of continuously sending’ CP connectionsshare dink
[10]. Herethe maximum droprobability max, wasvaried to

141

from analytic modelsvere confirmed withns simulations for

a number(up to 300) of continuously-sendingfCP connec-
tions sharing a bottleneck linwith UDP flows operating at
10% of the link capacity. Thegoncludedthat TCP “goodput”
does not improvesignificantly with RED and this effect is
largely independent of the number of flows. They also ob-
served that the mean queuing delay is lower with RED but has a
much larger delay variance. In essence, fRED router be-
haved as a tail-drop router with cueuelength equal to the
maximum threshold

Even though the INRIA work considers the effect of bgtleu-
ing delay and drop rates at routers, it doesint#gratethese
effects with the dynamics ofCP congestion controland re-
transmission todetermine the overall result on end-to-end
response timesor interactive or web-like traffic Moreover,
the goal in these experimentgas toexplore how changes in
Cisco’s WRED configuration parameters could used tocon-
trol performanceThe measures of performanaeeerethrough-
put, bytes sentandpercentage otUDP drops. Therewere no
measurements of delays or end-to-end response times. Their
conclusion was that determining the bestombinations of
RED parameters is difficult andpverall, RED did not show
much better performance than tail-dropIFO (except with
larger queuesizes where RED did show some improvement in
performance).

We are aware obnly two available reportdrom network op-
erators that have conducted pilot testsR&D in production —
those byDoran at Ebone [6hnd Reynolds atQualNet (now
Verio) [23]. Doran’s measurements using the Cisoplemen-
tation indicate that RED was able to sustain near 100%za-

tion on a 1,920Kbps customer-access linkhere tail-drop figured to create twgoint-to-point Ethernet segmentéusing
FIFO could not. Reynoldsusedthe Ciscoimplementation of two hubs) that connect the routers [4]. Static rowdescon-

WRED on both eDS3 core networklink and a DSlcustomer- figured on the routers so that traffic flowing from thervers
accesslink. For the heavily congested periods on tlere to the browsers uses one Ethernet segraedtraffic flowing
link, it was foundthat awide separation ofgueuethresholds in the opposite directionuses the other Ethernetegment.
(min,, = 60, max, = 500) producedthe best tradeoff fotink This configuration allows us to approximate the full-duplex

utilization andlow drop ratesand wassomewhat superior to behavior of the typicalWwide-arealink to an ISP from a cus-
tail-drop FIFO.The defaultvalues for dropprobability (1/10) tomer’s network. By configuring the router-to-routéthernet
andsmoothing factor (1/512)were usedcandtheir effects not segments to run at only 10 Mbps, we can malerepresenta-
studied. For the customer accd3S1 links, (apparently) the tion of the ISP link be gotential bottleneck sincthe aggre-
defaultsettings were used. Thesdinks were congestedonly gate bandwidth available to the machinesath edge of the
during some intervals and some increase in end-toaiescy network is constrained only by the 100 Mbiasks from the
was observed withRED but the claimwas madethat “... the VLANSs to the routers. When thknks connectingthe routers
user is not, in my opinion, inconvenienced, and hasbgee- are configured to run at 100 Mbps, the bottleneck is removed.

fit of limited packet loss" [23]. Another importantfactor in modeling thisconfiguration is

In summary, while the results from these studies handed the effect of end-to-endhtency. Weuse the dummynet[7]
important pieces oévidence to the growing corpus ioffor- component offFreeBSD toconfigure in-bound packedelays
mation aboutRED, important elementsare missing. In par- on theendsystems toemulate different round-trip times be-
ticular, none of the work wiound explicitly considers RED tween each paring of a browser machéme aservermachine.
interactionswith Web-like traffic where end-to-endesponse The delays ranged fron7-137 millisecondsand were derived
time is the primarymeasure operformance. Further, many of from measurementiata obtained at theNetStat.netweb site

the results on RED performance are based on “best save’* [20]. The delays were chosen to represent a sampletefnet
lations in which a constant number BEP connections, each round-trip times within thecontinental U.S. A given delay
sending continuously, sharegaeuefacing a bottlenecKink. represents the minimum round-trip time experienced by an

In the work reported here, we consider theposite “worst arbitrary TCP connectionbetween a given pair of client and
case” in which there is a dynamically changing number of TCP server machines imur experiments (assuming no delays in

connections with highly variable lifetimes. the two routers). As explained below, the distribution of TCP
) connections over pairs of machines shouldaperoximately
3. Experimental Methods uniform and, thus, we can calculate the mean mininsaid-

trip time for all TCP connections sharinghe network as ap-
proximately 79 milliseconds. Thdefault TCP window size in
FreeBSD 0f16K bytes wasused onall the end systems (for
other characteristics of the TCP implementation as well as the
actual delay values used, see [4]).

3.1 Experimental Network

For our experiments we constructed a laboratory netwiosk
models an enterprise or campus network having a siwgle-
arealink to an upstream Internet service provider (ISP). All
traffic using thelSP link is Web traffic wherethe requesters

(browsers) are all located on the enterprisecampusnetwork The instrumentationused tocollect networkdata duringruns
and all the requests are satisfied \Bgb servers locatedome- of the experiments consists of two monitoring programs. One
where on the Internet beyond the ISP link. monitor is on the router interfacghere we arexamining the

effects ofqueuealgorithms. ltcalculates a meaandvariance
of the queue size sampled everyndliseconds. The maximum
and minimum queue size seen in aample is alsaollected.
These statistics are logged every 100 milliseconds aioitly
more general information about the number of transmitted and
droppedpackets. A monitoringmachine is connected to the
hubs forming the links between the routers. It collgetsing

a modified version of thécpdumputility) the TCP/IP headers
in each frame traversing tHaks andprocesses these fmro-
duce a log of link throughput over each specified timierval
(typically one second). End-to-end performance measuek
as response timeare measured onhe end-systems as de-
scribed below.

The laboratory network used to emulate this configuration is a
collection of Intel architecture machines runningreeBSD
2.2.8. Atone edge ofthis networkare machines thatun in-
stances of &V/eb requesgenerator (described below) each of
which emulates the browsing behavior lafndreds ofhuman
users. At the otheedge ofthe networkare another set of ma-
chines thatrun instances of aVeb response generatd@also
described below) that creates traffic response to the brow-
ers' requests. In the remainder of this paper we reféreana-
chines running theWeb requestgenerator simply as the
“browser machines” (or “browsers”) and the machimesning

the Web response generator as the “server machines” (or
“servers”). The browser and server machines hav&0/100
Mbps Ethernet interfaces configured in atonly 10 Mbps 3.2 Web-like Traffic Generation

and are attached to a switched VLAN on a CiSystems Cata- The traffic that drives the@xperimentsdescribed here ibased
lyst 5000 (all browser machinesre onone VLAN and all on the model of web browsing developed by Mah [Mhh’s
server machines are on a separate VLAN). model is anapplication-level description ofhe critical ele-

At the core ofthis networkaretwo router machinesunning ments that characterize how HTTP 1.0 [ptptocols are used.

the ALTQ version 1.2 extensions treeBSD.ALTQ extends 't IS based on empirical data and is intendedufs ingenerat-

the network-interface outpuueuing discipline to include N9 Synthetic Web workloads. The datawere extractedfrom
FIFO, RED, CBQ, andWFQ queuemanagement [15]. These more the}n 230 hours of traces collected_on the UC-Berkeley
router machines are 300 Mhz Pentium Ils. Each rouchine ~ C2MPus in late 1995 and include over infilion HTTP proto-

has one 100 Mbps Ethernet interface attached to one of th&©! packets. These dawmere used tccompute empiricablistri-
switchedVLANs on the Catalyst5000. Each routermachine utions describing elements necessary to genespiehetic
also has two additional 10/100 Mbps Ethernet interfanes- HTTP workloads. The elements of the HTTP model are:

142

e HTTP request length in bytes, gesting that asnany as 30% oHTTP requests nowuse the
HTTP 1.1 protocol, we have been unable to find datmodels

* HTTP reply length in bytes, sufficient for building asynthetic workload generator for

* Number of embedded (file) references per page, HTTP 1.1. For these reasons we generate only HTTRraffic
« Time between retrieval of two successive pages (userin OUr experiments. We note, however, tftae olderHTTP
“think” time), and 1.0 protocols are expected to represent a gegpificant por-
. tion of Web traffic for some time because of difficultiegith

* Number of consecutive pages requested from a server. mjgrating the installed base of browsers. Furthermore, our

The empirical distributionsfor all these elementareused in ~ focus onHTTP 1.0 serves as a worst-case analysis of RED

synthetic-traffic generator programs weote. The elements performance.

that have the most pronounced effects on generated traffic arg 3 xperiment Calibrations
the size of server responses, the number of requesessary

to download a page (including aimbeddedeferences), and
the user“think” time between successive page requests. We
used the Mah model to write Web-traffigneratingprograms
using the normalsocketsystem calls provided in FreeBS
Most of the behavioral elements W¥eb browsing are emu-
lated in the client-side request-generating program. ptis
mary parameter is the number lofowsing users (typically
several hundred) the program is to represent. For each user, t
program implements a simple state machine tegiresents
the user’s state as eith&hinking” or requesting aveb page.

If requesting awveb page, a separat€CP connection, as im- Thefirst calibration performedwas to verify that thetraffic
plied by theHTTP 1.0 protocol, ismade tothe server-side generator programs did not have any resoemestraintsthat
portion of the program for the primary pagedeach embed- limited their ability toemulate hundreds of users. Thez®-

ded reference (the distribution of embedded referencepaupe grams were implemented using efficient programmirtgch-

is used to generate a random value). Another parameter of thaiques formanaging large numbers of sockebnnections
program is the number of concurrent T€&hnectionsallowed (based in part on Bangand Druschel's scalable methods for
on behalf of eachrowsing user to makeembeddedrequests generatingHTTP requests [2]). Fothis calibration wefirst
within a page (this parameter is used to mimic the behavior ofselected the slowest machine in our network (a 66 Mhz 486) to
Netscape and Internet Explorer). run the browser program. We ran oiestance of theserver-

For each request, a message of random size (sampled from thSlde program on each of the server machiaed configured

request sizadistribution) is sent to theerver programThis ‘Fe browser program to select uniformly from all servers for

q . prog : eachnew sequence gfage requestsThe number ofbrowsing
message contains a value thepresents thaumber ofbytes users was varied from 500 to 1,480dthe bandwidthused on
the server is to return as a response (a random sample from th K

distribution of response sizes)he server sends this number the 10 Mbps interface to the browser machine is plotted in

of bytes back to the browsandcloses theTCP connection. EIS%L:rse %hgzearfelfsrl]ﬁttlsoghg\flvtt?\i\tnolig:) ?r:isoiasr‘lmzaugt?ggzmt%ere is
For the experiments reported here, the server's “semice” : g !

is set to zero so theesponse begins as soon as thquest a linear increase in generated traffiedthe traffic issignifi-

. . cantly less than the capacity of the host's 10 Mhyisrface.
message has been received and parsed (this roughly models th . : - :
behavior of aWeb server or proxyhaving a largemain- e repeated this experiment with a 200 Mhz PentiumviRtb

memory cache with hit-ratio near 1.0). For each re- the results also shown in Figure 1 for further confirmatioat

auesiesponse pr, he rowser program Iogrssponse O IIEace epecds of e sysemar o resoute
time. Response time idefined as the elapsed time milli-) g

seconds between the time of the sockehnect()operation simulating nomore than1,400 users each, we can tenfi-

and the time theesponse is completeahdthe connection is gggargztaflr:gen?onaﬁiirblcg Lfirscjggugﬁgemezp%gﬁzt l;s
closed. Note thathis response time ifor each element of a p) 9

age. not the total time to load all elements of a bage program can nofaithfully simulate hundreds obrowsers be-
page, page. cause by default, a single FreeBSD process usanatmost 64

When all the request/response pairs for a page have dogen sockets simultaneouslyHowever, because uséhink times
pleted, the emulated browsing user enters“thaking” state are much longer than the times required to reqpages,most
and makes no more requests for a period of time sanigeud of the emulated usemreidle at any time. Wexplicitly per-
the think-time distribution. The number of page requests the formed experiments to demonstrate that the 64 socket descrip-
user makes in succession to a given server machisanigpled tors limitation was never encountered in practice. Witirai-

There are two critical elements ofir experimental procedures
that had to becalibrated before performingxperiments: (1)
ensuring that no element on the end-to-end path represented a
D primary bottleneck other than when theks connecting the

* two routers are limited to 10 Mbps, and (2) the offered load on
the network can be predictably controlled using the number of
emulatedbrowsing users as a parameter to the traffienera-
hté)r. To perform these calibrations, we first configured the two
segments connectinthe routers to eliminateongestion by
running at 100 Mbps.

from the distribution of consecutive page requests. Whar lar experiment we also verified that even the slowsstver
number of page requests has been completed, the server tmachine could handle a maximum number of expected requests
handle subsequent requests is selected randandyiniformly without reaching a resource limitation.

from the set of active servers. The number of emulated users

i . . .
constant throughout the execution of each experiment. ?—or the nextcalibration, weran aninstance of thebrowser

program on each of the browser machines and agaiformly

The HTTP 1.0 protocoimplies theuse of a newlfCP connec- distributed requests across all serweachines. Each browser

tion for each request/response pair. Thistocol is gradually wasconfigured to emulate the same number of users with the
being replaced by the more efficient HTTP hidbotocol which total users varied from 700 t,075. Aggregate traffic on the
allows multiple and pipelined requests to reus@€CP connec- path carrying response traffic from the servers was plotted as a
tions [21]. While some data have been reported (9]) sug- function of emulatedbrowsers (users) as shown in Figure 2.

143

4500 T
.

e

200Mhz Péntium Pro
66 Mhz 486
4000

3500

3000

Kbps

/

2500

=

2000

1500

1000
400

600 800 1000

Browsers

1200 1400

Kbps

16000

14000 7,/“// f
12000 ﬁ‘/
10000 -

8000 // i

6000 y/ /

4000 /// }

2000 f measured —+—

y= 2.9‘5x-53.‘60 fffffff

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Browsers

Figure 1: Offered load as a function of the number of simirigure 2: Offered load as a function of the number of simu-

lated users on one machine.

220

200

180

WM ‘

160

|
] l I\|‘

140

120

100

Requests per second
KBytes per second

80

‘ ‘HH“‘\H
60 ‘ ‘

40

500 1000

Seconds

Figure 3: Requests per second from 3,500 users.

1500 2000

Again the load is a linear function of browsers indicatihgre
are nofundamental resourcBmitations in the system and
generated loads can eas#yceed thecapacity of a 10Mbps

lated users on 7 machines.

5000
4500

4000

3500

3000

2500

2000

1500

1000
500

0 I I I
0 500 1000 1500

Seconds
Figure 4: Bytes requested per second from 3,500 users.

2000

ters, the server-side processesre started followed by the
browser processes. Each browser emulatedgaalnumber of
userschosen, aslescribedabove, to place a nominaiffered

link. With these data we can determine the number of emulatedoad on an unconstrained (100 Mbps) netwotke offered

browsers thatwould generate a specifioffered load in our
laboratory if therewere nobottleneck link presentThis ca-
pability is used insubsequenéexperiments to control the of-
fered loads on the network, including loads thabminally
exceed thecapacity of a 10 Mbps linkFor example, if we
want to generate aoffered loadequal tothe capacity of a 10
Mbps link, we use Figure 2 to determine that nged toemu-
late approximately 3,400 browsing usefst a load 0f110%
(11 Mbps) we need to emulate 3,750 users.

A motivation for choosing Web-like traffic to drivethese

loads used in the experiments were chosen to represent 50, 70,
80, 90, 98, or 110 percent of the capacity of a 10 Mibpk
connectingthe two routermachines.Loads exceeding110%

were tried; it turned out, however, that the extreme duration of
the connections when using a congested link causedraffec
generators to occasionally use all available sockets and fail to
generate thaelesiredlevel of traffic. Because theneasured re-
sponse times atlaad of 120%had deteriorated wellbeyond
levels that most usemsould tolerate, wedecided tonot con-

sider loads beyond 110% on the congested link.

experiments was the assumption that properly generated trafEach experimentwas runfor 90 minutes butdata collected

fic would exhibit highly variableand bursty demands on the
network. To illustrate that this imdeed realized wittour ex-

during the first 20 minutesvas discarded teliminate startup
and stabilization effects. These effects are illustrated in Figure

perimental setup, we have plotted the results from one of the5 which shows a plot of mean response tinf@srequestgur-

calibration experiments (3,500 browsers)Figures 3and 4.
These plots show the number of requésisated during each
one second intervaleach request requiresnaw TCP connec-
tion) andthe number ofbytes requestednot necessarily re-
ceived) in each one secondterval. Clearly theseshow the
highly bursty nature of the traffic actually generated.

3.4 Experimental Procedures

Each experiment was run using tfadlowing procedure. After
initializing and configuring all routeand end-system parame-

144

ing each one second interval in a typical experimé&gure 6

gives a plot of the cumulativdistribution of respons¢imes

at a load from3,500 browsers in an unconstrainatetwork.

Note that about 90% of the requests complete in mlllisec-

onds or less. Figure 6 represents the best-case performance for
HTTP request/response pailand will be used as @&asis for
comparison with experiments on the constrairfedngested)
network link. Table 2 shows the number of requesiserated
during a 70 minutenterval for each of the loads inypical

runs on the unconstrained network.

9000

100

8000

80

7000

6000 |

60

5000

4000

40

3000

Average Response Time (ms)
Cumulative Probability (%)

2000 i

20

1000

+

3500 br?wsers

1500

0 I I I I I
0 1000 2000 3000 4000 5000

Seconds
Figure 5: Average response time per second during an efigure 6: Cumulative response time distribution for 3,500
periment. The plot includes the initial 20 minutes, where the users on the unconstrained (100 Mbps) network.
traffic generators are started and stabilize.

500 1000

Response Time (ms)

2000

Becauseaesponsesare muchlarger than requests, the load on and delay is the mean round-trip time for @innections shar-

the link between routers that carries traffic from the servers toing the link — a value thas, in general, very difficult to de-

the browsers will be much greater than that on the link carry-termine. Forour experimental network, theneanminimum

ing traffic in theopposite direction. Consequently, only the round-trip time can be computed as 79 milliseconds and the 10
effects of differentqueuemanagement algorithms othe IP Mbps link has a bandwidth-delay productagproximately 96
output queuefor this link interfaceare reported hereThe IP KB. FreeBSDqueuesare allocated in terms of a number of
output queues for thiénk interfaces on all other machines in buffer elementsnibufg each with capacity to hold an tta-

the networkweretail-drop FIFO queuesvith the FreeBSD de- gram of Ethernet MTU size. We measured the mean IP datagram

fault queue size of 5@lements.Datacollected on thesénter-
faces using thaetstatfunction showed no dropped packets.

The key indicators of performance wese in reporting our
results are the end-to-end response timefor each re-
guest/response pair. We report sevaraasures ofesponse
times including the median, the percent of requestsiplet-
ing in intervals of 0-1, 1-2, 2-3andgreater than 3econds,
andplots of the cumulativedistributions of responséimes
(usually showing only times less than equal to 2seconds).

size inour generatedNeb response traffic to be just over 1K
bytes so the~IFO queueshould haveapproximately190-380
queue elements to fall within the guidelines.

We ran a number of experiments with a FIg@ue onthe bot-
tleneck link varying theoffered loadand queuesize. Figure 7
shows the cumulative response time distributidmsdifferent
FIFO queue sizes #&ads of 80%, 90%, 98%and110%. At a
load of 80%, there idittle effect fromincreasing thequeue
size from 30 to 24Glements. AB0% load webegin to see

We alsomeasuredhe percent of IP datagrams dropped at the
link queue, the meagueuesize, andthe link throughputactu-
ally achieved on the bottleneck link.

queuesize havingmore significant effects on responsémes

and observe that gueuesize of 120 elements israasonable
choice forthis loading. The effect thatqueuesize has on re-
sponse times depends on the size of the HTTP resplataeas

Table 2: Typical numbers of requests in a 70 minute interval. is shown in theplots for 98% load.Increasing thequeuesize

Load % Requests Load % Requests from 30 to 120 has alightly negative effect onrelatively
50 240,379 90 425,293 short responses that could complete ifeva hundredmillisec-
70 329638 08 461837 onds by increasing the amount of time each packet spends in
! ! the queue.For a 10 Mbps Etherndink and anaverage frame
80 375,673 110 521,561 size around 1 KBapproximately 1,000 packetsan befor-

warded per second. Thus a packetiving at thequeuealready

containing 100 packets has Wit approximately 100milli-
4. FIFO Results seconds on the routeBuch a delay isignificant for requests
To establish a baseline for evaluating the effects of using REDywith short responses thanay otherwise completavithin
on interfacequeuesfor links carrying only Web traffic, we 200-350 milliseconds. Otthe other hand, increasing the
first examined the effects of FIFO queues with tall-dtmhav- gueue size from 30 to 120 reduces response taiggsficantly
ior in our experimental networkFor theseexperiments we for long requests. Even though the time spent incineue by
created &Ottleneckbetwee.n the two routers bgonfiguring each packet igonger’ thereducedrate of drops meanghat
the two segments connecting the router machinesitat 10 |onger responsesreless likely to encounteretransmission
Mbps using 10 Mbps hubsThe critical parameter for &IFO timeouts (whichare often longer thanqueuing delays by a
queue is the size of the buffer space allocated to holdjubee factor of 5-10 times). At queue sizes of 190 or 240itiveease
elements. Guidelines (Or “rules of thumb”) for determining the in response times for Shorgquests appears to offset any im-

“best” queuesize have been widely debatedvariousvenues provement gained for longer requests from reduced drops.
including the IRTF end2end-interestmailing list [8]. The

guideline that appears to have attracted a rough consensus QU results indicate that, overall, FIFO queuesize of 120
to provide bufferingapproximately equal to 2-4 times the €léments (abouf.25 times the bandwidth-delgyroduct) to
bandwidth-delay product of thénk. Bandwidth in this ex- 190 elements (2 times bandwidth-delay) is a reasonztinbéce

pression is that ofhe link for the interface using theueue for loads up to thdink capacity. For offered loadghat only

145

100

80

60

40

Cumulative Probability (%)

queue length=30
queue length=60
queue length=120
queue length=190
queue Iengtlh:240

20

B0 X X +

500 1000

Response Time (ms)

Figure 7a: FIFO performance at 80% load.

;—;g:g:ézé:%
e e aaans

1500 2000

100

80

60

P
I

40

queue length=30
queue length=60
queue length=90
queue length=120
queue length=190
queue Ienggh:240

Cumulative Probability (%)

20

O W% X +

500 1000

Response Time (ms)

Figure 7c. FIFO performance at 98% load.

1500 2000

slightly exceed thelink capacity €.g, 110%), weobserve
that queuesizes beyond 120 only exacerbate aready bad
situation. Additional measures of performance in these ex-
periments, including link utilizatioranddrop rates,confirm
that our selection oflueuesizes of 120-190 represendason-
able tradeoffs foresponse times withousignificant loss of
link utilization or high drop rates [4].

Theseexperiments illustratéas queuingtheory predicts) the
dramatic effect thabffered loads near aslightly beyond the
link capacity have on response timdsgure 8 shows the
cumulative distribution of response times for these loaidh

P e

100

80

g

z

2 &0 %

Qo

<) M

o L o—eo—o—o¢

2 /e/e/f

= 40

=

=1

5 load=50% +

o load=70% X

20 load=80% x -

load=90% @O
load=98% =
Ioad‘:llo% o

500 1000

Response Time (ms)
Figure 8: FIFO performance for different loads with a
gueue length of 120 elements.

1500 2000

146

100

80

i
4
4

60

40

queue length=30
queue length=60
queue length=90
queue length=120
queue length=190
queue Iengtlh=240

Cumulative Probability (%)

20

O mOx X +

500 1000

Response Time (ms)

Figure 7b: FIFO performance at 90% load.

1500 2000

100

80

60

/-ﬂiﬂl"*"/'/././l

queue length=30
queue length=60
queue length=90
queue length=120
queue length=190
queue Ienth:240

40

Cumulative Probability (%)

y v
/j//ﬁ//ﬁj/

500

20

O m0O*x X +

0

0 1000

Response Time (ms)

Figure 7d: FIFO performance at 110% load.

1500 2000

a FIFO queue of 120 elements. Clearly, response tolegsade
sharply when the offered loadpproaches oexceeddink ca-
pacity. If anISP haslinks that experience utilizatiormbove
90% over intervals greater thanfeav minutes, responséme
for Web users arseriously impacted. A secorithportant ob-
servation is that at loads belo80% there is nosignificant
change in response times as a function of load.

5. RED Results

The goal for our experiments withRED was to determine pa-
rameter settings thatprovide good performance for Web-
traffic. We also examined the tradeoffs among the different
parameters in tuning for performanc&@he RED queuing
mechanism has five different parameters for adjusting the al-
gorithm’s behavior. An exhaustive search for the best parame-
ter values isimpossible because of the number gfossible
combinations ofvalues. Our approach for theRED experi-
mentswas todesign an initialset of experiments thatould
give a broadapproximation ofparameter values that result in
good HTTP performance. We then examine the effectsany-

ing each parameter individually usinghis initial de-
termination as a baseline.

From our experiments with FIFO it is clear that there =m-
plex tradeoff between response times $bort responseshat
can be completed in few hundredmilliseconds (best with a
short queue)and response timedor longer responses(best
with longer queuesandlower drop rates)The original Floyd
andJacobsonpaper [12] suggests guidelindsr tuning pa-

rameters that have been revised based on subsegupati-
enceand analysis (see [14] for the currerduidelines). These
guidelines suggest that the most fundamental effamsde-
termined by themin, andw, parameters which contrarade-

offs between average queue size and sensitivity to the duration

of periods ofcongestion.For our initial experiments we de-

cided to eliminate the size of the physical queue as a factor and
set the number of queue elements to 480, more than double the

largest averageueuesize seen in thd-IFO experiments. In
these experiments wearied min, beginning with the guide-
line value of 5 and ranging up 0. Wefixed may, at 0.10,
w, at 0.002 (actually 1/512), andax, at 3 timesmin, as sug-
gested in the current guidelines.

Each ofthe parametesettingswas tried at five different of-

fered loads: 50%, 70%, 80%, 98%, and 110%. At 50% load the

number of dropped packetgsasbetween 0.00%@nd0.01% of

the total number of packetdransmitted. This means that at

loads of 50%andbelow, there is limited room fancreasing
the performance of the routgueuingmechanism. Posproc-

100

]

load=50%
load=70%
load=80%
load=90%
load=98%
Ioadfllo%

Cumulative Probability (%)

iy
/

20

omOX X +
i

0 500 1000

Response Time (ms)
Figure 9: The performance of RED at different loads.
w,=1/512 max=1/10, min,=30, max=90, glen=480.

1500 2000

We see, as in the case of FIFO, that there is a trabebffeen

essing of the logs shows that theeuesize never reaches the better response times fehort responses at (30, 98)d im-
maximum value of 480 even at a load of 110%, though it isproving response timefor longer ones at (60180), espe-
possible in avorst-case scenario. As expected, the perform- cially at the 98% load. Although the differenca® not great,

ance changesignificantly asthe load is increased from 50%
to 110%. Figure 9Qllustrates typical result§rom these ex-
periments by showing the effect of varying loadsresponse
time distributions with in,, max,) set to (30, 90).

It is encouraging to see that performance degradatioty
occurs at loads greater then 70&specially when combined

we prefer (30, 90) on the grounds that about 70% of the re-
quests experience somewhat bet@sponse times thawith

(60, 180). (One could also argue that (60, 180) is best because
it improves the most noticeable delaysike the FIFO re-

sults, response times at loads of 110% are quite bad and are not
improved by changing the RED settings forif,,, max,).

with the fact that the drop rates at 50% load never exceedsVe next consider varying the ratio betwemin, andmax, by

0.01% of the packets received at the router. This indicdias
parameter tuning will have limited effect until loadsach
levels of 70-80% of link capacitywhen loads exceed@0%,
the performance decreasesonotonically asthe load in-

creasesThe most significantperformance decrease occurs at

load levels90-110%. Theseare the mostinteresting targets
for optimization, since this isvherethere issignificant per-
formance to gain.

We start by exploringpossible choicedor min, and max,,.
Figure 10 shows theesponse timalistributions for the 90%
and 98% offeredloads, respectively.These resultsclearly

holding one constant and varying the other.s€e the effect
of min,, we first fixedmax, at 90 andvaried min,. We then
held min, constant at 3Gndvaried max,. We fixed max, at
0.10, w, at 0.002 (actually 1/512), andglen at 480 as in the
previous experimentsFigure 1lillustrates theeffect from
varying min,, on the response timaistributions for the 90%
load. Theresults obtained by varyingnax, are similar. The
results from theseexperiments, in generakhow only mar-
ginal changes in response times [jak utilization) andcon-
firmed thenotion thatthe best balance of response times for
all sizes of responses with the loadensidered here are
achieved withmin, = 30 andmax, = 90.

show that a naive application of the guidelines in [14] with a
min,, of 5 would result in poor performance for Web-dominated

Experiments testing the impact of changiwgandmax, were
traffic. The best overall response-time performance is ob-

tained with values fornfin,, max,) of (30, 90) or (60,180).

100

T X
e

Cumulative Probability (%)

40
ﬁ minth=5,maxth=15

20 minth=15,maxth=45
minth=30,maxth=90
minth=60,maxth=180
minth:lZO,math:360

1500

WX X +

0 Il
0 500 1000
Response Time (ms)

2000

combined because of the closslationship between the two
parametersThe values usedfor w, were: 1/512, 1/256, and

100

5 e em ==
M

% v P
é-,/*——%—’O—‘—"—’*’//

Cumulative Probability (%)

minth=5,maxth=15 +
minth=15,maxth=45 x
minth=30,maxth=90 *
minth=60,maxth=180 ©

‘ minth:lZO,maxt‘h:SGO u

1000
Response Time (ms)

w i
A /s

0 500

1500 2000

Figure 10a Response time CDF for offered load at 90% dfigure 10b: Response time CDF for offered load at 98% of

link capacity (,=1/512 max=1/10, qlen=480).

147

link capacity (,=1/512 max=1/10, qlen=480).

100

80
60 /
40

/ minth=5
20

Cumulative Probability (%)

mipth:GO

0 500 1000

Response Time (ms)

1500 2000

+

minth=15 x] 20 wg=1/256, maxp=1/4

minth=30 x wg=1/128, maxp=1/20

minth=45 © wqg=1/128, maxp=1/10
L}

80

60 /
20 wq=1/512, maxp=1/20

wq=1/512, maxp=1/10
/ wg=1/512, maxp=1/4

Cumulative Probability (%)

wq=1/256, maxp=1/20
wq=1/256, maxp=1/10

»>eO Wm0 X X+

‘ wq=1/128, ma‘><p:1/4

1000 1500
Response Time (ms)

0 500 2000

Figure 11 The effect of changingin,. Load = 90% and Figure 12 Results for different values @f, andmax,. Load =

max, = 90,w,=1/512, max=1/10, qler~480.

1/128. (The implementation &&ED requires thedenominator
to be a power of 2.) Decreasingto 1/1024 wastried, but we

found it to be anunrealistic setting thatauses reaction to
congestion to bejuite slow. The values ofmay, used were
0.05, 0.10, and 0.25The remaining parametersere fixed at

min, = 30, max, = 90, andqglen = 480. All the different set-

tings were tested at loads of 90, 98, and 110%.

These experiments showed that at all load levelsé#tgng of

max, to 0.25 has a negative impact on performance, becaus

too many packetsre dropped. Figure 12 shows thesults
from the experiments at 90% load (the results at @8&simi-
lar). At 90% and at98% load, the difference between thet-
tings occurs beyond the knee (above th® F&rcentile) of the
CDF, meaning that changeswf andmax, mainly impact the

longer flows. Overall, however, we conclude that there is no

strong evidence to indicate using values other than shg-
gestedw, = 1/512 andnay, = 0.10.

Finally, we consider the effect dfaving a limit on thequeue
size such that therare occasionallyforced drops because the
instantaneousjueueexceeds the buffespace. Table 3Jjives
experimental results wittour recommendedralues of RED
parameters for actuajueuesizes of 480, 160and 120 ele-
ments. These results are very similar to Bi€O results — the
120 elementqueue (1.25 times bandwidth-delay) is m@ea-
sonable choice at 90% and 110% loads while a logeue of

2-3 times bandwidth-delay might provide some advantage at

loads just below link saturation.

Our conclusion is that, except forin, which should be set to
larger values to accommodate theghly bursty character of
Web traffic, the guidelines foRED parametersettings and for

90%, andglen = 480,min,, = 30, max, = 90.

that attempting tdune RED parameters outside these guide-
lines is unlikely to yieldsignificant benefits. Tadllustrate
this point, weexamined the entire suite of experimersn-
ductedfor the 90%and 98% loads (including some trial ex-
periments with parameter values outside the ramgesrted
above) to find thecombination of settings thajave thebest
results on three performance measures: “best” respimses
(a subjective choice because of the trade-off betvirgrov-

éng response timegor short v. long responses), besink

Utilization, and lowest drop rate. Thesettings areshown in
Table 4 and theesponse times shown ifigure 13. For 90%
load, there areelatively smalldifferences between tuning for
highest link utilization or lowestrop ratesand tuning for
response times. At 98% loads, tuning Faghest link utiliza-
tion has potentially serious effects on increasingesponse
times. Note that the “best” overaltesponse timesare ob-
tained for the 98% load (only) with parameters tha¢ quite
different from ourgenerally recommendedettings. (In Figure
13, the “uncongestedplots refer to the performance on the
unconstrained 100 Mbps network.)

There is, moreover, a significantdown-side potential for
choosing “bad” parameter settings, especially at near-
saturation loads. We agasearched the entire set ekperi-
ments for the 90% and 98% loads looking for combinations of
RED parameters thaproducedresponse times that (subjec-
tively) represented poor choicese(, choices that increased
response times significantly for larger numbers of eitfieort
or long responses)Figure 14 shows these result€learly
some parametesettings produceresults thatare considerably
less desirable than our recommended ones.

configuring interface buffer sizes (FIFO and RED) also hold for 6. Comparing FIFO and RED
the Web-like traffic used in our experiments. We also conclude,:igure 15 shows the response tidistributions for RED and

FIFO with the parameters selected as a

Table 3. RED performance with recommended parameters and queue lengthsesult of our experiments abffered loads

of 90%, 98%, and 110%, respectively.

Load Queue % Mean Median % <1 1<%<2 2<%<3 % >3 .

% Length KB/s drop queue resp.(ms) sec sec sec sec Also included for referenceare the re-
90 7230 1079 0.8 20.2 266 905 73 50 T3 sponse timedistributions at thesdoads
90 160 1093 1.1 22.2 278 91.2 4.7 2.4 1Jz from the calibrations on thanconstrained
90 120 1066 0.7 18.8 266 93.0 4.1 1.7 1P network. The only case in which there is a
98 480 1164 4.1 39.4 345 79.2 8.2 6.3 63 distinct advantagdrom using RED is at
98 160 1175 5.9 46.3 397 72.4 9.7 8.2 97 the 98% loadwhere response times for
98 120 1171 55 44.3 377 74.2 9.2 7.7 80 shorter response$80% of requests) are
110 480 1187 19.7 76.0 1846 39.4 12.9 12.1 35.5 improved with Carefu“ytuned RED pa-
110 160 1188 19.5 76.6 1864 39.1 13.0 12.2 3%.7 rameters.

110 120 1188 18.9 77.0 1840 39.3 13.2 12.5 34.9

148

100

100 ——
o j/) ﬁ o / M*I—SH" Vf
g g o o
s > /)é /Z/Z/E/E/E
3 3
El 60 El 60 o
< <
a a
Q Q
= >
£ 40 £ 40
=} =]
§ €
[8) uncongested + 3 uncongested +
20 best setting at 90% load x| 20 best setting at 90% load ~ x]
best setting at 98% load * best setting at 98% load ~ *
highest link utilization & highest link utilization o
0 lowest dr(lJp rate L]) lowest drc|>p rate L]
0
0 500 1000 1500 2000 0 500

1000
Response Time (ms)

Figure 13a “Good” RED parameter settings at 90% loadFigure 13b: “Good” RED parameters settings at 98% load.

100 %w —

-2

1500 2000

Response Time (ms)

100

L]

80 W%H .

80

5 5 U= S
z z / -
S 60 S 60 e
Qo Qo
< <) j
o o
[[
2 40 2 40
ket ket
> >
£ g
O O best setting +
20 best setting + 20 - wg=1/512, maxp=1/20, th=(5,15),qlen=60 x
wqg=1/512, max_p=1/10, th=(5,15), qlen=480 x wq=1/512, maxp=1/10,th=(5,45),qlen=480 *
wq=1/256, maxp=1/4, th=(5,120), qlen=480 * wq=1/512, maxp=1/4, th=(5,90),qlen=480 O
Wq:l/'ISlZ, maxp:lllO,lth:(120,150), qleln:480 o wq:1/|512, maxp:lllO,lth:(:LZO,SGO), qleln:480 u
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000

Response Time (ms) Response Time (ms)

Figure 14a “Bad” RED parameters settings at 90% load. Figure 14b: “Bad” RED parameters settings at 98% load.

times are more sensitive tothe actual values dRED parame-
ters. In particular, there is greater down-smsential from
choosing “bad” parameter values as illustrated in Fidutb.
This is significant because parametegettings that outper-
formed FIFO werarrived atonly through extensive trial-and-
error experimentation. lwasalso the case that thRED pa-

7. Conclusions and Future Directions

Based on ouexperiments wesummarizeour conclusions as
follows. Contrary toexpectations,for offered loads near or
below the levels of link saturation (90% or less), therbtite

difference in end-to-end response times betweerbést-tuned

RED and tail-drop FIFO configured with 1-2 times the band-
width-delay product in buffespace. Tuning of th&RED pa-

rameters generallproducedittle gain (or loss) in response .
time performance, however, as illustrated in Figure 14a, onel 9eneral we observed a complex trade-off betwetemosing

canuseplausible valuedor certain RED parametersand pro-

duce poorer performance.

At offered loadsthat approach link saturation (abo@®%),

RED can be carefully tuned tgield performancesomewhat
superior to properly configured tail-drop FIFDhe difference

is probably significant onlybetween 90%and 100% loading

rameters that provide the best link utilization at thuad pro-
duce poorer response times.

parameters that improve response tifoe short responses
(those consisting of only a feWCP segments)andthose that
improve response time®r longer responses. Waave cho-

sen to favor those parametsgttings that improve perform-
ance for the largest fraction oésponsesandhence have fo-
cused on improving response times for the shorter responses.

as response times degrade so rapidly above this level that an?ualitatively these conclusions imply that providiagequate
“improvement” from tuning RED (or FIFO) is, at best, a sec-
ond-order effect. Moreover, at loads above 90%sponse

Table 4 Empirically determined “best” RED parameter values.

149

nk capacity (utilization less than 90%) is far maoneportant
for Web response times than tuningueuemanagement pa-
rameters. If onedecides todeploy RED for any reason, re-
sponse timedor Web-dominated trafficare not likely to be

- impacted positively and, unlesscareful experimentation is
Load | min, max, W, max Notes performed, response times can suffer. Given the current lack of
90 30,90 1/512 1/10| best overall responsg a widely-accepted analytienodel for RED performance or

90 30,90 1/512 1/20| highest link utilization field-tested engineering guidelinegor RED deployment and

90 120,360 1/512 1/10| lowest drop rate the complexity of settingRED parameters, there seems to be
98 5,90 1/128 1/20| best overall responsg no advantage to RED deployment bmks carrying only Web

98 30,180 1/512 1/10| highest link utilizatiop traffic.

98 90,150 1/512 1/10 lowest drop rate

100

/4/}/*/_‘,,_4,_4,—,—,— -1
- 80 /
g
2 /
S 60
Q
S
o
2 40
&
3
£
O uncongested +
20 FIFO - glen=120 x
FIFO - glen=190 *
RED - wgq=1/512, maxp=1/10,th=(30,90),qlen=120 O
o RED - wq:}/512, maxpzllls), th:(60,180),qlqn:480 L]
0 500 1000 1500 2000
Response Time (ms)
Figure 15a FIFO and RED at 90% load.
100 T
uncongested +
FIFO - glen=120 X
FIFO - qlen=190 *
80 | RED “wq=1/512, maxp=1/10,th=(30,90), glen=120 ©
S RED - wg=1/256, maxp=1/20,th=(30,90), glen=480 =
z
S 60
)
<}
R e
= 3
8 /-/
=]
: / %W
3
20 -/
0 /
0 500 1000 1500 2000

Response Time (ms)

Figure 15c FIFO and RED at 110% load.

In applying theseconclusions,there are somelimitations of
this study that should be considered.

We used packet-drops as thely “marking” behavior of
RED. Explicit marking by RED for ECN-capab®CP im-
plementations is likely to produce better results.

We examined onlyHTTP 1.0 protocols. The interaction
of RED with a mix of HTTP 1.0 and HTTP 1.1 traffic
should also be analyzed.

We studied dink carrying only Web-like traffic.More
realistic mixes ofHTTP andother TCP traffic as well as
traffic from UDP-based applications need to édeamined.
Congestion on both paths on a full-duplex liakd over
multiple router hops, should also be considered.

Removing thesdimitations to produce a broadgverspective
on RED behavior is the central theme of our ongaiegwork-
ing experiments.

8

. References
[1]

F. Anjum and L. TassiulasBalanced-RED: AnAlgorithm to
Achieve Fairness in the Internethttp://www.isr.umd.edu/TechRe-
ports/ISR/1999/TR_99-17/TR_99-17.phtml

G. Banga and P. DruscheMeasuring the Capacity of a Web
Server Proceedings of the USENIDSymposium on Internet
Technologies and Systems (USITS), December 1997.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V.Jacobson, G. Minshall, C. Partridge, L. Peterson, K.
Ramakrishnan, S. Shenker, J. Wroclawski, & L. Zha@Rgcomen-

(2]

(3]

150

100

S/

80

60

40

Cumulative Probability (%)

uncongested

/ /Z?
FIFO - glen=120
FIFO - glen=190

ED - wq=1/512, maxp=1/10, th=(30,90),qlen=120
RED - Wq:l/128, maxp:1<20, th=(5,90), qlqn:480

500

20

B OX X +

1000
Response Time (ms)

Figure 15b: FIFO and RED at 98% load.

1500 2000

dations onQueue Management ar@ongestionAvoidance in the
Internet RFC 2309, April 1998.

M. Christiansen, KJeffay, D. Ott, F.D. Smith Tuning RED for
Web h'}'éaiflc (Extende Version) http://www.cs.unc.edu/Re-
search/dir

M. Crovella and A. Bestavro&xplaining World Wide WefRTraffic
Self-Similarity TR-95-015, Boston University ComputerScience
Department, Revised, October 12, 1995.

http://adm.ebone.net/~smd/red-1.html

(4]
(5]

(6]

[7]1 http://iwww.iet.unipi.it/~luigi/ip_dummynet/

[8] ftp://ftp.isi.edu/end2end/end2end-interest-1998.mail
[9] http://www.research.att.com/~anja/w3c_webchar/

[10] W. Feng, D. Kandlur, D. Saha, kshin, A Self-Confizqurin RED
Gateway Proc. INFOCOM ‘99, March 1999, pp. 1320-1328.

[11] W. Feng, D. Kandlur, D. Saha, KShin, Blue: A New Class of
Active. Queue Managemenmtigorithms University of Michigan
Technical Report CSE-TR-387-99, April 1999.

[12] S.Floyd, and V. Jacobsoiandom Early Detection Gateways for
CongestionAvoidance IEEE/ACM Transactions on Networking,
vol. 1 no. 4, August 1993, pp. 397-413.

[13] S.Floyd, TCP and Explicit Conzqestion NotificatipACM Computer
Communication Review, vol. 24 no. 5, October 1994, pp. 10-23.

[14] http://www.aciri.org/floyd/REDparameters.txt

[15] C.Kenijiro, A Framework for Alternate Queueing:owards Traffic
Management by PC-UNIX Based RoutePspc. USENIX 1998
Annual Technical Conference, New Orleans LA, June 1998.

[16] D. Lin and R. Morris Dynamics of Random Early DetectidAroc.
SIGCOMM 97, September 1997, pp. 127-138.

[17] B. Mah. An Empirical Model oHTTP Network Traffic, Proceed-
ings of INFOCOM ‘97, April 1997.

[18] M. May, J.Bolot, C. Diot,and B. Lyles,Reasonsnot to deploy
RED, Proc. IWQ0S’99, London, March 1999.

[19] M. May, T. Bonald, and J. Bolofnalytic Evaluation of REDPer-
formance Proc. INFOCOM 2000, March 2000.

[20] http://iwww.netstat.net/

[21] H. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeauxLie,
C. Lilley, Network” Performance Effects ®iTTP/1.1, CSS1, &
PNG, Proc. SIGCOMM 97, September 1997, pp. 155-166.

[22] T. Oftt, T. Lakshman, and L. WondsRED: Stabilized RED Pro-
ceedings IEEE INFOCOM '99, March 1999, pp. 1346-1355.

[23] Ettp:)//nulIO.qual.net/brad/papers/reddraft.hnh998 (link nowbro-
en).

[24] K. Thompson, G. Miller, and R. WildekVide-Area Interneflraf-
fic Patterns and CharacteristicEEE Network, vol. 11 no. 6, No-
vember/December 1997.

[25] C. Villamizar and C.Song,High PerformanceTCP in ANSNET
ACM Computer CommunicationReview, vol. 24 no. 5,0ctober
1994, pp. 45-60.

