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ABSTRACT. This is a tutorial on some of the main ideas in KAM the-
ory. The goal is to present the background and to explain and compare
somewhat informally some of the main methods of proof.

It is an expanded version of the lectures given by the author in the
Summer Research Institute on Smooth Ergodic Theory Seattle, 1999.
The style is somewhat informal and expository and it only aims to be an
introduction to the primary literature. It does not aim to be a systematic
survey nor to present full proofs.



Contents

Preface iii
Introduction 1
Acknowledgements 3
Chapter 1. Some Motivating Examples 5
1.1. Lindstedt series for twist maps )
1.2. Siegel disks 15
Chapter 2. Preliminaries 23
2.1.  Quasi-periodic functions 24
2.2. Preliminaries in analysis 25
2.3. Regularity of functions defined in closed sets. The Whitney
extension theorem 31
2.4. Diophantine properties 33
2.5. Estimates for the linearized equation 37
2.6. Geometric structures 43
2.6.1. Symplectic and volume preserving geometry 43
2.6.2. Sketch of the proof of Darboux Theorem 52
2.6.3. Reversible systems 53
2.7. Canonical perturbation theory 54
2.8. Generating functions 64
Chapter 3. Two KAM Proofs in a Model Problem 67
Chapter 4. Hard Implicit Function Theorems 83
Chapter 5. Persistence of Invariant Tori for Quasi-integrable Systems 101
5.1. Kolmogorov’s method 102
5.2.  Arnol’d method 111
5.3. Lagrangian proof 117
5.4. Proof without changes of variables 121
5.5.  Some criteria to organize and compare KAM proofs 130
Chapter 6. Aubry-Mather Theory 135
Chapter 7. Some Remarks on Computer Assisted Proofs 147

Chapter 8. Some Recent Developments 153

i



8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.

CONTENTS

Lack of parameters
Volume preserving
Infinite dimensional systems
Systems with local couplings
Non-degeneracy conditions
Weak KAM
Reducibility
Spectral properties of Schodinger operators
Higher dimensional tori
Elliptic PDE
Renormalization group
Rotations of the circle
More constructive proofs and relations with applications
The limits of validity of the theory
Methods based on direct compensations of series
Related subjects: averaging, adiabatic invariants

Bibliography

153
153
153
154
154
154
154
155
155
155
156
156
157
157
157
158

161



Preface

This is an slightly edited version of [dILO1]. Almost no new material
has been added. This is mainly because the author could not undertake
these additions.

We have eliminated some typos and mistakes, added some explanations
and included proofs or sketches of proofs of several standard results and a
few new sections. Regretfully, we could not include an adequate treatment
of several important topics such as the application of KAM in celestial me-
chanics, renormalization group and a discussion of the boundary of validity
of KAM or some of the most sophisticated modern proofs.

Again, we want to emphasize that this is a tutorial. It is meant to
be read in an active way, completing the sketches of proof presented here
(we make no claims about the proofs being complete), working out the
exercises included in the text (some of them are gaps in the literature, whose
solution, I think would be quite welcome as a good master or undergraduate
thesis) fixing the occasional typo or bad expression (the author would love
to hear about them!) or reading the original literature (we make no claim
of originality for this manuscript, which is certainly not a substitute for the
original papers on which it is based).

The only justification of writing this book is that it can encourage people
to read different papers in the original literature and compare them.

I certainly thank to the people who made suggestions on the material
both in the preparation of the first version and in the revision of the material
(see subsection “Acknowledgements” at the end of Introduction).

iii






Introduction

The goal of these lectures is to present an introduction to some of the
main ideas involved in KAM theory on the persistence of quasiperiodic mo-
tions under perturbations. The name comes from the initials of A. N. Kol-
mogorov, V. I. Arnol’d and J. Moser who initiated the theory. See [Kol54],
[Arn63al, [Arn63b|, [Mos62|, [Mos66b|, [Mos66a] for the original pa-
pers.

By now, it is a full fledged theory and it provides a systematic tool for
the analysis of many dynamical systems and it also has relations with other
areas of analysis.

The conclusions of the theory are, roughly, that in C* — k rather high
depending on the dimension — open sets of of dynamical systems satisfying
some geometric properties — e.g., Hamiltonian, volume preserving, reversible,
etc. — there are sets of positive measure covered by invariant tori (these
tori are the image of a quasi-periodic motion). In particular, since sets
with a positive measure of invariant tori is incompatible with ergodicity, we
conclude that for the systems mentioned above, ergodicity cannot be a C*
generic property [MMT74].

Of course, the existence of the quasiperiodic orbits, has many other
consequences besides preventing ergodicity. The invariant tori are important
landmarks that organize the motion of the system. Notably, many of the
mechanisms of instability use as ingredients some invariant tori.

Besides its applications to mechanics, dynamical systems and ergodic
theory, KAM theory has grown enormously and has very interesting ramifi-
cations in dynamical systems and in analysis.

In dynamical systems, we will mention that KAM theory is closely re-
lated to averaging theory and Nekhoroshev’s effective stability results (See
[DGI6] for a unified exposition of KAM and Nekhoroshev theory) and,
conversely, KAM theory is related to the theory of instabilities (sometimes
called Arnol’d diffusion). Also, KAM theory shows that for C" open sets of
Hamiltonians — r large — the ergodic hypothesis is false. See [MIM74].

On the side of more analytical developments, KAM theory is connected
to very sophisticated and powerful theorems in functional analysis that can
be used to solve a variety of functional equations, many of which have inter-
est in ergodic theory and in related disciplines such as differential geometry.

There already exist excellent surveys, systematic expositions and tuto-
rials of KAM theory.
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We quote, in (more or less) chronological order, the following: [Arn63b],
[Mos66b], [Mos66a], [Mos67|, [AA68], [Riis70], [Riis|, [Mos73],
[Zeh75], [ZehT6a], [P6s82], [Gal83a], [Dou82a|, [Bos86], [Sal86],
[Gal86], [P6s92] [Yoc92|, [AKN93], [dIL93], [BHS96b|, [Way96],
[Riis98], [Mar00], [P6s01], and [Chi03].

Hence, one has to justify the effort in writing and reading yet another
exposition.

I decided that each of the surveys above has picked up a particular point
of view and tried to either present a large part of KAM theory from this
point of view or to provide a particularly enlightening example.

Given the high quality of all (but one) of the above surveys and tutorials,
there seems to be little point in trying to achieve the same goals. Therefore,
rather than presenting a point of view with full proofs, this tutorial will have
only the more modest goal of summarizing some of the main ideas entering
into KAM theory and describing and comparing the main points of view.

This booklet certainly does not aim to be a substitute for the above
references. On the contrary, the more modest goal is to serve as a small
guide of what the interesting reader may find. The reader who wants to
learn KAM theory is encouraged to read the papers above.

One of the disadvantages of covering such wide ground is that the pre-
sentation will have to be sketchy at some points. Hopefully, we have flagged
a good fraction of these sketchy points and referred to the relevant literature.
I would be happy if these lectures provide a road map (necessarily omitting
important details) of a fraction of the literature that encourages somebody
to enter into the field. Needless to say, this is not a survey and we have not
made any attempt to be systematic nor to reach the forefront of research.

It should be kept in mind that KAM theory has experienced spectacular
progress in recent years and that it is a very active area of research. See
Chapter 8 for an — incomplete! — glimpse on what has been going on.

Needless to say in this tutorial, we cannot hope to do justice to all the
topics above. (Indeed, I have little hope that the above list of topics and
references is complete.) The only goal is to provide an entry point to the
main ideas that will need to be read from the literature and, possibly, to
convey some of the excitement and the beauty of this area of research.

Clearly, I cannot (and I do not) make any claim of originality or com-
pleteness. This is not a systematic survey of topics of current research. The
modest goal I set set for these notes is to help some readers to get started in
the beautiful and active subject of KAM theory by giving a crude road map.
I just hope that the many deficiencies of this tutorial will incense somebody
into writing a proper review or a better tutorial. In the mean time, I will be
happy to receive comments, corrections and suggestions for improvement of
this tutorial which will be made available electronically in MP_ARC.

In spite of the fact that KAM theory has a reputation of being difficult,
it is my experience that once one can read one or two papers and work out
the details by oneself, reading subsequent papers is very easy. A well written
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paper rather than launching into technicalities, often has early in the paper
a short summary of what are the important new ideas. Often a moderate
expert can finish the proofs better than the author. In order to facilitate this
active learning, I have suggested some exercises along the proofs. (Perhaps
the best exercise would be to write better notes than the ones here.)

Acknowledgements. The work of the author was supported in part
by NSF grants and, during Spring 2003 by a Dean’s Fellowship at U. T.

The participation of the AMS SRI Smooth ergodic theory and its appli-
cations in Seattle 1999 was seminal in getting a first version of this tutorial.
The enthusiasm of the participants and organizers of the SRI was extremely
stimulating.

I received substantial assistance in the preparation of the notes for the
SRI from A. Haro, N. Petrov, J. Vano.

Comments from H. Eliasson, T. Gramchev, and many other participants
in the SRI and by A. Jorba, M. Sevryuk, R. Perez-Marco shortly afterwards
removed many mistakes and typos. Needless to say, the merit of all the
surviving mistakes belongs exclusively to the author.

In the revision of the material after [d1LO1] was published, I have bene-
fited from comments and encouragement from many individuals. In alpha-
betical order, D. Damjanovic, M. Levi, J. Vano, N. Petrov, Special thanks
to A. Haro and the participants in a reading seminar in Barcelona, to D.
Treschev, who supervised a translation into Russian, and to A. Gonzélez. 1
also tried some of the material on the participants of the Working seminar
on Dynamical Systems at U.T. Austin and in the X Jornadas de Verano at
CIMAT (Guanajuato).

Parts of this work are based on unpublished joint work with other people
that we intend to publish in fuller versions.

Thanks also to the AMS staff who participated in the preparation of the
SRI.






CHAPTER 1

Some Motivating Examples

1.1. Lindstedt series for twist maps

One of the original motivations of KAM theory was the study of quasi-
periodic solutions of Hamiltonian systems. In this Chapter we will cover
some elementary and well-known examples.

One particularly motivating example is the so-called standard map.*

The standard map is a map from R x T to itself. We denote the real
coordinate by p and the angle one by ¢. Denoting by p,, ¢, the values of
these coordinates at the discrete time n, the map can be written as:

Pn+1 = Pn — EV,(Qn)
n+1 = (Qn +pn+1) mod 1,

where V' (q) = V(¢+1) is a smooth (for the purposes of this section, analytic)
periodic function. We will also use a more explicit expression for the map.

(1.1)

(1.2) Te(p,q) = (p—€V'(q), a+p—<V'(9))

Substituting the expression for p,41 given in the second equation of (1.1)
into the first, we see that the system (1.1) is equivalent to the second order
equation.

(1-3) Qn+1 + qn—1 — 2¢qn, = _5V,(Qn)a

The first, “Hamiltonian”, formulation (1.1) appears naturally in some
mechanical systems (e.g., the kicked pendulum). The second, “Lagrangian”,
one (1.3) appears naturally from a variational principle, namely, it is equiv-
alent to the equations

(1.4) L0, = 0
with
(15) L ==Y E«ml @)+ V()

n

1We will use the same example as motivation in Section 5.3 and in Chapter 6. We hope
that studying the same model by different methods will illustrate the relation between the
different approaches.
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The equations (1.4) — often called Euler-Lagrange equations — express that
{qn} is a critical point for the action (1.5).

The model (1.5) has appeared in solid state physics under the name
Frenkel-Kontorova model (see, e.g., [ALD83]). One physical interpretation
(not the only possible one) that has lead to many heuristic insights is that
¢n is the position of the n'® atom in a chain. These atoms interact with
their nearest neighbors by the quadratic potential energy %(qnﬂ —qn —a)?
(corresponding to springs connecting the nearest neighbors) and with a sub-
stratum by the potential energy €V (g,). The parameter a is the equilibrium
length of each spring. Note that a drops from the equilibrium equations (1.3)
but affects which among all the equilibria corresponds to a minimum of the
energy.

Another interpretation, of more interest for the theme of these lectures,
is that g, are the positions at consecutive times of a one-degree of freedom
twist map. The action of the trajectory is £ = >, L(gi, ¢i+1) The general
term in the sum L(g;, gi+1) is the generating function of the map. (See
Chapter 2.8.) Then, the Euler-Lagrange equations for critical points of the
functional are equivalent to the sequence {¢,} being the projection of an
orbit.

The first formulation (1.1) is area preserving whenever V' is a periodic
function of the cylinder — not necessarily the derivative of a periodic function
(i.e., the Jacobian of the transformation (py,qn) — (Pn+1,qn+1) is equal
to 1). When, as we have indicated, V"’ is indeed the derivative of a periodic
function, then the map is exact, a concept that we will discuss in greater
detail in Chapter 2.6 and that has great importance for KAM theory.

If we look at the map (1.1) for e = 0, we note that it becomes

DPn+1 = Pn,

(1.6)
Gn+1 = qn + Dn,

so that the “horizontal” circles {p, = const, n € Z} in the cylinder are
preserved and the motion of each ¢, in each circle is a rigid rotation that
is faster in the circles with larger p,. Note that when pg is an irrational
number, a classical elementary theorem in number theory shows that the
orbit is dense on the circle. (A deeper theorem due to Weyl shows that it is
actually equidistributed in the circle.)

We are interested in finding whether, when we turn on the perturbation
€, some of this behavior persists. More concretely, we are interested in
knowing whether there are quasi-periodic orbits that persist and that fill a
circle densely.

Problems that are qualitatively similar to (1.1) appear in celestial me-
chanics [SM95] and the role of these quasi-periodic orbits have been appre-
ciated for many years. One can already find a rather systematic study in
[P0oi93] and the treatment there refers to many older works.
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m ="

FIGURE 1. The flux is the oriented area between a circle and
its image.

We note that the existence of quasi-periodic orbits is hopeless if one
allows general perturbations of (1.6). For example, if we take a map of the
form

Pn+1 = Pn — EPn,
Qn+1 = qn + Pn+1,
we see that applying repeatedly (1.7), we have

(1.7)

pn=(1—2¢)"po
so that, when 0 < ¢ < 2, all orbits concentrate on the very small set p = 0
and that we get at most only one frequency. When ¢ < 0 or ¢ > 2, all
the orbits except those in p = 0, blow up to infinity. Hence, we can have
maps with radically different dynamical behavior by making arbitrarily small
perturbations.
More subtly, the orbits of

Pn+1 = Pn + €,
n+1 = qn + Pn+1

escape towards infinity and never come back to themselves (in particular,
can never be quasi-periodic).

The first example is not area preserving and the motion is concentrated
in a smaller area (in particular, it does not come back to itself). The second
example is area preserving but has non-zero “flux”.

(1.8)

DEFINITION 1.1. The “flux” of an area preserving map 1" of the cylinder
is defined as follows: given a continuous circle « on the cylinder, the flux of
T is the oriented area between T'(7y), the image of the circle, and v — see
Figure 1.

The fact that the map is area preserving implies easily that this flux is
independent of the circle (hence it is an invariant of the map). Clearly, if
the map T had a continuous invariant circle, the flux should be zero, so we
cannot find an invariant circle in (1.8) for € # 0 since the flux is e.
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REMARK 1.2. If a map has a homotopically nontrivial invariant curve,
then the flux is zero (compute it for the curve). Conversely, if the flux is
zero, any homotopically non-trivial curve has to have an intersection with
its image. (If it did not have any intersection, by Rolle’s theorem, then the
image would always be in above or below the curve.) The property that
every curve intersects its image plays an important role in KAM theory
and is sometimes called intersection property. Besides area preserving and
zero flux, there are other geometric assumptions that imply the intersection
property.

Moreover, there are other properties that imply that one can proceed
with the iteration because the undesired terms do not appear. One no-
table example is the reversibility property, which appears naturally in many
physical systems (e.g., all circuits with capacitances and inductances but
no resistance). The KAM theorem for reversible mappings is carried out in
great detail in [Sev86], [BHS96b]. The paper [P6s82] devotes one sec-
tion to the proof of KAM theorem for reversible systems. For information
about reversible systems in general — in particular for examples of reversible
systems without intersection property — see also [AS86].

As a simple calculation shows, that perturbation in (1.1) is of the form
V'(qn), with V' 1-periodic — therefore fol V'(gn)dg, =V (1) =V (0) =0 —
the flux of (1.1) is zero.

We see that even the possibility that there exist these quasi-periodic
orbits filling an invariant circle depends on geometric invariants.

Indeed, when we consider higher dimensional mechanical systems, the
analogue of area preservation is the preservation of a symplectic form, the
analogue of the flux is the Calabi invariant [Cal70] and the systems with
zero Calabi invariant are called exact.

We point out, however, that the relation of the geometry to KAM the-
ory is somewhat subtle. Even if the above considerations show that some
amount of geometry is necessary, they by no means show what the geometric
structure is, and much less hint on how it is to be incorporated in the proof.

The first widely used and generally applicable method to study numeri-
cally quasi-periodic orbits seems to have been the method of Lindstedt. (We
follow in this exposition [Fd1L92a].)

The basic idea of Lindstedt’s method is to consider a family of quasiperi-
odic functions depending on the parameter £ and to impose that it becomes
a solution of our equations of motion. The resulting equation is solved — in
the sense of power series in € — by equating terms with same powers of € on
both sides of the equation. We will see how to apply this procedure to (1.1)
or (1.3).

In the Hamiltonian formulation (1.1), (1.2) we seek K. : T' — R x R!
in such a way that

(1.9) T. 0 K.(0) = Ko(0 + w).
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We set
(1.10) K. (0) = is”Kn(Q)
n=0

and try to solve by matching powers of £ on both sides of (1.9), (after
expanding T: o K.(f) as much as possible in ¢ using the Taylor’s theorem).
That is,

T. o KE(Q) = Thpo Ko+ E[Tl o Ko+ (DTO o KQ)Kl]
—|—€2[T2 o Ko+ (DTO o K())KQ

1
+(DT1 9] K())Kl + §(D2T[) o K())K1®2] + ...

In the Lagrangian formulation (1.3) we seek g. : R — R satisfying
9:(0+1) = g=(0) + 1
— or, equivalently,
9e(0) = 0 + £(0)
with £.(0 4+ 1) = £.(0), i.e., £- : T* — T' — in such a way that
(1.11) 0-(0 4 w) +£:(0 — w) — 20:(0) = —eV' (0 + £.(0)).

If we find solutions of (1.11), we can ensure that some orbits ¢, solving

(1.3) can be written as
qn = nw + Lz (nw).

Note that the fact that, when we choose coordinates on the circle, we
can put the origin at any place, implies that K. (- + o) is a solution of (1.9)
if K is, and that ¢.(- 4+ o) + o is a solution of (1.11) if ¢, is. Hence, we can
— and will — always assume that

(1.12) /0155(9) do = 0.

This assumption, will not interfere with existence questions, since it can
always be adjusted, but will ensure uniqueness.

We first investigate the existence of solutions of (1.11) in the sense of
formal power series in .

If we write 3

0(0) =Y Ln(0)e”
n=0

and start matching powers of ¢ in (1.11), we see that matching the zero
order terms yields

2The notation is somewhat unfortunate since K,, could mean both the n term in the
Taylor expansion and K. evaluated for € = n. In the discussion that follows, K1,K>, etc.
will always refer to the Taylor expansion. Note that Ko is the same in both meanings.

3The same remark about the unfortunate notation we made in (1.10) also applies
here.
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Lweo(e) = 60(9 + 0.)) + 60(9 — w) — 2@0(9) = O,

/lfg(e) do = 0.
0

The operator L, (1.13), which will appear repeatedly in KAM theory,
can be conveniently analyzed by using Fourier coefficients. Note that

L,e¥ k0 — 9(cos 2mkw — 1) 2™,

(1.13)

Hence, if n(0) = >_, ike?™*?  then the equation
Lop(0) = n(0)

reduces formally to
2(cos2mkw — 1) ¢ = 7.

We see that if w ¢ Q, the equation (1.13) can be solved formally in Fourier
coefficients and ¢y = 0. (Later we will develop an analytic theory and
describe precisely conditions under which these solutions can indeed be in-
terpreted as functions.)

When w ¢ Q, we see that cos2mkw # 1 except when & = 0. Hence,
even to write a solution we need 79 = 0, and then we can write the formal
solutions as

N Mk

(1.14) k= 2(cos 2mkw — 1)’ k#0.

Note, however, that the status of the solution (1.14) is somewhat compli-
cated since 2wkw is dense on the circle and, hence, the denominator in (1.14)
becomes arbitrarily small. Nevertheless, provided that n is a trigonometric
polynomial (see Exercise 1.6, where this is established under certain circum-
stances) and w is irrational, the formal solution (1.14) is also a trigonometric
polynomial. When the R.H.S. is analytic and the number w satisfies cer-
tain number theoretic properties that ensure that the denominator does not
become too small (this properties, which appear motivated here, will be the
main topic in Section 2.4, it is possible to show that the solution is also
analytic. (See Exercise 1.16.)

The equation obtained by matching &' is

1
(1.15) Lot (0) = —V'(0); /0 01(0)d6 = 0.

Since fol V'(0)df = 0, we see that (1.15) admits a formal solution. (Again,

we note that the fact that fol V'(0) df = 0 has a geometric interpretation as
zero flux.)
Matching the £ terms, we obtain
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(1.16) Lo la(0) = =V"(0)01(0); /01 02(0) do =

and, more generally,

1
(1.17) Lta(6) = 5,(0); / 0,(0)d0 =
0

where S, is an expression which involves derivatives of V' and terms previ-
ously computed. It is true (but by no means obvious) that

(1.18) /1 S, (0) do =

so that we can solve (1.17) and proceed to compute the series to all orders
(when w is irrational and S is a trigonometric polynomial or when w is
Diophantine (see later) and S is analytic). The fact that (1.18) holds was
already pointed out in Vol. II of [Poi93].

We will establish (1.18) directly by a seemingly miraculous calculation,
whose meaning will become clear when we study the geometry of the prob-
lem. (We hope that going through the messy calculation first will give an
appreciation for the geometric methods. Similar calculations will appear in
Chapter 5.3.)

The desired result (1.18) follows if we realize that denoting €[<n}(9) =
i ' £10;(6), we have, by definition:

(1.19) (Ll (0) + eV (0 + £.]< n](0)) = €"Sn(0) + O(e™)

Hence, multiplying (1.19) by [1 + e!f”“(e)] and integrating, we obtain
1 1
0= / Lo0<m(8) do + / Lo0<m] () d)(9) do
0 0
1
+ / V(0 + £=7(9)) [1+ A= ()| a
0

1
— " / S, (0) (<7 (9) do

—g/s

+ O n+1)

(1.20)

Changing variables in the intrgaral, we have:

(1.21) /O 1 V(0 + (<) (9)) [1 + 4;”1'(9)} df = 0.
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Furthermore, it is clear that fol Lw€£<n](9) df = 0 because, for any periodic
function f,

/Olf(ﬁ)dez/Olf(6+w)d6:/01f(9_w)d9.

Noting that
1 1 N’
/ (=ml(9) d<nV (g) = / 1([4@1(9)} ) do =0
0 0o 2
and that

1 1
/ A<nl(0 1wy d<rligyap = — / (=9 4 w) 2= (6) df
0 0
1
=~ [ oo - ) as
0
we obtain that .
/ Lo <m0 <n () do = 0.
0

It is also clear that because /j is a constant,

(1.22) e"Sn (0 (0) = O™ ).
Hence, putting together (1.20) and the subsequent identities, we obtain
the desired conclusion that fol Sy(0) df vanishes. O

REMARK 1.3. There is a geometric interpretation for the vanishing of
this integral. One can compute the flux over the curve in the Hamiltonian
formalism predicted by €£§n] (0). The fact that the flux vanishes is equivalent
to the fact that the integral vanishes.

REMARK 1.4. Note that it is rather remarkable that for every irrational
frequency we can find formal solutions (when the perturbation is a polyno-
mial), or for Diophantine frequencies for analytic perturbations.

This shows that, for the perturbed system we can find orbits that look
very similar to rotations — for every irrational or Diophantine rotation — for
very long time.

When one applies the Lindstedt method to dissipative systems, [RA87],
typically one sees that, except for a few frequencies, the perturbation equa-
tions do not have a solution.

Heuristically, this can be explained by the fact that, in area preserving
systems, we do not have small parts of the system controlling the long term
behavior (as it is the case in dissipative systems) and, hence, perturbations
still have to leave open many possibilities for motion of the system.

REMARK 1.5. The Lindstedt method can be used for dissipative systems
[RA8T7]. (Code for easy to use, general purpose implementations is available
from [RA92].) Then, one considers

T.o0 K. (0) = K. (0 + we).
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with w. = > e"w,. One has to choose the terms wy,...,wy, so that the
equations (1.17) have solutions. It is a practical and easily implementable
method to compute limit cycles.

EXERCISE 1.6. Show that if V is a trigonometric polynomial, then [, is
also a trigonometric polynomial. Moreover, deg(l,,) < An + B where A and
B are constants that depend only on the degree of V. (For a trigonometric
polynomial, V(0) = z\k\SM Vi, exp(2mikd), the degree is M when Vi # 0

or Voar #0.)
As a consequence, if V' is a trigonometric polynomial and w is irrational,
then the Lindstedt procedure can be carried out to all orders.

EXERCISE 1.7. Find an irrational number and an analytic function V'
for which (1.15) does not have any analytic solution.

Hint: Find a number which is very well approximated by rationals. It is
even possibible to find irationals and entire functions for which there is no
solution which is a distribution.

REMARK 1.8. The above procedure can be carried out even in the case
that the function V() is ™.

In this case, we obtain the so-called semi-standard map. It can be eas-
ily shown that the trigonometric polynomials that appear in the series only
contain terms with positive frequencies. This makes the terms in the Lind-
stedt series easier to analyze than those of the case V(z) = *™® + e~27,
Indeed, the analytical properties of the term of the series for V(z) = 2™
very similar to those of the normalization problem for a polynomial.

We refer to [GP81] for numerical explorations, to [Dav94] for rigorous
upper bounds of the radius of convergence and to [BM95], [BG99] for a
method to transfer results from this complex case to the real one.

The convergence of the expansions obtained remains at this stage of the
argument we have presented highly problematic. Note that, at every stage,
(1.17) involves small divisors. Worse still, the S,,’s are formed by multiplying
terms obtained through solving small divisor equations. Hence, the S, could
be much bigger than the individual terms.

Poincaré undertook in [Poi93], Paragraph 148, a study of the conver-
gence of these series. He obtained negative results for uniform convergence
in a parameter that also forced the frequency to change. His conclusions
read (I transcribe the French as an example of the extremely nuanced way
in which Poincaré formulated the result.) Roughly, he says that one can
conclude that the series does not converge, then points out that this has not
been proved rigorously and that there are cases that could be left open, in-
cluding quadratic irrationals. The conclusion is that, even if the divergence
has not been proved, it is quite improbable.

Il semble donc permis de conclure que les series (2) ne
convergent pas.
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Toutefois le raisonement qui précede ne suffit pas pour
établir ce point avec une rigueur compléte.

En effect, ce que nous avons démontré au n° 42 c’est
qu’il ne peut pas arriver que, pour toutes les valeurs de p
inferieurs a une certaine limite, il y ait une double infinité
de solutions périodiques, et il nous suffirait ici que cette
double infinité existait pour une valeur de ji determinée,
different de 0 et généralment trés petite.

Ne peut-il pas arriver que les series (2) convergént
quand on donne aux x? certaines valeurs convenablement
choisies?

Supposons, pour simplifier, qu’il y ait deux degrees
de liberté; les series ne pourraient-elles pas, par example,
converger quand 9 et 29 ont été choisis de telle sorte que
le rapport Z—; soit incommensurable, et que son carré soit
au contraire commensurable. (ou quand le rapport Z—; est
assujetti 4 une autre condition analogue a celle que je viens
d’ennoncer un peu au hassard)?

Les raisonnements de ce Chapitre ne me permettent
pas d’affirmer que ce fait ne se présentera pas. Tout ce
qu’il m’est permis de dire, cest qu’il es fort inversemblable.

This was remarkably prescient since indeed the series do converge for
Diophantine numbers. In particular, for algebraic irrationals (see Chap-
ter 2.4, Theorem 2.8).

It is not difficult to show that, for Diophantine frequencies, these series
satisfy estimates that fall short of showing analyticity

(1.23) [nllo < (n1)",

where v is a positive number. These estimates are sometimes called Gevrey
estimates and they appear very frequently in asymptotic analysis.

It is not difficult to construct examples (indeed we present one in Ex-
ercise 3.25) which have a similar structure and that the linearized equation
that we have to solve at each step satisfy similar estimates. Nevertheless
they saturate (1.23). Indeed, in many apparently similar problems with a
very similar structure (e.g., Birkhoff normal forms near a fixed point, normal
forms near a torus, jets of center manifolds) the bounds (1.23) are saturated.
We will not have time to discuss these problems in these notes.

The proof of convergence of Lindstedt series was obtained in [Mos67]
in a somewhat indirect way. Using the KAM theory, it is shown that the
solutions produced by the KAM theory are analytic on the perturbation
parameter. It follows that the coefficients of the expansion have to be the
terms of the Lindstedt series and, therefore, that the Lindstedt series are
convergent.
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The example in Exercise 3.25 shows that the convergence that one finds
in KAM theory has to depend on the existence of massive cancellations.

The direct study of the Lindstedt series was tackled successfully in the
paper [Eli96]. One needs to exhibit remarkable cancellations. The papers
[Gal94b] and [CF94| contain another version of the cancellations above
relating it to methods of quantum field theory.

We note that the transformations that reduce a map to its normal
Birkhoff normal form either near a fixed point or near a torus were known
to diverge for a long time. (See [Sie54|, [Mos60].)

Examples of divergence of asymptotic series were constructed in [Poi93].
To justify their empirically observed usefulness, the same reference devel-
oped a theory of asymptotic series, which has a great importance even today.

It should be remarked that, at the moment of this writing, the conver-
gence of Lindstedt series in slightly different situations (lower dimensional
tori [JAILZ99] or the jets for center manifolds of positive definite systems
[Mie91], p. 39) are still open problems.

1.2. Siegel disks

The following example is interesting because the geometry is reduced to a
minimum and only the analytical difficulties remain. Not surprisingly, it was
the first small divisors problem to be solved [Sie42], albeit with a technique
very different from KAM. (Even if we will not discuss the original Siegel
technique in these notes, we point out that, besides the original paper, there
are more modern expositions and extensions, [Ste61], [Brj71], [Brj72],
[P5s86].)

As it turns out, it was shown in [Sul85] that the dynamics of complex
maps can be understood as consisting of a few types of pieces which are
topologically equivalent. Siegel disks are one of these pieces (another one
is Herman rings, whose existence is also based in KAM theory). In these
lectures, we will not deal with complex dynamics, but, since KAM theory
plays an important role, we will just refer to [CG93]. An exposition of
Siegel theorem in one-dimension can also be found in the textbook [KH95]
Chapter 2.8.

This problem is quite paradigmatic both for KAM theory and for the
theory of holomorphic dynamics. In these lectures, we will discuss only the
KAM aspects and not the holomorphic dynamics. A very good introduction
to the problems connected with Siegel theorem is including both the KAM
aspects and the holomorphic dynamics aspect is [Her87]. More up to date
references are [PM92], [Yoc95|. The lectures [Mar00] contain a great deal
of material on the Siegel problem.

We consider analytic maps f : C — C, f(z2) = az+ N(z) with N(0) =0,
N'(0) = 0, and we are interested in studying their dynamics near the origin.
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When |a| # 1, it is easy to show that the dynamics, up to an analytic
change of variables is that of az. More precisely, there exists an h : U C
C — C, h(0) =0, h'(0) =1 and

(1.24) foh=h(az)

in a neighborhood of the origin.

The proof for |a|] > 1 can be easily obtained as follows (the case 0 <
la| < 1 case follows by considering f~! in place of f).

We seek a fixed point of h +— fohoa™! on a space of functions h(z) =
z+ A(z) with A(z) = O(2?).

That is, we seek fixed points of the operator

T(A)=aAoa '+ No(Id+A)oa™t.

We note that, on a space of functions with [[Al, = supy,<, |A(2)/2%|, the

operator 7 is a contraction if r is sufficiently small. Note that then 77(0)
converges uniformly on a ball and the limit is analytic.

REMARK 1.9. Note that the previous argument works without any sig-
nificant change when f : C¢ — C? and a is a matrix all eigenvalues of which
have modulus less than 1. Indeed, a very similar result for flows already
appears in Poincaré’s thesis [Poi78], where it was established using the ma-
jorant method. (Remember that the concept of Banach spaces had not been
yet formalized, so that fixed point proofs were unthinkable). The method
in [Poi78] can be adapted without too much difficulty to cover the theorem
started above. Hence, the situation when all the eigenvalues are smaller
than one is sometimes called the Poincaré domain.

The situation that remains to be settled is that when |a| = 1.

REMARK 1.10. Building up on case for |a| < 1, there is a lovely proof
by Yoccoz [Her87] using complex function theory that one can extend the
conjugacies for |a| < 1 to a positive measure set with |a|] = 1. Several
elements of this proof can be used to obtain a very fast algorithm to compute
the so called Siegel radius. (See the definition in Proposition 1.14.)

Another cute proof of a particular case of Siegel’s theorem is in [d1L83]
adapting a method of [Her86|. This method can be applied to a variety of
one-dimensional problems.

The method of [Sie42] has been quite refined and extended in [Brj71],
[Brj72].

We will not discuss the above proofs here, because, in contrast with
KAM ideas that have a wide range of applications, they seem to be rather
restricted.

It is typical of complex dynamics that there are very few possibilities
for the dynamics. Either it is very unstable or it is a rigid rotation (up to a
change of variables).

We will prove something more general.
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LEMMA 1.11. Let f : C* — C% be analytic in a neighborhood of the
origin and
f(0) =0, Df(0) = A,
where A is a diagonal matriz with all the diagonal elements of unit modulus
(hence ||A™"|| =1Vn € Z).
Assume that there is a domain U, 0 € U and a constant K > 0 such
that for allm € N

(1.25) sup | f"(2)| < K.
zeU

Then there exists an analytic function h : U — C% such that h(0) = 0,
(1.26) h'(0) = 1d, hof=Aoh.

Of course, by the implicit function theorem the existence of a solution
of (1.26) implies that there is a solution of (1.24) (h in (1.24) is the inverse
of h in (1.26)).

Note also that the assumption (1.25) implies, by Cauchy estimates that
|Df™(0)] < K’, hence, that all the eigenvalues are inside the closed unit
circle and that the eigenvalues on the unit circle have trivial Jordan blocks.
If rather than assuming (1.25) for n € N, we assumed it for n € Z, this
would imply the assumption that A is diagonal and has the eigenvalues on
the unit circle.

Proor. Consider
1 n
(n) — A
W) = A

Using the definition of A and (1.25) we have:

(1.27) ™M 0) =0, A™(0)=1,
(1.28) sup [h™ (2)] < K,
zeU
(1.29) Wt o f(z) = AR (2) + (1/n)[A™" 1 (2) — 2.

By (1.28), h(™ restricted to U is a normal family and we can find a subse-
quence converging uniforrgly on compact sets to a function h. Using (1.27),
we obtain that h(0) = 0, A/(0) = 1.
Note also that, since |f"(z)| is bounded independently of n, by (1.25)
and so is z for z € U, we have that
1
- A—(n—l—l) n+1 _
(AT ()
converges to zero uniformly on any compact set contained in U as n — oo.
Therefore, taking the limit n — oo of (1.29), we obtain ho f = Aoh. O
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EXERCISE 1.12. Show that one can always assume that U is to be simply
connected. (Somewhat imprecisely, but pictorially, if we are given are given
a U with holes, we can always consider U obtained by filling the holes of
U. The maximum modulus principle shows that f™ is uniformly bounded
in U.)

In one dimension, show that the Riemann mapping that sends U into
the unit disk and 0 to itself should satisfy (1.26) except the normalization
of the derivative.

PROPOSITION 1.13. If the product of eigenvalues of A is not another
eigenvalue, then the function h satisfying (1.26) is unique even in the sense
of formal power series.

Note that, when d = 1 the condition of Proposition 1.13 reduces to
the fact that A is not a root of unity. In particular, it is satisfied when
the modulus of A is not equal to one. When the modulus equals to 1, the
hypothesis of Proposition 1.13 reduces to a not being a root of unity, which
is the same as a = exp(27if) with § € R — Q.

Proor. If we expand using the standard Taylor formula for multi-
variable functions,

f(Z) - Z fnz®n
n=0

(where f,, is a symmetric n-linear form taking values in C%) and seek a
similar expansion for i, we notice that

Ah,, — hpA®™ = S,,,

where 5y, is a polynomial expression involving only the coefficients of f and
hi=1d,...,h,_1.

As it turns out, the spectrum of the operator £ 4 acting on n-multilinear
forms by

(1.30) i +— Ahy — hy, A®™
is
(1.31)
Spec(L4) =a; —agy ... 00,, 1€{l,...,d}, o1,...,0n€{1,...,d},

where a; denotes the eigenvalues of A.

See, e.g., [Nel69] for a detailed computation which also leads to inter-
esting algorithms. We just indicate that the result can be obtained very
easily when the matrix is diagonalizable since one can construct a complete
set of eigenvalues of (1.30) by taking products of eigenvalues of A. The
set of diagonalizable matrices is dense on the space of matrices. Hence the
desired identity between the spectrum of (1.30) and the set described in
(1.31) holds in a dense set of matrices. We also note that the spectrum is

continuous with respect to the linear operator.
O
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When d = 1 and |a|] = 1, as we mentioned before, the condition for
Proposition 1.13 (usually referred to as non-resonance condition) reduces
to:

a = 2™, weR-Q.
We note that, even if a(a®~! — 1) # 0, it can be arbitrarily close to zero,
because €2« (1) is dense in the unit circle. Hence, we also have small
divisors in the computation of the h,,’s.

We note that when d > 1, we can have small divisors if there is some
lai| > 1, |aj| < 1 even if they are real. When all |a;| = 1, a; = €*™J, the
non-resonance condition amounts to

(1.32) ij(.dj 7& Wi, ij eN, ij > 2.
J J

We now investigate a few of the analyticity properties of h. Of course,
the power series expansion converges in a disk (perhaps of zero radius) but
we could worry about whether it is possible to perform analytic continuation
and obtain h defined on a larger domain.

PRroPOSITION 1.14. If f is entire, the mazimal domain of definition of
h is invariant under A.

In particular, when d = 1, |a| = 1, a"™ # 1, the domain of convergence
is a disk. (The radius of the disk of convergence of the function h such that
R'(0) =1 is called the Siegel radius.)

Moreover, when d = 1, |a| < 1, a™ # 1, the function h is univalent in
the domain of convergence.

PRrooOF. To prove the first point, we just observe that if f is entire and
h is analytic in the neighborhood of a point zy, we can use the functional
equation (1.24) to define the function h in a neighborhood of A zy.

Hence, if h was defined in domain D and zy € D was connected to the
origin by a path v C D, we see that Azp is connected to the origin by
ay C aD. We conclude that it is defined in AD U D and that the analytical
continuation is unique. If we consider the maximal domain of definition
ADUD C D. Hence AD = D.

The second statement follows by observing that the only domains in-
variant under an irrational rotation are disks.

To prove that the function h is univalent in its maximal domain of
definition, which we already know is a disc, we assume that if h(z1) = h(z2)
and one of them — say zy — different from 0. We want to conclude that
Z1 = 292.

Using (1.24), we obtain h(az1) = h(az2). Repeating the process, we see
that h(a"z1) = h(a™z9).

Hence, when z € {a" 22}, we have

(1.33) h(z) = h(za)
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with a = z1/29. Since the set where (1.33) holds has an accumulation point:
when |a| < 1, it accumulates to 0, when |a| = 1 since it is an irrational
rotation, the orbits are dense on circles), we conclude that it holds all over
the unit disk. Taking derivatives at z = 0, using h'(0) = 1, we obtain
a=1. U

EXERCISE 1.15. Show that the conclusions of Proposition 1.14 remain
true if we consider d > 1 and A a diagonalizable matrix with all eigenvalues
in the unit disc and satisfying (1.32). Namely

i’) The domain of definition is a polydisk.

ii’) The function is univalent in its domain of definition.

EXERCISE 1.16. Once we know that the domain of the function A in
(1.24) is a disk, the question is to obtain estimates of the radius.

Lower bounds are obtained from KAM theory.

Obtain upper bounds also using the fact that by the Bieberbach-De
Branges theorem, the Taylor coefficients of a univalent function satisfy upper
bounds that depend on the radius of the disk. On the other hand, we know
the coefficients explicitly.

Also obtain upper bounds when f(z) = az + 2% using the area formula
for univalent functions Areah(B,(0)) = w52, |hi|*r*~2 knowing that the
range of h — orbits that are bounded — cannot include any point outside of
the disk of radius 2 and that we know the coefficients hy.

This exercise is carried out in great detail in [Ran87], which established
upper and lower bounds of the radius for rotation by the golden mean.

It turns out to be very easy to produce examples where the series di-
verges. We will discuss what we think is oldest one [Cre28| (reproduced
in [Bla84]). Other examples of [Cre38| can be found in [SM95] Chapter
25 in a more modern form. A different line of argument appears in [Ily79],
using more complex analysis. This argument has been recently extended
considerably [PMO01], [PMO03].

Consider f(z) = az + 22 with a = €?™“ | then its n'® iteration is

fUz)=a"z+ -+ 2.

If we seek fixed points of f™, different from zero, they satisfy (a™ —1)+---+
22"=1 = 0. The product of the 2" — 1 roots of this equation is a™ — 1. Hence,
there is at least one root with modulus smaller or equal to |a” — 1|%/(Z"=1,

It is possible to find numbers w € R — Q such that
lim inf [dist (nw, N)]¥/2"~1 = 0.

Hence, the f above has periodic orbits different from zero in any neighbor-
hood of the origin. This is a contradiction with f being conjugate to an
irrational rotation in any neighborhood of the origin. This shows that the
perturbation expansions may diverge if the rotations are very well approxi-
mated by rational numbers.
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For complex polynomials in one variable it has been shown in [Yoc95]
(see also [PM92]) that if w does not satisfy the Brjuno conditions (1.34)
below, the series for the quadratic polynomial diverges. The Theorem 3.1
which we will prove later will establish that if the condition is met, then the
series for all the non-linearities converges.

We say that w satisfies a Brjuno condition when there exists an () in-
creasing and log convex (the later properties are just for convenience and
can always be adjusted ) such that

Q(n) > supla* — 17",
k<n

log Q2 (2™ log Q2
(1.34) ZOgT()<OO @Z%T;n)<oo.

n

The equivalence of the two forms of the condition is very easy from Cauchy
test for the convergence of series. An example of functions 2(n) satisfying
(1.34) is

Q(n) = exp(An/(log(n) loglog(n) - - [log" (n)]1+*))

for large enough n, where by log* we denote the function log applied k times.
Indeed, [Yoc95] shows that if w fails to satisfy the condition (1.34) then
f(z) = €2™@ 2 + 22 is not linearizable in any neighborhood of the origin.

REMARK 1.17. In [Yoc95] one can find the result that if, a function
f(2) with f(0) =0, f’(0) = a, with |a| = 1 is not linearizable, near 0, then,
the quadratic function az + 22 is not linearizable.

See also [PM92].

In the case of one dimensional variables, one can use the powerful theory
of continued fractions to express the Brjuno condition in an equivalent form.

If w € R — Q can be written w = [ag,a1,az2, "+ ,ap, -] with a; € N,
we call [ag, a1, ,an] = Pn/qn the convergents.

Brjuno condition is equivalent to

(1'35) B(w) = Z(loan-l—l)/Qn < oo.

n

A very similar condition

(1.36) Z(log log gn+1)/qn < o0

n
has been found in [PM91] [PM93] to be necessary and sufficient for the
existence of the Cremer’s phenomenon of accumulation of periodic orbits
near the origin in the sense that if condition (1.36) is satisfied, then, all non-
linearizable functions have a sequence of periodic orbits accumulating at
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the origin. If condition (1.36) is not satisfied, there exists a non-linearizable
germ with no periodic orbits other than zero in a neighborhood of zero.

REMARK 1.18. We note that the formula (1.35) has very interesting
covariance properties under modular transformations. They have been used
quite successfully in [MMY97].

Without entering in many details, we point out that another function
very closely related to the one we have defined satisfies (setting B(z) = +oo
when z € Q)

B(w) = —log(z) + zB(1/xz), =€ (0,1/2),
B(w)(—z) = B(z), =z e (-1/2,0),

B(w)(x 4+ 1) = B(z).
Similar invariance properties are true for the sum appearing in (1.36).
Nevertheless, it does not seem to have been investigated as extensively.
Unfortunately, this one dimensional theory does not have analogues in
higher dimensions. Some preliminary numerical explorations for the higher
dimensional case were done in [Tom96].

REMARK 1.19. There is a very similar theory of changes of variables
that reduce the problem to linear — or some canonical — form for differential
equations.

Of course, these normalizations resemble the normalizations of singu-
larity theory and are basic for many applied questions such as bifurcation
theory.

Similarly, there is a theory of these questions in the C'* or C" categories
under assumptions, which typically include that there are no eigenvalues of
unit length. This theory usually goes under the name of Sternberg theory.

The reduction of maps and differential equations to normal form by
means of changes of variables can also be done when the map is required to
preserve a symplectic — or another geometric — structure and one requires
that the change of variables preserve the same structure.

We will not discuss much of these interesting theories. For more infor-
mation on many of these topics we refer to [Bru89]|, [Bib79].



CHAPTER 2

Preliminaries

In this chapter, we will collect some background in analysis, number
theory and (symplectic and volume preserving) geometry. Experts will pre-
sumably be familiar with most of the material and will only need to read this
as it is referenced in the following text (or as one reads the original papers
in the literature). It should not be thought that one cannot start reading
papers in KAM without first becoming an expert in Harmonic analysis and
geometry.

Of course, this chapter is not a substitute for manuals in geometry or
on analysis. I have found [Thi97], [LM87], [AMT78|, [GP74] useful for
background in geometry — any one of them would more than suffice —
and [Ste70], [Kra83], [Nik61], [Kat76] useful for background in analysis.
Many of the techniques are discussed in other papers in KAM theory which
we will mention as we proceed. Specially the papers [Mos66b], [Mos66a]
contain an excellent background and are quite pedagogical.

In the previous discussion of Lindstedt series we saw that we had to
consider repeatedly equations of the form

Lw‘P =7

(The formal solution was given in (1.14).)
In this chapter, we will also study equations

0
D,y =mn, where Dw:E wi%,
. K
T

which also appears in KAM theory.

A first step towards obtaining proofs of the KAM theorem is to devise
a theory of these equations. That is, find conditions in w and 7 so that the
function defined by (1.14) has a precise meaning.

The guiding heuristic principles are very simple:

1) The smoother the function 7, the faster its Fourier coefficients 7y,
decay.

2) Some numbers w are such that the denominators appearing in the
solution (1.14) do not grow very fast with k.

3) Hence, for the numbers alluded to in 2), we will be able to make
sense of the formal solutions (1.14) when the function considered
is smooth.

23
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We devote Sections 2.2, 2.4, 2.5 to making precise the points above. We
will need to discuss number theoretic properties (usually called Diophantine
properties) that quantify how small the denominators can be as a function
of k. We will also need to study characterizations of regularity in terms of
Fourier coefficients.

Since the result in KAM theory depends on the geometric properties of
the map — as illustrated in (1.7) and (1.8) — it is clear that we will need to
understand which geometric properties enter in the conclusions. Moreover,
many of the traditional proofs indeed use a geometric formalism. Hence, we
have devoted Section 2.6 to collect the facts we will need from differential
geometry.

2.1. Quasi-periodic functions

We recall that an R™ valued function f of an real variable ¢ is quasi-
periodic if and only if it can be writen as

(2.1) Fty= 3 fuemitot

kezd

In our application, the variable ¢ will have the meaning of time and often
the functions f(t) will be solutions of differential equations.

The fx, vectors in R™ are called the Fourier coefficients.

Note that, by changing variables in k& we can always assume that w =
(Wiy.+ yWm,0,...,0) where £ € Z and wy, . ..,w,, are independent over the
integers. The wy,...,wy, are not determined uniquely, but the module over
the integers they determine is. Once we have that the last components of w
are zero, we can forget about the last components of k£ and extend the sum
to Z™. Hence, we can assume without loss of generality that the components
of w are intependent over the rationals. That is w -k = 0, k € Z% implies
k=0.

If we introduce the notation F(6) = >, za fre®™? | we see that F is a
mapping from T¢ = R?/Z% into R™. In this case, the function f(t) can be
imagined as the image under F' of the trajectory of wt on the torus. Since
we have assumed that w is independent over the integers, these trajectories
will be dense.

The closure of the quasiperiodic trajectories will be F(T?) and, in the
case that the f arise as solutions of differential equations F(T¢) will not
have any selfintersection.

Hence, it is clear that the existence of a quasi-periodic solution leads to
the existence of an invariant torus. The converse is not exactly true (one
could have an invariant torus but the motion on it be different from an
irational rotation). The conclusions of KAM theory are often the existence
of quasi-periodic solutions, even if they get formulated often as existence of
invariant tori. Ocasionally, one abuses the notation and uses invariant tori
to mean the image of quasi-periodic solutions.
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In discrete time, the situation is very similar. One still has (2.1) as
the definition of quai-peridic function. Nevertheless, for discrete time, the
notion of independence is w - k € Z, k € Z¢ implies that k = 0. When the
f(n) is a solution of a dynamical system we cannot conclude so easily that
it does not have any self-intersection, but for the tori considered in KAM
theory the lack of self-intersections can be nevertheless verified.

A very discussion of the motion of rotations in the torus can be found
in [KH95] 1.4.

2.2. Preliminaries in analysis

In modern analysis, it is customary to measure the regularity of a func-
tion by saying that it belongs to some space in a certain scale of spaces.
Some scales that are widely used on compact manifolds are:

c" = {n ’ D' is continuous, ||n||cr = max (sup [n(z)],...,
xr
sup [ D"y ()]) |
x

ot = {u[lnllorve = max(sup (o). .... sup D7),
x x

sup |D"n(x) — D’"n(y)|> }

TH#Y |5C - y|a

As = {77 n analytic on |Im#| < §, continuous on |Im 6| <4,

Inlls= sup_n(®)1},
| Im 0|<d

Heo={nlne1? (a4 ) ne 2, nllne = -5+ 1))},

where r = 0,1,2,..., a € (0,1), 6 € RT, s € R and we have used A to
denote the Laplacian.

Note that this notation (even if in wide usage) has certain ugly points.
C™Y and C"*! are ambiguous and can be considered according to the first or
the second definition. Indeed, C" ™ consider according to the two definitions
agrees as a space (that is, the functions in one are functions in the other and
the topologies are the same), but the norms differ (they are equivalent). On
the other hand, C"*! can have a different meaning depending on whether
we interpret it in the first or in the second sense. To avoid that, we will use
C" 1P in the second definition.

All these scales of spaces have advantages and disadvantages. Against
O™ we note that, even if for » = 0, these are the Holder spaces which can
be defined in great generality (e.g., metric spaces), when r > 1, the definition
needs to be done in a differentiable system of coordinates. This is because,
for r > 1, D"n(x) and D"n(y) are multilinear operators in T, M and T,,M,
so that the differences in the definition are comparing operators in different
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spaces. Even though the different choices of coordinates lead to equivalent
norms, some of the geometric considerations are somehow cumbersome. Also
the composition operator — ubiquitous in KAM theory — has properties
which are cumbersome to trace in C"T®. For example, the mapping = —
f(x + ) can be discontinuous in C"** when f is C"T.

It is somewhat unfortunate that the notations C" (r € N ) and C"+%,
(r e N,a €[0,1) U{Lip} suggest that one can consider perhaps C* (s € R)
which includes both. If one proceeds in this way, one obtains very bad
properties for the scale of spaces. In colorful words, “the limit of the space
Ckr* as o — 0 is not C*”. More precisely, several important inequalities
such as interpolation inequalities which relate the different norms in a scale
fail to hold. Many characterizations — e.g., in terms of approximations by
analytic functions — break down for the case that r is an integer.

A possible way of breaking up the unfortunate C” vs. C"*% notation is
to introduce the spaces called A, in [Ste70], or C" in [Zeh75], [Mos66b],
[Mos66a]. In general we define

Ao = C°,
n={r| sp MEEWEIEZW 2Oy gy o),
1>|h|>0
(2‘2) z€R

Ay = {1 Df € A, [Ifla, = max(|fllco, | DF 2, )} 7 €N,
Ao =C"1, r+a¢N.

Here [r] means the integer part of r and {r} means the fractional part of r.
There are many reasons why the A, spaces are the natural scale of spaces
to consider when one is considering a space that includes the usual C" €.
For example, one can obtain very nice approximation theory, interpolation
inequalities, and generalize naturally to several variables. Note that

Cl g CO+Lip g Al-

Again, we point out that it is not easy to define these spaces on manifolds
except through patches. Choosing different patches leads to different norms.
Fortunately, all of them are equivalent and, hence define the same topology
in the spaces.

Note that C" norms can be defined naturally on any smooth Riemannian
manifold. (The norm of derivatives can be defined since it is the norm of
multilinear operators in the tangent bundle.)

The main inconvenience of C" (r is, by assumption, an integer) is that
the characterization by Fourier series is rather cumbersome. It is easy to
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show integrating by parts that

1
o= [ @) as
0
1 .
= (=2mi)"k" / D"n(0)e= 2k qg.
0
Hence, if n € C”, we have

(2.3) S%P(!ﬁk\ [kI") < Crllnllcr.

where C, is a constant that depends only on 7.
In the other direction, we have for any 6 > 0

- . - 1 . 5
Inller < G - Ll K7 = G Y s el T
k k

- 1 A ,
N (Z W) sup ([u] "71°)

|r+1+6).

(2.4)

IN

<Crs Slép(’flﬂ |k

Both inequalities (2.3), (2.4) are essentially optimal in the following
sense. Inequality (2.3) is saturated by trigonometric polynomials, while the
usual square wave — or iterated integrals of it — shows that it is impossible
to reduce the exponent on the right hand side of (2.4) to » + 1. This
discrepancy is worse when we consider functions on T¢, d > 1. In that case,
to obtain convergence of the series, in (2.4) one needs to take 6 > d. This
shows that studying regularity in terms of just the size of the coefficients
will lead to less than optimal results.

EXERCISE 2.1. Show that given any sequence a, of positive numbers
converging to zero, the set of continuous functions f with limsupy, | fx|/ar =
oo is residual in C°.

The spaces of analytic functions As are better behaved in respect of
characterizations of norms of the function in terms of its Fourier coefficients.
Integrating over an appropriate contour, we have Cauchy inequality

(2.5) k] < e 27k |]| 4y

On the other hand,
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Inlla;_, < Y€ O Wiy
kEZ

<Ze 27w|k:> sup 627r5\k:\|,,7k‘

ez
< Co'supe®™ M.
k

(2.6)

IN

Of course, for Sobolev spaces, the characterization in terms of Fourier
coefficients is extremely clean:

1/2
s = (O + 171 )
keZ
Sobolev spaces have other advantages. For example, they are very well
suited for numerical work and they also work nicely with partial differential
operators. Many of the tools that we used in A, spaces also carry through
to Sobolev spaces.
For example, we have the interpolation inequalities:

m 1—53/m
(2.7) lull g < Klullsm s ™.

This inequality is a particular case of the following Nirenberg inequality

7 1—i/m m i/m
(2.8) 1D ullpr(geny < Cllullpogery - D™l fafny.

where 1/r = (1 —i/m)(1/p) + (i/m)(1/q). We refer to [Ada75], p. 79.
These interpolation inequalities both for A, and for Sobolev spaces are
part of the more general “complex interpolation method” and the scales of
spaces are “interpolation spaces”. Even if this is quite important for certain
problems of analysis in these spaces, we will not go into these matters here.
As we will see later, some of the abstract versions of KAM as an im-
plicit function theorem work perfectly well for Sobolev spaces. I think it is
mainly a historical anomaly that these spaces are not used more frequently
in the KAM theory of dynamical systems. (Notable exceptions are [Her86],
[KO89b].) Of course, for the applications of Nash-Moser theory to PDE’s
or geometric problems, Sobolev spaces are used quite often.
One of the most useful tools in the study of C™** spaces is that they can
be characterized by their approximation properties by analytic functions.
The following characterization of A, spaces (remember that they agree
with the Holder spaces CUIT{"} when {r} # 0) comes from [Mos66b,
Mos66a] (see also [Zeh75], Lemma 2.2).

LEMMA 2.2. Let h € C%(T9). Then h € A, if and only if for some o > 0
we can find a sequence h; € As9—i such that

i) [|hi = hllco — 0,
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i) sup;sq(27[|hi — hi-1lla,,; 1) < oo

Moreover, it is possible to arrange that the sup in ii) is equivalent to
||h||a, if one chooses the h; appropriately.

If we denote the sup in ii) by M, we have that for h € A, it is possible
to find a sequence h; in such a way that M < C,.||h|s,. Conversely,
for any sequence h; as above, we have ||h|[p, < C,,M. Given a function
h € A, there are canonical ways of producing the desired h;. For example,
in [Ste70] and [Kra83| is shown that one can use convolution with the
Poisson kernel to produce the h;. In that case, the sup in ii) can be taken
to define a norm equivalent to || |, -

Another important feature of the A, spaces is that they admit a very
efficient approximation theory.

The first naive idea that occurs to one when trying to approximate a
function by a smoother one is just to expand in Fourier series and to keep
only a finite number of terms corresponding to the harmonics of small degree.
Indeed, for some methods of proof of the KAM theorem that emphasize
geometry this is the method of choice. (See Chapter 5.2.) Unfortunately,
keeping only a finite number of the low order Fourier terms is a much less
efficient method of approximation (from the point of view of the number
of derivatives required) than convolving with a smooth kernel. Recall that
summing a Fourier series is just convolution with the Dirichlet kernel,

N ' 1
> et = [ Da(0 0 dg = (g D))
k=—N

Du(0) = sin(2N+ 1)7r9’
sin 76
which is large and oscillatory and hence generates more oscillations upon
convolution than smooth kernels.

Hence the method of choice of approximating functions by smoother
ones is to choose an positive analytic function K : R? — R decaying at
infinity rather fast and with integral 1 and define Ky(z) = tldK (z/t).

We define smoothing operators S; by convoluting with the kernels K,
that is,

St¢:Kt*¢.

The properties of these smoothing operators that are useful in KAM
theory are (we express them in terms of the A, spaces introduced in (2.2)):

i) limy oo ||Stw — ulja, =0, u € Ag;
(2.9) i) [Seulla, < " ACrullullay, uwe Ay, 0< A<
iii) (St — Dufla, < t=E VO llulla,, uweEA, 0<A<p

We note that a slightly weaker version of these properties is
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(2.10)
i) (Sl S kOlulla,  uwE Ay =0
) (S~ Sullay < RO ulla,, ueAs TEE>1

Note that it is easy to show that ii) = ii’), iii) = iii’). In [Zeh75] operators
Sy satisfying (2.9) are said to constitute a C* smoothing and those satisfying
i), ii'), iii’) a C* smoothing.

There are other smoothing operators and other scales of spaces that
satisfies the same inequalities. Indeed, in the most abstract version of KAM
theory, which we discuss in Chapter 4, one can even abstract these properties
and obtain a general proof which also applies to many other situations.

One important consequence of the existence of smoothing operators is
the existence of interpolation inequalities (see [Zeh75]). Even if this in-
equality were proved directly long time ago, and can be obtained by different
methods, it is interesting to note that they are a consequence of the existence
of smoothing operators. As we mentioned, this happens in other situations
and for other spaces than A,. In the following, we denote ||ul|, = ||ul|a,.

LEMMA 2.3. For any 0 < A< pu, 0 <a <1, denoting
v=(1—-a)A+au

we have for any u € Ay:

(2.11) [ully < Canpullulli™ [l

Proor. We clearly have

[ull, < [Stully + [I(1d =Sp)ull, .
Applying i7) of (2.9) to the first term and iii) to the second, we obtain:

lully < 7 Canpallully + 4 Coplull,

and we obtain (2.11) by optimizing the right hand side in ¢. O

These inequalities are descendents of inequalities for derivatives of func-
tions which were proved, in different versions, by Hadamard and Kolmogorov
and others. For A,, r ¢ N and for C", r € N, the proofs can be done by
elementary methods and extend even to functions defined in Banach spaces
[dILO99]. For analytic spaces, these interpolation inequalities are classical
in complex analysis and are a consequence of the fact that the log|f(2)| is
sub-harmonic when f(z) is analytic [Rud87].

In KAM theory the interpolation inequalities (2.11) are useful because
if we have a smooth norm (|| ||,) blowing up and a not so smooth one
(Il II) going to zero, we can still get that other norms smoother than A still
converge.
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All the above results about A, spaces of functions on the real line can
be generalized to spaces of functions on R". Indeed, one of the nicest things
of these spaces is that the theory for them can be reduced to the study of
one dimensional restrictions of the function. We refer to [Ste70, Kra83]
for more details.

For analytic spaces, the theory can be also extended with minor mod-
ifications. In KAM theory we often have to consider functions defined in
T™ x R™ (often n = m = d). In such a case, it is very convenient to use
expansions which are Taylor expansions in the real variables and Fourier
expansions in the angle:

(2.12) FO0.0)= > firl) exp(2mik - 6).
JEN keZm

For these functions, it is convenient to define norms

(2.13) 1flle = sup 170, 1)]

[7|<e?m | Im(0)| <o
With this definition, we have the Cauchy bounds
| figel < exp(=2md(|j] + [k flo
Irl+ls|

(2.14) rl—ls
Wf S Cr,s,n,m(s ‘ | ‘ ‘HfHJ

o—6

The proof of these inequalities is quite standard in complex analysis and
will not be given in detail here. It suffices to express the derivatives as
integrals over an n +m dimensional torus which is close to the boundary of
the domain in which f(,I) is controlled by || f||,. The only subtlety is that
for some [ € {1,...,m}, k; > 0 one needs to choose the torus Im(¢;) = —o.
(Similarly for the case when k; < 0 one needs to choose the torus Im(6;) = o.)

It is also obvious that, under these supremum norm the spaces constitute
a Banach algebra, that is,

(2.15) 1fglle < 1 fllollgllo-
Therefore, if || f]lo < 1, then ||(1 + £)~ Vs < (1 — [|f]ls)~".

2.3. Regularity of functions defined in closed sets. The Whitney
extension theorem

In KAM theory, we often have to study functions defined in Cantor sets.
In particular, sets with empty interior. In this situation, the concept of
Whitney differentiability plays an important role.

A reasonable notion of smooth functions in closed sets is that they are
the restriction of smooth functions in open sets that contain them. This
definition is somewhat unsatisfactory since the extension is not unique.

In the paper [Whi34a|, one can find an intrinsic characterization of
smooth functions in a closed set.
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DEFINITION 2.4. We say that a function f is C* k € f in the sense of
Whitney in a compact set F C R? when for every point = € F we can find
polynomials P, of degree less that k such that

f(x) = Pp(x) weF,
|D'Py(y) — D'Py(2)| < |z — y "'o(jz —yl), z,y€F,

where o is a function that tends to zero.

(2.16)

It is clear that if a function is the restriction of a C* function the Taylor
polynomials will do.
The deep theorem of [Whi34a] is that the converse is true. That is,

THEOREM 2.5. Let F C R% be a compact set.

If for a function f we can find polynomials satisfying (2.16) and such
that f(x) = Py(x) then the function f can be extended to an a C" function
in RZ.

Note that if a function is C” in R? then one can find polynomials sat-
isfying (2.16) by taking just the Taylor expansions of f.

Contrary with what happened with the ordinary derivatives, the poly-
nomials satisfying (2.16) may not be unique. (For example, if we take F' to
be the z-axis in R?, we can take polynomials with a a very different behavior
in the y direction.)

REMARK 2.6. There are other variants of the definitions in which rather
than using D'P, one introduces another polynomial P} which is then, re-
quired to satisfy compatibility conditions with the other polynomials.

REMARK 2.7. Another variant useful for KAM theory and in other regu-
larity properties appears in [dILV0O] as the “Whitney verification theorem”.
It roughly states that, for Cantor sets with a certain geometric structure,
one just needs to verify (2.16) for ¢ = 0. The idea is very simple. If the
set F'is very fat (in the sense that given one point, we can find points in
the set whose displacements are in largely arbitrary directions and in arbi-
trary scales) then, by comparing the values of two expansions at neighboring
points, we obtain that the derivatives cannot oscillate too much, hence they
have to satisfy the other properties.

This is very similar to the converse Taylor theorem in [AR67], [Nel69]
where an argument similar to the one indicated above is used to show that if
a function in a Euclidean space satisfies the conclusions of Taylor’s theorem,
then the proposed derivatives are the derivatives. One can remark that the
proof of [AR67], [Nel69] goes through even if the set is not the Euclidean
space but rather a very fat set.

Similar arguments are useful in other contexts. For example, [d1L92].

The assumption that F' is compact can be removed. It suffices to require
(2.16) in each compact subset of F', allowing o to depend on the compact
subset.
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In [Ste70] one can find a version of this theorem in which the extensions
can be implemented via a linear extension operator. (There is a different
extension operator & for each k.) In [Ste70], one can also find versions for
C*+e The C* version can be found in [Whi34b)].

Even if adapting Whitney’s theorem from real valued function to func-
tions taking values in a Banach space is well known, (e.g., [Fed69], p. 225,
ff.) T do not know how to prove a similar result when F' lies on an infinite
dimensional space.

2.4. Diophantine properties

In this section, we want to study the existence of vectors w € R" so
that we can obtain upper bounds of [dist(w - k,N)]~! and of |w - k|~! when
k € Z™ — {0}. These are the small divisors that appear respectively in the
solution of the equations (2.28), (2.27), which appear often in KAM theory.

When we are studying problems such as those in Section 1.2, we need
only to consider k € N™.

When n =1 for (2.28) (and for n = 2 for (2.27)) one can get quite good
results using classical tools of number theory, notably continued fractions,
which we will not review here, in spite of their importance in 1-dimensional
dynamics.

For example, the classical result of Liouville states

THEOREM 2.8. Let w € R — Q satisfy P(w) = 0 with P a polynomial of
degree { with integer coefficients. Assume that P'(w) = 0,..., PU(w) = 0,
PUtY(w) £ 0. Then for some C > 0

(2.17) ‘w - %‘ > Cp YU+ vV m,n € Z.

PROOF. The zeroes of polynomials are isolated, hence P(’}) # 0 when
. is close enough to w. This together with the fact that nP(2) € Z implies
that [nP(2)| > 1 and, therefore, | P(2) — P(w)| > n~*. On the other hand,
by the Taylor’s theorem,

P(5) - P <o -3

n n

for some C' > 0. (The R.H.S. is the remainder of Taylor’s theorem.) This
yields the desired result for 7 close to w. For “* far from w, the result is
obvious. O

Theorem 2.8 was significantly improved by Roth, who showed that, if w
is an algebraic irrational, |w — [ > C.n"27¢ for every € > 0.

The numbers that satisfy the equation (2.17) in the conclusions of The-
orem 2.8 are quite important in number theory and in KAM theory and are
called Diophantine. As we will see in Lemma 2.11, Diophantine numbers
occupy positive measure, hence, there are some of them which do not satisfy
the hypothesis of Theorem 2.8.
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DEFINITION 2.9. A number w is called Diophantine of type (K, v) for
K>0and v >1,if

(2.18) 'w - S‘ > K ||\

for all % € Q. We will denote by D, the set of numbers that satisfy (2.18).
We denote by D, = Ug~0Dk u-
A number which is not Diophantine is called a Liouville number.

The numbers w for which |w — 2| > Cn~? are called “constant type”
and the previous result shows that quadratic irrationals are constant type.
It is an open problem to decide whether /2 is constant type or not. Indeed,
it would be quite interesting to produce any non-quadratic algebraic number
which is of constant type.

In higher dimensions, there are two types of Diophantine conditions that
appear in KAM theory, namely:

(2.19) lw- k|7t < C|k|¥ VEkezZ™— {0},
(2.20) w-k— < Clk|” V(k,0) e (Z"— {0} x Z}.

The first condition (2.19) appears when we consider the KAM theory
for flows, the second one (2.20) when we consider KAM theory for maps.
As we will see the arguments are very similar in both cases.

REMARK 2.10. One important difference between these Diophantine
conditions is that the first condition (2.19) is maintained — with only dif-
ferent constants — if the vector w is multiplied by a constant. Nevertheless,
the second one is not. Indeed, if we take advantage of this to set one of the
coordinates to 1, then, we see that (2.19) becomes (2.20) for the vector in
one dimension less obtained by keeping the coordinates not set to 1.

The arguments that study geometry of these Diophantine conditions are
identical. Nevertheless, we point out that the scale invariance of (2.19) will
have some consequences later, namely that KAM tori for flows often appear
in smooth one-dimensional families, whereas those for maps are isolated.

For us, the most important result is:

LEMMA 2.11. Let Q : R — R be an increasing function satisfying
oo
(2.21) > Q@) < a(n),
r=1

where a(n) is an explicit function of the dimension n. Then the set Dq of
w € R™ such that

-1
(2.22) <,}2§ w -k — e|> <Q(k)  Vkez\{0}
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has the property that, given any unit cube C,
o

(2.23) CN Dol >1—a(n) > Q@) r
r=1

where | | denotes the Lebesgue measure.

Note that when we take Q(|k|) = K~!k|*, (2.22) reduces to (2.18). The
condition (2.21) is satisfied for v > n and for K sufficiently big. This shows
that the set of Diophantine numbers D, has full measure for v > n. Indeed

(2.24) ICN Dk, >1— Kb(v,n).

Proor. We will denote by o, constants that depend only on the dimen-
sion n. The same symbol can be used for different constants.
For k € Z"" \ {0}, ¢ € Z we consider the set

Bro={weR"||w-k—¢ <Qk))'}

consisting of the w’s for which the desired inequality (2.22) fails precisely
for k, £. The desired set will be the intersection of the complements of these
sets.

Geometrically By, ¢ is a strip bounded by parallel planes which are at a
distance 2Q(|k|)~!|k|~! apart (see Figure 2) Thus, given a unit cube C € R,
the measure of C N By s cannot exceed o, Q(|k|) " k|1,

We also observe that given k € Z" — {0}, there is only a finite number
of ¢ such that C N By ¢ # . Indeed, this number can be bounded by oy, |k|.

Therefore, for any k € Z™ \ {0}

D 1BrencCl < onQ(lk) 7
tez

1-|CnDol=>" Y [BweNC|

keZn teZ)\{0}

(225) <op Z Q(’k‘)il

kezZ\{0}

<o, Z Q(r)_lr"_l.
r=1

hence,

Under the hypothesis that the R.H.S. of the above equation is smaller
than 1, the conclusions hold. O

An important generalization of the above argument [Pja69] leads to
the conclusion that a submanifold of Euclidean space that has curvature
(or torsion or any other higher order condition) in such a way that planes
cannot have a high order tangency to it (see below or see the references)
then the submanifold has to contain Diophantine numbers. Even if the
proof is relatively simple, the abundance of Diophantine numbers in lower
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dimensional curves has very deep consequences since it allows one to reduce
the number of free parameters needed in KAM proofs.

LEMMA 2.12. Let ¥ be a compact C*1 submanifold of R™.
Assume that at every point x € ¥ of the manifold

(2.26) TS+ T8+ + TLY = T,R",

where by T2 we denote the j tangent plane to X.
Then we can find a constant Cs; that depends only on the manifold such
that:

£ — Dol <Cs Y Q)i
r=1

where by | - | we denote the Riemannian volume of the manifold.

The geometric meaning of the hypothesis (2.26) is that the manifold is
not too flat and that it has curvature and torsion (or torsion of high order)
so that every neighborhood of a point has to explore all the directions in
space. In particular, we will have a lower bound on the area of the portion
of the manifold that can be trapped in a resonant region, which in the space
of w is a flat plane.
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The remaining details of the proof is left as an exercise for the interested
reader.

The proof follows by noting that because of (2.26) we can bound the
measure of the regions ) ., YUB; < CsQ(k)~'/'. The worst case happens
when the manifold is tangent to a very high order to one of the resonant
regions. Since the order of tangency — as well as the constants involved —
are uniformly bounded, we obtain the desired result.

REMARK 2.13. Notice that the formulation of the Diophantine proper-
ties (2.19) and (2.20) also makes sense if we allow w to take complex values.
This sometimes appears when we study complex maps and it is a useful
tool. Notice that the argument we have presented works very similarly for
the case of w taking complex values. Indeed, the norm of the inverse can be
bounded by the norm of inverse of the real part (or the norm of the inverse
of the imaginary part) so, when the real or imaginary parts of an w vector
are Diophantine, the vector is Diophantine.

Sometimes, when studying problems with polynomials we will also need
the inequalities only for £ € N™. Needless to say, these are much easier to
satisfy since the signs have less possibilities to compensate and lead to small
numbers.

EXERCISE 2.14. Construct a complex vector which is Diophantine, but
whose imaginary and real parts are not Diophantine.

REMARK 2.15. The same simple minded argument used in the proof of
Lemma 2.11 can be used to obtain estimates not only on the Lebesgue mea-
sure of the set of Diophantine numbers but also other geometric properties
(for example Hausdorff measure), of sets satisfying Diophantine properties,
and that are forced to belong to a manifold, have a resonance, etc.

2.5. Estimates for the linearized equation

In this subsection, we will consider estimates for the following equations
(2.27), (2.28) that occur very frequently in KAM theory. We have encounter
them already in the study of Lindstedt series and we will encounter them
again as linearized equations.

We will consider equations of the form:

0 0
(2.27) Dyp=n <Dw:w16—91+.“+wn6—9n>
L,p=n (Lwcp(ﬁl, cey )

(2.28)
=0 +wi,...,0h+wp) —go(@l,...,en)),

where 7 : T — R is given and the unknown function to be found is .

For the sake of simplicity we will only discuss in detail (2.27). The same
considerations apply for (2.28) and we will indicate the minor differences —
in fact simplifications — that enter in the discussion of (2.28).
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Recall that these equations have a formal solution in terms of Fourier
series. Namely, if

n(0) = > e i =0,
kezZm
then any reasonable solution of (2.27) for which one can define unique
Fourier coefficients (e.g., any distribution) has to satisfy:
pp2mik - w = N.
Hence, if k- w # 0, then
R Mk
2.29 =—.
( ) k= onik - w
We restrict our attention to cases when k- w # 0 for any k € Z" — {0}. In
that case ¢ is determined by (2.29) up to an additive constant since we can
take any ¢g. To avoid unnecessary complications, we will set pg = 0.
It is not difficult to see that, unless we impose some quantitative restric-

tion on how fast |k-w|~! can grow, the solutions given by (2.29) may fail to

be even distributions. For example, take 7, = el and arrange that there

are infinitely many k for which |k - w|™1 > e,

EXERCISE 2.16. Given any sequence a, of positive terms tending to
infinity construct an w € R™ — Q" such that, for infinitely many k& € Z"
(2.30) w - k|7 > ap.

Show that the w constructed above are dense (even if, as we have shown,
they will be of measure zero for sequences a,, which grow fast enough).

We will consider w which satisfy
(2.31) k- w|™t < k|7

These numbers were studied in Section 2.4.
It is not difficult to obtain some crude bounds for analytic or finite
differentiable functions (we will do better later). Recall that for n € A,

ikl < e M nllo,

while for n € C”
] < 2m) " |k Inller
Hence, if w satisfies (2.31), we have for n € As
[@xl < 2m) My ke 2 M i)l
and for n € C”
@il < (2m) 7 K 0o
These estimates do not allow us to conclude that ¢ belongs to the same

space as 77, but allow us to conclude that it belongs to a slightly weaker
space.
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EXERCISE 2.17. Show, that in the notations above if 7 is analytic in a
domain {z| |[Im(z)| < p} and w is Diophantine, then ¢ is analytic in the
same domain.

Construct an example where 7 is bounded in a domain as above, w is
Diophantine and but ¢ is not bounded.

As mentioned before, the characterization of the analytic spaces in terms
of their Fourier series is very clean, so that we can obtain estimates of the
solutions in these spaces. Then, we will use Lemma 2.2 to obtain the results
for A, spaces.

Since for 0 < o < § we have:

||e27rik~0”a_(s < e27r(6—0)|k|’

we have:
leloms < D |@rle? M=)
keZm {0}
1 —o2rdlk
< X g lllee
keZm {0}
2.32 1 _
(2.82) < sl DD Jkpee
keZm {0}
< C,}/Hn||02611+n716727r6€
eN

< Cya ),

where in the fourth inequality we have just used that we do first the sum
in the k with |k| = ¢ (the number of terms in this sum can be bounded by
C¢"1). We denote by C constants that depend only on v and the dimension
n and are independent of v, k, etc.

Similarly, using that

He?ﬂikﬂHCS < C‘k’s,

we have!
lelles < Cylimller > k7
keznr
< C’YHTIHCT ZEV_H_S—HL—I,
LeN

The sum in the R.H.S. converges provided that

r>v+s+n.

1Helre, C' depends on s even if it is independent of k. We, however do not include the
s dependence in the notation to avoid clutter.
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As we will see below, one can do significantly better that these crude
bounds if one notices that the small divisors have to appear rather infre-
quently (see [Riis75, Riis76¢c, Riis76a]).

Note that w - (k+¥¢) = w -k + w - £. Hence, if w - k happens to be very
small, w- (k+¢) ® w- £, so that if [¢| << |k|,w-(k+{)~w-L.

In other words, the really bad small divisors appear surrounded by a
ball on which the divisors are not that small. Hence, if instead of estimating
the size as in (2.32) using the estimates (2.19) in the third step we use a
Cauchy-Schwartz inequality, which takes into account the sum of terms, not
just the the sup and that can profit from the fact that (2.19) cannot be
saturated very often, we obtain the result of [Riis75, Riis76¢c, Riis76a],
which reads:

LEMMA 2.18. Assume that w satisfies (2.19), with v > n —1 and that @
satisfies (2.20). Let 0,7 be analytic functions with zero average.
Then, we can find ¢, solving (2.27), (2.28). Namely
Doy =,

2.33 I
(2:33) Log =1
and ¢, @ have zero average.

Moreover, we have for all § > 0:

[ello—s < CO™"Kunllnlls,
||95Ho—5 <06 V,n”ﬁ”m

where the C are the same constants that appear in (2.19), (2.20) and K are
constants that depend (in a very explicit formula) only on the exponent in
(2.19), (2.20) and the dimension of the space.

If we assume that n, 71 are in A, v > v, we obtain

lella,—, < CKunllnla,,
1lla—, < CKynll]a,-

We just note that the part (2.35) is a consequence of (2.34) using the
the characterization of differentiable functions by properties of the approx-
imation by analytic functions in Lemma 2.2.

When studying analytic problems, one can be sloppy with the exponents
obtained and still arrive at the same result. However, as (2.35) shows, taking
care of the exponents is crucial if we are studying finitely differentiable
problems and want to obtain regularity which is close to optimal.

We now present the proof of Lemma 2.18. We follow the presentation
of a more general result in [dIL03], which, of course, is based in [Riis75],
but includes some extra simplifications. The proof of [Riis75] includes also
very explicit estimates on the size of the constants, which we do not carry
out.

(2.34)

(2.35)

Proor. We will present first the proof in the case of flows.
We note that the solutions ¢ satisfy that ¢ = Mg /w - k.
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Estimating the integral by the supremum and applying Parseval’s iden-
tity, we have

(236) | )P < Klinllz = 3 lauetr
ors kezd
For the solutions ¢ of (2.28) we have using the triangle inequality:

lello—s < D |@rle™ DIk
kezd

< Z mk”w . k_|—1€27r(0—6)|k|‘
kezd

(2.37)

Hence, we will obtain estimates of the R.H.S. of (2.37). Applying
Cauchy-Schwartz inequality, we obtain

S bl - | e2rlo=o

kezd
(2.38) 1/2 1/2

Z |ﬁk‘2647r0|k| . Z ‘w . k|726747r5)\k\

kezd kezd

The result will be established when we prove estimates for the second
factor in the RHS of (2.38). It is useful to divide it into different scales.

Z |w - k| ~2e 4Tk < Z Z lw - |2 4mlkl

hezd neN  2n<|k|<2n+l
(2.39) e )
< E e " Z lw-k|7°.
neN on < k| <2n+1

Hence, the crux of the problem will be to estimate the sums over a scale.

We note, following [Riis75] that, because of the irrationality condition,
|w - k| = |w - k| implies that k = +k.

Given any two different vectors k, k in the same scale 2" < |k|, |k| < 2711,
note that

lw-k—w-k|=|w- (k—k)]
(2.40) > C 7k — k|

where C' and v are the constants appearing in (2.19).

From this, we observe that, if we order all the possible values taken by
|w - k in the scale, we obtain that some of them are repeated, but that the
gap between consecutive values cannot be smaller that the right hand side
in (2.40). Notice that, as we argued before, we have that a value cannot
appear for more than 2 k’s.
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If we denote by {d;} the ordered set of values for |w-k, we obtain, taking
into account that d; > 0,

(2.41) d; >iC o (nt2w,
Therefore, we obtain
2 262(n+2 &
_ —202(n42) .
(2.42) 2n§|k|z<2’n+l L " ; i

< KC—222(71+2)V'
Hence, we obtain that the R.H.S. of (2.39) can be bounded by

(2.43) Z K2 4m2"6+In(2)2(n+2)v
neN

The sum in (2.43) can be estimated by the Laplace method. See [BO7S].
We note that a heuristic guide is that, for § small, the sum in (2.43) is,
in leading order equivalent to

/oo K2 4m2 6+ In(2)2(n42)v g,
0

The asymptotics of this integral can be obtained by making the change of
variables 2"9 = 2™ and we obtain that the result is a power of § multiplying
a fixed number.

Then, the claim follows. ([

EXERCISE 2.19. Consider the following possible improvements of the
above proof

o In the estimates in (2.37) and (2.38), use a Holder inequality for
any exponent rather than the triangle inequality and the Cauchy-
Schwartz inequality.

e In the bound (2.41) use that d; > C~12-(*+Dv,

e Eliminate the decomposition in different scales or add other possi-
ble choice of scales (either with power growth, or superexponential
growth or with another exponential).

EXERCISE 2.20. Check whether the result can be improved by comparing
the results that one obtains with direct calculations on exponentials.

EXERCISE 2.21. In the study of Lindstedt series (e.g., (1.17)) we encoun-
tered second order equations for ¢ given 7 of the form

(2.44) Pz +w) + e —w) = 2p(x) = (),

where ¢ and 7 are periodic and w is a Diophantine number.
Develop a theory of the equation (2.44) along the theory of the theory
developed in Lemma 2.18.
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Do it either by treating it directly in Fourier series or by factoring it as
two equations:

w(@) —w(z —w) = n(x),

(2:45) o+ w) — plr) = wz).

Are there any differences between the estimates or the solvability con-
ditions you get by the two methods?

What happens if instead of using the naive estimates presented in the
text you use the estimates of [Riis75, Riis76¢c, Riis76a]?

2.6. Geometric structures

There are several structures that play an important role in KAM theory.
In this section, we will discuss symplectic and, more briefly, volume preserv-
ing and reversible systems (there are other geometric structures that have
come to play a role in KAM theory, but we will not discuss them here).

In this section, the emphasis will be on the geometric structures and
not on the differentiability properties, so we will assume that vector fields
generate flows, for which variational equations are valid, etc. (i.e., that they
have some mild differentiability properties).

Here we will use Cartan calculus of differential forms rather than the
old-fashioned notation. Since Cartan calculus uses only geometrically nat-
ural operations, it is conceptually simpler. This is a great advantage in
mechanics, where one frequently uses changes of variables, restriction to
submanifolds given by regular values of the integrals of motion, etc..

The traditional notation — in which one writes functions as functions of
the coordinates, e.g., H(p,q) — is perfectly adequate when the coordinates
are fixed. On the other hand, when one changes coordinates, one has to
decide whether H(p/,q’) denotes the same function of new arguments or
whether H(p',q') is a different function of p’ and ¢’ which produces the
same numerical value as the old function H produced with the old variables
p and gq. The ambiguity increases enormously when one needs to compute
partial derivatives — a great deal of the complications in traditional books
and papers on mechanics and thermodynamics arises from this.

For KAM theory these considerations are not so crucial because many of
the operations one has to perform require using Fourier coefficients and the
like, which forces the fixing of a certain system of coordinates. Nevertheless,
we think the conceptual simplification provided by the geometric notation
is worth the effort required in introducing it.

2.6.1. Symplectic and volume preserving geometry. Symplectic
geometry is one of the most interesting structures. Much of the classical
applications of KAM theory were formulated for symplectic maps or flows.
Symplectic structures appear naturally in mechanics. As we will see, very
important examples of symplectic structures happen in mechanical systems.
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Since many of the standard techniques in mechanics involve changing co-
ordinates or performing eliminations of variables ( “reduction” in modern
terms), it is natural and useful to have a formulation which is as indepen-
dent as possible of specific systems of coordinates.

Also volume preservation happens very often in applications. As it is well
known (Liouville theorem), all symplectic transformations preserve volume.
Nevertheless, there are many real life applications (e.g., hydrodynamics of
incompressible fluids) in which one can get volume preserving transforma-
tions which are not symplectic. For example, if the dimension of the space
is odd — many engineering applications consider fluids in three dimensional
space — one has many volume preserving transformations but no symplectic
transformations.

As we will see, many of the properties of transformation theory can be
developed at the same time in the two contexts. A comparison of the sym-
plectic and volume preserving geometries can be found in [BAILW96]| and,
in a less geometric form but very well suited for KAM theory in [BHS96b].

DEFINITION 2.22. A symplectic structure in a manifold is given by a
2-form wo satisfying the conditions

i) wg is non degenerate
ii) wo is closed, i.e., dws = 0.
A wvolume form in a manifold of dimension n is an n-form w, that satisfies

i') wy, is non degenerate.

Naturally, an n-form w, in an n-dimensional manifold automatically

satisfies
il’) dw, = 0.

Much of the geometric theory goes through just under the conditions i)
and ii) — or i’) and ii’). When we do not need to distinguish between the
symplectic and the volume preserving cases, we will use w to denote either
Wy OT W,.

Properties i) and i) allow us to identify a vector field v with a 1- and
(n — 1)-form, respectively, by

(246) Iywy 1= WQ(U, ) =71, lywp = Tn—1 -

We will denote the identifications (2.46) by Z,,, and Z,,,, respectively.
Fundamental examples of a symplectic form wy on R¥ x R* and a volume
form w, on R™ are

k
Wy = dpz A qu
.47 2
wp = dzy A...Adx,.

REMARK 2.23. The name symplectic seems to have been originated as
a pun on the name complex. Indeed, there is a sense in which symplectic
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geometry is a complexification of Riemannian geometry. This is actually
quite deep and there is a wonderful new area of research using methods of
complex analysis in symplectic topology.

Since these notes are focused on KAM theory, it suffices to note that in

mechanics one often finds the matrix J == ( ? q Igd > which satisfies
—ldg

J? = —1 and which, therefore, is quite analogous to multiplication by 4 in
complex analysis.

The identification of vector fields with forms plays a very important
role because it allows us to describe the vector fields whose flow preserves
the structure. Denote by ®; a family of diffeomorphisms of the manifold
generated by the time-dependent vector field v, i.e.,

%@t:’l}to(bh (b():ld
In particular, if v; is independent of ¢, ®; is a flow: ®;s = $; 0 Ps. (Again
we recall that in this Section we are assuming the objects to be differentiable
enough, in this case v; to be C1.)
Using the definition of Lie derivative, Cartan’s so called “magic formula”
to express the Lie derivative

(2.48) Lxvy = d(ix7) +ix(dv),

the closedness of w and the definition of Z,, we obtain:
d * * * . . *
%‘SZO(I)H-SW = O} L,,w = P (diyw + iy, dw) = &7 d Z,v;.

Thus, if w is invariant under the flow ®; (i.e., ®jw = w), we conclude that
T.,v; is closed.

The above result is quite interesting because the ®;-invariance of w seems
at first sight to be a non-linear and non-local constraint for the flow ®;. The
vector field v; is perfectly linear and local.

Of particular importance for KAM theory are the vector fields (called
exact symplectic, resp. exact volume preserving) for which Z,v; is exact, i.e.,

Iw’Ut = d’)/t

with 44 a function (symplectic case) or an (n — 2)-form (volume preserving
case). Sometimes these are called globally Hamiltonian vector fields to indi-
cate that one can find a Hamiltonian that generates them globally and not
only locally. All the flows that preserve the symplectic or volume structure
can be expressed locally as a Hamiltonian flow, but perhaps not globally. We
will come back to this in more detail when we consider some extra structure
of the space.

Of course, when we are considering local problems, by Poincaré’s lemma,
we do not need to distinguish between symplectic and exact symplectic
vector fields.
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In the symplectic case, for (2.47), we have that Z,,v = i,ws = —dH
reduces to the standard Hamilton’s equations
OH OH
Uy, = — , Vg, = .
P 9gi T Ops
The function H is called the Hamiltonian of the vector field v. Vector
fields satisfying locally i,ws = —dH for some function H are called locally

Hamiltonian vector fields. If the function H can be defined globally, the
vector field v is called globally Hamiltonian.

An important consequence of the preservation of symplectic or volume
form is that if a diffeomorphism f preserves the form w and ixw = —dH,
we have

if,xw=ip,x ffw=f"(ixw)
(2.49) = f"dH = —df*H
=—d(Ho f™),

so that f.X is also a Hamiltonian flow for H o f~1.

In old fashioned language, this was described as saying that “canonical
transformations preserve the form of Hamilton’s equations” or some similar
sentence. (In old fashioned books the name canonical transformations re-
ferred to diffeomorphisms preserving the symplectic form, or sometimes to
what we have referred to as exact symplectic.)

The importance of the formula (2.49) is that to make canonical changes
of variables to a Hamiltonian vector field, it suffices to make changes of
variables in the Hamiltonian functions. This is conceptually much simpler
and computationally more efficient. As we will see, canonical perturbation
theory owes its success to this remark. Note that this calculation goes
through both for symplectic and volume forms. Using Cartan calculus,
it is possible to develop perturbation theories for symplectic and volume
preserving flows which are completely analogous.

Notice that in 2 dimensions the volume form and the symplectic struc-
ture are the same and that, when n = 2k,

Nk

wpt = wa Awa A Aws (k times)

is a volume form.

Clearly, a flow that preserves ws, also preserves w{l\k. This fact is usu-
ally referred to in mechanics as Liouville’s theorem and is of fundamental
importance since it makes a connection of mechanics with ergodic theory.
Indeed, ergodic theory was introduced in the study of the relations of this
observation with statistical mechanics.

In the study of Hamiltonian flows, it is also of interest to study the form
ug defined in the regular energy surfaces ¥y = {H = E} — assumed that
dH is not degenerate so that it is a smooth manifold — by w"* = pg A dH.
Since H is invariant under the flow, so is dH and pg is invariant.
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The intermediate forms, wa A- - -Aws (£ times, ¢ < k) are also invariant. It
seems that not much use has been made of them ([P0oi93], Chapters XXII-
XXVII is devoted to this question).

One of the first consequences of the identification between vector fields
and forms (2.46) is a simple proof of the Darboux theorem. (See [MS95].
The original proof along this lines was done for the volume case in [Mo0s65].)

THEOREM 2.24. Given a symplectic or volume preserving form v and a
point xg, there exists a local diffeomorphism f on a neighborhood of xq to
R™ such that f.y is of the form in (2.47).

Note that the Darboux theorem implies that there are no local symplec-
tic or volume invariants (so that the recent but already very rich theory of
symplectic invariants and obstructions is eminently global).

The argument of proof is based on an argument of [Mos65] which shows
that for volume preserving geometry in a compact manifold the only invari-
ant is the total volume. This is in great contrast with Riemannian geometry
where the “theorema egregium” of Gauss shows that there are local invari-
ants for isometry.?

We postpone the proof of Darboux theorem till Subsection 2.6.2. Actu-
ally, we will prove a more general result that will have applications.

Of particular importance for KAM theory will be the study of exact
transformations. They can only be defined on manifolds where w is exact,
i.e., manifolds for which

w = dé.

One important example is

k k
wy = dpiAdg, 0= pdg
i=1 =1

with ¢ € T¥, p € R, so that M = TF x R*.

More generally, if M = T™* N is the cotangent bundle of the k-dimensional
manifold N, and 7 : T*N — N is the projection, one can define 6 intrinsi-
cally as the only 1-form in T*N with the property

V0 =7
for all 1-forms v on N [AMT8], Pro. 3.2.11. (Here, v is considered as a
map from N to T*N, satisfying m o v = Id, so that v* maps the 1-forms
in T*N into 1-forms in N.) One can easily check that this is equivalent
to the standard prescription of taking a local trivialization of T*N with

coordinates (p, ¢) and then setting 6 = Zle p; dg;. One needs to check that
the definition is independent of the system of coordinates chosen.

2Note that the condition dw = 0 is some sort of curvature condition, so that perhaps
it is fairer to compare symplectic geometry to a sort of Riemannian geometry of flat
manifolds.
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For volume preserving maps, our main example will be
M=T""! xR, 0 =pdg A Adgp_1,

where (q1,...,qn—1) € T"7!, p € R. We note that given w, @ is determined
up to a closed form.

When w is exact (i.e., w = df) we use that f*d = df* to obtain that for
any diffeomorphism f preserving w

d(f e —0) = 0.
We say that the w-preserving diffeomorphism f is ezact when
(2.50) 16 —60=4ds.

Once we fix 0, S is defined up to a form of zero exterior derivative; in
the symplectic case, this means up to a constant.

Conversely, it turns out that the function S determines to a large ex-
tent the diffeomorphism. If we know S in the whole manifold and and
the diffeomorphism restricted to a Lagrangian submanifold, it is possible to
reconstruct the diffecomorphism in the whole manifold. (See [Har99].)

In exact symplectic (or volume) manifolds (w = df), there is a very close
relationship between exact families and hamiltonian flows. Families of exact
diffeomorphisms are generated by a Hamiltonian flow and vice versa.

To show the first statement, note that if f; is a smooth family, we have
that f;*0 — 0 = dS; and we can choose S; smooth in ¢. If we take derivatives
of this relation with respect to ¢ and introduce the vector field F; generating
fi by L fi=F o f;, we have

(2.51) f*Lz,0 = dS;,

where L denotes the Lie derivative and S; = %St. Using Cartan’s formula
for the Lie derivative, we have

(2.52) fi*[dig,0 + ix,df]) = dS;.
Therefore,
(2.53) ir,w=d[(f;)"1S; —irb)].

Hence, we conclude that a family of exact maps is generated by a Hamil-
tonian flow of Hamiltonian given by the formula:

(2.54) Hy =ig6— ()78,
In the exact symplectic case, the last formula reads
Ht == 1].‘t0 - St o f;l.

The converse is proved by a very similar calculation. Note that if we
are given H; and an exact w-preserving diffeomorphism fy with an initial
primitive Sp, and f; is generated by the Hamiltonian flow of Hy, then the
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deformation f; is also exact, and the primitive S; satisfies the differential
equation

(2.55) St = f(ix0 — Hy).

Notice that the obstruction for a symplectic or volume preserving diffeo-
morphism f to be exact is just the cohomology class with real coefficients
of f.0 — 6. For example, in the map we considered before,

flg,p) = (¢,p+a)

with a a constant n-vector, we have

k
fubi =01 = > aidg,
=1
f*en—l - 971—1 = adQ1 AR dQn—l-

In this case, one can see that the cohomology obstruction vanishes if and
only if the flux that we considered in Definition 1.1 vanishes.

If f is a diffeomorphism close to the identity in the C" (r =1,2,...,00)
topology, it is not hard to show for M as in the example that there is an
exact family of vector fields interpolating with the identity.

This can also be proved for analytic functions. however, it is far from
trivial, see [KP94].

The reason why exactness plays an important role in KAM theory can
be understood from the simple example (already mentioned) in R x T,

f(p,q) =(p+e,q+p), " (p,q) = (p+ne,q+np + ane),

which does not admit any quasiperiodic orbits for ¢ # 0 since the first
coordinate p increases linearly with n so that all the orbits escape to infinity.

A consequence of great importance for us later is that if we choose a
function, resp. an (n — 1)-form, v and form a vector field by

v=1,dy,

then the time one map of the vector field, ®1, is exact. This gives a conve-
nient way to generate transformations close to the identity.

Since commutators of vector fields are an ingredient of the variational
equations, it is quite interesting to study how commutators interact with
the geometric structures (volume forms and symplectic).

Recall that the commutator of two vector fields can be considered as the
commutator of the vector fields considered as differential operators. That
is, the commutator of C'! vector fields is defined as

(2.56) [X,Y]=XY -YX,

when we consider the vector fields as first order differential operators on a
manifold without boundary. (It is somewhat surprising, but of course true,
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that the commutator is first order operator, the R.H.S. of (2.56) looks like
a second order operator!) The commutator can also be defined as

X, V] = lim t72(Y_ 40 X_;0Y, 0 X; —Id),

where X; denotes the flow generated by X and similarly for Y. We have
also taken the usual liberty of employing additive notation rather than a
more geometric one to denote comparisons.

The following well known result relates the commutators to geometry.
We have followed the presentation of [BAILW96].

LEMMA 2.25. Let w be a non-degenerate closed form as before.
(i) If X, Y are locally Hamiltonian vector fields, then [X,Y] is a glob-
ally Hamiltonian vector field with Hamiltonian iy (ixw) = w(X,Y).
(ii) If X has H as a Hamiltonian and Y is locally Hamiltonian, then
—Ly H is a Hamiltonian for [X,Y].
(iii) If Y has F as a Hamiltonian and X is locally Hamiltonian, then
LxF is a Hamiltonian of [X,Y].

PRrOOF. First recall the identities L xdo = dL xo and
i[ny}oz = Lxiya—iyLx«a

which are valid for each m-form « and vector fields X and Y. Also, observe
that a locally Hamiltonian vector field X satisfies

Lxw=0

which follows easily from Cartan’s ‘

To prove (i), compute:

‘magic formula” (2.48).

i[ny]w = inyw — iyLXw = inyw
= ixdiyw +dixiyw = dixiyw
d(w(Y, X)) = —d(w(X,Y)).

For (ii), we know that ixw = —dH and use (i):
—d(~LyH) = Ly(dH) = —Lyixw = —iydiyw — diyixw
= iyd(dH) — d(w(X,Y)) = ix y)w-
The proof of (iii) is analogous to that of (ii): from iyw = —dF we obtain

—d(LxF) = —Lx(dF) = Lxiyw = ix,y|w.

O

Let X and Y be Hamiltonian vector fields with Hamiltonians H and F,

respectively (i.e., ixw = —dH, iyw = —dF'). The Poisson bracket of H and
F is defined as

(2.57) {H,F}:= —LxF,
or, equivalently, as

{H,F} = —dH(X) = (iyw)(X) = w(Y, X).
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The antisymmetry of w yields

as well as the formula {H, F'} = Ly H.
In coordinates,

" (OH OF OH OF
dq; Op;  Opi 0q¢; )

(2.59) {H.F}=>_

i=1

Using (2.59), one can easily check that the Poisson bracket satisfies the
Jacobi identity,

{Hv{F’G}}+{F’{G7H}}+{G’{H7F}}:0’

which, together with the linearity and the antisymmetry of the Poisson
bracket, implies that the functions on the phase space of a dynamical systems
with the Poisson bracket are a Lie algebra. Moreover, the Poisson bracket
is a derivation of this Lie algebra.

This means that

(2.60) {H,{F,G}} = {H,F}G + F{H,G}.

The property (ii) (or (iii)) of Lemma 2.25 implies that the Hamiltonian
vector field corresponding to {H, F'} is equal to —[X,Y]:

ixyw = d{H, F}.

This means that the map that assigns to a function on phase space its
Hamiltonian vector field (i.e., H — X such that ixyw = —dH) is a morphism
of Lie algebras (the Lie-algebraic operations being respectively the Poisson
bracket and the commutator of vector fields).

Note that Lx F means the Lie derivative of F' along the flow of X and,
similarly, Ly H is the Lie derivative of H along the flow of Y.

By the identities above,

LyF = —LyH,

which indicates that the derivative of a Hamiltonian form along the Hamil-
tonian flow of another Hamiltonian form is related by a sign change to the
situations when the roles are reversed. This is a somewhat surprising prop-
erty of Hamiltonian systems.

One way to look at the above calculations is to realize that the exact
transformations are a group and that the vector fields Z,, d-y are a Lie algebra.
(In the old fashioned language, the vector fields of the form Z,, dy were called
“infinitesimal transformations” or, given that “infinitesimal” is a somewhat
dirty word in some circles, “transformations close to the identity.”)

Unfortunately, even if this point of view is heuristically correct, it is
not without problems. First of all, composition of transformations is not
a differentiable operation in almost any precise sense. Indeed, note that
fo(g+A)—fog~ fogA, so that the derivative of composition should be
a multiplication by f’ o g. Hence, if we consider composition in a space as
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C", As, etc., then f’ o g may not belong to this space; if we consider O™ ¢
spaces, then the composition is not even continuous!

More importantly, the exponential of the Lie algebra does not cover
an open neighborhood of the identity. That is, in any arbitrarily small
neighborhood of the identity in Ay, there exist exact maps that cannot be
written as time one maps of a differentiable vector field. In the following
we present an sketch of the proof. We refer to any of the references already
mentioned

2.6.2. Sketch of the proof of Darboux Theorem. We will show
that if two (symplectic or volume forms) 7,71 are C! close to each other
and cohomologous (that is 1 — 79 = df) then, there is a map f such that

f«71 = 7.

The local statement follows from this one by an argument based on
cutting off the problem using partitions of identity. Note that in a small
enough neighborhood

e All smooth forms are close to constant hence, close to each other

e The constant forms can be put into normal form by elementary
linear algebra.

e By Poincaré lemma, all the forms in ball have primitives, hence, all
of them are cohomologous.

The key idea from [Mos65] is to embed the problem into a family of
problems. We set v, = t(y1 — 70) + 70 for ¢ € [0,1] and try to find a family
ft in such a way that

(2.61) (ft)« 7t = 70

Noting that setting fo = Id, we have a solution for ¢ = 0. Denoting
%ft = F; o fi, we have that the derivative with respect to ¢ of (2.61) is

(2.62) (ft)«(drr, v + (11 —70)) =0,

where we have used Cartan’s magic formula and that dv; = 0.

Now, we observe that because the forms ~g,y; are non-degenerate, 2.y
is an isomorphism between the space of vector fields and the space of forms
(1 forms in the symplectic case and n — 1 forms in the volume case.) Since
Y1 — Y0) = df, we obtain that, if we choose F} in such a way that

TRVt = —0

then, (2.62) vanishes identically and, since (2.61) holds for ¢t = 0, it holds
for all ¢, in particular for t = 1. U
Note that a corollary of the proof is that if v is C" close to s, the
map f can be chosen to be C"! close to the identity. Indeed, there as a
parametric version of the result. See [BAILW96] for the details.
The method has several other applications, notably, there is a Darboux
theorem for contact structures.
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REMARK 2.26. The proof we have presented also establishes that in a
manifold such as the annulus, which has a canonical form, all the forms that
are close to the canonical one can be transformed in the canonical one.

This observation is useful for KAM theory since many of the proofs of
KAM will be done assuming that we have coordinates in which the sym-
plectic form has the canonical form and we are in action angle coordinates
so that we can use Fourier series etc. (Some proofs of the KAM theorem
— e.g., that in [GJdILV00], presented in Section 5.4 — are more geometric
and do not require that the symplectic form has the canonical expression).

Nevertheless, by applying the variant of the Darboux presented here, we
can obtain that there is a change of variables that makes the form to be the
canonical one. Hence, we can apply the KAM theorem without problems to
this situation.

This becomes quite useful in mechanics, when we want to apply KAM
theorem to the restriction of a map or flow to an invariant manifold. This
happens very often in mechanics.

For example, using the theory of normally hyperbolic manifolds, one can
reduce the problem of proving the persistence of whiskered tori to the proof
of standard tori. See [Moe96], [DLS03], [Sor02].

We also note that even if the proof we have presented is local (we assume
that 71, 72 are close), for volume preserving there are much deeper global
results. See, for example, [DM90].

We also remark that from the partial differential equations point of view,
the transformation of a volume form into another has the physical interpre-
tation of moving a pile of material whose height is given by the density of
~1 into another pile whose height is given by the density of 7. Finding a
solution of this problem which is optimal under certain criteria has given
rise to the very rich theory of optimal transportation [Vil03]

2.6.3. Reversible systems. Another important geometric structure
that plays a role in KAM theory is the so called reversible systems. They
appear in any applied problem in which time can be “run backwards” (i.e.,
if 4(t) is a trajectory, then (T — t) also is). This happens in mechanical
problems without friction or in electric circuits without resistors and in other
problems. Examples of reversible systems also appear in finite dimensional
truncations of fluid mechanics problems when there is no viscosity. In gen-
eral, physical problems in which there is no dissipation are often reversible.
When the systems are not mechanical, there is no reason why we should
have also a symplectic structure. In particular, in the example of circuits,
it is possible to find interesting examples with odd dimensions.

A map A is said to be reversible when there exists an involution R (that
is, R? = Id) for which A~! = R™YAR, i.e., A is conjugate by R to its own
inverse.

Since R~! = R, the above condition can be expressed as A~! = RAR =
RAR™!'. Note also that reversibility implies that S = AR is an involution.
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Hence, A is a product of two involutions, A = SR. One can also check that
the product of two involutions is reversible with respect to either of them,
so that one can just as well define a reversible map as the product of two
involutions, even if this obscures the physical interpretation and the origin
of the name.

Sometimes one does not require that R is an involution. These systems
are sometimes called weakly reversible. The KAM theory only needs weak
reversibility. (Actually, in many occasions that KAM theory applies, we can
use KAM theory to show that the systems are actually reversible.)

For flows, the definition is similar: the flow f; is reversible if there exists
an involution R such that R™'f;R = ft_1 = f_¢. Taking derivatives, we
obtain the reversibility condition in terms of the vector field F; generating
the flow: R,F; = —F.

One very important example of a reversible system is a mechanical sys-
tem without friction whose forces depend only on the position of the parti-
cles. If we reverse the velocities and keep the positions the same, the system
runs backwards. Hence we can take R(x,v) = (x, —v). Clearly, R is an in-
volution. Reversible mappings have recently received a great deal of interest
in the context of statistical mechanics since many slightly dissipative models
are reversible. This reversibility leads to very amusing consequences such as
pairing rules for Lyapunov exponents. See [BCP98] for some applications
to Statistical Mechanics and references.

Good surveys of reversible systems in general are [Sev86] and [AS86]
and recent developments in the KAM theory for reversible systems are cov-
ered in [Sev98].

2.7. Canonical perturbation theory

The goal of perturbation theory is to understand the dynamics of a
“perturbed” system which is close to another well understood system. Usu-
ally these well understood systems are chosen among “integrable” systems
but this is not necessarily the case. As we will see in later proofs of KAM
theorem, sometimes we want to take as unperturbed systems systems of a
particular kind that have an interesting feature. In the case of integrable
systems, the feature of interest for the study is quasi-periodic orbits.

The most naive approach to perturbation theory is to develop the solu-
tions in powers of the perturbation parameter. That is, if we have a vector
field

X, :XQ—I-EX1—|-52X2+"' )
we try to find solutions of

Te = Xe(e), z:(0) = a(e)
by setting

ze(t) = xo(t) +exi(t) +- -,

2.63
(2.63) a(e) = ap +cay +e%ag + -+,
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substituting in the equation and solving.

That is,
i = Xo(wo), 20(0) = ao,
1 = X1(x0) + DXo(zo)x1, x1(0) = aq,
(2.64) t9 = Xo(x0) + DX1(x0)x1

1
+ DXo(z0)w2 + §D2Xo($0)$i®27 72(0) = az,

Provided that X. is analytic in € and its argument, this series was shown
to converge by Cauchy (but before that, it was used regularly by Newton).
Note that all the equations in the hierarchy have the form

&n — DXo(z0)xn = Ry, 2 (0) = an,

where R,, is a polynomial expression involving only terms xzg...x,—1 and
(known!) derivatives of Xj.

In spite of its ancient pedigree and the theorems of convergence this
method has shortcomings.

It is an easy exercise that taking the second order problem

Ge = —(1 42 + &)z, 2(0) =1, #.(0) =0,

the solution is

This series indeed converges to the right solution z.(t) = cos((1 + €)t) as
well as one can expect (it is entire in ¢ and in t) but, if one truncates, one
can see that the approximate solution thus obtained blows up. Indeed, the
more terms one takes, the more severe the blow up is. On the other hand,
the true solution remains bounded for all times.

Hence, these series are unable to predict long term behavior, even in
those extremely favorable examples where the function is linear and the
solutions are entire. Of course, this phenomenon only becomes worse if one
considers other more complicated non-linear problems.

This phenomenon caused consternation when the phenomena above ap-
peared in the study of the solar system and the instability of the solar system
was confirmed to all orders in perturbation theory. The terms with pow-
ers in ¢t became dominant for ¢ of order of centuries, which gave then the
name “secular” terms (in Latin “saeculum” means — among other things —
century).

A more careful examination of the convergence proof and the quantita-
tive estimates that lead to it, shows that one cannot trust this perturbation
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theory to order m except when €™t < 1. For non-entire perturbations,
one should not use this naive perturbation method except when et < 1.
(Fortunately, we will be using some more effective methods that can give
information on perturbations over longer time scales.)

The Lindstedt series we have seen in Section 1.1 originated with the goal
of obtaining a perturbation series that produced series which were always
periodic or quasi-periodic (that is, free of secular terms).

A much more effective method to ascertain the long term behavior of
systems is the following;:

We try to find transformations g. in such a way that

(2.65) g X. = Xo.

This method is not restricted to Hamiltonian systems. Indeed, the very
influential book [BM61] develops many applications to non-Hamiltonian
systems (one can also find there Lindstedt series for dissipative systems).
This method is, however, very well suited for Hamiltonian systems be-
cause it is very easy to keep track of families of transformations of Hamil-
tonian systems and vector fields.
When g, is a family of canonical transformations and X, is a family

of Hamiltonian vector fields (i.e., ix.w = —dH,), as we saw in (2.49), the
equation (2.65) reduces to
(2.66) H.og. = Hy.

One should emphasize that in contrast with the more elementary “secu-
lar method”, the validity of this method is not limited by the length of the
orbit but rather by whether the orbit leaves the region where the transfor-
mation g. is defined.

In some cases, especially when there is some contraction (of course,
this never happens for Hamiltonian systems), one can use the perturbation
theory itself to show that this region is never left by the trajectories.

Note that if (2.66) is solved, then we have

ge_1 o ®fog. = @?,
where ® and ®Y denote the flows of H. and Hy, respectively.

To solve (2.66), it is of paramount importance to parameterize the fam-
ilies g. in such a way that (2.66) can be solved order by order.

One possibility followed in old fashioned books (but not very practical in
many applications) is to parameterize g. by their generating functions (see
Section 2.8). One shortcoming of generating functions is that one needs to
assume existence of a system of global coordinates which are mixed variables
(or work in patches). Another shortcoming of this method is that the rule
of composition is awkward and it involves solving implicit equations (see
Section 2.8).

Another alternative, which is more geometrical is that of the Lie series.
The basic idea is that we try to consider transformations as time one maps
of Hamiltonian vector fields. Some more detailed tutorials on Lie series are
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[MH92], [Mey91]|, [DF76]. Some reviews of canonical perturbation theory
from the point of view of Physicists including a variety of applications are
[Car81], [Omo86|.

It is customary to write the time one maps of a vector field £ as exp(L).
This notation is motivated by the remark that the space vector fields can
be considered as the Lie algebra of the space of diffeomorphisms. Also, if
we identify g with the operator

Ug: LX(M) — L*(M) : o= Ugp=gog,

then exp(L) = U, in the usual sense of operator theory when L is a complete
flow preserving volume.

This notation is very suggestive and one would also like to use tools of
Lie group theory such as Baker-Cambell-Hausdorff formula

exp(eL) exp(eLt) = exp <€(£ + LY+ 523[5, LY+ 7
(2.67) 2
_|_..._|_5”’]‘n_|_...>7

where [, | denotes the commutator and 7, is a sum of iterated commutators
of £, L.

Even if the sums in (2.67) cannot be considered as convergent, the for-
mula can be justified in a weak sense (see [dAILMM86]). Namely, it is true
that when applying the formula up to order n, we have, for sufficiently
differentiable vector fields,

[exp(eﬁ) exp(eL!) — exp <§: s’%)] ®

n=1

(2.68) | o

< NTCL o nll@llonrsa.

In spite of (2.68), it is not true that exp <Zf¥zl 5"%)  converges as N — 0o

even for an analytic ¢ (a sketch of a proof will be given later). It is, however,
not difficult to obtain bounds

(2.69) Ceeon <Crr (N')k

for some k > 0, so that (2.68) can be used quite quantitatively.

Note that, as it is typical for asymptotic series, when one applies the
result for a fixed ¢, it is advantageous to choose the order N to which one
truncates. For € small, the terms keep on decreasing with N till the ratio
between consecutive terms in (2.69) is approximately 1. That is N ~ ¢~ /.

Similar considerations happen very often when one has to truncate re-
mainders of formal transformations. For example, they play an important
role in the proof of Nekhoroshev estimates (see e.g., [LN92], and in the
proof of estimates in a neighborhood of KAM torus [FdIL92b], [PW94],
[P6s93], See also [Val00] for general estimates in problems without small
divisors.
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EXERCISE 2.27. Given an upper bound for the remainder of the form
ey = CeN(N!)*, find the N that makes the upper bound smaller. Estimate
also the bound.

In connection with (2.67) it is interesting to note that the commutator of
two locally Hamiltonian vector fields is globally Hamiltonian (see Proposi-
tion 2.25). Hence, even if £, L' are only locally Hamiltonian, all the 7,,’s are
globally Hamiltonian and can, therefore, be described by the Hamiltonian
function.

There are several variants of the method of Lie transforms that have been
considered in the literature depending on how we write our candidate map in
terms of exponentials (time-one maps) of Hamiltonian vector fields. In order
of historical appearance some of the methods proposed in the literature are:

(2.70) ge =exp(eLy + 2Ly + -4+ "Lp +---),
(2.71) ge = ---exp(e"Ly) - - - exp(e?Ly) exp(eLy),
2ntl_g
(2.72) e = -+ -exp( Z 6i£i> ---exp(e3L3 + €2L2) exp(Ly).
i=2n

(See [Dep70], [DF76], [dILMMS86] respectively.)

The recursive equation for the perturbation expansions can be computed
rather straightforwardly if we use with abandon — we can if we interpret the
formulas in the asymptotic sense — the formulas exp £ = .7 %E”, think
of the L" as differential operators and rearrange the expressions according
to the rules of of non-commutative algebra.

For example, in (2.70) we obtain:
exp(ely---+¢€"Ly)H:. = Hy,
L1Hy+ H, =0,
(%E% + L2) Hy + L1Hy + Ha = 0,
(123 + 2(L1Lo + LoL1) + L3] Ho,
+ (3£% + L) Hy + L1Hy + Hy = 0.

A point that we would like to emphasize is that the equation that we
obtain in the three schemes (2.70), (2.71), (2.72) for Lie series is always

(2.73) EnHO + Hn = Rny

where R, is an expression that depends only on previously computed terms.

In the procedure leading to (2.73) we have not assumed that the trasfor-
mations we are seeking are canonical. (Indeed, similar calculations appear
in singularity theory where one tries to the graph of a function into the
graph of another one).
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Nevertheless, the situation is much more nice when the £,, are the Hamil-
tonian vector fields associated to Hamiltonians L,,. Using (2.58), we trans-
form (2.73) into

(2.74) ~HoLn + Hy = Ry,

Note that, if we have a theory for the solutions of equations of the form
(2.74), we can proceed along the perturbation schemes above.

Note that if we take

Ho(p,q) = w - p,
then (2.74) reduces to the equation (2.28) that we have studied (under Dio-
phantine assumptions on w) in Section 2.5. Both the data and the unknown
in (2.74) have an extra variable, but since it enters as a parameter, we can
discuss the regularity of the equation in terms of the theory that we have
developed.

Perhaps more importantly, we note that if we have a good theory of
approximate solutions of (2.74) we can solve the hierarchies of equations
approximately. This is important in practice as well as in some proofs on
KAM theorem.

We also note that an integrable system Hy(p) can be written using the
Taylor expansion

Ho(p) = H()(O) +w-p+ O(pQ).
Hence, we can solve very approximately (2.74) in a sufficiently small neigh-
borhood of {p = 0}. This is what is actually used in KAM theory.

These algorithms are also practical tools that can and have been imple-
mented numerically. The next two remarks are concerned with some issues
about numerical implementations.

In [dILMM86] one can find an appendix where it is shown that the the-
ories based in the three schemes above (and in others) are equivalent in the
sense that they give results which are equivalent in the sense of asymptotic
series.

REMARK 2.28. We emphasize that although all the schemes (2.70),
(2.71), (2.72) are formally equivalent in the sense that they require solv-
ing the same equations, they are not at all equivalent from the point of view
of efficiency and stability of the numerical implementation or from the point
of view of detailed estimates or even convergence.

As we pointed out, the exponential of vector fields does not cover any
neighborhood of the origin in the group of diffeomorphisms so that (2.70)
does not provide with a good parameterization of a neighborhood of the
identity and, perhaps relatedly, it is known to be outperformed in stability
etc. by (2.71) [DF76].

The method (2.72) [dILMMS86] is actually convergent in many cases.
Indeed, the KAM theorem asserts it does converge in certain cases as we
will see. For example, it is convergent for the perturbation series that are
based in Kolmogorov’s method’ that will be discussed in Section 5.1.
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The only numerical implementations of (2.72) that I know of are some
tentative ones carried out by A. Delshams and the author, but it seems that
the scheme (2.72) has a very good chance to be very efficient and stable.
Indeed, it seems to be the only method for which it is possible to establish
convergence.

REMARK 2.29. Sometimes in the numerical solution of the equations
(2.70), (2.71), (2.72) it is sometimes advantageous — both from the point of
view of speed and of reliability — not to proceed order by order but rather
to take groups of orders [27, 2"+ —1].

This is tantamount to solving the equations by a Newton method in the
space of families. It has the disadvantage over the order by order algorithm
that at every stage one has to solve a different equation. This inconvenience
is sometimes offset by the advantage that one linear equation allows one to
study many orders and because the equations that need to be solved may
be more stable than those of other methods.

These quadratic algorithms can be used for all the three methods de-
scribed above. Nevertheless, they are somewhat easier to implement in
(2.72) which has some quadratic convergence already in place.

We emphasize that all the methods can be studied either order by order
or quadratically.

I think that it would be quite important to have a better theory of these
algorithms.

One lemma that we will be using later is that it is possible to approximate
the action of the Lie transform on functions by just the first term in the series
of the exponential.

LEMMA 2.30. Let H, G be functions on T" x R™ endowed with the canon-
ical symplectic structure. We use the notation of (2.13) for the analytic
norms of functions.

Assume that

i) [|H|s is finite.
ii) For a constant C' which depends only on the dimension, we have

fordo >0
(2.75) 62> C||Glo-
Then, for another constant C' depending only on the dimension, we have
(276)  |HoexpLa— H— {H,G}l,—s < C3|GI| Hl.
PRrROOF. By Cauchy estimates, (2.14), we have:
(2.77) VG sz < C61Gllo

with C a constant that depends only on the dimension.
The constant in (2.75) is chosen so that the R.H.S. of (2.77) is smaller
than 0/2.
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Therefore, all the trajectories of the Hamiltonian flow generated by G
which start in the region

Dy5 = {|I| < ¥, | Im(¢)| < 7 — 5}

do not leave the region D,_s/ for a time smaller than one (note that they
are moving at an speed that does not allow them to transverse the region
separating the domains in a unit of time). Hence,

exp(LG)(Dy—5) C Dy—s/2-

In particular, we can define the composition H o exp(Lq) in Dy—s.

For any point (I, ¢), we can estimate the difference along a trajectory
by using the Taylor theorem with remainder along a trajectory. It suffices
to estimate the second derivative of H and the square of the displacement.
The second derivative of H can be estimated by Cauchy estimates (2.14)
IV2H | —5/0 < CO72(|H |-

The displacement can be estimated by ||[VG||s—s/2, which by Cauchy
estimates (2.14) can be estimated by C3~1(|G||,.

Putting these two estimates together, obtains the desired result. O

REMARK 2.31. Analogues of Lemma 2.30 are true in any analytic sym-
plectic manifold. One just needs to define appropriately norms of analytic
functions, Cauchy inequalities, etc. In the versions of KAM theory that we
will cover in this tutorial, the version we have stated is enough, but the
reader is encouraged to formulate and prove the more general versions.

It is also possible to develop a canonical perturbation theory for maps.
Again, the main idea is to change variables so that the system becomes close
to the system which is “well understood”.

The perturbative equation in this case becomes

(2.78) ga_l o feog:. = fo.
We should think of those equations as equations for g. given f..

These equations have been dealt with traditionally by parameterizing f.
using the generating functions method, and similarly for the g..

A more geometric method to use in perturbation theory is the method of
deformations which was introduced in singularity theory. (See, for example
[TL71].) The application to the Darboux theorem — for volume preserving
maps — appeared in [Mos65].

The deformation method seems particularly well suited to discuss con-
jugacy equations of a geometric nature. (See [dILMMS86|, [BAILW96| for
some global geometric applications.) We write

d
%fe:]:sofsa Fs:Iw(dFs)-

We refer to f. as a family, F. as the generator and to F; as the Hamiltonian
and adopt the typographical convention of using the same letter to denote
the objects associated with the same family but using lowercase to denote
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the family, calligraphic font to denote the generator and capital to denote
the Hamiltonian.

We note that, under the assumption that F, is C', given the generator
and the initial point fy of the family, we can reconstruct f. in a unique way.
Hence, given F. C C?, and fy we can reconstruct f..

If we express equation (2.78) in terms of the generators, it becomes

(279) _ga + Fe + fa*ge =0.
Expressed in terms of Hamiltonians, it reads
(2.80) —Ge+ F. + f.G:. = 0.

(In the Hamiltonian case, we recall f.,Ge. = G¢ o f¢.)
There are several advantages in expressing equation (2.78) in terms of
the generators and the Hamiltonians:

e The equations in terms of the generators are linear. This is natural
if we think that the vector fields are infinitesimal quantities which
can, therefore, enter only linearly.

e The geometric structure — not only symplectic, but also volume
preserving and contact (which we have not and will not discuss in
these lectures) are taken care without any extra constraint.

e These equations are geometrically natural and can be formulated
globally.

The proof that (2.79) and (2.80) are equivalent to (2.78) follows easily
from the observation that
ke = feoge
(2-81) — ,Ce = fa + fa*ga ; kO = fO © 4o
— K. = F5+f5*Gs ; kO:fOOgo-

Even if the equations (2.80) is linear in the Hamiltonian F;, we should
keep in mind that f. depends on F. through the very non-linear process of
solving the corresponding ODE. Nevertheless, one can approximate (2.80)
by

(2.82) Fo — Ge + f0.Ge = 0.

When fo(I,¢) = (I, ¢ + w), this equation — for a fixed I — has the form of
(2.28) the difference equations which were studied in Section 2.5. Since [
can be considered as just a parameter in the data for the equation, we can
use the regularity theory derived for (2.28).

If G. is a solution of (2.82), we note that

(2'83) F _Gs+fs*Gs = (fz—:* _fO*)Gs'

The intuition is that if F; is small, we can think that G. (obtained by
solving a linear equation with F, as R.H.S. ) is small and that f.. — fo
(obtained by solving a differential equation which involves derivatives of F;)
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is also small. Hence, the term in the R.H.S. of (2.83) is “quadratically”
small.

Using the estimates in Lemma 2.18 and mean value theorem etc., we
can prove the estimate in the analytic spaces

H(fE* - f0*>G6H075 < 06_2,/_4“F5H0-.
Similarly, for the finitely differentiable case,

||(f6* - fO*)GEHN < C||F€||ir+u+4.

Note also that if we write
Fo=cF +e*F+--
and try to find
Ge=eG1+°Gy+ -+,

then (2.80) can be turned into a hierarchy of equations for the G,’s. All the
equations are of the form

Gn - fO*Gn +Fn = Rna
where R,, is an expression involving previously computed terms.

REMARK 2.32. For later developments, it is important to note that both
(2.78) and (2.80) (and (2.79), (2.80)) have a “group structure”.

This means that if we can find an approximate solution g. (e.g., by
solving the first order equations), we can perform the (2.82), (2.74) change
of variables and set

fs:gglofeogm

H.=H. O Ge-

(2.84)

If we solve the problem for fs, ﬁs, ie.,
g;lofsogs = fo,
(2.85) B
H. o gs = H(),

then, we have solved the original problem since joining (2.84) and (2.85), we
obtain
(9e Oge)_l o fe 0 ge 0 ge = fo,
H. o g.og. = Hp.

The importance of the above observation, which will be appreciated
later, is that, by making successive changes of variables, we can eliminate
all the linear terms of the error by solving an equation which is just the
linearized equation at the integrable system.

This is an important difference with the standard Newton method since
the standard Newton method requires that we solve the linearized equation
in a neighborhood.
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The fact that we can obtain a method that, for all purposes is like a
Newton method but which nevertheless only requires that we know how to
solve one linearized equation depends crucially on the fact that the equa-
tions that we are studying have a particular structure which is called group
structure and that will be discussed much more in Chapter 4, in particular,
Remark 4.7 and Exercise 3.25.

2.8. Generating functions

One of the reasons why Hamiltonian mechanics is so practical is because
of the ease with which one can generate enough canonical transformations.

In old fashioned books ([Whi88], [Gol80], [LL76]) one can find that
canonical transformations are described in terms of generating functions.
We will describe those briefly and only for purposes of comparing with older
books. It should be remarked however, that generating functions, even if not
so useful from the point of view of transformation theory (there are better
tools such as Lie transforms) are still quite useful tools in the variational
formulation of Hamiltonian mechanics, providing thus a valuable link to
Lagrangian mechanics. Moreover, some of the constructions that appear in
generating functions are quite natural in optics. See [BW65].

The equation

0 —6=4ds
is written in old fashioned notations as
(2.86) p'dq’ — pdg = dS,

where pdq = Zle p; dg;, etc. This should be interpreted as saying that
we consider the coordinate functions p;, ¢; and the transformed functions
pi=piof,q,=qiof. Then, # =pdqg and f*0 = p'dq¢’; S is a function on
the manifold.

When g, ¢’ are a good coordinate system (i.e., p can be expressed as a
function of ¢ and ¢/, p = p(q,q’)), we can define a function S : R x R” — R
by setting S(q,¢’) := S(q,p(q,q’)). Usually, in old fashioned notations, this
is described as “expressing S in terms of ¢ and ¢’” or simply by writing
“S = S(q,q')” or something to that effect. Very often the same letter is
used for S, S.

REMARK 2.33. In old fashioned notation in mechanics, the same letter is
used for the functions that give the same result irrespective of the arguments.
Of course, even if this is almost manageable and one understand what is
meant by S(q,p), S(g,q’), by paying attention to the arguments this notation
wrecks havoc when one tries to evaluate at concrete points. For example,
what is meant by S(2,7) when one is considering at the same time S(q, p),

S(q.q')?

Note however, that the assumption that ¢, ¢’ is a system of coordinates
is far from trivial. To begin with, it is not obvious that the manifold on
which we are working admits a system of coordinates. Even if it does, or
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if we work just on a neighborhood so that we have local coordinates, there
are other conditions to be imposed. For example, it is false for the identity
and for transformations close to identity, it may be a system of coordinates
with undesirable properties. It is, however, true for (p,q) — (p,q + p) and
small perturbations.

In that case, when we compute the differential in (2.86), we have

dS = 018(q,q")dg + 9:8(q.q') dd,
hence,

(2.87) p=-0:8(¢,q), P =S(qq).

We think of (2.87) as of an equation for p’, ¢’ in terms of p, ¢. If the im-
plicit function theorem applies (for which it suffices that ¢, ¢’ provide a good
system of coordinates on the manifold) and indeed the equations (2.87) can
be solved differentiably, & determines the transformation. Note that the
implicit function theorem will apply in a C? open set of functions S, so
that we can think of this procedure as giving a chart of some subset of the
space of symplectic mappings. Also note that we parameterize the trans-
formation by one scalar function. Moreover, the changes of variables given
by (2.87) are automatically symplectic. Keeping track of transformations
— in an open set — which satisfy some non-linear and non-local constraints
(preserving the symplectic structure) by just keeping track of a function is
a great simplification.

However, one important shortcoming of these generating functions is
that for the identity transformation, ¢, ¢’ is not a good system of coordinates
on the manifold and we cannot use (2.87) to represent the identity or near
identity transformations. As we have seen, near identity transformations
play an important role in canonical perturbation theory, so, it is necessary
to devise variants of the method to incorporate them.

In the case that the coordinate functions p, ¢ are global (or that we just
work on a neighborhood), we can write

pdg = —qdp + d(pg).
Hence (2.86) reads
(2.88) p'dq’ + qdp = d(S + pq).

In the case that p, ¢’ is a good system of coordinates (as happens in a
neighborhood of the identity), we can write

S+pq=38(p,q)
and from (2.88) we see that
q= alg(p) q/)v p/ = aQS(p) q/)

Again, we can consider this as a system of implicit equations defining p’, ¢/
in terms of p, q.



66 2. PRELIMINARIES

Note that if g is an angle, then S(q+k, ¢ +/¢) = S(q,¢) for all k, ¢ € Z™.
On the other hand, S(p,¢ + £) = S(p,q¢') + p¢. Even if this generating
function works in neighborhoods of the identity, it does not work at all for
the map (p,q) — (—g,p).

One can use similar procedures to obtain many other generating func-
tions.

For example, one can use for a partition of {1,...,d} into two sets A
and B the formula:

= pidgi+ ) pidgi =) _qidpi = gidp; +d (— > g+ Zpi%)
ieB icA i€B icA ieB icA
to change some of the p;’s for ¢;’s in the push-forward.

Even if these procedures are quite customary in old fashioned mechanics
treatises, they will not be very useful for us. Again, we emphasize that even
if the ¢, ¢’ generating function can be defined in any exact manifold, the
others seem to require some extra structure, which can be arranged in small

neighborhoods.
We note however, that the function .S has a well defined intrinsic meaning
as evidenced in [BW65] — this is sometimes described as Hamilton-Jacobi

equation or “the action as a function of coordinates” depending on what
interpretation one gives. We refer to [Har99| for much more information
on this primitive function.

In Hamiltonian optics [BW65], S represents the phase of the wave. In-
deed, Hamiltonian mechanics was developed as a byproduct of Hamiltonian
optics. This explains why so much of Hamiltonian mechanics, especially in
earlier treatises is based on studying S and its relatives.

More modern treatments ([Arn89|, [AMT8]) prefer to start from the
symplectic geometry and postulate it without any other motivation that it
eventually works. This is certainly expeditious.



CHAPTER 3

Two KAM Proofs in a Model Problem

In this section we will discuss one of the technically simplest applications
of the KAM methodology: the Siegel center theorem.

The main goal of this application is to show in action perhaps the most
basic heuristic principle of the KAM method:

Quadratic convergence can overcome small divisors.

Roughly speaking this means that if we have a method of improvement
that reduces the error to something that is quadratic in the original er-
ror, even if the solution requires solving an equation which involves small
denominators, we can still obtain convergence.

The fact that the convergence does indeed take place is rather subtle.
In our opinion, the only way to appreciate the subtlety of the convergence
achieved by KAM theory is to give a serious try to several other seemingly
reasonable schemes and see them fail. At the end of the proof, we have
suggested several of these schemes as exercises.

Besides those exercises, we have also included some exercises which ad-
mit easy solutions and provide extensions to the material in the text.

We also emphasize that the fact that one can get a quadratically conver-
gent method solving only one small denominator equation is far from trivial
and it requires that the equations we consider have some special structure.
This will be elaborated in more detail in Chapter 4 and in particular in
Remark 4.7.

In this chapter, we will present two versions of the Siegel theorem —
one using just Diophantine conditions in one dimension, and another using
approximation functions and decomposition in scales in higher dimensions.

The second proof will be formulated as a set of exercises. The main
ideas of this chapter follow [Mos66a], [Zeh77] and [Arn88]. Indeed, we
follow these references rather closely.

These two proofs will illustrate the main features of KAM proofs and
contain the essential analytic and number theoretic difficulties even if they
do not involve any geometry.

We will start with a one dimensional problem. See [Mos66a] for more
details on the proof we present and [Zeh77] for a higher dimensional version.

THEOREM 3.1. Let f: U C C — C be and analytic function of the form

(3.1) f(2)=az+ f(2)

67
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with f(z) = O(z2).

Assume that

(3.2) (@™ —1)7Y <n'K
and that
(3.3) £l < p(v)K?,

where p(v) is an explicit function.
Then there exists a unique function

h(z) = z + h(z)

with h(z) analytic in a disc of radius

oc=1-2p(v)
such that
(3.4) foh(z) = h(az).
Moreover, we have
(3.5) alls < [IfIhC.

REMARK 3.2. The uniqueness for h claimed in Theorem 3.1 means that
if there are two functions satisfying this they have to agree in an open set of
the origin. As we have seen already, the condition (3.2) and (3.4) determine
the jet of A uniquely.

REMARK 3.3. Condition (3.2) is automatic when |a| # 1. In that case,
we have presented a simple proof already. So we will restrict ourselves to
the case when |a| = 1.

REMARK 3.4. It is a standard observation that, assuming that f is de-
fined in a ball of radius 1 and small is the same as considering a small
neighborhood.

Heuristically, in a small neighborhood, the linear part is the dominant
term and it is natural to try to describe the behavior of the whole system
in terms of the behavior of the linear one.

More precisely, given f, consider for A small

h=A"f().
Notice that fy has the same linear part and is defined in A™! B, if f is defined
on B,. Since |f(z)| = O(|z]?), we have || fr|lz, < C\.
If we apply Theorem 3.1 to f\, we obtain a hy. Then h will satisfy (3.4).

REMARK 3.5. Condition (3.2) is not optimal. Later we will discuss how
to obtain the same result when the arithmetic condition (3.2) is replaced by
the Brjuno condition, which is indeed optimal as shown in [Yoc95], [PM92].

The fact that if Brjuno condition fails one can construct counterexamples
is considerably deeper and out of the scope of these notes. See the references
above.
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Before embarking in the proof, we note that all the methods are based
in estimates for the equation

(3.6) plaz) —ap(z) =n;  ©(0) =0
in which we consider n and a as given and we are to determine (.

The analysis of this equation is very similar to the analysis of (2.28) in
Section 2.5. Since it is not completely identical, we need to start by revising
slightly the definitions of norms and the setup.

We define the norm of an analytic function by!

[f]lr = sup |f(2)].

|2]<

LEMMA 3.6. Assume that a satisfies (3.2). Then, if n(0) = ny = 0 we
can find a solution of (3.6). Moreover

(3.7) [@llye-s < CKIS Il

where T is related to the exponent v in (3.2)

PRroOOF. This follows from the results in Section 2.5.
It suffices to write z = exp(2mif). Then, the result stated is a particular

case of Lemma 2.18 applied to a Fourier series which only has positive terms.
O

EXERCISE 3.7. Give a direct proof of the Lemma 3.6

One can follow the sketch in the beginning of Section 2.5.

Start by observing that the solution of (3.6) is ¢r = mp(a® — a)
Estimate |pg| using the above formula, (3.2), and the estimates for |n| in
terms of ||n||, obtained using Cauchy estimates.

Estimate ||¢||,.—s by the sup of the coefficients. Then, one ends up with
the desired result with 7 = v + 1.

-1

IThese norms are slightly inconsistent with those in Section 2.2 in which we took
[ fllo = sup|.j<co [f(2)|- The convention of Section 2.2 is more natural when one is using
at the same time Fourier series and Taylor series. For the present section, the convention
we now take is more natural.
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Since we are dealing with analytic estimates, this is enough to get
through the proof.

The ambitious reader is invited to carry out an analysis similar to that
in [Riis76¢| — see the exposition of this paper in the proof of Lemma 2.18.
and obtain the optimal exponent 7 = v.

Now, we proceed to the proof of Theorem 3.1. The proof we present
here follows [Zeh77] — it is a particular case of the results of that paper.

PROOF. Proceeding heuristically for the moment, we can think of (3.4)
as an implicit equation in a space of functions

0=7(f,h)=foh—hoa

(by a we denote either the constant or the function a(z) = az). Note that
7 (a,1d) = 0.

We consider f fixed (but close to a) and we are given an approximate
solution A

(3.8) T(f,h)=foh—hoa=R,

where R is the remainder which we would like to think of as small (the
precise sense in which it is small will not be made explicit in this heuristic
discussion).

We would like to obtain a A that eliminates most of R so that 7 (f, h+
A) < R. This amounts to a Newton’s method. Since

we are lead to consider the equation for A
(3.9) R+ DT (f,h)A = 0.

In our case — remember that we are, for the moment, just proceeding
heuristically, but this step is not difficult to justify — we have that the
derivatives will be:

DoT (f,h)A = (f'oh)A — Aoa.
Hence, in our case (3.9) becomes:
(3.10) (f'oh)A—Aoa=—R.

If the factor f' o h = a + f' o h were just a, the equation (3.10) would
reduce to those considered in Lemma 3.6. A

One way that succeeds in reducing the annoying f’oh to a constant is the
following: (in the exercises we examine several seemingly natural methods
which do not work).

Take derivatives with respect to z of (3.8) and obtain the identity

(3.11) flohh —ah'oa=R'.
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If rather than looking for A, we look for w defined by A = b/ w (remem-
ber h is close to the identity, so that indeed 1/h’ is an analytic function so
that looking for A and for w is equivalent), equation (3.10) becomes

(3.12) flohhw—hoawoa=—R.
Substituting (3.11) in (3.12), we are lead to

(3.13) ah'ocaw—hoawoa=-R—-Rw

or

(3.14) aw—woa=—(hoa)'R— (W oa) 'R w.

If we ignore the term (h' o @)™ R’ w (the intuition, which we will later
turn into rigorous estimates, says that h’' o a is of order one, R and R’ are
small, hence w is small and R'w is much smaller), we simplify the problem
to studying

(3.15) aw—woa=—(hoa) 'R,

which indeed is an equation of the type we considered in Lemma 3.6.
Hence, the prescription that we have derived heuristically to obtain a
more approximate solution is

(1) Take w solving (3.15);
(2) Form A = h/w;
(3) Then, h + A should be a better solution to the problem.

Now, we turn to making all the previous ideas rigorous. We will need to
show that the procedure improves (that is, show estimates for the remainder
after one step given estimates on the remainder before starting). We will
also need to show that the procedure can be repeated infinitely often and
that it leads to a convergent procedure.

If we are given a system with an remainder and run the procedure out-
lined above, the following lemma will establish bounds for the new remainder
in terms of the original one.

Following standard practice in KAM theory, we denote by C throughout
the proof constants that depend only on the dimension and other param-
eter which are fixed in our proof. In our case, since we are paying special
attention to the dependence of the domain loss parameter on the size of the
Diophantine constants and the smallness assumptions, C' will not depend on
them. Other KAM proofs which emphasize other features may allow C to
stand for constants that could also depend on the Diophantine constants.

LEMMA 3.8. Let f be as in Theorem 3.1, h(z) = z + h(z), (h(z) =
O(|z|%)) defined in a ball of radius 3 < o <1 satisfy

(3.16) 1] < M < 1/2
with
(3.17) o+ M<1,
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(3.18) |foh—hoaly, <e.
Assume furthermore that § > 0 is such that
(3.19) KC6 7V letoe <o

Then, the prescription above can be carried out and we have:
[fo(h+A) = (h+ A)oalge-s

3.20 1

(3.20) <KCs V1?4 5l fli(KCs™ " teM)?572,
REMARK 3.9. Since for § > 0, o(1 — e™%) < 06, condition (3.19) is

implied by

(3.21) 06 > CK§ V3.

which, once we have o, condition (3.19) imposes the restriction that § cannot
be smaller than a power of € (the power is closely related to the Diophantine
exponent).

As we will see in the proof, as we keep iterating, the ¢ will be decreasing
very fast (superexponentially) while § only decreases exponentially. This
will make it possible to satisfy (3.19) without trouble.

~ REMARK 3.10. Note that if we assume without loss of generality that
£l <2, K <K? §<1,the RH.S. of (3.20) is less or equal to

(3.22) CK2e2672r1) =2,

ProoF. To check that the prescription can indeed be carried out, we
just need to check that the function f o (h+ A) can be defined. Hence, our
first goal will be to obtain estimates on A and show that the image of the
ball of radius re% under h + A is contained in the domain of f. Indeed,
the estimates for the range will allow us also to obtain estimates for the
derivative of f via the Cauchy theorem which will later prove to be useful.

Then, we will obtain the estimates in (3.20) and (3.22) provided that we
have suitable estimates on [|A||,.—s.

To obtain the estimates on ||A||,.-s, we note that using the Banach
algebra property of the norms and the inductive assumption (3.16), we can
bound the R.H.S. of (3.15) by

I(W oa)™ Rllg < (1 = 1/2)7"||Rllo-

By Lemma 3.6 we have that
[w]lge-s < KCT"||R][-

Apply Cauchy estimates (2.14), but take into account that now we are in
an slightly different situation, to obtain:

(3.23) W o allges < KOl
(3.24) R || pes < K& 'e.
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Hence, taking into account (2.15), and that we had called ||R|, = €, we
obtain from the previous results:

(3.25) |A]lpes < KC§ ™V eM,
(3.26) |Rw|, s < KC§ V12
Note that the assumption (3.19) implies that

I+ A pes < 1,

so that, as claimed, the composition in (3.20) indeed makes sense.

To obtain the estimates in (3.20), we consider the term to be estimated
in (3.20) and the obvious identity obtained just by adding and subtracting
terms to it and grouping the result conveniently.

fo(h+A)—(h+A)oa
(3.27) =foh—hoa+ flohA—Aoa
+[fo(h+A)—foh— f ohAl

The first four terms in the R.H.S. of (3.27), using (3.11) and (3.12)
amount to:

R+ h oaw+ Rw—ah/ ocaw = R w.
The term in braces in (3.27) can be estimated because, by a calculus identity
(Taylor theorem with the Lagrange form of the remainder)

f(h(2) + A(2)) = f(h(2)) = f'(R(2)A(2) =
1
_ /O (s — 1) f"(h(z) + sA(2) A2(2) ds.

Since, again by Cauchy bounds and (3.16), we have

1F"(h(2) + sA()) s < CO72| f1,
we can bound the || ||,.—s of (3.28) by

(3.28)

(3.29) 1/2||fll(KCs™teM)?672.
If we estimate (3.27) putting together (3.26) and (3.29), and remember-
ing the standing assumptions on M, || f||1, we obtain (3.20). O

To finish the proof of Theorem 3.1, we just need to show that if ||f||;
is sufficiently small, we can repeat the iterative procedure arbitrarily often
and that we converge to a limit which satisfies (3.5).

We will denote by subindices n the objects after n steps of the iterative
process (assuming that it can be carried out this far). For example, o, will
be the domain of definition of h,, and we have g,41 = one 9. To simplify
the discussion, we will use the condition (3.21) which implies (3.16) and the
bounds (3.22).

The main thing that we have to do is to choose the d,,’s. Notice that
if we choose d,, going to zero slowly, we lose more domain than needed and
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end up with a weaker theorem — of course, if we lose too fast, we end up
with an empty domain. On the other hand, the smaller that we choose §,,
the worse (3.22) becomes.

A reasonable compromise that is neither too fast so that we end up
with no domain nor too slow so that we can still converge is to choose an
exponential rate of decay. In the exercises, we will explore other choices.

We will choose

(3.30) S = 50277,

and then, will show how to choose dg.
With this choice of §,, (3.22) implies easily

(3.31) enp1 < CK2e26,% A%

where p=v +1, A = 2*.

We assume by induction that the iterative step can be carried out n
times (i.e., that hypothesis (3.21) is verified for the first n steps). We will
show that, under certain assumptions on the size of dg, g9, which will be
independent of n, hypothesis (3.21) will be verified for n + 1. Moreover, we
will show that €,11 decreases very fast. Then, by repeated application of
(3.31) we have:

Ent1 < CK255 2 A"

-2 n n— .
(3.32) (CK250 M)1+2A +2(n—1) 572131

IAIA

IN

- 24 .. q0n, _1)deeqon—1 on+l
(CK260 Q,u)1+2+2 A2 gn42(n—1)442" 5(2)" .

Note that 14+2 422+ ... 42" < 27! and without loss of generality, we
can assume that CK26; %" > 1. Similarly,

n+2n—1)+---+2"1.1
=227+ (n—1)27 D 4. 27l ]

(o0}
<"y ke =om.2=0mt
k=1

hence
2n+1

(3.33) Ens1 < (0K2552”50A)

Notice that if p = CK2562“A50 < 1, then (3.33) converges to zero extremely
fast (faster than any exponential).
The equation that we need to satisfy to be able to perform the next step
is
Spi1 = 602~ > CK6;#2 e, = CK8; 2 p "
or

(3.34) CKo# ! < omu=(nt),

_2n+1
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By now, it should be clear that if we take 5y = 3 (so that o, > e™1), if
we assume that € is sufficiently small, we can satisfy (3.34).
Moreover, since by (3.25),

1Al o-r < KC521mp2",

we see that > A, < oo Hence

AEZAn

converges uniformly in the space of functions in the disk of radius e™ and
we can easily bound [[A||-1. O

1

At the end of this subsection, we have collected some exercises that
explore alternatives for the present proof and for another that will be pre-
sented.

Let us highlight some of the remarkable points of the proof.

REMARK 3.11. We call attention to the remarkable fact that the deriva-
tives of (3.10) could be used to transform the equation (3.11) into a much
simpler equation (with an error which is small if the remainder is small and
of quadratic order).

This is what allowed us to solve the step with quadratic error. In turn,
this quadratic error was crucial in being able to deal with the small divisors
(see the following remark). See exercise 3.25 for an example of a problem
with very similar analytical properties but without group structure for which
the result is false.

The possibility of performing this remarkable simplification comes from
the group structure of the equations, as was emphasized in [Zeh76a].

This remarkable cancellation has other justifications, for example, in the
context of Lagrangian principles. Indeed, one can see that it is related to
the symmetry that we used in (1.18). With a bit of hindsight we can see
that the factor (1 + €[<”],) used there is really an infinitesimal translation
on the right for the data of the problem and that the cancellation is just a
reflection of the fact that the original problem is invariant under translations
(see the classical Noether theorem about variational principles with contin-
uous symmetries). In Quantum Field Theory the identities that come from
changes of variables are called Ward identities. The relation between Ward
identities and the identities used in Lindstedt series has been emphasized in
[Gal94a], [BGK99], which are papers designed to bridge the gap between
the language of Quantum Field Theory and KAM theory. Of course, in
QFT one often does not consider the objects as defined per se, but rather
as formal power series.

REMARK 3.12. Once we have the iterative step and the estimates that
give quadratic convergence, the rest is (even if miraculous and quite remark-
able) by now well understood.
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Indeed, there are several abstract formulations, some of which we will
discuss later, see Chapter 4.

In what follows, we will emphasize the steps required to reach the qua-
dratic convergence and leave to the reader the checking that the convergence
indeed takes place.

Experience shows that, once one has worked out a few quadratically
converging arguments it becomes faster and more reliable to work out a
proof by oneself than to read the proofs by others. It is certainly more
instructive for the reader and more comfortable for the writer. In this case,
the reader should be assured by the existence of properly written papers
that we reference where he/she is encouraged to look for extra details.

Obtaining the quadratically convergent algorithm in classical KAM the-
ory is not obvious since it depends on cancellations given by the geometry
or the structure of the problem which eliminate some terms which would
result in a linearly convergent method.

Note that in the classical KAM theory, we are constrained by the fact
that we know only how to solve one linearized equation (in contrast with
the usual Newton method, where we can solve the linearized equation in a
whole neighborhood.

In the remainder of this subsection, we will present a proof of the mul-
tidimensional case of Theorem 3.1 following [Arn88|, Chapter 28. The
one-dimensional version of this proof is covered in [SM95], Chapter 25.

THEOREM 3.13. Let f : U c C% — C%, be analytic in a polydisk.
f(0) = 0. Denote Df(0) = A and assume that A is diagonal and o =

(01,02,...,04), the spectrum of A satisfies:
(3.35) % — | V< Ck)Y keN |k >2, ic{l,---n}
(where we use the customary multi-index notation o = Ulfl -052 Cee 'O’Sd,

|kl =Fki+4+ - kq).
Then, we can find an h: V C C* — C¢, h(0) = 0, Dh(0) = 1d such that

in a neighborhood we have
(3.36) h™lo foh=A.

The conclusion of (3.36) is again that f is just the linear map in other
coordinates.

REMARK 3.14. Notice that we are not assuming that the o; have mod-
ulus 1. The multidimensional case can have several interesting examples in
which some of the o; are smaller than 1 and others are greater than 1. In
the case that there are no eigenvalues equal to 1 and that no product of
eigenvalues is another eigenvalue, Sternberg theorem will guarantee us that
there exists a C'*° change of variables that reduces the system to a linear
one. To obtain that the change of variables is analytic, we need not only
that the products are not eigenvalues but also some quantitative estimates
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on how far they are such as (3.35). Note also that the C° changes of vari-
ables produced by Sternberg theorem are not unique, whereas, as pointed
out before, the analytic ones are unique.

REMARK 3.15. Note that, implicitly, condition (3.35) requires that there
is no eigenvalue 0, hence A is invertible.

It is very easy to show that if one eigenvalue is 0 one should not expect
the conclusion to be true.

REMARK 3.16. If we write 0 = exp(27miw;) — with w; possibly complex
numbers — we see that the (3.35) is equivalent to the fact that w satisfies
(2.20) but we only need it for k& € N¢ rather than k € Z.

We will discuss the different stages of the proof but leave many details
to the reader since this will provide some training and, moreover, it can be
found in the references indicated. .

Proceeding heuristically, we will note that if h(z) = z + h(z), we have
h=(z) = z — h(z) + O([h]?). (Here in the O notation we allow to include
derivatives. For example, i’h” will be a term allowed in O([h]?).)

If we assume that f(z) = Az + f(z) and that f is small, if we want to
make the changes of variables that reduce f to linear with a smaller error,
we have

AL A

(3.37) h7lo foh(z) = A(2) + f(2) — ho A(z) — Ah(z) + O([h]%, [f][R).
This suggests the following iterative step.
1) Solve the following equation for h
(3.38) f(2) = ho A(z) — Ah(2).
2) Consider now the the map
f=h"to foh(z).

If all works according to plan, f will be much closer to the linear
map A.

The approximations we have taken can be readily estimated by adding
and subtracting as follows. (Ignore for the moment questions of domains of
definition. Suffice it to say that the simple minded identities we obtain are
supposed to hold in a domain near the origin. Later we will need to worry
about how big we can choose the domain and about making sure that all
the compositions we have used formally can be defined.)

(3.39) foh(z) = Az + Ah(z) + f(2) + Ri(),

where Ry (z) = f o h(z) — f(2);

(3.40)  (Id—h)o foh(z) = Az + h(z) + f(2) + Ri(2) — h(Az) + Ra(z),
where Ro(z) = h(Az) — ho f o h(2);

(3.41) h™ o foh(z) = (Id—h)o f o h(z) + Rs(z),
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where R3(z) = (h_l —(Id —ﬁ)) o foh(z).
Hence, from (3.39), (3.40), (3.41), we obtain

(3.42) h

Lo foh(z) = Az—ho(Az)+ f(2)+ h(2) + R1(2) + Ra(2) + Rs(2).

Now we turn to the task of obtaining estimates that quantify how this
step indeed improves the situation and how we can use it repeatedly to
converge to a solution. We highlight the main arguments.

i) Estimates on h obtained solving (3.38).

(3.43)

(3.44)

i)

(3.45)

(3.46)

(3.47)

(3.48)

By carrying out exactly the same procedure indicated before
estimating the sizes of the Taylor coefficients by the size of the
function, solving the small divisor equation for the coefficients and
then, estimating the size in an slightly smaller domain we obtain:

lllye-s < 57N f1lr-

Note that using (3.38) we immediately obtain estimates for
in another another domain.

o Allpe-s < C57|fl-

Having control of h both in the polydisk and in its image under A
will be quite important to be able to check that compositions, etc.
make sense. Note that the argument that we have presented — just
using (3.38) — works even when the eigenvalues of A are not on the
unit circle.
Estimates obtained using (3.43) and the implicit function theorem.
Note that this requires that we assume some smallness condi-
tion in A that ensures that we can indeed define the compositions.

1Bt = (1d =) em2s < &2 A2,

and, similarly using (3.44) and the implicit function theorem (again,
we need some conditions that ensure that we can define the com-

positions needed to apply the implicit function theorem).
[h7Y — (Id —h)[|e-2s < CO 2o A2 _s.

Ire

For the conditions that allow us to use the implicit function
theorem, it is enough to assume that we have

lllpes < K,
1o Allye-s < K,
which, in view of (3.43) (3.44) are implied by:
1Fllpe-s < K67,
1 o All,e-s < K57,
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iii) Easy estimates using the mean value theorem.
Note that we can estimate

(3.49) 1f o hi(z) = foha(2), < Sup /()11 = hallr,

where ¥ is a convex domain that includes the image of the polydisk
of radius r under hy and hs. In particular, we can take X to be the
polydisk of radius r + max(||h1]|r, [|h2]]r)-

If we use Cauchy estimates, can obtain

(3.50) If o h1(2) = f o ha(2)llr < 67 | fllv[Ib1 = hallr,

where ' = [r + max(||h1 ||, | h2]|-)] €.
As it turns out, to be able to make sure that the domains match
we need a condition of the same form as (3.48).

Hence, one can prove a lemma that ensures that, provided (3.48) holds,
we can perform the step and obtain estimates

(3.51) If = Allye-ss < CK?67T(|f = AlI7,

where, as usual, we have denoted by C' a constant that depends only on the
dimension, K is the constant in the Diophantine inequality (3.2) and 7’ is
an exponent related to the Diophantine exponent (roughly twice, since we
are squaring the result of Lemma 3.6 and we are applying Cauchy bounds
twice).
This statement is usually called the iterative lemma.
Once we have an iterative lemma, we need to show
iv) Choose d,, = 602~ ". If you assume that ro > 309 and that ||f —
Ally,is sufficiently small, then the iterative lemma can be applied
repeatedly to obtain a sequence {f,} defined on r, = rp_ie 01,
This sequence satisfies

(3.52) 1 fn — Allr, < Ca®

for some 0 < a < 1, which can be made arbitrarily small by as-
suming || fo — Al|r, is sufficiently small.
v) We need to show that the compositions h() = hy, © hpy—q 0 -+~ hg
converge on a non-trivial domain.
This follows because h,, — hyp—1 = Bn ohpy_10---hg and we can
estimate . X /
1Pl e=25n < [1f 1l 277
and using (3.48) show that

1 0 By 0+ holly o580 < [[Finly, c—26n

Besides the fact that the quadratic convergence is allowing us to domi-
nate the small divisors, we want to highlight some features of the algorithm.
Note again that we can only solve the linearized equation at precisely the
identity. Nevertheless, the progress that we are making, allows us to reduce
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the problem closer to the identity so that we are starting at a problem
which is even more favorable. Again, this is the group structure of the
problem. The successive changes of variables has been applied very often
in the proofs involving Hamiltonian systems with preference to the proofs
that involve just solving functional equations. This is due, in part to the
fact that Hamiltonian systems have a very nice transformation theory. It
is also true that reducing to normal forms, even if only approximately has
very interesting byproducts, for example, the Nekhoroshev theorem.

Note that the analytic part of convergence was extremely similar. We
obtained the estimates which are quadratic but which contain the bad term
which has to grow unbounded. All these estimates were proved under some
inductive assumptions that allow one to perform the algorithm. The qua-
dratic nature of the estimates can be used to show that if we start with small
enough error, the growing terms due to the solution of the linearized equa-
tion do not spoil the convergence and that indeed we recover the inductive
assumption that allows us to keep on improving our linearization. Once we
obtain that the remainder goes to zero extremely fast, it is possible to show
that the composition of the transformations converges.

EXERCISE 3.17. When A has a non-trivial Jordan block and the spec-
trum satisfies (3.35), show that the cohomology equation Ah—ho A= f is
solvable as a formal power series.

What type of estimates do you obtain?

Are the estimates you obtain enough to prove Theorem 3.13 without the
assumption that A is diagonalizable?

If not, can you construct a counterexample?

Note. Some partial a nswers to this exercise are known in the literature.
A recent paper that the reader can consult which refers to previous literature
is [DGO02]. See also the discussion of this case by non-KAM methods in
[Brj71], [Brj72].

EXERCISE 3.18. Obtain optimal estimates in the Riissman style for the
linear equation for analytic functions in the several variables case. The case
when A is a diagonalizable matrix with all eigenvalues equal to 1 is very
similar to the one we have discussed so far. Much more interesting are the
cases when the matrix has eigenvalues of modulus 1 and non-trivial Jordan
blocks.

In preparation of arguments to come, note that, when A has eigenvalues
of modulus different from 1, if the domain of ¢ is a polydisk, the domain of
po A is a different set.

EXERCISE 3.19. Formulate the improved estimates of Exercise 3.18 in
the language of approximation functions €2. Do they lead to some improve-
ment in Brjuno conditions?

EXERCISE 3.20. Some of the estimates in the proof of Theorem 3.1 we
have presented are rather wasteful.
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Notice in particular that we estimated in (3.24)
R || pe-s < KO le.

We can observe that, as we iterate, the remainder vanishes at higher and
higher orders. This will allow us to use sharper Cauchy estimates, which we
detail below.

Note that if a function f(z) = 2V g(z), we have f'(z) = N2VN~"1g(z) +
2Ng/(2). Also, we have || f||1 = ||g||1. Hence

1 < NeV gl + CrY gl

(3.53)
< ONN 7Y £l

Carry on the proof using these improved estimates and see if one obtains
something better.

EXERCISE 3.21. There is a certain arbitrariness in the speed at which
domain is lost in the proofs.

What happens is you take §,, = don~®" with a > 07?

What happens with &, = don™%, a > 1, or 6, = don~!(logn)™%, a > 1?

EXERCISE 3.22. In the proof we have presented, we have developed
smallness conditions for the remainder in a ball of radius 1 so that we obtain
a solution in the ball of radius 1/2.

Of course, there is nothing magic about 1/2 and this was just chosen to
avoid cluttering the proof with choices.

Show that given a § > 0, if we choose appropriate smallness conditions
for the error in a ball of radius 1, we obtain an exact solution in the ball of
radius 1 — 4.

Find the asymptotics of the smallness conditions as § — 0.

EXERCISE 3.23. We have based all of our proofs on the study of the
equation

(3.54) foh(z) =h(az) h(0)=0, H'(0)=0.

On the other hand, by considering ¢ = h~' — which, by the implicit
function theorem should be defined in a neighborhood of the origin — we
obtain the equation

(3.55) gof=a, ¢g(0)=0,¢(0)=1.

Note that the equation (3.55) is a linear equation.

I think it is very remarkable that all the expositions — including this one
— of the Siegel theorem use the non-linear equation

One would think that if there are two “equivalent” equations and one of
them is linear, one should develop the theory for the linear equation.

Hence, this exercise is to develop a proof of the Siegel theorem based in
the linear equation (3.55).
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I note that a paper that uses (3.55) for numerical computations is
[LT86]. In [Ran87], [dILR91] it was pointed out that if one uses a dis-
cretizations in power series, it is advantageous to have equations whose
maximal domain of definition is a circle. As we have shown, the solutions h
of (3.54) have domains of definition which are circles. On the other hand,
the solutions g of (3.55) do not have domains which are circles — they are
the Siegel domains.

EXERCISE 3.24. Fix a = exp {27T2' ‘/52*1 } and consider

fn(z) = az + 2V,
What are the asymptotic of the Siegel radius as N — o00?

EXERCISE 3.25. In the classical Newton method, we use the fact that
if the derivative D27 (a,Id) is invertible, then D27 (f, h) is invertible when
(f,h) are in a neighborhood of (aId) and, moreover, the norm of the inverse
is bounded.

We can try to apply the same ideas involved in the proof that in the
classical case the invertibility of the derivative is an open condition (A +
B)™l = A7'Y._(~BA71). (sometimes called the Neumann series) to
solve the equation

ffohA—Aoca=—-R
by iterating the solution of
aA—Aoa:—R—f’ohA.

Try to carry out the procedure and decide whether it can be applied as
an ingredient in a KAM proof. (e.g., one can try to take more stages in the
proof as one progresses etc.

To the best of the knowledge of the author it cannot be made to work
(unless one uses cancellations similar to those used in the quadratically
convergent methods or those of the direct methods) but attempting this
will give an appreciation of the cleverness of the use of rapidly convergence
methods.

Of course, if there is a proof that succeeds in accomplishing this, the
result will be quite interesting.



CHAPTER 4

Hard Implicit Function Theorems

Before proceeding to more geometric considerations, it will be conve-
nient to abstract some of the properties that made the previous argument
work and isolate them in an abstract implicit function theorem. This will
streamline a good deal of the arguments and illustrate quite strikingly the
principle that the quadratic convergence can dominate the small divisors.

Even if implicit function theorems take care very nicely of the analysis of
the convergence, they ignore the geometric considerations and the particular
properties of the problem at hand. These particular properties are crucial to
obtain the general framework of the implicit function theorem. Nevertheless,
it is useful to introduce the difficulties one at a time.

Later we will have to spend time making sure that we can fit a problem or
an algorithm to solve a problem into the functional framework of a theorem.

We emphasize however that the usefulness of these implicit function
theorems is not restricted to KAM theory and they have been used in a
variety of problems in geometry, PDE, etc. and that in any case, they are a
very useful strategic guide on how to organize the proofs of the problem at
hand.

There are different versions of implicit function theorems adapted to
work in KAM theory. We just mention [Zeh75], [Ham82], [H6r90] (see
also [H6r85]). The main variation we have included is that we have used the
approximation functions (introduced seemingly in [Riis80]) in the implicit
function theorem. Some parts of the exposition are based on [dILV00]. A
very good recent exposition — regretfully, not easy to obtain — of Nash-Moser
theorems including detailed comparisons and examples of applications, spe-
cially to PDE’s is [HM94]. Also very important for the relation with PDE’s
are [AG91], [H6r90]. (Of course, one should also consider the work of
[CW93], [Bou99b], even if it has not been formulated as an abstract im-
plicit function theorem and I am not sure it fits easily into the existing
ones.)

In this exposition, we will present the ideas in obtaining the results
for analytic functions and for finitely differentiable functions. There exist
other versions for C* functions which we will not be able to discuss. Since
the space C*° is not a Banach space, the discussion is substantially more
complicated. We refer to the literature mentioned above.

The theorem that most closely models the problem we have discussed
so far (and those that we will discuss later) is that of [Zeh75], which he

83
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calls analytic smoothing which we now, reproduce, with a small improve-
ment to deal with the Riismann conditions rather than just the Diophantine
conditions.

REMARK 4.1. In the case of one-dimensional dynamics, one can use the
theory of continued fractions to show that the Riismmann conditions that
we use in the implicit function theorem (expressed in terms of solvability
of equations) are equivalent to the conditions used in [Brj71] (expressed in
terms of number theoretic properties). I do not know if this equivalence is
true in higher dimensions.

Note that to abstract the spaces of analytic functions defined on balls of
different radius, we will consider not just a single Banach space, but rather a
family of Banach spaces. In the following, it will be good to keep in mind the
proof of Theorem 3.1 as motivation for the definitions and the assumptions.

THEOREM 4.2. We will consider scales of Banach spaces { Xy }qefo]
such that for 0 < o’ < o <1 we have
(41) XO QXO', QXU QXla
(4.2) lzllx,, < llzlx,,
and analogously for {Ys}oco,1], {Zo}oepo,1)-
Assume that we have F : Xy X Yy — Z
1) F(fo,up) =0 for some fo € X1,up € Y.
2) The domain of F' contains the sets
By = {(fiu) € Xo x Yo | |f = follx, <A, [lu—wuolx, < B}.
3) F(B,) C Z, and it is continuous when the range and the domain
are given the natural topologies.

In what follows, M > 1,v > 0, > 0 will denote fixed constants.
Assume furthermore:

H1) F satisfies a so called “Taylor estimate”. More precisely:
H1.1) The mapping
F(f,"): Yo N By — Zy

is Frechet differentiable for every o’ < o.
Denote by DoF(f,u) the Frechet derivative and

(43) Q(f;u,v)EF(f,u)—F(f,v)—DQF(f,v)(u—’u)
H1.2) We have the bounds:
(4.4) 1Q(f5u,v)llor < (o = o")Ju = vll7

where Y is a decreasing function. (We will assume without
loss of generality and to avoid complications in algebraic ex-
pressions, that Y > 1.) The function Y is called an approx-
imation function. It will also enter in subsequent hypothesis
and in (H4) it will be required to satisfy certain conditions.
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H3) Approximate right inverse We can find an approzimate right in-
verse for the derivative.
That is we can find a linear operator n that maps Z, into X,
for all o' < o and that satisfies:

In(f, w)zllor < (o —0o)|z[|
(4.5) ,
D2 F(f, un(f,u)z — zllor < Yo — o)|F(f,u)lls2]lo
H4) The approzimation function satisfies the Brjuno-Riissmann condi-
tions:

The function Y in (4.5) satisfies that there is a sequence dp, > 0
such that Y, 6, =1/2, >~ 27"|1log(0,/2)| < 0o and such

(4.6) D 27 log(Y(8n)) < o0

Then, there exists a constant C, depending only on M,a and Y such
that if ug is an approximate solution. That is,

(4.7) [1E(f uo)l1 =e

is sufficiently small, then, we can find u* € X /o solving exactly the equation
F(f,u*)=0

. Moreover,

(4.8) lu = u*ll1j2 < CIE (S, uo)l1-

REMARK 4.3. The theorem in [Zeh75] included also a hypothesis H2
that allowed one to obtain information on the dependence of the solutions
u in terms of f.

We have eliminated the dependence of u on f from the conclusions of
the main theorem and relegated it to remarks (see Remark 4.13). Hence,
we suppressed H2 from the main theorem, but kept the numbering to allow
easy comparisons. On the other hand, the hypothesis H4 here is different
from that of [Zeh75], but it plays the same role.

REMARK 4.4. There are several equivalent formulations of hypothesis
H4). For all practical purposes, it suffices to take § a fixed exponential
sequence. See the exercises.

The proof of this theorem is very simple since we have abstracted away
many of the complications of the previous theorem. We will present it and
then, we will highlight some of the subtle points and indicate some of the
applications.

REMARK 4.5. One of the important features of the proof in [Zeh75],
which we have eliminated for this pedagogical presentation, is that the final
result is expressed in a form which is independent of the space considered.
This requires one to assume that Y(t) = Ct~* for some positive C, . This
case has very important consequences such as the finitely differentiable case.
We will develop these improvements in the exercises.
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PROOF. We use a quasi-Newton method defined by the iterative proce-
dure

(49) Un+1 = Up — n(fv uTL)F(fa u’ﬂ)

in which n takes the place of the inverse of the derivative in the regular
Newton method.
We set 0,41 = 0, — 0, and 09 = 1. We will obtain recursively estimates

of |[E(f, un)llon [unlle,, and of [lun — upitlo,y, -
Since oy, > 1/2, the later estimates will imply that u,, converges in X /5.
Adding and subtracting, we have

F(f uns1) = F(f,unt1) — F(f,un) — D2 F(f, un)n(f, un) F(f, un)
+ F(f,upn) + DoaF(f, un)n(f,un)F(f,un).

We can estimate the terms in the second line in (4.10) using the second
part of (4.5)

HF(f7 'LLn) - DQF(f? Un)n(ﬂ 'LLn)F(f, un)”0n+1 S T((Sn)HF(f7 u)Hg’n
Using the first part of (4.5), we obtain: for 7, = (0, + op41)/2
(4.11) [n(fs un) E(f; un)lly < T (00 /2 (S un) o

This estimate allows us to apply (4.4) to the terms in the first line of (4.10).
Hence, we obtain (bounding Y (6,/2) > Y(,))

(4.12) 1E(f, tnt) longn < 20 (80/2) 1 E(F,un)l7,-
If we iterate (4.12), we obtain
IECf tunt ) lon i <27(60/2)% % (20 (8-1/2)%) x -+ X

2n+1

X (2Y(80/2)%)* 1P (f, uo)l,

(4.10)

4.13 n
(4.13) =212+ 420 (5 92 % Y((1/2)6p-1)% X -+ x
n+1 n+1
< T((1/2)00)*" " |IF(f,u0) 17,
We can estimate the logarithm of the factor of [|[F(f, uo)HgZH in the

R.H.S. of (4.13) by:
2" [log(2) + 1og Y ((1/2)8,)27" + - - + log T((1/2)8,—1)2~ "~V
+ -+ log Y((1/2)50)2"].

We see that under our assumption H4) (see (4.6) ), the term in braces can
be bounded by a constant (the sum of the series). Hence (4.13) yields
(4.14) IF(f tuns)llones < (ANF(S u0)lo0)
where A is a constant depending on the properties of the approximation
function and the other constants involved in the set up of the problem.

We see that, if we ||F(f,uo)||o, is sufficiently small, the right hand side
of (4.14) converges to zero extremely fast.
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Using (4.11), we have
(4.15) = tn1llo o < T(0n/2)(AIF(f,u0)ll00) ",

where A is also a constant depending only on the properties of the approxi-
mation function and the other constants involved in the set up of the prob-
lem. (It will be different from the A in (4.14), but we follow the standard
practice of denoting all such constants by the same letter.)

The R.H.S. of (4.15) is a convergent series because by our assumption
(4.6) the general term of the series is bounded. Therefore, log Y(d,,/2)2™" <
B (where, again, B is another constant depending only on the constants of
the problem and the approximation function).

When A||F(f,uo)l|ls, < 1, the second factor converges to zero faster than
any exponential.

Note also that, if ||[F(f,uo)l/s, small enough, the series obtained sum-
ming (4.15) has a sum as small as desired. In particular, we can verify that
the limit is close to ug in Xy 5.

Hence

Y(1/26,) (A F(f,u0)llon)*" < (AeP||F(f,u0)ll00)*"
This establishes the claim. O

EXERCISE 4.6. Many classical proofs of the classical implicit function
theorem are based not in the Newton method, which is quadratically conver-
gent, but rather in a contraction mapping principle (which is called linearly
convergence since the remainder after one step is only a fixed factor smaller
than the remainder before the step.)

Can one base a method that beats small denominators on a linearly
convergent procedure?

Similarly, one can get algorithms whose convergence is faster than qua-
dratic. (For example, solving the equation given by the second order Taylor
expansion or interpolating several of the previous steps of the algorithm.)
Can one base a hard implicit function theorem on these algorithms?

It is interesting to check how the previous result compares with the proof
we have presented of Theorem 3.1. The scales of spaces are just spaces
of analytic functions on balls of different radii. The approximate inverse
corresponds to the solving of the linearized equation by comparing it with
the equation obtained by taking derivatives of the remainder. Checking
that the scales map into each other is roughly the same as our inductive
hypothesis.

In the presentation of Theorem 3.1, we have, of course, taken

(4.16) YT(6) =M.
This is a very important particular case of the whole theorem since it not
only appears in interesting situations but also leads to further consequences

which we will discuss in the following remarks. (Of course, the reader should
also consult [Zeh75] and the other references.)
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The choice of a general T satisfying (4.6) corresponds to the small divi-
sors satisfying (1.34), whereas (4.16) corresponds to Diophantine conditions.
(For more details see [Riis90], [DeL97], [dILV00].)

REMARK 4.7. The existence of approximate inverses is a general feature
of conjugacy problems or of problems having a group structure.

As pointed out in [Zeh75] p. 133 ff. existence of approximate inverses
assuming only the existence of an inverse in the trivial case is a general fea-
ture of conjugacy problems, at least at the heuristic level. This indeed gives
a guiding principle for the cancellations that we found e.g., in the proof of
Theorem 3.1 in which we used that comparing the prescription suggested by
the heuristic Newton method with the derivative of the remainder the lin-
earized equation suggested by the heuristic Newton method can be reduced
to constant coefficients up to quadratically small errors.

Notice that the functionals we are solving are conjugacy equations.
Hence they satisfy the identity

(4.17) F(f,uov)=F(F(f,u),v).

If we take v = Id +0 and we think of © as infinitesimal, we obtain
(4.18) DoF(f,u)u'd = DoF(F(f,u),1d)d.

If we assume that nDy(fo,Id) = Id, we obtain that

(4.19) nDoF(f,u)u'd = Id +n[DoF (F(f,u),1d) — Do F(fo,1d)].

Notice that we can expect that, if DoF satisfies some Lipschitz conditions
on the first argument, the term in braces in the R.H.S. of (4.19) satisfies
the bounds we wanted for an approximate inverse provided that n satisfies
the desired bounds.

The importance of this remark is that by knowing the existence of 7,
which is just an inverse of Dy F'( fy,1d) we can deduce, for functionals with a
group structure, the existence of approximate inverse in a whole neighbor-
hood, which the hypothesis needed by Theorem 4.2.

Of course, F' satisfies assumption (4.17) when F(f,u) =u"!o fowu but
it could also be the action by w on vector fields or more complicated objects
and indeed it happens quite frequently when one is considering geometrical
problems.

REMARK 4.8. Strategy for KAM (discussed in more detail in Section
5.1) can be formulated as reducing the Hamiltonian to a Hamiltonian of a
particular kind.

Hence, we are not interested in just solving the equation F(f,u) = 0
but rather F'(f,u) = N, where N is a submanifold of infinite codimension.
Indeed, this is the problem that is considered in [Zeh75] and especially in
[Zeh76a).

REMARK 4.9. Even if most of the classical KAM problems (certainly all
that will be discussed in this notes) are conjugacy problems and, therefore,
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have the group structure, this is not completely necessary to have a quadratic
algorithm not completely necessary to have a quadratic scheme.

A review of problems in geometry which are not conjugacy problems can
be found in [Ham82].

A very interesting recent development is the observation that variational
problems with symmetry also present another general structure that allows
to obtain quadratic convergence. See, for example [Koz83b|, [Mos88] for
PDE’s or, in the context of KAM [SZ89]. (We will present an account of
that work in Section 5.3.)

Much more interesting is the fact that in [CW93], [CW94], another
mechanism to obtain quadratic convergence was introduced. At the moment,
I do not know of a functional analytic framework that encompasses these
remarkable results.

REMARK 4.10. In the applications of the implicit function theorems
to problems of persistence of tori — and to some geometric problems — we
are not interested in the equation F(f,u) = 0 but rather in the equation
F(f,u) € N where N is an appropriate submanifold.

See also Exercises 4.26, 4.27.

REMARK 4.11. Note that the structure of Theorem 4.2 is that the input
is just an approximate solution (with some extra mild requirements) and that
the output is an exact solution not too far from the original approximate
solution.

In the most commonly quoted applications, the input is the exact solu-
tion for an integrable system, which is an approximate solution for a quasi-
integrable system. Nevertheless, other applications are possible. Among
them, we mention:

1) Numerical algorithms:

If carefully implemented and successfully, numerical algorithms produce
approximate solutions (i.e., something that, when plugged into the equations
satisfies them approximately).

Hence, using a theorem with the structure of Theorem 4.2, one can
justify that the approximate solutions produced by a computer algorithm
indeed correspond to a true solution nearby. In numerical analysis, this is
sometimes called a-posteriori bounds. (See [BZ82], [dILR91], [CC95].)
We discuss some numerical issues involved in Chapter 7.

2) Justification of asymptotic expansions (e.g., Lindstedt series)

These expansions produce objects that satisfy the equations approxi-
mately. Hence, a theorem similar to Theorem 4.2, can be used to justify
asymptotic expansions. That is, show that one can indeed find tori which
are not far away from the truncations of the Lindstedt series. For the KAM
tori, one can find this type of arguments in [Mos67]. In these case, it is also
shown that the Lindstedt series converge (since the torus should be analytic
as a function of the parameter). We emphasize that to justify the asymp-
totic nature of the series one just needs that the series produce objects that
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satisfy the equation with smaller errors and that are not too complicated.
The Lindstedt series of lower dimensional tori are studied by this method
in [JAILZ99]. In that case, we do not know whether the series converges or
not, but following the argument sketched here, it is possible to show that
they are asymptotic in a certain complex domain.

3) Establishing continuity or Whitney regularity of the solutions with
respect to parameters — assuming that F' is more regular in both its argu-
ments.

This application is worked out explicitly in [dILVO0O]. The latter argu-
ments require some uniqueness, which is not provided by the theorem in the
way we have stated and proved it, but which we obtain in Exercise 4.25.

4) Obtaining a result for finitely differentiable problems out of the ana-
lytic ones.

An application that can already be found in [Mos66b], [Mos66a] is
that, as we saw in Lemma 2.2, we can characterize finitely differentiable
functions by their approximation properties by analytic functions. We just
sketch the argument.

Given a smooth f, we study the problem F(f,u) = 0 by considering a
sequence of problems F'( f,,, u,) = 0 where f,, are constructed approximating
the smooth function f by analytic functions.

Using that || f — fat1llo—sn < C27 D7 it is often possible (using the
structure of F') to show that

F(fryun) = F(fatt,un)|lg-mrn = [|[F(frotrt, un)|la-mi1 < Cc2- (),

We consider u,, as an approximate solution for the problem with f,;1. In
the case that Y is a power, it follows that

i — Unslly- iz < 27D
from which, appealing again to Lemma 2.2 we obtain that there u = lim u,,
which solves the desired equation and which is analytic.

This method has the advantage that one always works with analytic
functions for which estimates are often easier and, as we have seen sharper
if one needs to use Fourier coefficients.

We refer to [Mos66b], [Mos66a], [Zeh75], [Zeh76a] for more details
(such as how to get the induction started), somewhat different versions of
the argument, and applications to concrete problems.

The quantitative estimates needed to carry out this strategy are ex-
plained in Exercise4.20.

5) Bootstrapping the regularity.

A solution which is moderately smooth, if approximated by an analytic
one is an analytic approximate solution.

Applying a theorem of this sort, one can conclude that given an analytic
problem, if there is a sufficiently smooth solution (so that the smoothings
are indeed very good approximations), then there is an analytic one. Of
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course, if one does have uniqueness of the problem, one obtains that any
solution that has a certain regularity, is analytic.

Of course, if we start with a problem that is very regular, we can also
show that given a solution which is beyond a certain critical regularity,
there will be another one which is as as the problem allows, and if there is
uniqueness, we conclude that all the solutions beyond a certain regularity
are as smooth as the problem allows.

Arguments of this type are worked out explicitly in [SZ89]. Again, we
refer to Exercise4.20 for some of the quantitative estimates needed.

REMARK 4.12. Notice that the Theorem 4.2 only assumes the existence
of an approximate right inverse.

One should not expect that the solution one produces in the theorem
to be unique. Indeed, in some problems such as the Nash embedding the-
orem which motivated a good deal of the original research one only has an
approximate right inverse and, indeed the solution is not unique. In many
geometric problems, the results we seek are in any case invariant under
diffeomorphisms, so that it is to be expected that the solution is not unique.

Under moderate assumptions — e.g., under the existence of an approx-
imate left inverse — one gets uniqueness. See the remarks in [Zeh75] and
see Exercise 4.25. These assumptions are often satisfied in KAM theory
or uniqueness of the objects we are interested in can be obtained by other
means. (Often one seeks geometrical objects in coordinate systems, so that
the geometric objects may be unique even if their coordinate representation
is not.)

One situation when these considerations play a role is the proof of the
KAM theorem following Kolmogorov’s strategy (see Section 5.1).

In this method, we seek a change of variables in which the resulting
system manifestly has an invariant torus. That is, we try to reduce the
system to the the Kolmogorov normal form (5.6). Such change of variables
is manifestly not unique since the normal form does not specify what are the
higher order terms and one can make changes of variables that only depend
to higher order in the actions. Therefore, one cannot expect uniqueness in
the change of variables nor in the term of the normal form and a formulation
of the theorem based on this formalism cannot aspire to obtain uniqueness.
Nevertheless, it is true that, under moderate non-degeneracy assumptions,
the torus that has a prescribed frequency is unique.

REMARK 4.13. The theorem of [Zeh75] has an extra hypothesis H2 that
requires that F' is Lipschitz in the first argument Then, one obtains Lipschitz
dependence on the solution on the function f (in some appropriate spaces).

We note that, in the case that there is no uniqueness, the only claim
made is that the algorithm (4.9) leads to a solution that depends in a Lip-
schitz manner on f. Clearly, when there is no uniqueness one could make
different choices of solutions for different f and end with a u that depends
discontinuously on f.
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A detailed treatment of these ideas can be found in [Zeh76b].

We point out that there are other methods to obtain smooth dependence
with respect to parameters that do not involve following the proof of Theo-
rem 4.2 and checking the differentiability with respect to parameters of all
the steps.

1) One can also obtain quickly higher regularity with respect to param-
eters by applying Theorem 4.2 in spaces that consists of smooth families
of functions. Of course, one needs that the approximate inverse also maps
smooth families into smooth families. This is somewhat tricky since approx-
imate inverses are not uniquely defined, so one could make different choices
for different values of the parameter and spoil even continuity.

Nevertheless, for problems with group structure, the prescription given
by (4.18) gives a way of accomplishing the solution in spaces of smooth
families of functions. Arguments of this sort are carried out in detail in
[dILOO0O] to solve a problem in differential geometry.

2) When there is uniqueness, one can follow other sort of arguments such
as finding formal derivatives for the solution and then, showing that these
formal derivatives satisfy the hypothesis of Whitney theorem [dILV0O].

REMARK 4.14. When one has some regularity — at least Lipschitz — with
respect to the parameters, one can start discussing issues — important in the
applications — such as the measures in the space of parameter covered.

EXERCISE 4.15. Write precisely the reduction of Theorem 3.1 to Theo-
rem 4.2 by making explicit choices of spaces, etc.

EXERCISE 4.16. A challenging variant of the previous exercise is to show
that, if the number w satisfies the conditions (1.34), the approximate inverse
we constructed in the proof of Theorem 3.1 satisfies (4.6).

If independent study fails, see [Riis90], [DeL97] for estimates that go
from arithmetic conditions to approximation functions.

REMARK 4.17. In practical applications, e.g., when one is computing
numerically solutions to a problem defined implicitly one of course, does not
compute the inverse of the matrix, but rather solves numerically the system.

In numerical practice, this usually entails a factorization of the matrix.
Traditionally, one uses the LU factorization (Gaussian elimination), even if
in KAM theorems that tend to be ill conditioned one should, perhaps, prefer
the singular value decomposition, usually abreviated as SVD. We refer to
[GVLI6| for a description of the LU, QR, SVD algorithms.

In any case, it is convenient not to have to recompute these factorizations
— which may much more costly than the application to a function. Of
course, we would not like to lose the quadratic convergence which, e.g., in
continuation methods that require great precision is much more practical
that a method that converges more slowly.

The following two schemes, which avoid having to recompute factoriza-
tions but which get convergence faster than linear are studied in [Mos73]
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p. 151. The second one comes from [Hal75]. A geometric interpretation
of these methods as a Newton method in the space of jets is discussed in
[McG90].

Un+1 = Up — UnF(f, un)7

4.20
( ) Nn+1 = Mn — nn(Id _DQF(f7 un))nm

Unt1 = Up — M F (f, un),
Mn+1 = Tn — nn(Id _D2F(f7 Un+1))77n-

(In numerical applications, one does not compute the product of matrices
in (4.20), (4.21). Note that it suffices to apply the matrices to vectors.)

(4.21)

EXERCISE 4.18. Show in finite dimensions that, under smoothness as-
sumptions and smallness assumptions: (4.20) leads to

|1 (f, uns1)|| < CIF(f, un)\(\/gﬂ)/?
and (4.21) leads to
IE(f, unt1)|| < CIF(f,un)l.

EXERCISE 4.19. A very useful numerical method which has also qua-
dratic convergence is the Broyden method [Bro65], [PTVF92].

The method can be considered as a multidimensional analogue of secant
method. The algorithm solves the equation F(x) = 0 by generating a se-
quence of approximate solutions {x} as well as a sequence of matrices { Ay}
that are an approximation to the derivative.

We z, is updated by.

(4.22) Tpp1 = ap — (Ap) " F (1)

(of course, in numerical implementations, the notation (A;)~'F(x)) means
the Ay which solves AxAy = F(x). More about this later.)
The Ay is updated by the formula

(4.23) A1 = A+k+ (yx — Apsi)stlsil 2,
where

Yk = F(Xpy1 — Fr,

Sk = Tg41 — Tk-

The idea behind the update (4.23) is that the matrix A approximates
the Jacobian in the direction of the changes between g, xg11.

Note that the change introduced in (4.23) is a rank one perturbation.
The usefulness of this is that there is an efficient way of updating the QR
decompositions of a matrix that is perturbed by a rank one perturbation.

Hence, one can make progress towards the solution without having to
invert a matrix. This method is in wide for finite dimensional problems and
there are implementations for the equations that appear as discretizations
of PDE’s.
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Check — in finite dimensions — that the Broyden method converges
quadratically.

I think that it is a research level paper to try to develop a KAM proof
based on the Broyden method. In particular, if it is accompanied by a
numerical implementation.

Applications of these schemes to hard implicit function theorems and
other modifications of the basic algorithm will be developed in the following
exercises.

The following exercises are designed to show that the quadratic conver-
gence is rather forgiving and that there are many variants that also work.
We have also included some variants in which the results fail so that the
reader can start to develop a feeling for the range of applicability of the
techniques.

EXERCISE 4.20. Consider the following improvements to Theorem 4.2
(either separately or several at the same time, for the most ambitious reader).

As we will note in the exercises some of them have important conse-
quences, beyond serving as training.

e Modify the hypothesis and the conclusions so that the approximate
solution is assumed to satisfy

1B (f;uo)llsy = €
instead of (4.7) and the conclusion about u* reads
(4.24) [ = w"llsy /2 < C00)IIE (S, w0) s

instead of (4.8).
Hint: This result can be deduced from the statement of the
theorem just by a relabeling of the spaces.
e Show that in case that we take Y(t) = Ct~“ for some C,a > 0, we
have C(8p) = C't~* for some C’,a/ > 0.

REMARK 4.21. The previous two items are quite important
since they allow to obtain finite differentiability out of the analytic
result. The strategy to obtain that is explained in Remark4.11.

They are worked out in [Zeh75]. It can also be worked out
from the statement that we have given by a rescaling argument.

e Show that in case that we take Y(t) = sYo(t) where we consider
Ty as a fixed function and s as a variable, the smallness conditions
required in (4.7) are

es? < K
and that the conclusions (4.8) read
[ — w12 < Ks[|F(f, uo) 1

where now K is a constant depending on all the other properties
of the hypothesis, but independent of s.
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REMARK 4.22. In applications to the KAM theorem, the mean-
ing of the parameter s is the allowed size of the Diophantine con-
stant.

This improvement is worked in [Zeh76b].

It leads rather directly to estimates on the measure of the set
of tori covered by KAM theorem. (See [dILV00].)

e Consider that in (4.4), (4.5) we have three different T functions.
For example, three different powers.

(This appears in practice. Some of the powers come from the
Diophantine approximations whereas others come from the differ-
entiation of composition and the like.)

e Modify the second equation of (4.5) to read

P (f,u)n(f,u)z = 2l < Yo = o )IEf, u)ll5 120

for some k' > 0.
e Modify (4.4) to read

(4.25) 1Q(f5u,0)lor < (o — o) Ju — vl|5*

for some k > 0.
e One can also have a different approximate inverse during the iter-
ation.

1dF(f, un)in(f; un)z = zllor <T(0 = ) [F(f, un)lloll2]lo
+exp(—a(l + £")")

for some " > 0.
A variant is to choose

1dF (f, un)mn(f, un)z = 2llor <X (o = o )F(Sf, un) o2l

(4.26) + exp(—4" (o — 0')).

This appears in some proofs (e.g., in Arnol’d type proofs ) when
one tries to do some truncation of the problem. This improvement
is not too tricky to do by itself, but it is not so easy to under-
stand how it does work with the others. It is quite enlightening
to understand how it works with the method of obtaining finite
differentiability.

Under these modifications, one has to modify slightly the conditions
(4.6).

EXERCISE 4.23. Formulate precisely the assumptions of domain loss etc.
to obtain a proof of the implicit function theorem using an iteration as in
(4.21).

EXERCISE 4.24. Taking into account the improvement suggested in equa-
tion (4.25) give a proof of the theorem using the scheme of (4.20).
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EXERCISE 4.25. Show that if one supplements the assumption H3 of
Theorem 4.2 with the existence of a left approximate inverse satisfying the
same estimates, one obtains that the solution is unique in an appropriate
sense.

Formulate a precise theorem in which the domains in which uniqueness
holds are explicitly specified.

(Some version of this is done in [Zeh75].)

EXERCISE 4.26. State and prove an implicit function theorem in which
we do not attempt to solve F(f,u) = 0 but rather F(f,u) € N as explained
in Remark 4.10.

In that generality, one should not expect uniqueness, hence, continuity
and differentiability with respect to parameters is presumably not very clean.

EXERCISE 4.27. When considering the normal form problem one should
also modify the assumption H3 of Theorem to be 4.2

1dF (f, wn(f,u)z = 2llo < Y(o = 0")de (N, F(f,u))|z]lo,

where d, denotes the distance between sets measured with the norm || - ||,.
This observation appears in [Mor82].

EXERCISE 4.28. A classical theorem in KAM theory is the theorem of
[Arn61]| which states that given a diffeomorphism of the circle with a ro-
tation number p, which is Diophantine and sufficiently close to the rotation
by p in an analytic topology, then, there is an analytic change of variables
that transforms it in the rotation by p.

Formulate it in terms of an abstract implicit function theorem.

The main difficulty is that, when we start proving this theorem, we do
not know that the set diffeomorphisms with rotation number p is a manifold.
(We know it after we prove the theorem!.)

Note also that the conjugacy is not unique since all rotations conjugate
a rotation to itself.

I know several ways to do it, but all of them require some dirty tricks.
(A good source for those — and for almost anything having to do with circle
maps — is [Her79] and [Her83b]).

Note also that for this problem there are proofs that do not use KAM.
Besides the renormalization proofs and [KO89a] mentioned in Chapter 8,
we mention [Her83a| and, for constant type numbers (those that have a
bounded continued fraction expansion) [Her83c].

REMARK 4.29. Note that, the estimates we have made to prove Theo-
rem 4.2 do not use that || - ||, is a norm. They would have worked just as
well if || - ||, had been a semi-norm.

Of course, in order that the result is meaningful, we would need that the
family of seminorms {||-[|s }s<(0,1/2) defines a useful space, i.e., they define a
Fréchet space. See [Ham82] for more details about such improvement and
also for applications.
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The original proof of KAM theorems for finite differentiability were based
on different schemes than the proof we have presented.

Note that, for example, the proof of Theorem 3.13 follows a different
scheme. At every step, the linear operator we have to solve does have an
inverse (not just an approximate inverse). The problem is that the operator
is unbounded and, hence, simple-minded iterations such as those of the
classical Newton method do not work.

This situation happens also in PDE’s. A notable example was the cele-
brated Nash embedding theorem [Nas56].

The method used in [Mos66b] and [Mos66a] was to combine steps of
the linearized operator with smoothings. The method allows a norm — in a
space of somewhat smooth functions — to blow up, whereas a norm — in a
space of rougher functions — decreases. By using interpolation inequalities,
one can recover good behavior of some intermediate norms. (The decrease
may not be exactly quadratic, but it is still is faster than exponential.) This
technique has been highly formalized in [Ham82], which also includes a
wealth of applications, mainly to geometry. See [Ham82], Section 3, for a
comparison with the methods of Zehnder [Zeh75].

In the following, we present a proof along these lines, which follows
rather closely [Sch69]. This book also contains a very nice discussion of
the Nash embedding theorem and on other problems of nonlinear functional
analysis.

In the sequel, we shall refer to a certain range m — a < r < m + 10«
of spaces A, (defined in Section 2.2), and to a certain constant M > 1.
We suppose that M is sufficiently large so that the smoothing operators S;
satisfy

[Seull, < M7 |ullr,  u € Ay,

(4.27) .
|(1d—Sy)ull, < ME|ull,, ue A,

form —a <r<p<m+10a (|| - ||, stands for the norm in A;).

THEOREM 4.30. Let By, be the unit ball in Ay, and f : By, — Ap—o be
a map that satisfies:

(i) f(BmNAy) C A, form <r <m+ 10a;
(i) fiBnna, : Bn Ay — Ao has two continuous Fréchet derivatives,
both bounded by M, for m <r < m + 10a;
(ii) There exists a map L : By, — B(Am, Am—a), where B(Ap, App—q)
1s the space of bounded linear operators on A, to A,,_. such that:
() L@ < M, 0 & Boh € A
(ii.b) df(u)L(u)h =h, u € Bp,h € Apya;
(ii.c) |L(w)f(W)llm+9a < M(1+ [[ullmti0a), € Bm N Apiioa-

Then, if E = || f(0)|lm+9a is sufficiently small, there exists u € Ay, such

that f(u) =
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ProOOF. Let k > 1, B, u, v > 0 be real numbers to be specified later. We
will need that they satisfy a finite set of inequalities relating them and the
constants appearing in the assumptions of the problem.

We construct a sequence {uy,}n>1 C Ay, by taking up = 0 and

Un+1 = Up — SnL(un)f(un)’

where S, = S5, and ¢, = eBr" . Later on, we will prove that this sequence
satisfies, for n > 1:

(plm) up—1 € B, .
(p2;n) ”un - un—le < efua,@n ;

(p3,n) Un c Am+10a and 1 —'.— ||unHm+10a S eljaﬁfgn'

Notice that, then, {u,}n>1 C Ay, converges to some u € A,, and, more-
over:

(4.28)
If (un)llm—a =ldf (un) (Un+1 — un) — df (un)(Id =Sp) L(un) f (un) lm—a
<M|[(un+1 — un)llm + M2t;9a”L(Un)f(un)Hm+9a
SMe—uocﬁn"+1 + MQe(V—Q)aﬁn"_
Hence, the R.H.S. of the previous inequality (4.28) converges to zero
when n goes to infinity, provided that
(4.29) v <9.

We are going two prove by induction the three properties satisfied by
the sequence {uy,},>1. For n =1, condition(p1;1) is trivial.
Condition (p2;1) reads

[ur = wollm =[[SoL(0) f(0)[[m < MEG|IL(0)f(0)[lm—a
(4.30) <M?¢*’E
Se—,uaﬂn’
where the last inequality holds if
(4.31) E < M2~ (+nm)ab,
Condition (p3;1) reads

1+ [Jut[lm+10a =1 + [[SoL(0) f(0)[[m+100 < 1+ MtG][L(0)f(0)|lm+9a
<1+ M?e*? < 2M2e™8
Sel/aﬁn,

where the last inequality holds if
1
(4.32) 1< 566“5(”“—11\4—2,

that is, if vk > 1 and (3 is sufficiently large.
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Suppose now that conditions (pl;j),(p2;j) and (p3;j) are true for j < n.
Then,

> PR . o—Hop(r—1)
(4.33) [unllm < Zeiuaﬁﬁ < Zefuaﬁ(nfl)] |
Jj=1 j=1

o 1— eﬂa:@(ﬁ_l)j ’
If we require that

ef.u'aﬁ(nfl)

(4.34) <1,

1— eﬂaﬁ(’i—l)j
which holds when
ub > 1,

we obtain that the R.H.S. of (4.33) is bounded from above by 1 and, there-
fore, we recover (plin+1).
To prove (p3;n+1) note that

n
L+ [[unt1llmt10a <1+ Z 155 L(uz) f (1)) |l m+10a

7=0
n .
<14 M2 Ze(l-i-u)ozﬁlﬂ.
j=0
Hence,
n
(1 4+ Hun+1”m+10a)e—nua6;@n+1 < 6—7’L’U,CYBH;”+1 + M2 Ze(l—‘—l/—l//i)aﬁﬁ;j

=0
<1

)

where the last inequality holds (and so (p3;n+1)) if v > ﬁ and [ is
sufficiently large.
Finally, we come to the proof of (p2;n+1). We have:

[ (n+1 = wn)llm =[SnL(un) f(un)lm < Mzeaﬁﬁn”f(un)"m
gMzeaﬁﬁn(Hf(unfl) — df (un—1)Sn—1L(up—1) f(tn-1)[Im

+ M| (wn — un-1)ll7)
§M5(€(u79+li)a6n”_l + e(1—2p)aBr™ ).

Therefore, if
(4'35) WE (e(u—9+n)aﬁn"*1 + e(1=2p)aBk™ )e—,uoeﬁn”+1

I

we recover (p2;n+1).

The condition (4.35) is true when k£ < 2, > 52—, v > 9 — k — ux* and
0 is sufficiently large.

Therefore, we have established that, when the parameters pu, v, k satisfy
(4.29), (4.31), (4.32), (4.34), (4.35) then we can carry out the induction and
establish the theorem.



100 4. HARD IMPLICIT FUNCTION THEOREMS

This is satisfied if we take 1 < k < 2, u > 5~ and % —
)

9 — k — pux? < 9. For instance, k = %, w= % and v = %
sufficiently large). O

REMARK 4.31. The above methods of proof can also produce results for
C® functions. This is significantly more complicated than the ideas used so
far and we will not discuss them.

REMARK 4.32. In many applications the embeddings of scales of spaces
considered are not just continuous but also compact. This allows one to
improve several of the steps. See [H6r90| which also includes very nice
ideas on how to use paradifferential calculus and several interesting new
ideas to obtain very sharp results on the differentiability.



CHAPTER 5

Persistence of Invariant Tori for Quasi-integrable
Systems

In this chapter, we will present several proofs of the theorem that made
KAM theory famous. This theorem is very useful in mechanics and in er-
godic theory.

Basically the theorem says that an integrable system which is not de-
generate (See below for a precise definitions) and sufficiently differentiable
has the property that many of the quasi-periodic orbits persist under small
perturbations.

The theorem has versions for Hamiltonian flows and for exact symplectic
maps.

The simple minded versions that we will discuss can be stated as follows:

THEOREM 5.1. Consider the symplectic manifold M = R™ x T™ endowed
with the canonical symplectic form.
Let H : M — R be an analytic function such that

(5.1) H(I,¢) =h(I)+ R(I, ).

Let w € R™ satisfy (2.19), and w = Vh(Iy) for some Ij.
Assume that for I in a neighborhood of Iy we have
2

dL,0I;

Then, if |R|ls is sufficiently small, the Hamilton equations for (5.1)
admit a quasiperiodic solution of frequency w.

This solution lies on an analytic torus T, which it fills densely. More-
over, if |R||s is sufficiently small T is arbitrarily close to the torus {Ip} xT"

(5.2) det

h(I)‘ > K> 0.

The version for exact symplectic maps reads as follows.

THEOREM 5.2. Consider the symplectic manifold M = R™ x T™ endowed
with the canonical symplectic form.
Consider the map Fy: M — M given by:

(5.3) Fo(1,¢) = (I, ¢+ A(I))
where A : R™ — R"™ is an analytic function,

0
(5.4) A1) = a—j_j@([).

101
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Assume that w € R™ satisfies (2.20) and

w = A(Io)
for some Iy and that
0
. Y AY >
(5.5) detanA(I)’ k>0

in a neighborhood of Iy.

Let F: M — M be an analytic, exact symplectic map.

If |F — Fol|» is sufficiently small, then the map F admits a quasiperiodic
orbit of frequency w. This orbit is dense in an analytic torus which (if
|F' — Fylls is sufficiently small) is arbitrarily close in the analytic topology
to the torus {Ip} x T™ which is filled densely by the orbit of frequency w of
Fy.

REMARK 5.3. The condition (5.4) is imposed so that the unperturbed
map is exact symplectic.
An obvious consequence of (5.4) is that the matrix in (5.5) is symmetric.

In what follows we will indicate several proofs of the above theorems.

The ideas and techniques of the proofs in both cases are roughly the
same. Moreover, one can pass from one to the other by an ingenious con-
struction [Dou82b], so that they are indeed equivalent in a precise sense.

Since proofs of these theorems have been in the literature for several
decades, and many of the estimates have been covered in the previous sec-
tions, we will leave many of the details to the reader, indicating the most
interesting ones as exercises.

Of course, the theorems, as stated above are quite far from the state of
the art, but we hope that they still contain enough difficulty to illustrate the
techniques of the theory and to fulfill the pedagogical goal of these notes.

We will not present an sketch of the proof of the more sophisticated
modern methods contained in [P6s82], [Sal86], [P6s01]. [BHS96a]. They
improve the results described here in several respects.

5.1. Kolmogorov’s method

The original paper has been translated in [Kol54]. A translation of a
much less detailed account can be found in an appendix of [AMT8]. Very
good modern implementations of the method can be found in [BGGS84],
[Bar70]. A generalized discussion of the ideas, putting them in a much
wider context can be found in [Mos67], [Zeh76a]. (See Remark 5.7.)

We observe that a Hamiltonian system of the form !

(5.6) H(I,¢) = wl +O(I%

IWe use the notation O(I?) to denote functions A(I,¢) such that A(0,4) = 0,
%A(O, ¢) = 0 and similarly for other orders
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has Hamiltonian equations of motion

¢ =w+0(I),
I=0(1%.

Hence ¢ = ¢y + wt, I = 0 is a solution.
A quasi-integrable system has the form

H(I,¢) = h(I) + R(I, )

with R(I,¢) “small” in some sense that will be made precise later.
Clearly we can consider Hamiltonians defined up to constants.
We will write

WI) = wl + hol* + -+ hyI" + hspy (1),

where h;I* stands for the homogeneous polynomial of degree i in the Taylor
expansion of h (think of I' as standing for all the monomials of degree i ),
and h[>n] (I) = O(In).
Similarly, we will write, performing a Taylor expansion in the variable
I,
R(I1,¢) = Ro(¢) + Ri(¢)] + -+ Ru(o)I" + Rz (1, ).

Then, we can write the quasi-integrable Hamiltonian as
(5.7 H(I,¢) = Ro(¢) +wl + Ri($)I + hal” + Ro($)I” + Hg) (1, 9).

We observe that, if Rg(¢) and Rj(¢) were zero, we would be in the
situation described in (5.6). To add a bit of color to the description of the
proof, we will refer to these terms as the “bad” terms since their presence
spoils the easy argument for existence of quasi-periodic orbits.

The idea of the proof of Theorem 5.1 by this method is to find a canonical
transformation C' — which will be close to the identity — in such a way that
H o C~! will not have the bad terms.

The canonical transformation will be constructed as the limit of a se-
quence of canonical transformations C'(™ defined recursively by the formula

Y = exp (L) o (T™) o O,
where T(") is a canonical transformation of the form
(5.8) T, ¢) = (I +kn,¢),  (ky constant).

and exp (—L ) ) is the time one map of the Hamiltonian flow corresponding
to the Hamiltonian —G™. The theory of these canonical transformations
was developed in Section 2.7.2

2Notice that the canonical transformation in (5.8) cannot be generated by a time one
map of a vector field generated by a Hamiltonian function since it is not an exact sym-
plectic transformation. One can develop the proof considering the exponential of a locally
Hamiltonian vector field that combines exp (—Lgwm) o (T™)7! (see [BGGS84]). We
prefer to keep the translations separate with a view to proving translated curve theorems
later.
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We will denote by H™ the Hamiltonian expressed in the coordinates
given by C™). That is, H™ o C") = H. Hence, H"t) = H™ o7 o
exp(Lgm)-

We will choose the G and the T in such a way that they reduce as
much as possible the bad terms of the Hamiltonian H .

We will try to find the Hamiltonians of these transformations among
linear functions in I:

(5.9) G(1,¢) = G (6) + GV (9)1.

This is a reasonable choice to try first since this is the form of the terms
that we want to eliminate. As we will see rather quickly, it works. (If not,
we would have gone back and chosen a more complicated G(").)

Even if for the proof that we have discussed here it is enough to verify
that the above form works, the reader that plans to study new problems
may be interested in the fact that there is a theory to predict what terms
will work and we have sketched it in Remark 5.7. See also [Mos73], p. 138.

We first describe semi-formally the step to construct the transformation
G™). By Lemma 2.30, we have

(5.10)  H™ exp Lo = H™ + {H™, G} + “second order in G,

We try to eliminate the bad terms in the main part of (5.10). Expanding
(5.10) more explicitly, taking into account (5.9) and (5.7), we have:

(5.11)
H™ 4 {H™ MY} = wrI

+{wl, GV} + RV (9)

+{wl, G (@)1} + {(hSV 12, GV (6)} + RV (9)1
+{H")(1,6), G (@)}

+{H(1,6), G ()} + B (1,9)

+ “second order in G(™” .

Notice that the “bad” terms of (5.11) (i.e., those that do not include I or
include it only to the first power) are precisely those on the second and third
lines (up to “second order in G(™” terms).

The goal will be to choose G in such a way that the bad terms in the
resulting Hamiltonian are much smaller than those in the original system.
If we manage to eliminate the bad terms in the main part of (5.11), the
Hamiltonian in (5.10) will only have bad terms which are “second order in
G(n)”.

We claim that it is always possible to find a G[()") in such a way that we
eliminate the bad term with no powers of I. Equating the second line of
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(5.11) to zero, we obtain the following equation for G(()n):

(5.12) {wI,GI} + BRIV (¢) = 0.

Because {wl, ng)} = DwGén) (¢) where D, is defined in (2.27), we see
that we can apply the results in Lemma 2.18 to the equation (5.12).

The main conclusion of the theory of Lemma 2.18 is that the equation
(5.12) can always be solved (with an slightly regular function) if the R.H.S.
has average zero. Notice that, since Hamiltonians are defined only up to

the addition of a constant, we can always ensure that R[()n) has average zero

and, hence, that equation (5.12) can be solved for G[()n).
Eliminating the second bad term in (5.11) is more subtle. The equation

to eliminate this term is
(5.13) (W, G\ (@)1} + (ST, G5 (0)} + R ()T = 0.

The G(()") appearing in (5.13) is known since we found it by solving (5.12)

so that the equation (5.13) is only an equation for ng) and all the other
terms in it are known.

Noting that all the terms have the structure of the dot product of a
vector (depending on ¢) with I and eliminating this vector, we can write
the equation (5.13) as

(5.14) D,GY"(9) = ~2h3"V G (6) — B (9).
The equation for each of the components of (5.14) is just one equation of
the form (2.27).

We see that (5.14) will have a solution when and only when the average

of the right-hand side is equal to zero. The average of the term hgn)VG(()n) (9)
is automatically zero. Hence, we conclude that if

(5.15) /T R (g)do =0,

we can indeed solve (5.14) and, hence, eliminate the second part of bad
terms.

Of course, (5.15) is very restrictive. It is very easy to construct pertur-
bations that do not satisfy the condition. Here is when the translations 7
come into play. Given any Hamiltonian of the form (5.7), provided that
the hgn) satisfies the non-degeneracy assumptions, it is possible to choose
a translation 7" of the form (5.8) in such a way that the average of Rgn)
vanishes. This is an application of the implicit function theorem provided

that h;n) is an invertible matrix and that, of course, all the R terms are

small. Notice that the “vertical” translation by k, is roughly given by
-1 _

kn ~ —3 (hgn)) Rgn). (We call attention to the fact that the conditions

that need to be adjusted in (5.15) is exactly the number of parameters at
our disposal when we apply a translation.)
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The magnitude of the translation required to adjust the average of Rgn)

can be bounded by a constant times the size of Rgn) (provided that hén)
is invertible and that the other terms are small, so that we can apply the

implicit function theorem).

Hence, the algorithm for the iterative proof is

(1) To determine the translation so that H(™ o T satisfies the nor-
malization

"0 g o i)
ZHMoT™|  dg=w,
/08] ° I—Od) “

(2) For the “new” H™ (i.e., for H™ o T(™) find G(()n) and ng) in
such a way that we eliminate the two “bad terms” in (2.63) up to
quadratic error.

We have already seen that step 2 involves small divisors and unbounded
operators. Nevertheless, we have also seen several times that the quadratic
convergence can overcome the effect of small denominators (for Diophantine
numbers). Compared with the previous cases we have dealt with, the only
new complication of the present algorithm is that we have to deal with the
extra complication of having to adjust the translation so that (5.14) becomes
solvable.

The main complication of the translation is that terms that were high
order generate lower order terms. For example, a “good term” H(I,¢) =
f(9)I?, with f(¢) a ¢-dependent quadratic form, becomes upon translation

(5.16) HoT = f(¢)I* +2f (o) Ik + f(p)k>.

The last two terms of (5.16) are “bad”.
The fact that find a translation to eliminate the average in (5.14) depends

on the fact that the quadratic term hgn) is invertible. We need to keep track
of the fact that this remain so under the successive changes of variables.
This is not so difficult since the condition is an open condition.

From the analytic point of view, we note that the procedure involves
solving (twice) equations of the form (2.27) and applying the implicit func-
tion theorem. As we did in Theorem 3.1, the second order terms can be
estimated in analyticity domains using Cauchy estimates.

In summary, we have sketched a procedure that, given a perturbation
that satisfies certain non-degeneracy conditions, makes a change of variable
that reduces the bad terms and whose resulting error is smaller. More
precisely, given estimates of the bad terms in a domain, we can obtain
estimates of the resulting bad terms in an slightly smaller domain.

The estimates will be of the form

||[New||,o—s < C67||Original]|%.

Note also that, in order to match domains etc., we need that ¢ and the size
of the remainder are suitably related.
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The proof consists in showing that if the original error is sufficiently
small, then we can carry out indefinitely the iterative procedure sketched
above and it converges in a non-trivial domain.

Here we sketch the main considerations that need to be taken into ac-
count converting the above remarks into a proof. The reader is urged to
either work them out alone or to use this as a reading guide for excellent
expositions in the literature (some of them are discussed below).

A) We start by deciding that we consider domains loses of the form
002", and that we will do estimates on domains parametrized by
a 1y, defined by rp41 =1, — 027"

B) We will need to assume inductively that

(5.17)

B.1)

B.2)

B.3)

We have bounds

(n)y "1
[(hy”) |l < Crn,

and that the derivatives of R are sufficiently small so that they
do not affect the application of the implicit function theorem
(to ensure the existence of the translation 7).

We take C to be twice the initial constant: Cy := 2 H(hgo) ' |-
We will need to check that, if the initial error is small enough,
the iterative procedure keeps the assumption being valid.
Assume inductively that

|R™|,, < Cs,

with Cy being twice the initial value: Cy := 2 ||R©)||,,,.
We will also assume that we have bounds similar to those in
the study of the Siegel problem

VG|, < 827

The goal of the latter bounds (5.17) is to ensure that when
we perform the composition of H™ o T o exp(Lam) ), the
composition is still defined in the smaller domain.

C) Using assumption B.1, we are able to control the size of the trans-
lation by ||R™|,, times an universal constant.

Given B.2, we see that the size of the remainder of H(™ o T(")

is still of the same order of magnitude as [|[R(™||,, . (The new lower
order terms generated are bounded by the size of the translation.)

(n)

D) Solving the small divisors equation, we obtain ng), Gy . We can
bound

n n 2”7'/ n n
16 s +1GE i1 < OB S (IBE s + 1B, )
0

VG iy + VG iy < CK

nt’
2 2
T/
60

(1RGN, + 1R, ) -
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The factor 2”7/56/ in the first line is the usual small divisor fac-
tor when we take domain losses as in A). In the second line, it
corresponds to using also Cauchy estimates. For simplicity of the
exposition, we have used only one exponent in the loss. Of course,
in the first inequality we could have taken an smaller exponent.
E) The heuristics can be justified by adding and subtracting and ap-
plying the mean value theorem pretty much in the same way that
we did in the proof of Siegel theorem but using the estimates we
developed in Section 2.7.
We obtain:

nt’ 2
(518) 1Rl + 1Rl < CK2 2 (1R, + 1R, )
0
F) The rest is essentially mopping up:

F.1) We need to show that the quadratic convergence implied by
(5.18) implies that the inductive assumptions in B) remain
valid (if we start with a small enough error). This is accom-
plished in a similar manner as that in the Siegel theorem (the
only delicate one is (5.17) and this is exactly the same as in
the Siegel domain).

F.2) We need to show that the accumulated transformation con-
verge.

Again, this is not very delicate since the quadratic convergence
implies that C(™ are converging to the identity extremely
rapidly.

We urge the reader to compare the above sketch with [BGGS84] and
[Bar70] which contain very readable full proofs. Also, the paper [Zeh76a]
puts this proof in a more general context and obtains results for finite dif-
ferentiability etc.

The main difference in the strategies of those papers with the presenta-
tion here is that [Bar70] uses generating functions to deal with canonical
transformations. Both papers [BGGS84] and [Bar70] do not make a dis-
tinction between the translations and the exact transformations and they
use just one locally hamiltonian transformation that accomplishes the effect
of the two steps that we discussed. This is, of course, perfectly fine for the
problem at hand. We have, however, preferred to keep the two types of
transformations separate with a view in translated curve theorems.

A very pedagogical proof of a particular case of the result (that neverthe-
less contains the most essential difficulties) is [Thi97]. The paper [Zeh76a]
contains a detailed reduction of the proof based in the Kolmogorov method
to an abstract implicit function theorem very similar to Theorem 4.2.

REMARK 5.4. The Kolmogorov method of proof has the advantage that
it is quite direct and very well suited to functional analysis. We always deal
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with the same linearized equation with the same frequency. In particular, it
leads to very good regularity results.

The main disadvantages arise from the fact that every different fre-
quencies require different transformations. Moreover, the form (5.6) is not
unique.

Natural questions, which are important for applications, but that do not
follow directly from the results, are what is the measure covered by the tori
and whether tori of similar frequencies are close together. (Indeed, so far,
we have not shown that there is only one torus with a given frequency. Note
that there are many hamiltonians with the same form (5.6).)

Nevertheless, we will show that the measure occupied by the tori pro-
duced here is positive

It suffices to observe that the mapping which associates to a frequency
w satisfying (2.19) the torus with frequency w produced in the Theorem 5.1
is Lipschitz.

The Lipschitz dependence is stated rather explicitly in [Zeh76a]. The
basic idea is that we can express the transformation used for one torus with
frequency w as an approximate solution for the problem with frequency
w’. The error of using the transformation for w for w’ can be bounded by
Clw—w'| — in a slightly smaller domain —. Then, applying the bounds of the
theorem. we obtain that the difference between the solution can be bounded
by C|w — | where C' depends only on the Diophantine constants of w,w’
and on the twist map.

Moreover, the tori can be expressed as the graphs of functions of ¢,

(5.19) I=W,(9).

Clearly, given one torus, there is only one function W, whereas, given one
torus, there will be several hamiltonians of the form (5.6) and several trans-
formations reducing the original flow to them.

Since the map that to a frequency sends the torus is bi-Lipschitz, it
transforms sets of positive measure in sets of positive measure. In particular,
the sets of frequencies with Diophantine frequencies are mapped into a set
that covers positive measure.

More details on this type of argument can be found in [Dou88], [Sev95].

As we will see later, it is true that the map (w, ¢) — W, (¢) introduced
above is differentiable in the sense of Whitney. This allows to obtain more
refined estimates on measure occupied by the tori. See [Van02] for more
details.

EXERCISE 5.5. Use the argument outlined in Remark 5.4 to show that
for a system of the form Hy + e¢H; where Hj is integrable and satisfies a
uniform twist condition, then the measure not covered by the tori produced
in the theorem is O(e®.

What is the best a that you can get using this method? Recall that the
optimal is & = 1/2. See [Sva80], [Ne"i81], [P6s82].
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Hint: For e > 0 you can prove the result for all the Diophantine numbers
of Diophantine constant e~'/2. Estimate the measure of this set, estimate
the Jacobian of the transformation.

Actually, if you consider only the set of Diophantine constant e~ with
a > 1/2 you have less measure for the set of Diophantine numbers, but
better estimates for the Jacobian. Optimize in a.

REMARK 5.6. Another aspect in which the method of proof we have
discussed is not optimal is that it requires very strong non-degeneracy con-
ditions.

Notice that we want to ensure that the size of the translation required
to adjust the error to zero average is commensurate with the error. In a
degenerate situation, the size of the translation would be a root of the size
of the error and then, the method as we have presented it, would collapse.

As a matter of fact, one can get a better non-degeneracy condition if
one does not fix the frequency, but fixes it up to a multiple. Hence, the only
thing that we require is that Span(w) + Range(ha) = R™.

One can also use clever tricks to reduce degenerate situations to non-
degenerate ones, for example, in [BH91].

As we will see later, one can do significantly better than that by using
other methods. See, for example, [Sev95].

REMARK 5.7. There is an interesting interpretation of the method of
proof we have presented above in terms of geometry in infinite dimensional
spaces.

This interpretation can certainly serve as a heuristic guide and many
KAM theorems can be fit into this form. It was proposed in [Mos67] and
developed quite forcefully in [Zeh76a], which developed in this language
the main KAM theorems. In [Ham82]|, a similar philosophy is applied to
many geometric problems.

The idea is to think of (5.6) as defining a manifold N in the space of
Hamiltonians H. All the elements of this manifold have a feature that we are
interesting in studying. In this case, having an invariant torus of frequency
w.

We also have an action ¥ of a group. In this case, the action by canonical
transformations. The proof we have sketched shows that given a neighbor-
hood U of N in H all the elements of I/ have an orbit under ¥ that intersects
N.

Even if this is not completely trivial to make precise, (one has to define
the topologies of the spaces of hamiltonians and mappings, check that they
are manifolds, check the properties of the action of the group of transfor-
mations on it, etc.) it can serve as a heuristic principle to decide which
theorems are possible. (Note that, if we were considering a finite dimen-
sional problem, we could just decide what was true by deciding whether the
tangent spaces of A and of the orbits of the action span the tangent space
of H. )
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We note that this line of reasoning and these heuristic principles apply to
other problems outside mechanics. Indeed, a good part of singularity theory
can be formulated in this way. Similarly, many problems in geometry and
PDE can be reduced to implicit function theorems by applying this heuristic
picture. (See [Ham82].)?

The idea of deciding which theorems in KAM theory could be true by just
looking at when the tangent spaces span leads very quickly to the problem
of counting parameters. (See the discussion in [Mos67].) Roughly one
needs that the normal form N and the group acting contain enough free
parameters to overcome all the obstructions imposed by the geometry.

One of the important developments of later years is that in this counting
of parameters, one should include the frequency [E1i88] or the perturbation
parameter [JS92]|. One reason why this is not obvious is that these extra
parameters have a Cantor structure, hence at first sight, notions based on
the geometry of tangent spaces etc. do not seem workable. Nevertheless, it
turns out to be true that one can use these Cantor parameters very much
in the same way as continuous families supplementing the standard geomet-
ric arguments based on implicit function theorems with measure theoretic
estimates. Indeed, the next method of proof which we discuss can be used
to cope with this type of problems. We refer to [Sev99] for an account of
recent developments in the lack of parameters problem and, relatedly on the
problem of study of degenerate systems.

EXERCISE 5.8. Try to carry out the proof choosing the translation 7"
—1 _
given by k, = —% (hg")) Rgn). Notice that in such a choice we kill the
average of Rgn) up to second order terms in R(™.

5.2. Arnol’d method

In [Arn63al, V. I. Arnol’d introduced a method to prove the persis-
tence of quasi-periodic solution quite different from the method of proof by
Kolmogorov that we have discussed in the previous Section 5.1.

Rather than trying to perform a change of variables that produces one
torus, the method of [Arn63a] produces changes of variables that reduce
the system to approximately integrable in a region of space. Hence, the
method of [Arn63a] produces all the tori at the same time.

The main complication that arises with respect to the method of Kol-
mogorov is that the intermediate steps require to study transformations that
are defined in rather complicate regions. The first transformation is defined
in a domain that excludes the low order resonances. (The places where

3Incidentally, in singularity theory one has a very powerful implicit function theo-
rem [Mat69], which allows to deal in some cases with operators that loose fraction of
the derivatives. The method of [Mat69] paper has, to my knowledge not been used in
KAM theory, even if [dILMMS86], which considers perturbations theories for Hamiltonian
systems that were, previously done using KAM theory, was very inspired by it.
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OrH(I) - k < 1 for |k| not big.) In successive steps of the iterative proce-
dure, one performs another transformation that reduces the system much
more closely to integrable, but in a more complicated region since we need
to take into account more resonances. At the end of the process one ends
up with a transformation defined on a Cantor family of invariant tori. (A
set which is locally diffeomorphic to the Cartesian product of a Cantor set
and a torus. Each torus in a connected component of the set is invariant.)

An alternative way to describe the whole process is to say that we have
a smooth canonical transformation defined in the whole space which reduces
the perturbed differential equation to integrable in a smaller set. At interme-
diate steps of the iteration we just keep estimates of how the system differs
from integrable in a smaller and smaller set with increasingly complicated
geometry. In the limit, we obtain control on just a Cantor family of tori, on
which the system can be considered as integrable.

The basic strategy, which we will detail later, has several advantages
with respect to the Kolmogorov one.

One of them is that one obtains more information on the way that the
tori are organized. For example, it follow rather naturally that the tori
constitute a family that is differentiable in the sense of Whitney. (This was
observed in [CG82| and [Gal83a]. Similar results can were obtained by
other methods in [P6s82].)

Another advantage is that if we stop the process after a finite number
of steps, we may still have quite good information about the system. For

. 92 . i . .
example, under the assumption that mH (I) is a positive definite matrix,

in [Neh77] (as a matter of fact, the assumption in [Neh77] is sharper
but more complicated to formulate than the positive definiteness, which is
sufficient in many applications and which is the assumption used in many
more modern proofs) one can find the result that, denoting by € = || R||, in
(5.1) we have that for times ¢ < exp(Ae~“), all the orbits of the perturbed
system (5.1) remain at a distance not more than ¢” of those of the perturbed
system.

The method of exclusion of parameters near the resonances and contin-
uing the transformation in the rest of the space, has had many applications
in other KAM problems. For example, in the problem of changing a sys-
tem with quasi-periodic coefficients into constant coefficients, usually called
the reducibility problem, most of the papers (see specially the early ones
[DS75]) are quite influenced by the method. We refer to to [Pui] for a
rather complete review of this problem where one can find more references
to the primary literature. The strategy of [Arn63a] was also employed in
the first proofs that started to study the problem of lack of parameters and
the related problem of studying systems which are rather degenerate.

From the point of view of the regularity assumptions needed the main
shortcoming of the method is that the analytic part of the proof is based on
truncating the Fourier series of the perturbation which produces bad results
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in finitely differentiable systems. Even it it is not too difficult, I know of no
place in the literature where the Arnol’d strategy is implemented for finitely
differentiable systems. (I wrote some very preliminary notes on that for a
graduate course.)

Another shortcoming arises from the fact that one of the elements of the
iterative step is the domain of the definition on which the changes of vari-
ables are defined. Keeping track of this domain is much more complicated
than keeping track of the sizes of the functions. Hence, the proofs are more
complicated and often one obtains worse estimates on the sizes of pertur-
bations allowed and other quantitative results. (Nevertheless the method
was used in the first proofs of several sharp estimates such as [Ne”i81],
[Way84].)

I do not think that the method of [Arn63a] has been formalized in such
a way that it leads to an abstract implicit function theorem in the style of
Theorem 4.2 which takes care of the detailed estimates in applications or,
at least provided with a detailed strategy to carry them out.

Besides [Arn63a], a very pleasant and instructive modern exposition
of this method of proof is [Gal83a] (see also [CG82].) The Nekhoroshev
theorem proved by this method is nicely explained in [BGG85c| and a
unified exposition of Nekhoroshev and KAM theorems is in [DG96]. Other
proofs of Nekhoroshev theorems are covered in [P6s93], [Loc92].

In somewhat more, but still insufficient, detail: At the nth step of
Arnold’s method, we keep track of:

1) An excluded set, on which we do not expect to define the transfor-
mation.

2) In the complement of the excluded set we have defined a transfor-
mation C™ in such a way that

HoC™ =A™ (1)+ R™,

3) We keep track of |[VH® — VH®)|, and |[R™)],,. We assume
by induction that ||[VH© — VH™||, remains bounded and that
|R™||,, is bounded by a superexponentially decreasing function.
(The || - ||, norms will refer to complex extensions of the excluded
set, not a fixed set.)

Filling in more details about 1): The reason why we have to introduce
an excluded set on which we give up the hope of defining the transformation
is that in the whole phase space we have resonances, which lead to the fact
that the linearized equation would have zero denominators (i.e. that the
linearized transformation cannot be defined). Indeed, if we want the the
infinitesimal equation can be defined with reasonable bounds, we have to
exclude not only the set where some denominator is zero but also the set
where it is too small.

Of course, there is some arbitrariness in the choices that we can make
for the excluded set. The main trade-off is that if we exclude too little we
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have very severe small denominators. If we exclude too much, we may end
with control in a set of zero measure.
The excluded set consists of bands given by

(5.20)

‘ dH®

(- k( > Coilkl™, 271 < |k| < 2.

In particular, it is a set with piecewise smooth boundary and the angles of
the corners are bounded from below by C4~™ (where, C' again is a constant
that depends on the inductive assumptions).

This lower bound on the angles comes from the fact that a bound of this
sort is what one would get for planes whose normals are integer vectors of
total length 2 and the fact that VH® are uniform diffeomorphisms (that
is the norm of their differentials and the norm of the differentials of the
inverse are bounded uniformly in i) and, therefore only change the angles
by a factor which remains uniformly bounded through all the iteration.

We denote the excluded set by &, and

Dn,a‘ = {Z € (Cd X (Cd/Zd|d(za5n) < 0}7
||f||n,cr : sup |f(2)l.

2€Dn,o

Once we fix a sequence {o,} (we will take o, = op(1 — %ZZO:O(%)”)), we
denote the norm || - ||n,0,, by || - |-

The main difference between these norms and the regular ones is that,
due to to the small angles, the Cauchy estimates are worse. Nevertheless,
given the lower bound on the angles, they do not get too much worse:

_any —1
”foane—‘s" S C (5716 4 ) HfHUn

To go from one step to the next, we exclude a slightly larger region and define
a new transformation C("*t1) = (") oexp(Lmy) so that the new remainder
is much smaller (here, we will need to make a small modification to our usual
notion of smaller, meaning quadratic times powers of the domain loss).

We see that

g™ o exp(Lom) = H™ + R 4 {a™/(I), MY
+{RM(I), G} +0((G™)?)

(a precise estimate for O((G(™)?) appears in Lemma 2.30).

A new idea of the method is to modify the prescription of Newton
method by restricting only to a finite number of frequencies and include
a truncation of the Fourier series so that, at every stage, we only have to
deal with a finite (but growing) number of denominators. The error incurred
by the truncation can be estimated if we increase the order of truncation at
the right speed.
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We write
R [£27] (I,¢) = Z ngn)e%ikzqﬁ’

|k[<2m
REI(1g)= 37 BT,

|[k|>2m

Hence, we solve:

(5.21) {H™ (1), ™} + R™W 21 ¢) = AM(T).

The equation (5.21) can be solved by setting
~(n ~(n E(n)
(5.22) e = RIS ), K <2

By the definition of the excluded set, we can bound the denominators (5.22)
over the complement of the excluded set.
Notice also that we can bound

IR 2 o0 < IR g, 072"

This allows us to define the generator of the transformation that eliminates
RMI[=2"] (up to quadratic orders).
We have estimates

G g, s < C5T|RM o,

where, as usual, 7 is roughly v plus something depending on the dimension.
We use the letter 7 to denote similarly constants that depend only on the
Diophantine exponent and the dimension.

To study the domain of exp(Lm) ), we note that if we set

Cn+1,i = (S_TQn”R(n)HUn + Cn,ia

we can define the transformation from the set

dl
one

HH® ‘ ,
(5.23) ‘ o k:‘ > Coprilk]™, 27 < k<2, i=12...,n,
to the set
70 . .
(881_ -k‘zcn,ik\—”, 2l < k| <2, i=1,2...,n

In that case, we have
A (1 = A™ (1) + A+H(1),
from which it is clear that
1" Vo s1, 00 < NTH g, + 1RO o,
and
(5.24) IVHTD = VH® |\, D, < C2T|R™]lq,.
Most importantly, we have:

(5.25) IR D0, 1,000 < O2T|R™ |5, 0, +27°%"
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To obtain the excluded set at the next step of iteration, we have to take
into account two effects. The first effect is that as the steps increase we
consider more resonances. The sets that correspond to the new resonances
are:

H (n+1)
‘87 : k‘ > COlk|™Y, 20 < [k| < 2L

Of course, excluding more regions makes the suprema in the left-hand side
of (5.25) and all the other estimates even smaller.

The second effect that makes the excluded set change is that we are
not considering the same hamiltonian. We will do something extremely safe
which is to enlarge the domains that we are excluding also in the previous
stages. Since we have (5.24) and (5.25), we obtain that the effect of the
change in Hamiltonian is taken care of by the definition in o,.

The recursion (5.25) leads still to superexponential convergence choosing
dn = 00(2/3)". Establishing this was proposed in Exercise 4.20, see (4.26).

Once we have the superexponential convergence of the reminders, we
obtain that the C, ;’s remain bounded and so does ||[VH®™|,, Indeed,
IVAH©® — VH™||, is small (arbitrarily small if we assume that ||[R(?)|,,
is sufficiently small. Similarly, it is easy to check that ||(VZH™)~1||, re-
mains bounded and that the bound is close to the one for ||(VZH )=,
if | R©||,, is sufficiently small. Hence, under the assumption that ||[R()|,, is
sufficiently small, we can verify the inductive assumption on ||(VZH ™)~

The passage to the limit in this procedure is somewhat subtle.

In the original coordinates, we have to study the sets (C (”))_15". These
sets will be dense. By increasing slightly the excluded sets at each stage so
that we exclude also the mismatches of the domain, we can arrange that
(C))~1€™ are increasing. (note that this extra exclusion will be decreasing
superexponentially since the transformations that we need to carry out in
cach step are decreasing superexponentially) Hence, (C(™)~1(T¢ x RY —
E™) is a decreasing sequence of compact sets. On the other hand, their
measure remains bounded away from zero as follows from the fact that
|(V2H™)~1|,., remains uniformly bounded so that we can use the same
arguments as in Subsection 2.11).

It is slightly more subtle, but we can also estimate the derivatives of
the transformations C™) to show that the derivatives remain bounded (it
follows by an argument very similar to that used in the proof of Theorem
3.13 part v)) This shows that the sets (C))~1(T¢ x R? — £™) get closer and
closer to being invariant. The limiting set will be invariant.

If one keeps track of all the derivatives in the closed sets, one can show
that the limiting transformation C(* is differentiable in the sense of Whit-
ney (see [CG82| or [Gal83b]). An interesting remark [Val98] is that one
can use the fact that the gaps between the sets are much larger than the cor-
rections to show directly the Whitney extension theorem. This remark could
be important when studying infinite dimensional systems (e.g., PDE’s). In
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infinite dimensions, the Whitney extension theorem is not a available, but
the method of [Val98] could still work to produce tori that lie in a smooth
family.

For more details of this method of proof we refer to the original paper
[Arn63a], and the more expository paper [Arn63b], which also contains
applications to celestial mechanics. An early development of the method
with several improvements is [Sva80]. More modern expositions (including
the Whitney differentiability) of Arnol’d method are [CG82] and [Gal83b].
An exposition of the Arnol’d method that, at the same time proves Nekhoro-
shev’s theorem and clarifies the geometry of the domains, is [DG96].

The method also lies at the heart of several other papers. One paper that
incorporates the exclusion of parameters but is free of many geometric com-
plications is [DS75]. This paper also shows that the method can allow some
frequencies that are not Diophantine (they allow |w - k|~! > exp %).

The method of transformations and exclusion of parameters is the basis
of many modern developments in KAM theory related to lower dimensional
tori, e.g., [Eli89], [JS92], [JV97a].

5.3. Lagrangian proof

In this section, we study a proof of Theorem 5.2 which has a different
flavor from the proofs already presented. We will present the proof only in
the case d = 1 and only for the particular case of the map given in (1.2).
A very similar problem is considered in [LMO1] with considerable more
detail. Similar proofs in any dimension and for more general maps are in
the literature For example, we refer to [SZ89], where one can find a proof
for flows. Since the case of periodic flows with a twist condition is equivalent
to the case of twist maps, the treatment of [SZ89] also applies for maps.

The proof differs substantially from the previous proofs of Theorem 5.1
in that it does not use compositions. Of course, the proof we presented
of Theorem 3.1 does not require compositions either, even if the proofs we
have presented so far for Theorems 5.1 do rely on transformation theory.
More interesting is that it is based on Lagrangian formalism. (That is,
on second order equations rather than in systems of first order equations.
The structure that is used is the fact that the equations solve a Lagrange
variational principle, not that they come from a Hamiltonian formalism.)

The proof we present is based on unpublished notes of J. Moser for a
course he gave in Ziirich. A generalization of these results is included in the
paper [SZ89]. We follow very closely the presentation in one of the chapters
of [Ran87] (which in turn followed the presentation of the Moser’s course.)

In [Ran87], one can also find the implementation of computer assisted
proofs based on this method. In particular the result that the map given
n (1.2) for V(z) = €5 sin(2rz) has an invariant circle with golden mean
rotation for ¢ = .93 (this was later improved to ¢ = 0.935 ). This is very
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close to the values for which [Jun91] showed that there can be no invariant
circle. We discuss some of these issues in Chapter 7.4

The Lagrangian formalism for KAM theory has several other applica-
tions. For example, many elliptic PDE’s have a very natural Lagrangian
formalism but not a simple Hamiltonian one. (Note that in this case, the in-
dependent variable is multidimensional, while in Mechanics, the independent
variable is the time, which is one-dimensional.) There is no easy canonical
transformation theory for elliptic PDE’s.

We will try to find solutions to (1.11) which read

(5.26) (0 + w) + £(0 — w) — 20.(0) = —eV' (0 + £.(0)).

We refer to Section 1.1 for the interpretation of this equation as a parame-
terization of a set in which the motion is quasiperiodic of frequency w.

Somewhat informally, what we will do is to show that there is a procedure
that, given an an approximate solution of (5.26) (which is not too badly
behaved) we can produce another function that solves the equation even
more approximately. Then, we will have to show that the whole process can
be iterated indefinitely and that it converges to a solution.

Of course, making precise the notion of close, will involve introducing
analytic norms. The statement that the result of the algorithm is closer to
being a solution will mean to prove that in an slightly smaller domain, we
will have the usual bounds which are quadratic in the previous error and
have powers of the loss of analyticity. The fact that the iterative step can
be performed and that it will lead to the desired improvement will require
that certain expressions are not too large. (This is what we alluded to when
mentioning that the solution is well behaved.) Of course, we will need to
check that, if the initial error is small enough, the quadratic convergence
that ensues, allows us to recover the inductive hypothesis indefinitely.

The theorem whose proof we will sketch is the following.

THEOREM 5.9. Let £y : T' — T' x R be such that |||, < 0o. Assume
that

b+ 1|0 < My,
(5.27) | 0, | $ +
(6o + 1) [lo < M-,
1 1
(529 V1 gy <D
and
(5.29) 1€o(z + w) — 2lg(x) + Lo(x — w) — V' (lo(z) + 2)||s < €

AThe conjecture in [GreT79], given a theoretical — but not yet rigorous — basis in
[McK82] is that there are smooth invariant circles with rotation golden mean when ¢ < *
and not when € > ex*. For € = € there is an invariant circle which is not very differentiable.
It is believed that €* ~ .971635. Of course, in other families it could — probably does —
happen that the set of parameters for which one can find a smooth invariant circle is a
more complicated set, perhaps with infinitely many components.
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where My, M_, D, and € are finite positive constants.

Let T'(My,M_,D,K,v) be a function which will be made rather explicit
during the proof, where K and v are the constant and the exponent appearing
in the Diophantine properties of w.

If

e<T'(My,M_,D,K,v)

then there is a periodic function £, ((x+ 1) ={(x), solving (5.26).
Moreover

||£ - 60”00/2 <Ce
where C' is a constant that depends on M, M_, D, K, v.

The proof will be done using a quasi-Newton method. The method
will be rather similar to the proof of Theorem 3.1. We try to solve the
infinitesimal equation suggested by the Newton method. This will lead to an
equation which is not immediately solvable with the method of Section 2.5.
Nevertheless, by manipulating the equation with the remainder, we will
arrive at a factorization of the equation that will be solvable by applying
repeatedly the theory for the equation (2.28).

Denote

(5.30) T()(x)=Ll(z+w) —20(x) + l(z —w) — V'({(z) + ).
We assume that we are given an approximate solution ¢ such that
(5.31) T() =R,

where R is small.
The prescription of the Newton method would be to find a A periodic
solving

(5.32) Alx+w)+ Az —w) — (2+ V"'(l(z) + 2))A(z) = —R(z).

This equation (5.32) is not readily solvable in terms of Fourier coefficients
(as indicated in Exercise 2.21) since the term (2 + V" (¢(x) + x))A(z) is not
diagonal in Fourier coefficients. Our next task is to manipulate the equation
so that it becomes solvable using the Fourier methods. The manipulations
that will follow, even if rather straightforward and indeed convenient for
numerical work will perhaps look mysterious, but in later sections we will
argue that the success is due to natural geometric reasons.

If we take derivatives with respect to = of (5.31), we obtain, denoting
by T,(z) = 2 +w and by ¢'(z) = /() + 1

(533) g/ oT, + gl ol ., — (2 + V"o g)g, =R,

Substituting the expression for 2 + V" o g from (5.33) into (5.32), we
obtain

(5.34) JAT,+gdAoT ,—[-R +¢g oT,+¢g oT_,]A=—-¢R.
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Ignoring the term R'A, which is quadratic in the error, yields the system
of equations:

A A W
(5.35) (5/+1>°T—“_ <5/+1> T WD)+ 1) 0T,
with
(5.36) WoT,—-W={+1)R.

The above system of equations consists of equations of the form (2.28)
which can be studied using Lemma 2.18. We first solve (5.36) for W and we
take the solution and substitute it in the R.H.S. of (5.35). We then solve
(5.35) for ﬁ, out of which A is obtained just multiplying by ¢ + 1.

Of course, in order to carry out the above plan, we need to check that
the equations we plan to solve are indeed solvable (i.e., that their R.H.S.
has average zero). Later, we will have to worry about obtaining estimates
of the solution thus obtained.

The fact that (5.36) can be solved is a calculation which we have done in
Section 1.1 when we wanted to show the solvability of equation (1.17). Once
we have that the equation (5.36) is solvable up to an additive constant, we
can determine the additive constant in W in such a way that the R.H.S.
of (5.35) has average zero. (Note that adding a constant W to W changes
the average of the R.H.S. of (5.35) by W - [((¢/+1)(¢' +1)oT_,)~!. The
integral is not zero, since we assumed by induction that the denominator in
the integrand is bounded away from zero and hence, it is positive. Indeed,
we can have a bound for it under the assumptions given in our inductive
hypothesis.

The fact that this procedure works can be shown using the familiar
method.

Adding and subtracting, we show that given some inductive assumptions
on bounds on |[#' 4+ 1|4, [|(¢ + 1)7!||,, the above procedure leads to a new
quadratic remainder. That is, as usual, we have

1R s, < [|R"]5,CEZ0,T.

The bounds we assumed on the derivatives deteriorate slightly, but again
the quadratic convergence ensures that they remain bounded during the
iteration.

REMARK 5.10. The remarkable cancellations (see (5.33), (5.32)) between
the derivative of the remainder and the linearized equation which allowed us
to obtain a quadratically convergent method solving only the linear equation
(and performing easy multiplication and divisions by known functions) are
not a coincidence. In [SZ89] one can find how they work for twist maps if
we uses the equations given by the generating functions, linking them to a
Lagrangian formalism.

Indeed there are deeper reasons. For example, the cancellations apply
to partial differential equations, see [Koz83b|, [Mos88|.
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REMARK 5.11. If one is interested in obtaining the existence of invariant
circles for numerical values that are as close to the optimal value as possible,
one should be prepared to cope with the difficulty of having the quality of
the solution get worse and worse. Indeed, the domains of analyticity shrink
and function becomes more and more close to having zeros. Indeed, there
are precise predictions — not rigorous but supported by numerical evidence
that at the breakdown of the invariant circle for the map given in (1.2), all
the difficulties happen at the same time and indeed all the quantities that
need to be estimated blow up as powers of the distance of the parameter to
the critical one.

See [BCCF92| for numerical results and [dIL92] for a non-rigorous
explanation and precise conjectures.

5.4. Proof without changes of variables

In this section, we will present another proof of theorem 5.2. This proof
is based on [GJAILVO00]. A version of the method for lower dimensional
tori was presented in [JdILZ99].

The proof actually proves something more general since the main result
does not require that the map is exact. Of course, without assuming exact-
ness, we cannot expect to have invariant tori as was shown in the examples.
The conclusion of the main theorem is that for symplectic maps that satisfy
all the other assumptions of Theorem 5.2 there is a torus that gets translated
rigidly in the direction of the actions. The points of the torus are, roughly,
rotated.

This is a generalization to higher dimensions of the translated curve
theorem of [Riis76b].

If we assume that the map is exact, it will be very easy to show that the
translation has to vanish and that the torus is indeed invariant and that the
motion on it is conjugated to a rigid rotation.

We will consider the symplectic manifold T¢ x R? endowed with the
standard symplectic structure. (This is not needed for the method, but we
will use it here to simplify the exposition).

We will consider a map F : T? x R* — T¢ x R? which is symplectic
(not necessarily exact) analytic (and other conditions somewhat weaker than
those of Theorem 5.2 which we will formulate when the heuristic discussion
motivates them). We fix w Diophantine and seek a mapping K : T¢ —
T x R? and a vector a € R? in such a way that

(5.37) FoK(0) = K(+w)+(0,a).

Note that, of course, the equation (5.37) expresses that the image of the
torus is translated in the direction of the action by a rigid displacement a.

In the case that F' is an integrable map, all the tori given by a parame-
terization

(5.38) Ko(0) = (0, 1o)
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are “vertically” translated. So, we expect that the functions we will have to
consider will be close to that.

Later, we will show that if F' is exact (and there are other conditions),
then, a should vanish. This is very similar to the line of argument in
[Riis76b]). When d = 1, it can be seen that the zero flux condition in-
deed implies that a = 0. We note that, even if the proof does not use the
exactness of the symplectic structure, it uses the symplectic structure. Un-
der appropriate redefinition of translation, one can have similar theorems in
other symplectic manifolds.

We will sketch the proof of the following theorem.

THEOREM 5.12. Assume that F is an analytic symplectic map of T%x R4
endowed with the canonical symplectic structure and that w is a Diophantine
number.

Assume that F is close to an integrable map and that it satisfies the
hypothesis of non-degeneracy of Theorem 5.2. Assume that we can find an
approzimate (K, a) solution of (5.37).

If the residual of (5.37) is small enough (depending on properties of F
and of || K — Kyl ), where Ky is the solution in (5.38)), then we can find an
exact solution of (5.37).

In particular, if we take as approzimate solution Ky as in (5.38) the
hypothesis are satisfied when F' is sufficiently close to an integrable map.

The fact that F' is close to integrable is not really necessary as it will
transpire from the proof. At this stage it is only introduced to avoid using a
more complicated notion of non-degeneracy than that used in Theorem 5.2.
As the proof in Section 5.3 it can apply to all the maps of the form (1.2).
Even that can be generalized by formulating appropriately the degeneracy.
See [GJAILV00].

A very simple calculation (a more general version appears in [JdILZ99])
shows that if we have an exact system, then the translation a for an true
solution has to be zero.

PROPOSITION 5.13. If the K solving (5.37) is close to Ky in an analytic
norm and F is exact, then a = 0.

Before starting the discussion of the Theorem 5.12, we discuss the proof
of Proposition 5.13.

PROOF. Let a be the symplectic potential form o = ), I; d¢;. Assume
also that F*a = a + dS.
We consider the loops in the ith angle coordinate given by

Lel,"- 0i—1,0i41, ,Qd(e) = K(eh e 701'717 9, 0i+17 e 79d)7
where 01) e 79i—1)9i+17 e 79d e€T.
Because of (5.37) and the exactness of the map, we have

/ a=a; +/ Q,
Lgly.“ 0 L

10510541504 01+wi, 501 +wi—1,041+wip1, 00wy
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and, integrating over the variables 6y,--- ,0;,_1,0;+1, - 04, we obtain
a; = 0.
O

REMARK 5.14. This Theorem (and the Proposition) are much weaker
than what can be proved by the method.

For example, the hypothesis that the system is close to integrable can be
replaced by several quantitative statements about the approximate solution.
This is quite important for several applications. We note that approximate
embeddings can be obtained with the computer. One can try to solve a
discretized Fourier series or, a big advantage for the present method, just
compute orbits and compute the Fourier transform. This improvement is
discussed in more detail in Remark 5.21.

Once this improvement is in place, it should be apparent that the way
the torus is embedded does not play any role. In particular, one does not
need that the torus is a graph, which makes it independent of the Lagrangian
formalism. The paper [Bos86] uses similar ideas but it assumes that the
functions are graphs. In such a case, under non-degeneracy conditions, the
Lagrangian cancellations are closely related to the Hamiltonian ones. This
relation is not true for degenerate systems or for non-graphs. (A minor
difference with the paper of [Bos86] is that the paper [Bos86] reduces
everything to the implicit function theorem of [Ham82|, whereas in this
exposition, we reduce to the theorem of [Zeh75]. )

In particular, we can justify the existence of tori which have different
topology than the tori of the unperturbed system. (Recently there has been
some interest in these secondary tori since there are numerical experiments
that suggest that secondary tori are very important for the statistical prop-
erties of coupled systems [HdAIL0O].)

Also, an important advantage of the method is that it allows one to deal
will more degenerate situations than the twist mapping. Indeed, one can use
it to deal with non-twist maps and with even more degenerate situations.

We refer the reader to [GJAILVO0O] for these precisions as well as for
more details about the proof. We also refer to [JAILZ99] for another appli-
cation of similar techniques to discuss lower dimensional tori.

Now, we start describing the main ideas of the proof. Again, we refer to
[GJdILVO0O] for more details.

The method of proof will be an iterative procedure in which we start
from (5.37) being satisfied with a certain error and return a solution that
satisfies the equation with a smaller error. As usual in this theory, what
we mean by smaller error is that the size of the new error will be bounded
(in a smaller domain than the original one) by the square of the size of the
original error times a factor that is the domain loss parameter to a negative
power. Of course, by now the convergence of the procedure should be well
understood. Actually, since we do not need to make changes of variables
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and we do not need to keep track of much the geometric structures, the
inductive hypothesis will be very mild.

The key observation of the method is that there is a remarkable can-
cellation imposed by the geometry which makes the linearized equation ap-
proximately solvable in the sense of [Zeh75]. See the exposition in Chapter
4.

We will begin with a heuristic discussion.

We start with an approximate solution of (5.37), that is,

(5.39) FoK(0) — K(0+w)—(0,a) = R(6),

where R is small in some appropriate norm that we will make precise later.
The Newton method prescription would be to change K into K + A,
and a into a + « in such a way that

(5.40) DF o K(8) A(f) — A6 + w). — (0,a) = —R(6).

Unfortunately, this equation is not readily solvable by easy methods
such as comparing Fourier coefficients since it involves the non-constant
coefficient factor DF o K (0).

Hence, we try to compare it with the equation obtained taking deriva-
tives of (5.39):

(5.41) DF o K(0)3pK (6) — 8K (6 + w) = pR(0).

At this point, we are going to introduce some notation (which is not
completely necessary but which will make the geometry more concrete). We
define D(f) := DF o K(6) and let K;(f) an orthogonal basis for dyK (9).
The previous equation (5.41) reads D(0)K1(0) — K1(0 + w) = Ry1(6). As
usual, we define the matrix

(0 Idg
J_<—Idd 0 )

which is the representation in coordinates of the symplectic form.
We define then the symplectic matrices.

(5.42) M(6) = [K1(6), T\ (0))

Notice that from the fact that K is almost invariant under DF o K (0)
we obtain

(5.43) DF o K(0)M(0) = M(0 + w) < 151 gggg ) +O(R).

We will introduce the assumption that M (#) is invertible for all 6.
This is reasonable assumption in view of the fact that, for integrable
systems® the assumption is, clearly, satisfied.

5Indeed, this is the only reason why we assumed that F' was close to integrable. If
we formulate the theorem assuming that M is invertible, we could have eliminated the
assumption of close to integrability. Later, we will need to formulate the non-degeneracy
assumption using the matrix M.
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FIGURE 3. Geometric interpretation of the reason for auto-
matic reducibility.

This is explained in more detail in Remark 5.21 and in the references
quoted there. Note that in the case of integrable systems, using (5.38) we

have
_(Idg O
M(H)_< d Idd).

Recall also that the assumption that the map F' preserves the symplectic
form is equivalent to

(5.44) JDF(z) = [DF(z)!] " J.

This gives that B(6) = Idg.

The geometric interpretation of the cancellations above are sketched in
Figure 5.4 (of course, the sketch is valid only in dimension 2 but one can
imagine that it works similarly in higher dimensions).

We note that in the integrable case, the matrix A(6) will be a constant
d x d matrix A and the twist condition implies that A is invertible. Hence,
in the proof of the theorem, we will assume that A(#) is not very far from
a constant, invertible matrix in the sense that A(6) is an invertible matrix.
Indeed, this is the only non-degeneracy condition that we will assume.

We call attention to the fact that the non-degeneracy assumption only
amounts to the invertibility of M and the fact that A(6) is invertible. These
assumptions could be checked a posteriori on a numerically computed so-
lution or on an approximate solution produced by any other means. Other
than that, we do not need any property of the map F'. See Remark 5.21 and
the references quoted there for an explanation of this alternative approach.

REMARK 5.15. It is an easy exercise to show that under Diophantine
conditions we can reduce the block A(f) to a constant, so that the matrix is
is indeed reducible, Nevertheless, for the applications that we have in mind,
this does not help. Indeed, by doing it, we incur in extra small denominator
estimates, which can worsen the result.

REMARK 5.16. A more geometric interpretation of the previous calcu-
lations is to say that DF o K(0) is a reducible matrix whenever K is a
parameterization of an invariant torus by a rigid rotation.
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We want to give a geometric argument that shows that the linearization
of the equations around an invariant torus is reducible. The argument will
show that for an approximate solution, the equation will be approximately
reducible and, hence that one can start an iterative procedure in which
in the iterative step we improve the solution of the main equation and its
reducibility.

That is, our goal is find a system of coordinates on the tangent of the
torus so that the matrix representing DF o K(6) has constant coeflicients.

Since the vectors along the direction of 6 are moved just by a rotation
in the torus, this is an invariant field that can be lifted to the space by
the embedding. By the preservation of the symplectic structure, we also
have that the plane spanned by the the vector and its symplectic conjugate
is also preserved. We can see that in the plane spanned by a vector and
its symplectic conjugate the matrix has to be upper diagonal (one vector
is preserved.) The dilation along the symplectic conjugate has to be the
inverse of the dilation along the preserved direction due to the requirement
that the two-area in the plane is preserved. This gives us the diagonal
blocks of the matrix. The upper diagonal block does not cause any serious
complication in the procedure. When there is an upper triangular block,
when we proceed to solve the system of equations, the second equation we
will have to solve will have a right hand side which involves the solution
of the first. Nevertheless, the crucial fact is that the equations we have to
solve are of the form (2.28) considered in Section 2.5. This crucial fact is
not affected by the presence or the form of an upper triangular bock (we
note however that the average of the upper triangular block is related to the
twist constant.

This system of coordinates provides with a system in which the derivative
is upper triangular.

Once that we have that the diagonal blocks are constant, then it is easy
to see that the linearized equation can be solved by using equations of the
form (2.28).

The above geometric interpretation makes it clear that we do not need
the symplectic form to be constant. Moreover, it is clear that it does not
require that the symplectic form has action-angle variables and that it can
accommodate certain singularities.

REMARK 5.17. The cancellations forced by the geometric structure are
related to cancellations in a variational formalism in [Koz83b]|, [Koz83a],
[Mos86]. In the variational context, these lead to the Lagrangian proofs of
KAM theorems in [SZ89], [LMO1]. See also the proof in Section 5.3. See
also [CC9T7].

Nevertheless, they are significantly different. Note that the Hamiltonian
cancellations, as we have explained them, happen even for Hamiltonians
which do not come from a Lagrangian (e.g. Hamiltonians which fail to satisfy
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twist conditions in a bad way). The Hamiltonian form of the cancellations
remains valid even for tori which are very far from being graphs.

The algorithm is now very easy. If we write A(f) = M(0)w(f) and
substitute in (5.40) we obtain

(5.45) D@)M(O)w(0) — M (0 +w)w(d +w) — (0,a) = —R(0)
which using (5.42) becomes:

(5.46)
M6 + w) K 1 ﬁi) > w(®) — w(® + )| — (0,0) = —R(6) — N(O)w(®).

Therefore, ignoring the last term of the R.H.S. of (5.46), which is quadratic,
we are lead to the study of the equation

(5.47) ( da f‘%éi) ) w(®) — w(0+w) = —M(8+w)" [R() — (0,0)].

We claim that this equation for w, a can be studied using the methods
that we have developed in Section 2.5. This will constitute our iterative
step. Of course, after this heuristic derivation, we will need to go back and
justify the estimates of the step and show that it can be iterated. This,
even if being the essential part of the proof, we hope will bring no surprises
anymore for the reader.

If we write (5.47) in components, denoting the components of w(f) =
(we(8), wr(6)) and by II4,I1; the projections over the components, we have

(5.48)
wy(0) + A(O)wr (0) — wy(0 +w) = —LuM (0 +w) ™" [R(9) — (0,0)])
wr(0) —wr(0 +w) = —II;M (0 +w) ' [R(0) — (0,)]) .

If we look at the second equation in (5.48) (recall that it is an equation
for wg and «) we see that it is an equation of the form (2.28) which we have
already studied. We chose « in such a way that the R.H.S. has average 0.
(This can be done if M is close to the identity, but otherwise it can be made

into an assumption to be checked a posteriori on the approximate solution.)
Note that we have bounds

(5.49) laf < ClIRllo Mo ll(M ™ = Td) o

If we assume for convenience (somewhat sharper assumptions could also
work, see Remark 5.21) that the factors in the R.H.S. of (5.49) satisfy:

(5.50) [M (M~ =1d)7 |, < 333.

Then we can apply Lemma 2.18 to obtain w; up to a constant, which
we will determine in the next equation.
We have, denoting by w; the solution with zero average, that

(5.51) [Willo-5 < CTY||R]lo-
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If we look at first equation of (5.48) we see that, at this stage of the
argument is an equation only for wg and the average of of w;. Hence, we
write it as

(5.52) we(8) —we(d +w) = —TIxM (0 +w)_1 [R() — (0,)]) — A(O)wr(6).
If we assume that
(5.53) [(A)~| < 333,

we can determine wy so that the terms in the R.H.S. of (5.52) have average
0. We have
|wr| < C|[R|o-

We will furthermore assume that

(5.54) Al <C.

Hence, we can apply Lemma 2.18 and obtain a wg with zero average
which satisfies the condition

(5.55) lwollo—2s < CO~||R]l,.

Note that the power of § in this case is twice as high as that in the previous
one since the R.H.S. of (5.52) involves the solution of the previous one.

From (5.51)—(5.55), using the inductive assumptions on the size of M,
we obtain

[Allo—25 < CO7T|[ R0

From this, the rest of the proof of the translated tori theorem is very
similar to the previous proofs, in particular to the proof of Theorem 3.1.
Under the assumption that

(5.56) 1Ko+ [Allg—as < X =4,

where ¥ denotes the size of the domain of analyticity of F', we can define
the composition F o (K + A) and indeed the range of K + A is at least a
distance  from the boundary of the domain of definition of F'.

Note that adding and subtracting and using Taylor’s theorem to control
the terms neglected to derive (5.40), (and Cauchy bounds to control the size
or the derivatives involved) we get

(5.57) |Rlo—ss < C5~ || R||2.

From this, we can conclude as in the previous cases that if the original
remainder is small, then the iteration can be carried out an arbitrarily large
number of times, moreover, the final remainder in its domain of definition
keeps decreasing.

Note also that this proof — in contrast with those based on composition —
does not require any subtle inductive hypothesis to ensure that the domains
of the composition match. These assumptions, that we had to consider in
the proofs based on composition are subtle because they require that the
errors decrease faster than the analyticity losses.



5.4. PROOF WITHOUT CHANGES OF VARIABLES 129

In this case, the only assumptions that we have to check are (5.56),
(5.50), (5.53), (5.54).

We can see that if we start with a small enough residual, the iterative
procedure does not change A or M much, so that using in the step bounds
which are twice the ones at the start, the estimates of the step remain valid
if the original error is small enough.

REMARK 5.18. We emphasize that the only thing that we need to get
the proof started is an approximate solution of the functional equation.

This can be obtained in a variety of ways. For example if the system was
close to integrable, one could take as an initial guess the parameterization
of the integrable system.

Other choices are possible. One could use a few steps of the Lindstedt
series. In such a case, the proof will establish that the Lindstedt series is
asymptotic.

More audaciously, one could use the results of a non-rigorous, numerical
algorithm. Provided that one can verify rigorously that one has an approx-
imate solution, one then obtains a rigorous proof of the existence of these
circles. These issues will be explored in more detail in Chapter 7.

We also note that the present proof does not require much from the
function except that it gives a parameterization of an invariant torus. In
particular, it can apply to tori of topological types not present in the original
System.

REMARK 5.19. Another proof without changes of variables can be found
in [Bos86] which is based in unpublished work of M. Herman. This proof
contains also a translated curve theorem.

Again, the main difference with the proof presented here is that theman-
ifolds are parameterized by the graph of a function.

Other proofs without changes of variables, based on methods, similar to
those explained in Section 5.3 are in [SZ89], [CC97].

REMARK 5.20. The twist hypothesis in this method of proof can be
bargained away considerably.

REMARK 5.21. A variant of the method that is useful in the study of
lower dimensional tori or for some degenerate situations, is to take as a
starting point of the procedure not just the K but the K and the M, which,
respectively, almost solve the equation and almost reduce the equation to
constant coefficients.

The iterative step, uses the M to solve the equation and then updates
the M so that it reduces the new linearized equation to an even higher
approximation.

By intertwining the improvement in K and in M it is possible to achieve
quadratic convergence.

One advantage of this improvement is that, if one studies this for lower
dimensional tori, both the K and the M can be computed perturbatively.
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The approximate K is a polynomial in the perturbation parameter, nev-
ertheless, the M is a polynomial in the square root. Hence, the iterative
method based on both approximations can capture the singularity structure
much better than the approximation we have discussed here.

We refer to [JAILZ99] for more details about the method for lower
dimensional tori.

REMARK 5.22. One feels that these methods of reducing the equation to
constant coefficients is a bit of overkill. When one tries to invert an operator,
diagonalizing it is rather more than what is needed.

Indeed, the great advances in KAM for PDE’s started when the emphasis
went from diagonalizing the linear operator as was done usually in KAM
theory to just using estimates from the inverse (see [CW93], [Bou99a]).
Even if we will not discuss it in these notes, when one considers elliptic
lower dimensional tori some of the resonances that appear in some proofs are
obstructions to the diagonalization of the operator, not to the invertibility.
Therefore, they can be eliminated from the proofs of the existence of the
torus if one relies on inverting the operator rather than just diagonalizing it
(see [Bou97]). Related to this issue we call attention to the lectures [Eli01]
where it is shown that even when tori are not reducible, using his non-
perturbative results, they are arbitrarily close to reducible. This is enough
to continue the iterative procedure.

REMARK 5.23. One issue that still is quite puzzling to me is that if
one performs the Lindstedt series for lower dimensional tori, one encounters
only small denominators related to the frequencies of the motion on the
torus. This is significantly less small denominators than those appearing
in the proofs mentioned above in which one needs to take into account
denominators which happen when harmonics of the intrinsic frequencies of
the torus are close to a normal frequency. The proofs in which one also
proves reducibility of the lower dimensional torus, require even more small
denominators conditions. In them, one has to take into account the cases
when differences of two normal frequencies become a combination of the
frequencies of motion in the torus.

In [JAILZ99], one can find a proof of the fact that the Lindstedt series
is asymptotic and defines an analytic function in a large sector. (One has
to exclude an exponentially thin wedge.) Nevertheless, the convergence or
not of these series has not been settled.

Note that at the same time that one develops the series for the torus, one
develops also a series for the reducing matrix which also does not present
other small divisors than those of the intrinsic frequencies. The convergence
of this series has not been settled either.

5.5. Some criteria to organize and compare KAM proofs

The reader sometimes is bewildered by the abundance of proofs of the
KAM theorem.
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The reason is that there are several criteria that one can pursue. Many
of them are orthogonal and some of them are actually incompatible.
Some of the criteria that have been used include:

Differentiability One may wonder what is the minimum differentiability required by
the proof and what is the differentiability obtained for the objects.

Except for maps in dimension 2 and flows in two degrees of
freedom the answer is not known rigorously.

The best proofs roughly require twice the number of degrees of
freedom and conclude that one loses roughly the number of degrees
of freedom.

o Measure covered by the perturbation This makes sense only in the
perturbative case.

When one considers perturbations of size € of an integrable
system, one can consider what is the volume covered by KAM tori.
In the non-degenerate case, the optimal answer is that the KAM
tori fail to cover a volume £'/2. This is established by many proofs.
Notably, by [Ne”i81], [P6s82].

Even if the proofs based on Arnold method have no trouble es-
tablishing positive measure, it is not obvious that the proofs based
on studying a torus at the time — e.g. the proofs based on Kol-
mogorov method — produce a positive measure.

This can be remedied very generally by observing that the
proofs often produce a torus for each frequency on a set and that,
once we fix the perturbation the mapping that to a frequency as-
sociates the torus is Lipschitz. It then follows that sets of positive
measure are of positive measure.

o Non-degeneracy assumptions required

In all the proofs we have assumed that the mapping that to the
actions associates the frequencies is a diffeomorphism.

This, unfortunately is not satisfied in many systems that appear
in applications. For example, the systems that have a symmetry.
A particularly dramatic example is the Kepler problem. Indeed it
happens very often in applications to Physics that the more fun-
damental the model considered is, the more non-generic features it
presents.

Indeed, one of the most interesting problems in applications is
the problem of the solar system. As it is well known, the solar sys-
tem is very degenerate. The Kepler problem presents orbits which
are periodic. That is, there is only one independent frequency. This
is degenerate because the planar problem has two degrees of free-
dom and the space problem three. Hence, one would expect two
and three independent frequencies respectively. If one takes radial
potentials in space, one typically gets two independent frequencies.
The symmetry under rotations eliminates one of the frequencies.
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Since the masses of the planets are small with respect to that of
the planet, a very natural starting point from perturbation theory
is to consider a model in which the planets interact with the sun
but not among themselves. Given N planets, this is formulated
mathematically as N uncoupled Kepler problems. This is a very
degenerate problem since we only have N independent frequencies
even if we expect for a generic system 2N in the planar problem
and 3N in the spacial problem.

Hence, for this application, it is crucial to have a theorem under
strong non-degeneracy hypothesis.

The paper [Arn63b] contains a discussion of the solar system.
In this remarkable paper, one can find a statement and a sketch of
proof of the theorem of persistence of quasi-periodic motions under
a weaker non-degeneracy condition. The so-called “iso-energetic
non-degeneracy”. (A more modern proof is [BH91]).

In [Arn63b] one can also find an argument on how to verify the
hypothesis of the main theorem for the problem of the N planets
in a plane and for 3 planets in space.

In spite of some popular accounts, the problem of N planets in
space does not seem to be discussed in much detail in [Arn63b].
The only definite statement that we could find in [Arn63b] is right
before the start of Chapter IV:

“ The rather lengthy calculations involved in [the verification of
the hypothesis of the main theorem] analogous to the arguments of
4 will not be discussed here”.

In the opinion of the present author, this is a perfectly correct
and precise statement.

Shortly before his untimely death, M. Herman had drafted
a manuscript verifying the existence of quasiperiodic motions for
small masses in the N planet space case, by a significantly shorter
calculation.

In all the perturbative problems one needs assumptions on what
are the values of the perturbations that are allowed.

When confronted with real problems one often wants to find
the limits of validity of the perturbative arguments.

One can imagine treating the solar system as a perturbation of
the uncoupled planets. Of course, in such a case it is of great inter-
est to know whether the actual observed values are covered by the
theorem proved. Similarly, when giving proofs of perturbative sta-
bility, one is interested in what are the values of the perturbations
that will be allowed.

Applicability to non-perturbative problems

One often has to study situations where we are far from any

non-perturbative situation. A classical example is the theory of



5.5. SOME CRITERIA TO ORGANIZE AND COMPARE KAM PROOFS 133

the moon. See [LP66]. Two natural integrable systems are ignor-
ing the Sun or ignoring the Earth. Neither of them yields good
approximations.

In this situation, it is natural to invent approximate intermedi-
ate systems that are solvable and which are reasonable approximate
to the reality. (In the case of the moon this was accomplished by
G. W. Hill).

In more modern times, one can envision constructing more elab-
orate models with the use of the computer. (Think of the approx-
imate solutions of the real problem produced by the computer as
exact solutions of a fictitious problem).

It is important, then, to have some theories that can deal not
only with perturbations of integrable systems but with perturba-
tions of non-integrable systems of which we only know a few par-
ticular solutions.

Some of the proofs presented in the previous chapter have this
feature while others do not. Of course, one can often take the main
ideas of the method and write them in a constructive way.

More details on this will be presented in Section 7.

Note that the considerations above are very dependent on the problem
one is considering. For many applications in celestial mechanics, where the
Hamiltonians are analytic, the improvements in differentiability are not so
important, but the improvements in the denegeracy conditions and in the
constants may be crucial. Conversely, there are cases where the improve-
ments in differentiability are crucial to obtaining stability even in applied
problems (The paper [Her86] contains some examples of KAM for piecewise
linear perturbations).

Of course, if one supplements these requirements with others such as
readability or conformance to some aesthetic principle (such as resembling
the formalism of other field of mathematics so that they are understandable
for the practitioners of that other field), it is clear that the number of proofs
proliferates.






CHAPTER 6

Aubry-Mather Theory

In this section we will present an introduction to Aubry-Mather theory.

The Aubry-Mather theory resembles KAM in that it produces quasiperi-
odic solutions. It is different from KAM in that the methods are variational.
As a consequence, the requirements on differentiability are very moderate,
there is no condition of proximity to integrability and one does not need Dio-
phantine conditions. The price one has to pay is that the solutions produced
are not as nice as the KAM ones. In particular, the quasi-periodic solutions
one obtains do not lie on a smooth torus. Aubry-Mather theory has several
applications other than the construction of quasi-periodic orbits. Indeed,
nowadays, one of the most important uses is the construction of connecting
orbits between different objects which is out of the realm of KAM theory.

The Aubry-Mather theory had its origin in the work of S. Aubry and
collaborators in solid state physics [Aub83], [ALD83| and the work of J. N.
Mather on twist mappings [Mat82]. An important precedent of the math-
ematical theory was the work of [Per74], [Per79|, which already realized
that the invariant objects produced by the variational principle could be
Cantor sets (in the case of maps).

It was soon remarked [Ban88], [Mos86] that the theory had deep con-
nections with other classical variational problems (e.g., the works [Mor24],
[Hed32] on geodesics, the variational study of orbits in billiards and varia-
tional problems in PDE’s)

Very extensive general introductions to modern results in globally min-
imizing orbits are: [MF94], [Mn93], [CI99]. See also [Car95], [Itu96],
[Man97], [CDI97], [CIPP98] for another point of view and [Gol01] for a
perspective emphasizing topological aspects and their relation with the vari-
ational structure. A review from the point of view of physics is [Mei92].
We refer to these reviews for pointers to the original literature since a more
detailed discussion will take us too far from our goal of studying KAM the-
ory.

REMARK 6.1. The relation of some aspects of Aubry-Mather theory with
the theory of viscosity solutions is developed in [Fat97c|, [Fat03], [GomO02].
One can say that the quasiperiodic orbits obtained in Aubry-Mather the-
ory are viscosity solutions of the invariance equations of KAM theory. This
aspect of the theory is sometimes referred to as Weak KAM theory, to indi-
cate that the solutions are understood in weak sense. In this case, the weak
sense is not the usual weak sense commonly used in distribution theory, but
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rather the sense of wiscosity solutions. Good discussions of the construc-
tion of connecting orbits are [Mat93], [Bol95], [Bes96], [CP02]. These
problems will not be considered here.

REMARK 6.2. The variational structure of the periodic orbits can be
used to implement very efficient numerical algorithms. Basically, one can use
minimization on the problem for a periodic orbit. This typically produces
a very approximate solution that can be polished with a Newton or similar
method, see [Per74], [Per79], [KM89], [Tom96]. Again, we will not be
able to enter in details here.

REMARK 6.3. There have been several re-elaborations of the theory.

For dynamicists, they can be classified into two types. Theories that em-
phasize the invariant measures carried by the sets and theories that empha-
size the orbits and, somehow recover the global behavior by pasting together
minimizing segments. This dichotomy is classical in the global problems of
the calculus of variations and appears in many contexts. For example, the
theory of Morse of broken geodesics of [Mor24] is clearly a discretization
theory. The geometric measure theory of [Fed69] is a measure theory.

The reason for these two theories is that, in calculus of variations, one
always needs to work with well defined functionals and prove existence of
minimizers, and then, ascertain their properties.

The existence of minimizers always entails some type of coerciveness or
compactness that allows to pass to the limit in a minimizing sequence and
one needs also that the functional is lower semicontinuous. The natural
functionals on the theory are not well defined, so one has to do something.

Truncating to finite segments — the broken geodesic method — has the
advantage that one can reduce the problem to a finite dimensional prob-
lem and use elementary calculus and or topology to obtain the existence of
minimizers or critical points.

Working with dual objects (in practice measures) has the advantage
that, if the functional is convex, automatically, it is lower semi-continuous
and one has also compactness in the weak-* topology, so that the existence
of a minimizer is trival. On the other hand, since the objects considered are
rather abstract, one needs to develop a regularity theory that shows that
these abstract objects correspond to more down to earth objects.

Of course, the choice is not as stark and as exclusive as the choice of what
team to root for in the World Series. Even if it is hard to use both points of
view in the same paper, there are authors that use different points of view
in different papers. In this notes, we will present a proof of one result using
a broken geodesics method and only sketch the arguments using invariant
measures. The main reason is that the broken geodesics method seems closer
— at least in notation — to KAM theory.

In this notes, we will content ourselves with presenting just a version of
the most basic theorem of the theory, namely the existence of one quasi-
periodic orbit for every possible rotation mumber. See Theorem 6.8. The
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proof follows a re-elaboration of the theory introduced in [CdILO01] to solve
several problems proposed in [Mos86]. The author has written another
exposition of different proofs in [dIL0O].

As the reader will see, the proof of the theorem we present. remarkably
simple. It should be clear that the proof depends on very few elements of
the problem and, therefore, it is a general feature of variational problems
which satisfy some sort of ordering and invariance under translations. At
the end, we will comment briefly on other formalisms, including those used
in the original proofs.

The following definition is standard in the calculus of variations.

DEFINITION 6.4. Let S: R x R — R be a C* function.
Given a sequence {¢y, }nez, we consider the (formal) variational principle

(6.1) Slal =>_ S(gi, qi1)-
€L
Even if the sum in (6.1) is formal, the following concepts are perfectly
rigorous.
We say that a sequence ¢ is a critical point of (6.1) when Vi € Z,

(6.2) 5(gi, gi+1) + 028(gi-1,¢) = 0.

Formally, (6.2) is the derivative with respect to ¢; of (6.1).

We say that a sequence {¢,} is a ground state — in the language of
Physicists — or a class A minimizer — in the language of [Mor24| — when for
all N € Z, for all sequences {p;} such that p; = ¢;, |i| > N, we have

N+1 N+1
(6.3) > S@ihair) < Y. SDiipis).
~(N+1) —(N+1)

We denote Sy[q] = Z]_V(J;\}H) S(qi, qi+1)- It is clear that all ground states
are critical points but as we will see in simple examples, there are critical
points which are not minimizers.

Equations (6.2) are second order equations because they relate ¢;—1,¢;
to g;+1. The cases that we will be more interested in are those cases in which
(6.2) allows to determine g; 41 once g;,q;—1 are given. For example, if S is

C? and
(6.4) 01025(¢i, giv1) < ¢ <0,

we can determine a unique g; 41 for each g;, q;—1.

In such a case, once one choses qg, ¢1 the rest of the orbit solving (6.2) is
determined. The condition (6.4) is an strengthening of the condition (6.7).
In mechanics it is called the twist condition, but in statistical mechanics, it
is called ferromagnetism.

From the dynamics point of view, it is convenient to turn (6.2) into a first
order equation for two dimensional variables. If we introduce the notation

(6.5) pi = 015(qi, ¢iv1)
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and assume (6.4) so that g;, p; determine ¢; 11, we obtain that (6.4) becomes
a mapping ¢;,p; to ¢i+1,pi+1. (Given g;, p;, we determine g;11 from (6.5),
then use (6.2) to determine g;+1 and use (6.5) to determine p; ;.

We note that this construction is exactly the same as what was done in
Section 2.8. The following exercise was developed there in a slightly different
context.

EXERCISE 6.5. Check that the mapping (g;, pi) — (¢i+1, pi+1) introduced
above is area preserving. If the general case is too hard, just check it by an
explicit calculation in the Frenkel-Kontorova model.

Using implict differentiation, it is not hard to see that, in the above
notation, the twist condition amounts to %pn > ¢ > 0. This means that
a vertical line gets mapped into something that deviates to the right. This
is where the twist condition got its name.

The functions we consider in our problem will be C? and have the fol-
lowing additional properties.

For all z,y € R we have

(6.6) S(z, y):S(m—I—l,y—i-l),
(6.7) 81825(33 y)
(6.8) S(x,y) > 7(!95 - y!)

where limy_, o y(t) = oo.
One example of functions S satisfying (6.6), (6.7), (6.8) is

1
S(e,y) = 5k —y — o + V(@)

where V is periodic.

This is the example that we had already considered in (1.5). We recall
that we had two different interpretations of the model. One was that S was
the generating function of a map (see Section 2.8) and the other is that this
is a model describing the interaction of a material deposited in a substratum.

The condition (6.6), which is just periodicity with respect to translations
in the diagonal — much weaker than periodicity with respect to each vari-
able — means that the energy of two particles (both of interaction among
them and of the interaction with the substratum) does not change when
we translate both by one unit. This happens always when the interaction
is depending only on the distance and the interaction with the medium is
periodic of period 1.

In the mechanics interpretation, the condition (6.7) is a weak twist con-
dition. In the interpretation from Solid State Physics, (6.7) means that the
particles lower their energy when they get together, hence it is referred in
the literature as “ferromagnetism”.

Notice that in the variational results we allow the equality in (6.7), so
that we allow the twist to vanish. This is not allowed in the KAM theorem
we have presented. Indeed, to show the equivalence of the equation (6.2)
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and an area preserving map, we used the strong form of the twist condition
(6.4). Nevertheless, the theory in the Lagrangian formalism only uses (6.7)
(as well as (6.6), (6.8)).

EXERCISE 6.6. Is it true that if a function S satisfies (6.4) and (6.6), it
also satisfies (6.8)7

EXERCISE 6.7. Study numerically the behavior of the orbits which are
critical points of a variational principle as in (6.1) with

1
S(e,y) = gle =y —al* + V(@)

This example leads to a map which satisfies the twist condition (6.7) but
not the strong twist condition, (6.4).

We note that in the particular case V' = 0, all linear sequences ¢, =
wn+« are critical points. On the other hand, only the sequences ¢, = an+«
are ground states.

Note that we can write

1
Slg =) Slai — g1 + V(@) + ) alei — ai1) +
i€z i€Z

L,

50
Therefore, in this example we have that changing a changes the functionals
Sy by a constant term Z]_VJ\} +1) a® plus a term that depends only on the
boundary. Such changes on the functional do not affect the critical points,
but they change the minimizers.

A similar observation —in a different formalism — is the basis of many
“shadowing” arguments of minimizers. See e.g., [Mat93]. Given orbits
that are minimizers of a functional — and sufficiently similar — it is possible
to modify the functional — in a way as above which does not change the
critical points, but which has a connecting orbit which resembles the two
minimizers.

The only Theorem we will prove in this chapter is the first theorem of
Aubry and Mather which establishes the existence of one critical point — a
minimizer — for every frequency.

THEOREM 6.8. Let S be a a C? function satisfying (6.6), (6.7), (6.8).
Then, for every w € R there is a monotone mapping h*

(6.9) h“(t+1)=h"(t)+1
such that
(6.10) q; = h¥(wn).

Even if a map satisfies the twist condition, there is no guarantee that
the iterates of the map will satisfy the twist condition (an easy example
is the map associated to the Frenkel-Kontorova mapping for small values
of the parameter). Nevertheless, the conclusions of Theorem 6.8 remain,
obviously true for compositions of the map. Indeed the proof we will present



140 6. AUBRY-MATHER THEORY

goes through for maps whcih can be written as the composition of a finite
number of twist maps.

EXERCISE 6.9. Show that the time one map of a mechanical system with
a time periodic potential, that is, a system described by the Hamiltonian
1
PVt Vigt+T)=V(g1)
is the composition of finitely many twist maps.

The property that there is a function satisfying (6.10) has very interest-
ing consequences and very interesting geometric interpretations, which we
will now formulate as remarks

REMARK 6.10. Using that h“ as above exists, we immediately have:
(6.11) lg) — nw| <2

so that the ground states constructed are almost linear. Their deviation
from linear is bounded independent of the length.

REMARK 6.11. The property (6.9) means that h“ is a the lift of mapping
of the circle. Hence, the function A% tells that the invariant sets are semi-
conjugate to a rotation of the torus. In particular, when w is irrational, they
are uniquely ergodic. The invariant measure in the set is the pushforward
under h¥ of Lebesgue measure on the circle.

REMARK 6.12. In the case that we have a KAM torus, the map h* is con-
structed as follows. Recall that the KAM map gives us a parameterization
of the invariant circle that satisfies

FoK*(0) = K“(0 +w).

If K(T') is a graph over ¢ — this actually follows from the area preservation
and the twist condition, see [Mat84] or the appendix to [Her83b], [LC89]
or [Mn93| for different proofs of this remarkable result — then, we can project
the graph over the ¢ coordinate. Hence, h* = ®,K%.

In general, when there is no KAM circle, the map h“ will not be a
homeomorphism. Its graph will have discontinuities. Nice examples of this
situation, computed quite explicitly can be found [Per79].

REMARK 6.13. The property that there exists an h* as above (monotonic
and satisfying (6.9)) can formulated more intrinsically as saying that for any
pair of integers j,! we have

either ¢y; +1<¢q VielZ,

(6.12) or ¢;+l>¢q Viel

(we leave the verification of the equivalence as an exercise, or just refer to
the literature).

Geometrically, the property (6.12) can be described as follows: Consider
the graph of ¢ : Z — R. Translating the graph horizontally and vertically
by integers, we cannot get a crossing.
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Examples of sequences satisfying property (6.12) are g, = an + 3, with
a,f € R. Since g;yj +1 = ¢; + aj + | we see that, depending on the sign of
the number «j + [, we have a comparison between ¢;4; + [ and ¢; which is
independent of i.

On the other hand, the property (6.12) is false for ¢; = 72 or for functions
that oscillate a lot.

The property (6.12) is customarily called Birkhoff property even if it
seems to have been originated in [Aub83], [Mat82]. This property gener-
alizes to quite a number of other situations — for example, it can be applied
to the case when ¢ : Z¢ — R (spin wave models in statistical mechanics) well
as to PDE’s — and it is the key to obtaining results in these other situations.

EXERCISE 6.14. Show that if a sequence {g,} satisfies (6.12), then w =
lim ¢, /n exists.

Hint: Imitate the proof of the existence of rotation number for maps of
the circle in [KH95] 11.1

Now, we turn to the proof of Theorem 6.8.

PROOF. We note that the proof we present applies for very general mod-
els and it does not need that they are just nearest neighbor. These models
appear naturally in statistical mechanics. They have also been considered
in [Ang90]. See also [Gol01].

The proof also goes through with only notational modifications if the
generating function S depends also on ¢ in a periodic fashion. That is, we
consider variational problems of the form S[q] = >, S(qi, ¢iy1;4) with
S(x,y;i) = S(z,y;i +T).

The proof will start by obtaining first the result for rational frequencies.
Once we have obtained (6.11), we can easily pass to the limit of irrational
frequencies.

Notice that, as a corollary of the proof we obtain that the orbits that
we produce are approximated by periodic orbits.

A similar technique of approximating by periodic orbits but obtaining
a-priori estimates on the oscillations happens also in [Kat82], [Kat83].
Nevertheless, in that paper the argument is different from the one presented
here. In particular, it uses the strong twist condition.

Given L € N,k € Z — not necessarily relatively prime — we consider the
functional

L1
1
(6.13) SHaqu, .. qn) = I (Z S(4i @iv1) + S(qr-1, 1 + k)) :

i=1

The idea of this functional is that — up to the constant factor 1/L which
does not affect what are the critical points or the minimizers — S” is the
restriction of the functional (6.1) to sequences that satisfy the constraint

(6.14) Gi+L = ¢ + k.
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In dynamical systems, ¢’s satisfying (6.14) are called periodic orbits of type
k/L.

It is easy to verify that critical points of ST, once extended by periodicity
to infinite sequences are critical points of §. It suffices to use the formulas
for the derivatives of the functional with respect to the arguments.

REMARK 6.15. A subtle point which is worth emphasizing is that mini-
mizers of ST are, of course, critical points. nevertheless it is not clear that
they are class-A minimizers. The reason is that being a minimizer of S%
implies that one cannot lower the S in an interval — say 1000 L — by perturba-
tions that are periodic of period L. Nevertheless, it is, in principle possible,
that even if one cannot lower Siggor, by perturbations periodic with period
L, one can lower it by perturbations which are periodic of period 10L — or
not periodic at all.

This phenomenon happens in the celebrated example in [Hed32]. In
this situation, one has minimizers among orbits on one period which are not
minimizers under longer perturbations. Hence, as we consider the orbits for
longer and longer periods there is no convergence.

The functional S’ is finite dimensional. Given the conditions (6.6) it is
clear that we can assume that we leave ¢; € [0, 1].

In this space, there is no problem in showing that there is a minimum
since the problem is finite dimensional.

What we want to do is to show that there is always a minimizer that
satisfies the Birkhoff property.

The proof uses the following inequality, which was observed in the theory
very early, at least in [Aub83], [Mat82] Denote ¢ A ¢, ¢ V ¢ the sequences
defined by

(g A G)i = min(g;, G;),

(6.15) (qV q); = max(q;, Gi)-

LEMMA 6.16. Assume that S is C? and that it satisfies (6.7).
Let q,q be sequences satisfying (6.14). Then we have

(6.16) SHgng +8"(qv§) <SMq) +S(9).

PRrRooOF. Introduce the notation

r=qAq,
a=q-—r,
a=q—r.

We note that o, & > 0, that «,& have disjoint support (the support of
« is the integers i for which ¢; > ¢; and viceversa) and that § = + a + a.
We also note that if ¢, ¢ satisfy (6.14) so do g A @G, qV q.
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We consider the function of two real variables
F(t,s) = SE(r + ta + sd)
L—1
(D S(ri +tay + sdi, , iy + tais + s@iga)
i=1
+ S(rp—1 +tap—1 + sap—1,r1 + tag + sag + k‘))

1

(6.17) =<

We note that the inequality (6.16) can be written in terms of the function
F as

(6.18) F(1,1) + F(0,0) < F(1,1) + F(1,1).

Using the fundamental theorem of calculus, we obtain that
1 1
(6.19) F(1,1) + F(0,0) — (F(1,1) + F(1,1)) = / ds/ dt 1O F (1, 5).
0 0

Computing 0102 F (t,s) and taking into account that «;&; = 0 because
a, & have disjoint support, we obtain

8182F(t, S) =
L—2
1 e v ~ ~
=7 (Z 01025 (-, ) i@is1, ip18;) + 01025 (-, ) (ap—161 + 041061;_1) _
i=1

Here for simplicity we have suppressed the arguments of the derivatives of
S.

Because of (6.7), which says that 01025(-,-) < 0, and the fact that
a,a > 0, we obtain that

8102F(t, S) S 0.

By (6.19), we obtain (6.18) and this establishes Lemma 6.16. O

As an immediate corollary of Lemma 6.16 we obtain that if ¢, ¢ satisfying
(6.14) are minimizers of S* among the sequences satisfying (6.14), then gAg,
q V ¢ are also minimizers.

We just need to observe that ¢ A §, ¢V § also satisfy (6.14), hence S* (g A
§) < S'(q), S¥(q Vv §) < S*(§), which together with (6.16), implies

SMang =8"av ) =5"(a) = ")
[l

Applying repeatedly Lemma 6.16, we define the infimal minimizer as-
sociated to L,k by

(6.20) “F = /\ q.
qeEM

where by M we denote the set of minimizers of S* on the set of configura-
tions satisfying (6.14) and

(6.21) g = (k/L)i.
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The condition (6.21) is just a convenient normalization — remember that,
because of (6.6), if {g;} is a solution, so is {g; + ¢} for every integer. Hence,
we can always arrange that a solution satisfies (6.21).

The infimal minimizer will be the solution that deviates the least (from
above) from the line ¢; = (K/L)i. This helps to explain that its long range
oscillations are under control.

Moreover, we recall that the functional is invariant under adding an
integer to the sequence. Hence, it is natural to consider the functional S*
defined as acting on a space of sequences satisfying (6.14) and in which we
identify sequences differing by an integer.

By Lemma 6.16 we obtain that the minima of a finite collection of min-
imizers is also a minimizer.

We also note that because of (6.8) and the periodicity, we can assume
that, for a minimizer we have a bound |g; — ¢;+1| < K (at this stage of the
argument K can depend on L, k). Hence, the set of minimizers — when we
identify sequences differing by an integer — is compact.

We, therefore obtain that the infimal minimizer is also a minimizer.
Moreover, it is clear that it is the smallest minimizer satisfying (6.21).

It will be important for future part of the argument that the infimal
minimizer, as shown by its definition, is unique given L, k. This is an im-
portant property shared with the KAM tori. The idea behind selecting the
infimal minimizer is that it is that we try to obtain minimizers with small
variation. More precisely, it is he minimizer that recedes the least from the
straight line ¢; = %z

The following result is crucial.

LEMMA 6.17. The infimal minimizer satisfies (6.12).
As a corollary, the infimal minimizer satisfies (6.11).

Actually, we will show that the alternatives in (6.12) are chosen depend-
ing on the sign of (%)] +1.

lLJr]; + 1 also satisfies (6.21).

Clearly ¢ is a minimizer, hence, we have § > ¢*. That is, for all 1,

Proor. If (%)] +1 >0, the sequence ¢; = q

qlL+l; +1> qiL * which is the desired conclusion.
Similarly, if (%)j +1 <0, the sequence §; = qiLf; — [ also satisfies (6.21)
and is a minimizer. Hence § > ¢™*, that is, for all 7, qiL_’];—l > ql-L o Therefore,

changing variables, we obtain that for all 7, qiL +’; +1> qiL k. O

Once that we have for all rational numbers a minimizer which satisfies
(6.11), we can pass to the limit of irrational frequencies and obtain a class
A minimizer for every frequency.
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EXERCISE 6.18. Generalize the above proof to situations where the func-
tional S is defined on configurations ¢ : Z% — real and is of the form

(6.22) Sla) =Y M (@i giv1 - Girn)
N i

provided that the SV decrease fast enough.
The analogs of (6.6), (6.7) are

(6.23) SM(gi+ gy + 1, gipn + 1) = SV (g5, Gig1, - - Gien).
For i # j, we have

(6.24) 6QjaqkSN(Qi7Qi+17 o qipN) 0.

Work out the details (see [CdILO03] for a proof following the present
proof and [KdILR97], [CdIL98], [Bla90], [Bla89] for other proofs. An
exposition of these other arguments can be found in [d1L0O].

Models such as appear naturally in the study of spin waves in solids. In
dynamics, the meaning of the subindex i is the time, hence, one could think
of them as problems with multidimensional “ time”.

The proof in [Mat82] goes along very different lines, which we will now
sketch.

As motivation, we recall that [Per74] observed that if we take L — oo
but k/L — w in (6.13), this is very similar to the Birkhoff sums. If the orbit
¢n has a hull function, h“ as in (6.10) we have that

(6.25) 5[] = / L S(h(0), 1(6 + w)db.

The variational principle for the hull functions (6.25) was used rather
successfully in [Per74], [Per79] to compute KAM tori (also in higher di-
mensions).

Justifying the derivation of the formula (6.25) along the lines of the
heuristic argument is not so easy. Nevertheless, what [Mat82] accomplished
was to show that the variational principle (6.25) indeed had critical points —
minimizers — and that the minimizers indeed satisfied the desired properties.

One important device that allowed the argument in [Mat82] work is
that monotone functions with the normalization (6.9) enjoy remarkable com-
pactness properties. This comes from the fact that from Riesz representa-
tion theorem, functions satisfying (6.9) can be identified with probability
measures on the circle. The set of measures is compact under the weak-*
topology. This is enough to get through the arguments of the calculus of
variation.

An alternative formulation is to consider the measures p“ obtained by
pushing forward the Lebesgue measure in the circle by h“. The variational
principle can be considered as a functional on the space of measures invari-
ant under the map. This formulation of the theory works also in higher
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dimensions. An observation in [Mn93] is that one can consider the func-
tional as defined on all probability measures and, then, the Euler-Lagrange
equations imply that it is invariant.

The Euler-Lagrange equation for the functions h* is an analogue of the
Hamilton-Jacobi equation. Even if h“ can be discontinuous, it was observed
in [Fat97c] that the method of viscosity solutions allows to construct objects
which solve the equation in the viscosity sense. This is what has been called
weak KAM theory.

It is very interesting to compare the approach we have presented here
based on constructing the invariant orbits with the approach based on study-
ing the critical measures. In the context of geodesics, this comparison has
been done in [Ban88|.

Of course, Theorem 6.8 is only the beginning of the Aubry-Mather the-
ory. One can also show that there are solutions that are not minimizers but
connect orbits among them, etc. We cannot cover those developments here
and we refer to the reviews indicated at the beginning of the chapter.



CHAPTER 7

Some Remarks on Computer Assisted Proofs

The existence or non-existence of invariant tori in a system appearing
in a concrete application could have enormous practical importance.

For example, there are many systems such as accelerators or plasma de-
vices that are modeled rather well by Hamiltonian systems. The existence of
tori in these systems has very drastic effects in their long term behavior. For
example, if the system is a two dimensional map, the existence of invariant
circles will imply that one region of phase space will remain trapped forever.
This is of great interest for plasma devices whose goal is to confine a plasma
or for accelerators that try to keep a beam of particles in place. Indeed,
many of these devices are designed in such a way that they maximize the
abundance and robustness of invariant tori. One hopes that, even if the
Hamiltonian approximation is not completely accurate, the KAM tori will
survive somehow.

In celestial mechanics, one is interested also in finding regions with in-
variant tori since they are suitable for parking orbits.

The judicious numerical experimentation with dynamical system has
been a great source of insight and inspiration, even if, of course, much of
the work is non-rigorous and, hence, does not fit well with this tutorial. We
refer the reader to [Hén83], [Sim98] for some study of the issues involved
in numerical computations and to [Mei92] for a point of view closer to the
physical applications

Of course, in these applications, one also wants to get, besides the exis-
tence, information about the shape of the torus and more details about its
properties. What we want to discuss in this section is how some of these
non-rigorous calculations can be turned into theorems.

The basic observation is that some of the KAM proofs we have presented
here have the structure that they formulate a functional equation and show
that, given an approximate solution which is not too bad from the analytic
point of view, then there is a true solution, which, moreover is not too far
from the approximate solutions. These constructive methods do not require
that the system is close to integrable.

Note that these proofs do not care about how we have produced the
approximate solutions. The only thing that we need to verify rigorously
is that these approximate solutions indeed solve the functional equation
to up to a small error and that their analyticity properties are adequate.
Hence the problem of justifying that these computed solution correspond

147
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to a true one reduces to showing rigorously that these numerically specified
functions indeed solve the desired functional equation with a good accuracy
and verifying rigorously their analyticity properties.

Of course, given one polynomial with a few coefficients one could imagine
studying its properties with respect to an easy equation such as (5.31) with a
pencil and a notepad. (See [Her86] for an example of these verifications with
pencil and paper.) Nevertheless, if the number of coefficients approaches
those needed for what is considered good accuracy in numerical calculations
(this is often a few hundred or a few thousand coefficients), using a notepad
becomes impossible.

One would like to use a computer. The problem with using a computer
is that, as they are used most commonly computers do not deal with real
numbers and they do not perform on them the mathematical arithmetic
operations. In their normal mode of working, computers deal only with
a finite set of numbers, the representable numbers' On these representable
numbers, we perform arithmetic operations which are approximations of the
arithmetic operations among real numbers.

These operations produce an approximation to the true answer if at
all possible? or if it is impossible to give a reasonable answer in terms of
representable numbers (e.g., if you ask to multiply by 10 the largest repre-
sentative number or to divide by zero) they do not return an answer, but
instead raise an exception, which typically does something drastic such as
causing the program to terminate abruptly, perhaps copying the state of the
memory to a file (dumping a core) that can be examined to trace the prob-
lem. (A good discussion of the subtleties involved in the implementation of
floating point arithmetic is [Knu97].)

One problem with this way of proceeding is that repeated approximate
identities may lead to an result which is not approximate at all from the
original starting point. Much less if the approximations are intermingled
with other operations. Of course, given that a computer nowadays produces
over one hundred million operations in a second, we have to worry about the

41 modern computers, there are almost universally around 2%* representable num-
bers, those which can be written in 8 bytes — there are a few delicate and complicated
issues such as denormalized numbers. Most computers also use for certain calculations
numbers with 80 bits, which are, 28° numbers.

There is a rather detailed standard by IEEE [IEE85] on how to perform arithmetic
in numbers. It specifies not only the precision to be used, but also rounding and how
to report troubles such as attempted division by zero or overflow. This standard is now
almost universally implemented in the chips and the languages (rater inexplicably Java
did not include it) and there are good tests of compliance so that one can assess one’s
arithmetic, see [Kah96].

2The process of taking the true result and producing a representable number is called
rounding. Returning an representable number that is larger than the true result is called
rounding up, similarly rounding down, rounding to nearest, rounding towards zero etc.
The IEEE standard mentioned above specifies that the user can control the properties of
the rounding and of the exceptions by setting a control word.
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effect that performing millions of approximations may lead us away from a
good approximation.

As every good numerical analyst knows, producing numbers is not too
difficult. Unless the computer catches fire, you will get numbers. The real
difficult issue is to produce numbers that can be trusted. More difficult even
is to device methods that ensure the numbers produced can be trusted. One
should keep in mind that most of the technology and research happens at the
borderline regions when the algorithms are about to break. (If the problems
we are studying were safely solvable, we would fix the situation going to a
more challenging problem.)

The problem of reliability of arithmetic calculations is significantly more
pressing for the problems involving small divisors. We have seen already that
the Lindstedt series manage to converge only through massive amounts of
cancellations. Cancellations are one of the worst enemies of accuracy in
floating point calculations. Since computers keep a fixed number of digits,
adding numbers that cancel almost exactly, will lead to a catastrophic lack
of precision (e.g., if we have 1.00001 and 1.00000 exact up to six digits, their
difference will only have one exact digit.) Many of the problems with small
divisors are such that the numerics deteriorates in a complicated way until
the algorithms blow up or start behaving erratically.

EXERCISE 7.1. One of the standard programs to assess the characteris-
tics of a computer is

epsilon = 1.0;
oneplus = 1.0 + epsilon;
count = 0;

while (oneplus > 1.0){
epsilon /= 2.0;
oneplus = one + epsilon;
count++;

}

printf ("%d", count);

Run it in your computer.
Run also

epsilon = 1.0;

count = 0;

while ( 1.0 + epsilon > 1.0){
epsilon /= 2.0;
count++;

}

printf ("%d", count);

Chances are that the results will be quite different. Explain why.
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EXERCISE 7.2. The computer program Mathematica uses a numerical
scheme in which high precision numbers drop precision if the last figures
cannot be kept.

This leads to some unexpected effects.

Run

a = N[Pi,40]
Do[ a = 2%a -a , {100}]

and discuss the results.

One way of obtaining reliable results from a computer without sacrificing
too much performance is to use interval arithmetic (see [Moo79], [KM84]).
The idea is that a real variable is represented by two representable numbers
which are supposed to mean an upper and a lower bound for the value of
the variable we are interested in.

Once one has bounds for the values of a variable, one can operate on
these bounds in such a way that one always keeps obtaining bounds. The
only subtlety is that when adding upper bounds, one has to round up,
adding lower bounds, one has to round down, etc. This can be done by
reprogramming pieces of the arithmetic, or, in systems that conform to the
IEEE standard by setting appropriately the control word. This quickly leads
to an arithmetic among intervals that can produce bounds of arithmetic
expressions given bounds on the variables.

One can pass from bounds on arithmetic expressions to bounds on sets
in functional spaces. For example, one can specify a set in function space.
For example, if we specify a set of analytic functions by

N
(71) Unpoomie = {F(2) | f(2) =D fiz" + fe(2), fi € vis || fel i < e},
=0

where v; are intervals (i.e., pairs of representable numbers) and ¢ is a repre-
sentable number. (There are, of course, many variants. One can for example,
take into account that some errors are high order, use other norm for the
error or even several norms at the same time.)

It is reasonably easy to imagine how can one define operations on sets
of the type in (7.1) such that the numerical operations bound the real op-
erations on sets. With a bit more of imagination, one can do compositions,
integrals, and other operations. In particular, one can implement the oper-
ations involved in the evaluation of the terms in (5.26).

If starting with the numerically produced non-rigorous guess one can use
the rigorous interval arithmetic to verify the hypothesis of Theorem 5.9 — or
some other theorem enjoying a similar structure — then, one can guarantee
that there is a true solution near the computed one. This strategy has been
implemented in [Ran87|, [dILR91]. Similar ideas have been implemented
in [CC95]. Also, the existence of invariant tori in some models of celestial
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mechanics — truncations of the real equations of motion — with realistic
parameters, have been established in [CC97].

Indeed, by now, starting with the inspiring proof of [Lan82] (it relied
on the usual contraction mapping theorem rather than in the hard implicit
function theorems) there has been a number of significant theorems proved
with similar techniques. A survey of these developments is [KSW96].

One of the main difficulties of the method is that it requires to spend a
great deal of time in coding carefully the problems. One can hope that some
of the tasks could be automated but there are difficulties. Even if automatic
translation of arithmetic expressions produces a valid answer, arithmetic
expressions that are equivalent under the ordinary rules of arithmetic are
not equivalent under interval arithmetic. For example in intervals

(7.2) (a+b)xcCaxc+bxec

and the inclusion can be strict. A classic problem in interval arithmetic is to
find fast algorithms to compute accurately the image of the unit disk under
a polynomial.

EXERCISE 7.3. Give a proof of (7.2) and find examples when it is strict.

I personally think that computer assisted proofs is a very interesting area
in which it is possible to find a meaningful collaboration between Mathemati-
cians (proving theorems of the right kind), Computer Scientists (developing
good software tools that relieve the tedium of programming the variants
required) and applied scientists that have challenging real life problems.






CHAPTER 8

Some Recent Developments

Let me mention some of these new developments (in no particular order
and, with no claim of completeness of the list and omitting classical results,
i.e., those more that 15 years old). They will not be covered in the lectures,
which will be concerned only with the most classical results.

The novice that is reading the paper to get initiated to KAM theory is
encouraged to skip it for the moment and only come back to it as suggestions
for future reading. Of course, the experts will notice many omissions. The
only point we are trying to make is that the theory is still finding exciting
results and that there is work to do.

8.1. Lack of parameters

The “lack of parameters” which was considered inaccessible has been
solved very elegantly [JS92], [E1li88]. (See [BHS96Db] for a recent survey,
and also [BHS96a] [Sev99|.) This has lead to remarkable progress in the
existence of lower dimensional tori, specially elliptic tori — a theory of hy-
perbolic tori has been known for a long time — (see e.g., [JV97b], [JV97a].)

8.2. Volume preserving

As a corollary of this, one can get a reasonable KAM theory for volume
preserving systems getting tori of codimension one. Hence blocking diffu-
sion in many problems in hydrodynamics, etc. (See [CS90], [BHS96b],
[DAIL90], [Xia92], [Yoc92].)

8.3. Infinite dimensional systems

The KAM theory for infinite dimensional systems has made remarkable
progress.

Note that in infinite dimensional systems, the most interesting tori are
of lower dimension than the number of degrees of freedom.

The subject of infinite dimensional KAM by itself would require a review
of its own longer than these notes.

We just refer to [CW93], [CW94|, [P6s96], [Bou99a], [Bou99b|, and
[Kuk93] as representative references, where the interested reader can find
further references. A very good review and pedagogical tutorial is [Cra00].
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8.4. Systems with local couplings

Many systems in applications — e.g., in statistical mechanics — have the
structure that they consists of arrays of systems connected by local cou-
plings.! For these systems one can take advantage of this structure and
develop a more efficient KAM theory than the simple application of the
general results. [Way84|, [P6s90] [FSW86|. Other KAM methods for
these systems are developed in [AFS88] and [AF88|, [AF91] which con-
sider the existence of periodic solutions. See also [Way86] for an Nekhoro-
shev theorem for these systems. Conjectures and preliminary estimates (a
challenge for rigorous proofs) on these systems can be found in [BGG85b],
[BGGS85al, [HAIL0O], [CCSPC97].

An interesting observation in systems with local couplings is that one can
adjust the small divisor conditions by having each of the particles experience
a motion with a very different frequency (in particular the frequencies have
to diverge as the particles get farther and further apart). This allows to
construct systems that are not quasi-periodic but rather almost periodic,
see [CP95], [Per03].

The frequencies going to infinity is a feature that also happens in partial
differential equations. Nevertheless, in partial differential equations, the
couplings are far from being local. Constructing almost periodic solutions
for some partial differential equations is achieved in [P6s02].

8.5. Non-degeneracy conditions

The non-degeneracy conditions needed for KAM theorems have been
greatly weakened [Riis90], [CS94], [Riis98]. See also papers [BHS96b],
[BHS96a], [Sev95], [Sev9I6].

8.6. Weak KAM

Modern techniques of PDE’s such as viscosity solutions have been used
to study the Hamilton-Jacobi equation [Lio82], [CL83|, [CEL84], leading
to a weak version of KAM theory that has deep relations with Aubry-Mather
theory [Fat97b], [Fat97a].

8.7. Reducibility

There has been quite spectacular progress in the problem of reducibility
of linear equations with quasiperiodic coefficients That is, the study whether
an equation of the

&= A(p+ wt)x,

IThese systems, under the name of coupled lattice maps have also been the subject
of very intense research when they have hyperbolicity properties, in some sense opposite
to the situation considered in KAM theory.
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where A — T9M,,«» and w € R is an irrational vector, can be transformed
into constant coefficients. After the original work of [DS75], two impor-
tant recent developments were [MP84] which introduced the deep idea of
using transformations which are not close to the identity to eliminate small
terms and [Ryc92] which introduced a renormalization mechanism. Af-
ter that, many more new important refinements were introduced in several
works (one needs to find ways to combine perturbative steps with non-
perturbative ones). This is still a very active area and progress is being
made constantly. We refer to [Pui] for a survey of results and to [Eli02]
for very nice introduction to the techniques. The paper [Eli01] contains
very nice connections with the theory of lower dimensional tori. We also
recommend [Eli], [Kri99].

8.8. Spectral properties of Schodinger operators

The problem of reducibility is related to the problem of existence of pure
point spectrum of one-dimensional Schrédinger operators with quasiperiodic
coefficients. This area has experienced quite significant progress. Besides
some of the papers mentioned in the previous paragraphs, let us mention
[CS91], [FSW90], [Eli97], [Jit95], [Las95].

One important development since the first version of these notes is that,
using very cleverly properties of reducibility as well as spectral properties, in
[Pui03] it has been shown that the almost Mathieu operator has pure point
spectrum for all values of the parameters. This problem was popularized
as the Ten martini problem by Marc Kac in the 60’s but the problem was
older.

For Schrodinger operators in higher dimensions with random or quasi-
periodic potential the theory of localization also has advanced greatly thanks
to a multi-scale analysis which is quite reminiscent of KAM theory [FS83],
[FS84]. Indeed, this analogy has been pursued quite fruitfully. [Alb93].
Recent developments are [BG00], [BGS02].

8.9. Higher dimensional tori

Even if the symplectic forms that appear in mechanical systems admit
a primitive (see Section 2.6), there are other symplectic forms without this
feature. For such forms without a primitive, one has the possibility of finding
persistent tori of more dimension than the degrees of freedom. This has
important consequences and leads to very interesting examples in ergodic
theory. See [Yoc92|, [Her91]. (See also [Par84], [Par89]|, [FY98].)

8.10. Elliptic PDE

KAM methods have been extended to elliptic PDE’s — they are not
evolution equations. The role of time in KAM has been taken by spatial
variables. (See [Koz83b], [Mos88|, [Mos95].)
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8.11. Renormalization group

There are some proofs of KAM type theorems based on different princi-
ples, notably renormalization group, [BGK99], [Koc99], [Kos91]. This is
perhaps related to some recent proofs that do not even use Fourier analysis
[KS86], [KS87], [SK89], [KO93], [KO89b|, [KO89a|, [Sta88|, [Hay90]
[Sti94].

More interestingly, renormalization group has been used to describe the
breakdown of invariant circles, starting with [McK82] — which includes a
beautiful picture in terms of fixed points and manifolds of operators and
makes very detailed predictions about scalings at breakdown — or [ED81],
which contains a simpler approach that gives less detailed predictions. Much
of what is known at this level remains at the level of numerical well founded
conjectures. Indeed, there are still quite important issues that are not even
known at this level. Among the rigorous work in this area, we mention
[Sti93], [StigT].

8.12. Rotations of the circle

The problem of rotations of the circle (see [KH95] 11,12 for the accounts
of the topological theory) ) was the first problem involving small divisors
where rather complete proofs appeared. In the analytic case, see [Arn61].
In the differentiable case [Mos66b].

The papers above established that small perturbations of rotation were
smoothly conjugate to rotations.

The assumption of proximity to rotations, for some rotation numbers of
full measure was removed in the remarkable paper [Her79]. A very good
exposition of this work is [Del77], [Ros77]. These results were extended to
all Diophantine rotation numbers in [Yoc84].

The papers above, to remove the hypothesis of smallness relied on es-
timates using the Schwartzian derivative. Hence, only produced results for
C3+¢ mappings.

A very important breakthrough was the use of renormalization group
methods [KS87]. This paper contained a proof for constant type numbers
without proximity assumptions which only required C?*%.

The papers [KO89b], [KO89a| contain proofs for all Diophantine ro-
tation numbers using a method that, in the opinion of the present author,
is very similar in spirit — even if not in notation and in exposition — to
renormalization ideas.

The paper [SK89] contains a version of renormalization group studies for
Diophantine numbers. The result is sharper that that in [KO89b], [KO89a]
since it does not require the substraction of an ¢ in the regularity concluded.
That is, the paper [SK89] shows that a C* map with a rotation number
which is Diophantine with exponent v is C*~" conjugate to a rotation.

The question of what are the optimal arithmetic conditions for the local
and for the global results when the maps are analytic has been settled in
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[Yoc02]. The optimal result for the local problem with analytic regularity is
the Brjuno condition. The optimal result for the global problem is another
condition which is more restrictive than the Brjuno condition.

8.13. More constructive proofs and relations with applications

KAM theory has started to become a tool of applied mathematics with
the advent of constructive methods to asses the reliability of numerical com-
putations [CC95], [dILR91], [Sch95], [Jor99].

8.14. The limits of validity of the theory

For some special cases of KAM theory, there has also been very im-
portant progress examining the limits of validity; the role of the arithmetic
conditions has been clarified for complex mappings — specially quadratic
~ [Yoc95]. See also [PM92]. The study of the radius of convergence of
the linearization in the same mappings [MIMY97] has also been quite well
understood.

In some twist mappings, there has been a very significant advances in the
study of non-existence of tori [Mat88], [MP85], [Jun91]. The domains of
convergence of the perturbative expansions have been analyzed using tools
similar to those used for analytic complex mappings starting in [Dav94] — a
map which has features between those of a complex analytic map and those
of a twist map — and then in [MS92], [ BM95]|, [BG99|.

Two different techniques to study quasiperiodic orbits on twist maps are
the variational methods of Mather [MF94] and the renormalization group
[Koc99].

In many cases, these theories have ranges of validity much greater than
those covered by KAM theory and, therefore provide some glimpse into what
happens at the breakdown of KAM theory.

8.15. Methods based on direct compensations of series

There has been great progress in using “direct methods”, which are based
on writing a perturbative expansion and showing it converges by studying
more deeply the structure of small denominators.

In the study of iterations of analytic functions, these methods led to the
original proof of Siegel [Sie42], which was the first problem in which small
denominators were understood. They were also used in the first proof of the
optimal arithmetic conditions [Brj71].

In the study of Lindstedt series (see Section 1.1), the proof of conver-
gence by exhibiting explicitly cancellations of the series was accomplished in
[Eli96] (the preprint circulated much earlier). The proof of the convergence
of the Lindstedt series in [Eli96] is much more subtle than that of [Sie42].
Contrary to the terms in the expansions considered in [Sie42], the terms in
the Lindstedt series do grow very fast and one cannot establish convergence
by just bounding sizes but one needs to exhibit cancellations in the terms.
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Expositions and simplifications of this work relating it also to techniques
of perturbative Quantum Field Theory can be found in [Gal94b], [GG95],
[CF94]| and extensions to some PDE’s in [CF96].

Direct methods not only provide alternative proofs of known facts, but
also have been used to prove several results, which at the moment do not
seem to have proofs using rapidly convergent methods. To my knowledge,
the following results established using direct methods do not have rapidly
convergent proofs: The existence of some invariant manifolds contained in
center manifolds in [P6s86] was proved using cancellations similar to those
of Siegel. It seems that there are no rapidly convergent proofs of these results
(however, see [Sto94a], [Sto94b]| which solve a very related problem.)

The deeper cancellations of [Eli96] have been used to give a proof of the
Gallavotti conjectures (which imply, among other consequences, the amusing
result that an analytic Hamiltonian near an elliptic fixed point is the sum
of two integrable systems — of course integrated in different coordinates.)
[E1li89] and to prove the existence of quasi-flat intersections in [Gal94a].
A problem that remains open is the fact that the Lindstedt series for lower
dimensional KAM tori involve less small divisors conditions than the KAM
proof. (See [JAILZ99] for a discussion of this problem.)

8.16. Related subjects: averaging, adiabatic invariants

Subjects closely related to KAM theory such as averaging and Nekhoro-
shev theory have also experienced important developments.

The Averaging theory and the theory of adiabatic invariants is very
closely related to KAM theory, specially the version given in Section 5.2.
In both cases, we make transformations trying to reduce the system to in-
tegrable. In KAM we give up some space to obtain convergence. In the
classical proofs of KAM theory, one obtains weaker estimates of stability but
which are valid for all the initial conditions. A unified proof of Nekhoroshev
and KAM theorems can be found in [DG96]. For a more general discussion
of averaging theory, we refer to [LIM88].

Let us just mention some of the developments very quickly: An elegant
proof of the theorem based on approximation by periodic orbits [Loc92],
the proof of what are conjectured to be the optimal exponents [LIN92],
[P6s93], [DG96] — the later paper contains a unified point of view for KAM
and Nekhoroshev theorems — and the proof of Nekhoroshev estimates in a
neighborhood of an elliptic fixed point [GFB98], [FGB98|, [Nie98], [P&s].
In a more innovative direction, Nekhoroshev type theorems for PDE’s have
been established [BN98], [Nek99], [Bam99b]|, [Bam99a].

The list could (perhaps should) be continued, with other topics that are
related to KAM theory and connecting it to other theories of mechanics,
such as averaging theory, Aubry-Mather theory, quantum versions of KAM
theory, rigidity theory, exponential asymptotics or Arnol’d diffusion and
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many others which are not even mentioned mainly because of the ignorance
of the author, which he is the first to regret.
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