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Abstract: The advent of genome-scale models of metabo-
lism has laid the foundation for the development of
computational procedures for suggesting genetic manipu-
lations that lead to overproduction. In this work, the
computational OptKnock framework is introduced for
suggesting gene deletion strategies leading to the over-
production of chemicals or biochemicals in E. coli. This is
accomplished by ensuring that a drain towards growth
resources (i.e., carbon, redox potential, and energy) must
be accompanied, due to stoichiometry, by the production
of a desired product. Computational results for gene de-
letions for succinate, lactate, and 1,3-propanediol (PDO)
production are in good agreement with mutant strains
published in the literature. While some of the suggested
deletion strategies are straightforward and involve elimi-
nating competing reaction pathways, many others suggest
complex and nonintuitive mechanisms of compensating
for the removed functionalities. Finally, the OptKnock
procedure, by coupling biomass formation with chemical
production, hints at a growth selection/adaptation sys-
tem for indirectly evolving overproducing mutants. B 2003
Wiley Periodicals. Biotechnol Bioeng 85: 000–000, 2003.
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INTRODUCTION

The systematic development of engineered microbial strains

for optimizing the production of chemicals or biochemicals

is an overarching challenge in biotechnology (Stephano-

poulos et al., 1998). However, in the absence of metabolic

and genetic engineering interventions, the product yields of

many microorganisms are often far below their theoretical

maximums. This is expected because cellular metabolism is

primed, through natural selection, for the maximum

responsiveness to the history of selective pressures rather

than for the overproduction of specific chemical com-

pounds. Not surprisingly, the behavior of metabolic net-

works is governed by internal cellular objectives which are

often in direct competition with chemical overproduction

targets. In this work, a bilevel optimization framework

termed OptKnock is developed for suggesting gene knock-

out strategies for biochemical overproduction while recog-

nizing that metabolic flux distributions are governed by

internal cellular objectives. Here we explore two such ob-

jectives, specifically, the maximization of biomass yield

and the minimization of metabolic adjustment (MOMA).

The recent explosion of annotated sequence information

along with a wealth of chemical literature has enabled the

reconstruction of genome-scale metabolic networks for

many microorganisms (Edwards and Palsson, 2000; Schil-

ling and Palsson, 2000; Schilling et al., 2002; Forster et al.,

2003). This information, used in the context of the flux

balance analysis (FBA) modeling framework (Varma and

Palsson, 1993), has been employed extensively to explore

the integrated functions of metabolic networks (Burgard

and Maranas, 2001; Burgard et al., 2001; Papin et al., 2003;

Price et al., 2003). FBA models typically invoke the

optimization of a particular cellular objective (e.g., ATP

production (Majewski and Domach, 1990; Ramakrishna

et al., 2001), biomass formation (Varma and Palsson, 1993,

1994), minimization of metabolic adjustment (Segre et al.,

2002)), subject to network stoichiometry, to suggest a likely

flux distribution. Stoichiometric models of Escherichia coli

metabolism utilizing the biomass maximization hypothesis

have been in some cases successful at 1) predicting the

lethality of gene knockouts (Edwards and Palsson, 2000;

Badarinarayana et al., 2001); 2) identifying the correct

sequence of byproduct secretion under increasingly anae-

robic conditions (Varma et al., 1993); and 3) quantitatively

predicting cellular growth rates under certain conditions

(Edwards et al., 2001). Interestingly, recent work suggests

that even when FBA predictions under the biomass
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maximization assumption seem to fail, metabolic networks

can be evolved, for certain cases, towards maximum

growth (i.e., biomass yield) through adaptive evolution

(Ibarra et al., 2002).

The ability to investigate the metabolism of single-

cellular organisms at a genomic scale, and thus systemic

level, motivates the need for novel computational methods

aimed at identifying strain engineering strategies. In this

work, we introduce the OptKnock framework for suggesting

gene deletion strategies leading to the overproduction of

specific chemical compounds in E. coli. This is accom-

plished by ensuring that the production of the desired

chemical becomes an obligatory byproduct of growth by

‘‘shaping’’ the connectivity of the metabolic network. In

other words, OptKnock identifies and subsequently removes

metabolic reactions that are capable of uncoupling cellular

growth from chemical production. The computational

procedure is designed to identify not just straightforward

but also nonintuitive knockout strategies by simultaneous-

ly considering the entire E. coli metabolic network as

abstracted in the in silico E. coli model of Palsson and co-

workers (Edwards and Palsson, 2000). The complexity and

built-in redundancy of this network (e.g., the E. coli model

encompasses 720 reactions) necessitates a systematic and

efficient search approach to combat the combinatorial

explosion of candidate gene knockout strategies.

The nested optimization framework shown in Figure 1

was developed to identify multiple gene deletion combi-

nations that maximally couple cellular growth objectives

with externally imposed chemical production targets.

This multilayered optimization structure involving two

competing optimal strategists (i.e., cellular objective and

chemical production) is referred to as a bilevel optimiza-

tion problem (Bard, 1998). Problem formulation specifics,

along with an elegant solution procedure drawing upon

linear programming (LP) duality theory, are described in

Materials and Methods. The OptKnock procedure is ap-

plied to succinate, lactate, and 1,3-propanediol (PDO) pro-

duction in E. coli with the maximization of the biomass

yield for a fixed amount of uptaken glucose employed as

the cellular objective. The obtained results are also con-

trasted against using the minimization of metabolic ad-

justment (Segre et al., 2002) as the cellular objective.

Based on the OptKnock framework, we identify the most

promising gene knockout strategies and their correspond-

ing allowable envelopes of chemical versus biomass pro-

duction in the context of succinate, lactate, and PDO

production in E. coli.

MATERIALS AND METHODS

The maximization of a cellular objective quantified as an

aggregate reaction flux for a steady-state metabolic net-

work comprising a set N = {1,. . .,N} of metabolites and a set

M = {1,. . ., M} of metabolic reactions fueled by a glucose

substrate is expressed mathematically as follows:

maximize rcellular objective ðPrimalÞ

subject to
XM
j¼1

Sijrj ¼ 0; 8 i 2 N

rpts þ rglk ¼ rglc uptake mmol=gDW �hr

where Sij is the stoichiometric coefficient of metabolite i in

reaction j, rj represents the flux of reaction j, rglc_uptake is the
basis glucose uptake scenario, ratp_main is the non-growth-

associated ATP maintenance requirement and r target
biomass is

a minimum level of biomass production. The vector r
includes both internal and transport reactions. The forward

(i.e., positive) direction of transport fluxes corresponds to

the uptake of a particular metabolite, whereas the reverse

(i.e., negative) direction corresponds to metabolite secre-

tion. The uptake of glucose through the phoshphotransferase

system and glucokinase are denoted by rpts and rglk,
respectively. Transport fluxes for metabolites that can only

be secreted from the network are members of M secr_only.

Note also that the complete set of reactions M is subdivided

into reversible M rev and irreversible M irrev reactions. The

cellular objective is often assumed to be a drain of bio-

synthetic precursors in the ratios required for biomass

formation (Neidhardt and Curtiss, 1996). The fluxes are

reported per 1 gDW�hr such that biomass formation is

expressed as g biomass produced/gDW�hr or 1/hr.

Figure 1. The bilevel optimization structure of OptKnock. The inner

problem performs the flux allocation based on the optimization of a par-

ticular cellular objective (e.g., maximization of biomass yield, MOMA,

etc.). The outer problem then maximizes the bioengineering objective

(e.g., chemical production) by restricting access to key reactions available

to the optimization of the inner problem.

ratp � ratp main mmol=gDW �hr

rj � 0;

rbiomass � rtargetbiomass 1=hr

8 j 2 M irrev

8 j 2 M secr only

8 j 2 M revrj 2 R;

rj � 0;
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The modeling of gene deletions, and thus reaction elimi-

nation, first requires the incorporation of binary variables

into the flux balance analysis framework (Burgard and Ma-

ranas, 2001; Burgard et al., 2001). These binary variables:

yj ¼ 1 if reaction flux rj is active
(

0 if reaction flux rj is not active; 8 j 2 M

assume a value of one if reaction j is active and a value of

zero if it is inactive. The following constraint:

r min
j � yj � rj � r max

j � yj; 8 j 2 M

ensures that reaction flux rj is set to zero only if variable

yj is equal to zero. Alternatively, when yj is equal to 1, rj
is free to assume any value between a lower rj

min and

an upper rj
max bound. In this study, rj

min and rj
max are

identified by minimizing and subsequently maximizing

every reaction flux subject to the constraints from the

Primal problem.

The identification of optimal gene/reaction knockouts

requires the solution of a bilevel optimization problem

that chooses the set of reactions that can be accessed

(yj = 1) so as the optimization of the cellular objective

indirectly leads to the overproduction of the chemical or

biochemical of interest (see also Fig. 1). Using biomass

formation as the cellular objective, this is expressed mathe-

matically as the following bilevel mixed-integer optimi-

zation problem:

where K is the number of allowable knockouts.

The direct solution of this two-stage optimization

problem is intractable given the high dimensionality of

the flux space (i.e., over 700 reactions) and the presence of

two nested optimization problems. To remedy this, we

develop an efficient solution approach borrowing from LP

duality theory, which shows that for every linear program-

ming problem (primal) there exists a unique optimization

problem (dual) whose optimal objective value is equal to

that of the primal problem. A similar strategy was

employed by Burgard and Maranas (2003) for identify-

ing/testing metabolic objective functions from metabolic

flux data. The dual problem (Ignizio and Cavalier, 1994)

associated with the OptKnock inner problem is:

minimize ratp main � Aatp þ rtargetbiomass � Abiomass þ rglc uptake � glc ðDualÞ

subject to
XN
i¼1

Estoich
i Si;glk þ Aglk þ glc ¼ 0

XN
i¼1

Estoich
i Si;pts þ Apts þ glc ¼ 0

XN
i¼1

Estoich
i Si;biomass þ Abiomass ¼ 1

XN
i¼1

Estoich
i Sij þ Aj ¼ 0; 8 j 2 M ; j 6¼ glk; pts; biomass

Amin
j � ð1� yjÞ � Aj � Amax

j � ð1� yjÞ; 8 j 2 M rev and j =2M secr only

Aj � Amin
j � ð1� yjÞ; 8 j 2 M rev andM secr only

Aj � Amax
j � ð1� yjÞ; 8 j 2 M irrev and j =2M secr only

Aj 2 R; 8 j 2 M irrev andM secr only

�stoich
i 2 R; 8 j 2 N

glc 2 R

where E i
stoich is the dual variable associated with the

stoichiometric constraints, glc is the dual variable associated

with the glucose uptake constraint, and Aj is the dual variable
associated with any other restrictions on its corresponding

flux rj in the Primal. Note that the dual variable Aj acquires
unrestricted sign if its corresponding flux in the OptKnock

inner problem is set to zero by enforcing yj = 0. The

parameters A j
min and A j

max are identified by minimizing and

subsequently maximizing their values subject to the

constraints of the Dual problem.

If the optimal solutions to the Primal and Dual problems

are bounded, their objective function values must be equal

to one another at optimality. This means that every optimal

solution to both problems can be characterized by setting

their objectives equal to one another and accumulating their

respective constraints. Thus, the bilevel formulation for

OptKnock shown previously can be transformed into the

following single-level MILP:

maximize rchemical ðOptKnockÞ
subject to

rbiomass ¼ ratp main � Aatp þ rtargetbiomass � Abiomass þ rglc uptake � glc

XM
j¼1

Sijrj ¼ 0; 8 i 2 N

rpts þ rglk ¼ rglc uptake mmol=gDW � hr
ratp � ratp main mmol=gDW � hr
XN
i¼1

�stoich
i Si;glk þ Aglk þ glc ¼ 0

XN
i¼1

�stoich
i Si;pts þ Apts þ glc ¼ 0

XN
i¼1

�stoich
i Si;biomass þ Abiomass ¼ 1

XN
i¼1

�stoich
i Sij þ Aj ¼ 0; 8 j 2 M ; j 6¼ glk; pts; biomass

rpts þ rglk ¼ rglc uptake

ratp � ratp main

rbiomass � rtargetbiomass

rmin
j � yj � rj � rmax

j � yj;

XM
j¼1

Sijrj ¼ 0;

rbiomass

yj ¼ f0; 1g;X
j2M

ð1� yjÞ � K

8 j 2 M

subject to

maximize ðPrimalÞ

ðOptKnockÞrchemical

rj

8 j 2 M

subject to

maximize
yj
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X
j2M

ð1� yjÞ � K

rbiomass � rtargetbiomass

Amin
j � ð1� yjÞ � Aj � Amax

j � ð1� yjÞ;

Aj � Amin
j � ð1� yjÞ;

Aj � Amax
j � ð1� yjÞ;

Aj 2 R;

rmin
j � yj � rj � rmax

j � yj;

�stoich
i 2 R

yj ¼ f0; 1g;

An important feature of the above formulation is that if the

problem is feasible, the optimal solution will always be

found. In this article, the candidates for gene knockouts

include all reactions of glycolysis, the TCA cycle, the

pentose phosphate pathway, respiration, and all anaplerotic

reactions. This is accomplished by limiting the number

of reactions included in the summation (i.e., AjaCentral

Metabolism(1-yj) = K). Problems containing as many as

100 binary variables were solved on the order of min-

utes to hours using CPLEX 7.0 accessed via the GAMSmod-

eling environment on an IBM RS6000-270 workstation.

RESULTS

Succinate and Lactate Production

In this section, we identify which reactions, if any, can be

removed from the E. coli K-12 stoichiometric model

(Edwards and Palsson, 2000), so as the remaining network

produces succinate or lactate whenever biomass maxi-

mization is a good descriptor of flux allocation. For this

study, a prespecified amount of glucose (10 mmol/

gDW�hr), along with unconstrained uptake routes for

inorganic phosphate, oxygen, sulfate, and ammonia, are

provided to fuel the metabolic network. The optimization

step could opt for or against the phosphotransferase system,

glucokinase, or both mechanisms for the uptake of glucose.

Secretion routes for acetate, carbon dioxide, ethanol,

formate, lactate, and succinate are also enabled. Note that

because the glucose uptake rate is fixed, the biomass and

product yields are essentially equivalent to the rates of

biomass and product production, respectively. In all cases,

the OptKnock procedure eliminated the oxygen uptake

reaction pointing at anaerobic growth conditions consistent

with current succinate (Zeikus et al., 1999) and lactate

(Datta et al., 1995) fermentative production strategies.

Table I summarizes three of the identified gene

knockout strategies for succinate overproduction (i.e.,

mutants A, B, and C). The anaerobic flux distributions at

the maximum biomass yields for the complete E. coli

network (i.e., wild-type), mutant B and mutant C are

illustrated in Figure 2A–C. The results for mutant A

suggest that the removal of two reactions (i.e., pyruvate

formate lyase and lactate dehydrogenase) from the

network results in succinate production reaching 63% of

its theoretical maximum at the maximum biomass yield.

This knockout strategy is identical to the one employed by

Stols and Donnelly (1997) in their succinate overpro-

ducing E. coli strain. Next, the envelope of allowable

succinate versus biomass production is explored for the

wild-type E. coli network and the three mutants listed in

Table I. Note that the succinate production limits, shown

in Figure 3A, reveal that mutant A does not exhibit

coupled succinate and biomass formation until the yield of

biomass approaches 80% of the maximum. Mutant B,

however, with the additional deletion of acetaldehyde de-

hydrogenase, results in a much earlier coupling of suc-

cinate with biomass yields.

A less intuitive strategy is identified for mutant C which

focuses on inactivating two PEP consuming reactions

rather than eliminating competing byproduct (i.e., ethanol,

formate, and lactate) production mechanisms. First, the

phosphotransferase system is disabled, requiring the net-

work to rely exclusively on glucokinase for the uptake of

glucose. Next, pyruvate kinase is removed, leaving PEP

carboxykinase as the only central metabolic reaction

capable of draining the significant amount of PEP supplied

by glycolysis. This strategy, assuming that the maximum

biomass yield could be attained, would result in a succinate

yield approaching 88% of the theoretical maximum. In

addition, Figure 3A reveals significant succinate produc-

tion for every attainable biomass yield, while the maximum

theoretical yield of succinate is the same as that for the

wild-type strain.

The OptKnock framework was next applied to identify

knockout strategies for coupling lactate and biomass

production. Table I shows three of the identified gene

knockout strategies (i.e., mutants A, B, and C) and the flux

distribution of mutant C at the maximum biomass yield is

shown in Figure 2D. Mutant A redirects flux toward lactate

at the maximum biomass yield by blocking acetate and

ethanol production. This result is consistent with previous

work demonstrating that an adh, pta mutant E. coli strain

could grow anaerobically on glucose by producing lactate

(Gupta and Clark, 1989). Mutant B provides an alternate

strategy involving the removal of an initial glycolysis

reaction along with the acetate production mechanism. This

results in a lactate yield of 90% of its theoretical limit at the

maximum biomass yield. The vertical red line for mutant B

in Figure 3B indicates that the network could avoid

producing lactate while maximizing biomass formation.

This is due to the fact that OptKnock does not explicitly

account for the ‘‘worst-case’’ alternate solution. We are in

the process of developing an alternative formulation that

safeguards against this. Note that upon the additional

elimination of the glucokinase and ethanol production

reactions, mutant C exhibits a tighter coupling between

lactate and biomass production.

8 j 2 M rev and j =2 M secr only

8 j 2 M rev andM secr only

8 j 2 M irrev and j =2 M secr only

8 j 2 M irrev andM secr only

8 j 2 M

8 j 2 N

8 j 2 M

4 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 85, NO. 7, XXXXXX XX, 2003



Table I. Biomass and chemical yields for various gene knockout strategies identified by OptKnock.

Succinate max vbiomass min A (r0-r)
2

ID Knockouts Enzyme

Biomass

(1/hr)

Succinate

(mmol/hr)

Succinate

(mmol/hr)

Wild ‘‘Complete network’’ 0.38 0.12 0

A 1 COA + PYR ! ACCOA + FOR Pyruvate formate lyase 0.31 10.70 1.65

2 NADH + PYR X LAC + NAD Lactate dehydrogenase

B 1 COA + PYR ! ACCOA + FOR Pyruvate formate lyase 0.31 10.70 4.79

2 NADH + PYR X LAC + NAD Lactate dehydrogenase

3 ACCOA + 2 NADH X COA + ETH + 2 NAD Acetaldehyde dehydrogenase

C 1 ADP + PEP ! ATP + PYR Pyruvate kinase 0.16 15.15 6.21

2 ACTP + ADP X AC + ATP or Acetate kinase

ACCOA + Pi X ACTP + COA Phosphotransacetylase

3 GLC + PEP ! G6P + PYR Phosphotransferase system

Lactate max vbiomass min A(r0-r)
2

ID Knockouts Enzyme

Biomass

(1/hr)

Lactate

(mmol/hr)

Lactate

(mmol/hr)

Wild ‘‘Complete network’’ 0.38 0 0

A 1 ACTP + ADP X AC + ATP or Acetate kinase 0.28 10.46 5.58

ACCOA + Pi X ACTP + COA Phosphotransacetylase

2 ACCOA + 2 NADH X COA + ETH + 2 NAD Acetaldehyde dehydrogenase

B 1 ACTP + ADP X AC + ATP or Acetate kinase 0.13 18.00 0.19

ACCOA + Pi X ACTP + COA Phosphotransacetylase

2 ATP + F6P! ADP + F16P or Phosphofructokinase

F16P X GAP + DHAP Fructose-1,6-biphosphatate aldolase

C 1 ACTP + ADP X AC + ATP or Acetate kinase 0.12 18.13 10.53

ACCOA + Pi X ACTP + COA Phosphotransacetylase

2 ATP + F6P ! ADP + F16P or Phosphofructokinase

F16P X GAP + DHAP Fructose-1,6-biphosphatate aldolase

3 ACCOA + 2 NADH X COA + ETH + 2 NAD Acetaldehyde dehydrogenase

4 GLC + ATP ! G6P + PEP Glucokinase

1,3-Propanediol max vbiomass min A (v0-v)
2

ID Knockouts Enzyme

Biomass

(1/hr)

1,3-PD

(mmol/hr)

1,3-PD

(mmol/hr)

Wild ‘‘Complete network’’ 1.06 0 0

A 1 F16P ! F6P + Pi or Fructose-1,6-biphosphate 0.21 9.66 8.66

F16P X GAP + DHAP Fructose-1,6-biphosphate aldolase

2 13PDG + ADP X 3PG + ATP or Phosphoglycerate kinase

NAD + Pi + GAP X 13PDG + NADH Glyceraldehyde-3-phosphate

dehydrogenase

3 GL + NAD X GLAL + NADH Aldehyde dehydrogenase

B 1 GAP X DHAP Triosphosphate isomerase 0.29 9.67 9.54

2 G6P + NADP X D6PGL + NADPH or Glucose 6-phosphate-1-dehydrogenase

D6PGL ! D6PGC 6-Phosphogluconolactonase

3 DR5P ! ACAL + GAP Deoxyribose-phosphate aldolase

4 GL + NAD X GLAL + NADH Aldehyde dehydrogenase

The reactions and corresponding enzymes for each knockout strategy are listed. The maximum biomass and corresponding chemical yields are provided

on a basis of 10 mmol/hr glucose fed and 1 gDW of cells. The rightmost column provides the chemical yields for the same basis assuming a minimal

redistribution of metabolic fluxes from the wild-type (undeleted) E. coli network (MOMA assumption). For the 1,3-propanediol case, glycerol secretion

was disabled for both knockout strategies.
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Figure 2. The flux distributions of the (A) wild-type E. coli, (B) succinate mutant B, (C) succinate mutant C, and (D) lactate mutant C networks that

maximize biomass yield under anaerobic conditions.
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1,3-Propanediol (PDO) Production

In addition to devising optimum gene knockout strategies,

OptKnock can be used to design strains where gene additions

are needed along with gene deletions, such as in PDO

production in E. coli. Although microbial 1,3-propanediol

(PDO) production methods have been developed utilizing

glycerol as the primary carbon source (Hartlep et al., 2002;

Zhu et al., 2002), the production of 1,3-propanediol directly

from glucose in a single microorganism has recently

attracted considerable interest (Cameron et al., 1998; Biebl

et al., 1999; Zeng and Biebl, 2002). Because wild-type

E. coli lacks the pathway necessary for PDO production, we

first employed the gene addition framework (Burgard and

Maranas, 2001) to identify the additional reactions needed

for producing PDO from glucose in E. coli. The gene

addition framework identified a straightforward three-

reaction pathway involving the conversion of glycerol-3-P

to glycerol by glycerol phosphatase, followed by the

conversion of glycerol to 1,3 propanediol by glycerol

dehydratase and 1,3-propanediol oxidoreductase. These

reactions are then added to the E. coli stoichiometric model

and the OptKnock procedure is subsequently applied.

OptKnock reveals that there is neither a single nor a

double deletion mutant with coupled PDO and biomass

production. However, we identified one triple and multiple

quadruple knockout strategies that can couple PDO

production with biomass production. Two of these knock-

out strategies are shown in Table I. The results suggest that

the removal of certain key functionalities from the E. coli

network results in PDO-overproducing mutants for growth

on glucose. Specifically, Table I reveals that the removal of

two glycolytic reactions along with an additional knockout

preventing the degradation of glycerol yields a network

capable of reaching 72% of the theoretical maximum yield

of PDO at the maximum biomass yield. Note that the

glyceraldehyde-3-phosphate dehydrogenase (gapA) knock-

out was used by DuPont in their PDO-overproducing E. coli

strain (Nakamura, 2002). Mutant B reveals an alternative

strategy, involving the removal of the triose phosphate

isomerase (tpi) enzyme exhibiting a similar PDO yield and

a 38% higher biomass yield. Interestingly, a yeast strain

deficient in triose phosphate isomerase activity was

recently reported to produce glycerol, a key precursor to

PDO, at 80–90% of its maximum theoretical yield (Com-

pagno et al., 1996).

The flux distributions of the wild-type E. coli, mutant A,

and mutant B networks that maximize the biomass yield are

shown in Figure 4. Not surprisingly, further conversion of

glycerol to glyceraldehyde is disrupted in both mutants A

and B. For mutant A, the removal of two reactions from the

top and bottom parts of glycolysis results in a nearly

complete inactivation of the pentose phosphate and

glycolysis (with the exception of triose phosphate isomer-

ase) pathways. To compensate, the Entner-Doudoroff

glycolysis pathway is activated to channel flux from glucose

to pyruvate and glyceraldehyde-3-phosphate (GAP). GAP is

then converted to glycerol, which is subsequently converted

to PDO. Energetic demands lost with the decrease in glyco-

lytic fluxes from the wild-type E. coli network case are now

met by an increase in the TCA cycle fluxes. The knockouts

suggested for mutant B redirect flux toward the production

of PDO by a distinctly different mechanism. The removal

of the initial pentose phosphate pathway reaction results in

the complete flow of metabolic flux through the first steps

of glycolysis. At the fructose bisphosphate aldolase

junction, the flow is split into the two product metabolites:

dihydroxyacetone-phosphate (DHAP) which is converted to

PDO and GAP which continues through the second half of

the glycolysis. The removal of the triose-phosphate isomer-

ase reaction prevents any interconversion between DHAP

and GAP. Interestingly, a fourth knockout is predicted to

retain the coupling between biomass formation and

chemical production. This knockout prevents the ‘‘leaking’’

of flux through a complex pathway involving 15 reactions

Figure 3. (A) Succinate or (B) lactate production limits under anaerobic

conditions for mutant A, mutant B, mutant C, and the wild-type E. coli

network. The production limits are obtained by separately maximizing and

minimizing succinate or lactate production for the biomass yields available

to each network. The points depict the solutions identified by OptKnock

(i.e., maximum chemical production at the maximum biomass yield).

BURGARD ET AL.: BILEVEL OPTIMIZATION FRAMEWORK FOR STRAIN DESIGN 7



that together convert ribose-5-phosphate (R5P) to acetate

and GAP.

Next, the envelope of allowable PDO production versus

biomass yield is explored for the two mutants listed in

Table I. The production limits of the mutants along with the

original E. coli network, illustrated in Figure 5, reveal that

the wild-type E. coli network has no ‘‘incentive’’ to

produce PDO if the biomass yield is to be maximized. On

Figure 4. The aerobic flux distributions of the (A) wild-type E. coli, (B) mutant A, and (C) mutant B networks that maximize biomass yield. Results for

mutants A and B assume the reactions responsible for 1,3-propanediol production are available.
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the other hand, both mutants A and B have to produce

significant amounts of PDO if any amount of biomass is to

be formed given the reduced functionalities of the network

following the gene removals. Mutant A, by avoiding the

tpi knockout that essentially sets the ratio of biomass to

PDO production, is characterized by a higher maximum

theoretical yield of PDO. The above-described results hinge

on the use of glycerol as a key intermediate to PDO. Next,

we explore the possibility of utilizing an alternative to the

glycerol conversion route for 1,3-propandediol production.

Based on a literature search, we identified a pathway

in Chloroflexus aurantiacus involving a two-step NADPH-

dependent reduction of malonyl-CoA to generate 3-hy-

droxypropionic acid (3-HPA) (Menendez et al., 1999;

Hugler et al., 2002). 3-HPA could then be subsequently

converted chemically to 1,3 propanediol given that, to our

knowledge, there is no biological functionality to achieve

this transformation. This pathway offers a key advantage

over PDO production through the glycerol route because

more flux can pass completely through glycolysis without

being lost for product formation. Accordingly, the maxi-

mum theoretical yield of 3-HPA (1.79 mmol/mmol

glucose) is considerably higher than for PDO production

through the glycerol conversion route (1.34 mmol/mmol

glucose). The application of the OptKnock framework upon

the addition of the 3-HPA production pathway reveals that

many more knockouts are required before biomass

formation is coupled with 3-HPA production. One of the

most interesting strategies involves nine knockouts yielding

3-HPA production at 91% of its theoretical maximum at

optimal growth. The first three knockouts are relatively

straightforward, as they involve removal of competing

acetate, lactate, and ethanol production mechanisms. In

addition, the Entner-Doudoroff pathway (either phospho-

gluconate dehydratase or 2-keto-3-deoxy-6-phosphogluco-

nate aldolase), four respiration reactions (i.e., NADH

dehydrogenase I, NADH dehydrogenase II, glycerol-3-

phosphate dehydrogenase, and the succinate dehydrogenase

complex), and an initial glycolyis step (i.e., phosphoglu-

cose isomerase) are disrupted. This strategy results in a 3-

HPA yield that, assuming the maximum biomass yield, is

69% higher than the previously identified mutants utilizing

the glycerol conversion route.

Alternative Cellular Objective: Minimization of
Metabolic Adjustment

All results described in the previous section were obtained

by invoking the maximization of biomass yield as the

cellular objective that drives flux allocation. This hypothe-

sis essentially assumes that the metabolic network could

arbitrarily change and/or even rewire regulatory loops to

maintain biomass yield maximality under changing envi-

ronmental conditions (maximal response). Recent evidence

suggests that this is sometimes achieved by the K-12 strain

of E. coli after multiple cycles of growth selection (Ibarra

et al., 2002). In this section, we examine a contrasting

hypothesis (i.e., minimization of metabolic adjustment

(MOMA) (Segre et al., 2002)) that assumes a myopic

(minimal) response by the metabolic network upon gene

deletions. Specifically, the MOMA hypothesis suggests that

the metabolic network will attempt to remain as close as

possible to the original steady state of the system rendered

unreachable by the gene deletion(s). This hypothesis has

been shown to provide a more accurate description of flux

allocation immediately after a gene deletion event (Segre

et al., 2002). Figure 6 pictorially shows the two differing

new steady states predicted by the two hypotheses. For this

study, we utilize the MOMA objective to predict the flux

distributions in the mutant strains identified by OptKnock.

The base case for the lactate and succinate simulations

was assumed to be maximum biomass formation under

anaerobic conditions, while the base case for the PDO simu-

lations was maximum biomass formation under aerobic

conditions. The results are shown in the last column of

Table I. In all cases, the suggested multiple gene knock-

out strategy suggests only slightly lower chemical pro-

duction yields for the MOMA case compared to the max-

imum biomass hypothesis. This implies that the OptKnock

results are fairly robust with respect to the choice of cel-

lular objective.

DISCUSSION

In this article, the OptKnock framework was described for

suggesting gene deletions strategies that could lead to

chemical production in E. coli by ensuring that the drain

towards metabolites/compounds necessary for growth

resources (i.e., carbons, redox potential, and energy) must

be accompanied, due to stoichiometry, by the production of

the desired chemical. Therefore, the production of the

desired product becomes an obligatory byproduct of cellular

growth. Specifically, OptKnock pinpoints which reactions

to remove from a metabolic network, which can be realized

by deleting the gene(s) associated with the identified

functionality. The procedure was demonstrated based on

Figure 5. 1,3-propanediol (PDO) production limits under aerobic condi-

tions for mutant A, mutant B, and the wild-type E. coli network. The yellow

points depict the solutions identified by OptKnock (i.e., maximum chemi-

cal production at the maximum biomass yield).
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succinate, lactate, and PDO production in E. coli K-12. The

obtained results exhibit good agreement with strains

published in the literature. While some of the suggested

gene deletions are quite straightforward, as they essentially

prune reaction pathways competing with the desired one,

many others are at first quite nonintuitive reflecting the

complexity and built-in redundancy of the metabolic

network of E. coli. For the succinate case, OptKnock

correctly suggested anaerobic fermentation and the removal

of the phosphotransferase glucose uptake mechanism as a

consequence of the competition between the cellular and

chemical production objectives, and not as a direct input to

the problem. In the lactate study, the glucokinase-based

glucose uptake mechanism was shown to decouple lactate

and biomass production for certain knockout strategies. For

the PDO case, results show that the Entner-Doudoroff

pathway is more advantageous than EMP glycolysis despite

the fact that it is substantially less energetically efficient. In

addition, the so far popular tpi knockout was clearly shown

to reduce the maximum yields of PDO while a complex

network of 15 reactions was shown to be theoretically

possible of ‘‘leaking’’ flux from the PPP pathway to the

TCA cycle and thus decoupling PDO production from

biomass formation. The obtained results also appeared to

be quite robust with respect to the choice for the cel-

lular objective.

It is important to note that the suggested gene deletion

strategies must be interpreted carefully. For example, in

many cases the deletion of a gene in one branch of a

branched pathway is equivalent to the significant upregu-

lation in the other. In addition, inspection of the flux

changes before and after the gene deletions provides insight

as to which genes need to be up- or downregulated. Lastly,

the problem of mapping the set of identified reactions

targeted for removal to its corresponding gene counterpart

is not always uniquely specified. Therefore, careful iden-

tification of the most economical gene set accounting for

isozymes and multifunctional enzymes needs to be made.

Currently, in the OptKnock framework, the substrate up-

take flux (i.e., glucose) is assumed to be 10 mmol/gDW�hr.
Therefore, all reported chemical production and biomass

formation values are based on this postulated and not

predicted uptake scenario. Thus, it is quite possible that the

suggested deletion mutants may involve substantially lower

uptake efficiencies. However, because OptKnock essen-

tially suggests mutants with coupled growth and chemical

production, one could envision a growth selection system

that will successively evolve mutants with improved up-

take efficiencies and thus enhanced desired chemical pro-

duction characteristics.

OptKnock so far can only suggest gene deletions as the

sole mechanism for chemical overproduction as a con-

sequence of the lack of any regulatory or kinetic in-

formation within the purely stoichiometric representation

of the inner optimization problem that performs flux

allocation. Clearly, the lack of any regulatory or kinetic in-

formation in the model is a simplification that may in

some cases suggest unrealistic flux distributions. We expect

to remedy this limitation by importing regulated E. coli

models currently under development (Covert et al., 2001;

Covert and Palsson, 2002). The incorporation of regulatory

information will not only enhance the quality of the

suggested gene deletions by more appropriately resolving

flux allocation, but also allow us to suggest regulatory

modifications along with gene deletions as mechanisms

for strain improvement. The use of alternate modeling

approaches (e.g., cybernetic (Kompala et al., 1984; Rama-

krishna et al., 1996; Varner and Ramakrishna, 1999), meta-

bolic control analysis (Kacser and Burns, 1973; Heinrich

and Rapoport, 1974; Hatzimanikatis et al., 1998)), if

available, could also be incorporated within the OptKnock

framework to more accurately estimate the metabolic flux

distributions of gene-deleted metabolic networks. Never-

theless, despite its simplifications, OptKnock already

provides useful suggestions for strain improvement and,

more importantly, establishes a systematic framework that

will naturally encompass future improvements in meta-

bolic and regulatory modeling frameworks.

References

Badarinarayana V, Estep PW 3rd, Shendure J, Edwards J, Tavazoie S, Lam

F, Church GM. 2001. Selection analyses of insertional mutants using

subgenic-resolution arrays. Nat Biotechnol 19:1060–1065.

Bard JF. 1998. Practical bilevel optimization: algorithms and applications.

Dordrecht: Kluwer Academic.

Biebl H, Menzel K, Zeng AP, Deckwer WD. 1999. Microbial production

of 1,3-propanediol. Appl Environ Microbiol 52:289–297.

Burgard AP, Maranas CD. 2001. Probing the performance limits of the

Escherichia coli metabolic network subject to gene additions or dele-

tions. Biotechnol Bioeng 74:364–375.

Figure 6. Projection of the multidimensional flux space onto two

dimensions. The shaded region represents flux ranges potentially reachable

by both the mutant and complete networks, while the clear region

corresponds to flux distributions rendered unreachable by the gene

deletion(s). Point A represents the maximum biomass yield solution.

Point B is the solution assuming the minimization of metabolic adjustment

hypothesis for the mutant network, while point C is the solution assuming

the mutant network will maximize its biomass yield.

10 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 85, NO. 7, XXXXXX XX, 2003



Burgard AP, Maranas CD. 2003. Optimization-based framework for

inferring and testing hypothesized metabolic objective functions. Bio-

technol Bioeng 82:670–677.

Burgard AP, Vaidyaraman S, Maranas CD. 2001. Minimal reaction sets for

Escherichia coli metabolism under different growth requirements and

uptake environments. Biotechnol Prog 17:791–797.

Cameron DC, Altaras NE, Hoffman ML, Shaw AJ. 1998. Metabolic

engineering of propanediol pathways. Biotechnol Prog 14:116–125.

Compagno C, Boschi F, Ranzi BM. 1996. Glycerol production in a triose

phosphate isomerase deficient mutant of Saccharomyces cerevisiae.

Biotechnol Prog 12:591–595.

Covert MW, Palsson BO. 2002. Transcriptional regulation in con-

straints-based metabolic models of Escherichia coli. J Biol Chem

277:28058–28064.

Covert MW, Schilling CH, Palsson BO. 2001. Regulation of gene expres-

sion in flux balance models of metabolism. J Theor Biol 213: 73–88.

Datta R, Tsai S, Bonsignore P, Moon S, Frank JR. 1995. Technological

and economic potential of poly(lactic acid) and lactic acid derivatives.

FEMS Microbiol Rev 16:221–231.

Edwards JS, Palsson BO. 2000. The Escherichia coli MG1655 in silico

metabolic genotype: its definition, characteristics, and capabilities.

Proc Natl Acad Sci USA 97:5528–5533.

Edwards JS, Ibarra RU, Palsson BO. 2001. In silico predictions of

Escherichia coli metabolic capabilities are consistent with experi-

mental data. Nat Biotechnol 19:125–130.

Forster J, Famili I, Fu PC, Palsson B, Nielsen J. 2003. Genome-scale

reconstruction of the Saccharomyces cerevisiae metabolic network.

Genome Res 13:244–253.

Gupta S, Clark DP. 1989. Escherichia coli derivatives lacking both alcohol

dehydrogenase and phosphotransacetylase grow anaerobically by

lactate fermentation. J Bacteriol 171:3650–3655.

Hartlep M, Hussmann W, Prayitno N, Meynial-Salles I, Zeng AP. 2002.

Study of two-stage processes for the microbial production of 1,3-

propanediol from glucose. Appl Microbiol Biotechnol 60:60–66.

Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE. 1998. Application

of mathematical tools for metabolic design of microbial ethanol

production. Biotechnol Bioeng 58:154–161.

Heinrich R, Rapoport TA. 1974. A linear steady-state treatment of

enzymatic chains. Eur J Biochem 41:89–95.

Hugler M, Menendez C, Schagger H, Fuchs G. 2002. Malonyl-coenzyme

A reductase from Chloroflexus aurantiacus, a key enzyme of the

3-hydroxypropionate cycle for autotrophic CO(2) fixation. J Bacteriol

184:2404–2410.

Ibarra RU, Edwards JS, Palsson BO. 2002. Escherichia coli K-12

undergoes adaptive evolution to achieve in silico predicted optimal

growth. Nature 420:186–189.

Ignizio JP, Cavalier TM. 1994. Linear programming. Englewood Cliffs,

NJ: Prentice Hall.

Kacser H, Burns JA. 1973. The control of flux. Symp Soc Exp Biol 27:

65–104.

Kompala DS, Ramkrishna D, Tsao GT. 1984. Cybernetic modeling of

microbial growth on multiple substrates. Biotechnol Bioeng 26:

1272–1281.

Majewski RA, Domach MM. 1990. Simple constrained optimization

view of acetate overflow in Escherichia coli. Biotechnol Bioeng 35:

732–738.

Menendez C, Bauer Z, Huber H, Gad’on N, Stetter KO, Fuchs G. 1999.

Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-

CoA carboxylase in autotrophic Crenarchaeota and indication for

operation of a 3-hydroxypropionate cycle in autotrophic carbon fixa-

tion. J Bacteriol 181:1088–1098.

Nakamura CE. 2002. Production of 1,3-propanediol by E. coli. Metab Eng

IV Conf: Tuscany, Italy.

Neidhardt FC, Curtiss R. 1996. Escherichia coli and Salmonella: cellular

and molecular biology. Washington, DC: ASM Press.

Papin JA, Price ND, Wiback SJ, Fell DA, Palsson B. 2003. Metabolic

pathways in the post-genome era. Trends Biochem Sci 28:250–258.

Price ND, Papin JA, Schilling CH, Palsson B. 2003. Genome-scale mi-

crobial in silico models: the constraints-based approach. Trends Bio-

technol 21:162–169

Ramakrishna R, Ramakrishna D, Konopka AE. 1996. Cybernetic modeling

of growth in mixed, substitutable substrate environments: preferential

and simultaneous utilization. Biotechnol Bioeng 52:141–151.

Ramakrishna R, Edwards JS, McCulloch A, Palsson BO. 2001. Flux-

balance analysis of mitochondrial energy metabolism: consequences

of systemic stoichiometric constraints. Am J Physiol Regul Integr

Comp Physiol 280:R695–704.

Schilling CH, Palsson BO. 2000. Assessment of the metabolic capabilities

of Haemophilus influenzae Rd through a genome-scale pathway

analysis. J Theor Biol 203:249–283.

Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO.

2002. Genome-scale metabolic model of Helicobacter pylori 26695.

J Bacteriol 184:4582–4593.

Segre D, Vitkup D, Church GM. 2002. Analysis of optimality in natural

and perturbed metabolic networks. Proc Natl Acad Sci USA 99:

15112–15117.

Stephanopoulos G, Aristidou AA, Nielsen J. 1998. Metabolic engineering:

principles and methodologies. San Diego: Academic Press.

Stols L, Donnelly MI. 1997. Production of succinic acid through over-

expression of NAD(+)-dependent malic enzyme in an Escherichia

coli mutant. Appl Environ Microbiol 63:2695–2701.

Varma A, Palsson BO. 1993. Metabolic capabilities of Escherichia coli. II.

Optimal growth patterns. J Theor Biol 165:503–522.

Varma A, Palsson BO. 1994. Metabolic flux balancing: basic concepts,

scientific and practical use. Bio/Technology 12:994–998.

Varma A, Boesch BW, Palsson BO. 1993. Stoichiometric interpretation of

Escherichia coli glucose catabolism under various oxygenation rates.

Appl Environ Microbiol 59:2465–2473.

Varner J, Ramakrishna D. 1999. Metabolic engineering from a cyber-

netic perspective. 1. Theoretical preliminaries. Biotechnol Prog 15:

407–425.

Zeikus JG, Jain MK, Elankovan P. 1999. Biotechnology of succinate acid

production and markets for derived industrial products. Appl Micro-

biol Biotechnol 51:545–552.

Zeng AP, Biebl H. 2002. Bulk chemicals from biotechnology: the case of

1,3-propanediol production and the new trends. Adv Biochem Eng

Biotechnol 74:239–259.

Zhu MM, Lawman PD, Cameron DC. 2002. Improving 1,3-propanediol

production from glycerol in a metabolically engineered Escherichia

coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol

Prog 18:694–699.

BURGARD ET AL.: BILEVEL OPTIMIZATION FRAMEWORK FOR STRAIN DESIGN 11


