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Abstract

The impacts of detailed and spatially continuous soil information on hydro-ecological modeling over watersheds of mesos-
cale size are investigated. The impacts were assessed by comparing the simulated hydro-ecological responses based on the
detailed soil spatial information derived from a fuzzy logic-based inference approach with those based on the soil information
derived from a conventional soil map. This study reveals that the detailed soil spatial information has impacts on the simulated
hydro-ecological responses under a lumped parameter approach. Peak runoff was reduced, yielding more realistic hydrographs
for forested watersheds in the area. The detailed soil spatial information strongly impacted the simulation of net photosynthesis
over the period when there is a moisture stress, but negligible impacts when there is sufficient water recharge to soil profiles.
Simulation of hydro-ecological responses using a distributed parameter approach is less impacted by the detailed soil spatial
information. The difference in simulated net photosynthesis under the distributed approach is smaller and also only occurred
during the period of moisture stress. The impacts on spatial distribution of simulated transpiration occurred mainly over south

facing slopes during the period of moisture stress. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Simulation of hydro-ecological responses over
mesoscale watersheds requires information on the
spatial distribution of soil hydraulic properties, as
well as rooting depths, which affect water available
for vegetation use (Burrough, 1996; Corwin, 1996;
Waring and Running, 1998, pp. 50-51). Soil maps
produced from conventional soil surveys are currently
the major source of soil spatial information for hydro-
ecological modeling of mesoscale watersheds (Lytle,
1993; Waring and Running, 1998, pp. 235-236).
However, standard soil surveys were not designed to
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provide the detailed (high-resolution) soil information
required by this kind of environmental modeling
(Band and Moore, 1995; Nielsen et al., 1996; Zhu,
1999a) due to the cartographic model and manual
delineation process used in producing conventional
soil maps. Soil spatial variation portrayed in conven-
tional soil maps is often highly generalized and often
discreet (Seyfried, 1998; Waring and Running, 1998,
pp. 235-236; Zhu, 1997) and is incompatible with
other landscape data derived from detailed digital
terrain analyses and remote sensing (RS) techniques
(Band and Moore, 1995; Zhu, 1997; Zhu, 1999a). This
incompatibility often biases the characterization of
spatial co-variation between soil spatial information
and other detailed landscape data (Zhu, 2000). A more
realistic characterization of spatial co-variation of
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Fig. 1. Co-variation of A-horizon depth with slope gradient and elevation along a transect in the Lubrecht area, west Montana. ‘Inferred depth’
is derived using the SoLIM approach while the ‘depth from map’ is from the conventional soil map. Figure from Zhu (2000), reproduced with

permission, Water Resource Research.

model parameters is highly desirable for us to under-
stand and model many hydro-ecological processes at
the watershed scale.

Zhu and Band (1994), Zhu et al. (1996), Zhu et al.
(1997), Zhu (1997), Zhu (1999b), and Zhu (2000)
have developed a soil-land inference model
(SoLIM) to overcome the limitations in conventional
soil surveys. This approach combines the knowledge
of local soil scientists with geographic information
systems (GIS) techniques under fuzzy logic to map
soils at a finer spatial detail and higher attribute
accuracy. This detailed and spatially continuous soil
information is more compatible with other landscape
data derived from detailed digital terrain analyses and
RS techniques (Zhu, 2000).

Zhu (2000) has demonstrated that the pattern of
spatial co-variation between soil properties and
other landscape parameters can be better approxi-
mated with the soil information derived from the
SoLIM approach (Fig. 1). Based on the A-horizon
depth derived from the conventional soil map the
depth does not seem to relate to the slope gradient.
However, with the inferred A-horizon depth from
SoLIM, an important spatial co-variation of depth

with slope gradient was revealed. On the north-facing
slope (labeled as A) the depth was negatively related
to the slope gradient. On the south facing slope
(labeled as B) the spatial co-variation of depth and
slope gradient follows this pattern at low elevation,
but this pattern of co-variation is no longer valid at
high elevation. On the plateau (labeled as C), the co-
variation takes a very different form. The depth is
positively related to the slope gradient. It is important
to know the impacts the two different characteriza-
tions of spatial co-variation will have on the simulated
hydro-ecological responses at the mesoscale
watershed level.

The impacts of soil spatial variability on hydro-
ecological processes have been examined to some
extent by several authors (Luxmoore and Sharma,
1980; Luxmoore and Sharma, 1984; Peck et al.,
1977; Sharma and Luxmoore, 1979). In their exami-
nations soil spatial variability was quantified as
frequency distributions using the scaling theory
(Sharma et al., 1980), and the relative importance of
arange of soil properties and their frequency distribu-
tions on water balance and ecological processes were
then evaluated. Scaling of soil properties by similar
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Fig. 2. The Lubrecht study area, Montana. (a) A block diagram of the digital elevation model of the area; (b) bedrock geology map (black areas

are stream areas).

media criteria (Miller and Miller, 1965), on which the
scaling theory is based, provided a convenient
approach in studying the consequence of soil hetero-
geneity. But it is difficult to use scaling theory to
explicitly map the spatial variability of soil properties.
As a result the spatial co-variation of soil properties
with other model parameters could not be quantified
and the impacts of this co-variation on simulated
hydro-ecological processes could not be studied.

In this paper we examine impacts of spatially
explicit and detailed soil spatial information from
the SoLIM approach on watershed modeling
compared to watershed modeling using conventional
soil maps. Specifically, we examine its impacts on the
modeling of overall hydro-ecological responses over
an entire area, and the modeling of spatial variation of
hydro-ecological responses within the area. Since no
field measured stream flow data were available, our
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Fig. 3. Annual variation of daily maximum temperature and precipitation in the study area.

emphasis is on the differences in simulated hydro-
ecological responses between two different ways of
soil landscape paramization. In Section 2, we first
describe the study area. This description will provide
the context under which the simulated hydro-ecologi-
cal responses and the impacts on these responses will
be discussed and examined. The RHESSys model,
which we use to simulate hydro-ecological responses
at watershed level, is described in Section 2.2. This is
then followed by the presentation of the two different
methods of parameterizing the soil landscape. The
experimental design for examining the impacts of
detailed soil spatial information on watershed model-
ing is laid out in Section 2.4. Results of this experi-
ment and discussion are provided in Section 3.
Conclusions are made in Section 4.

2. Study area and methods
2.1. Study area

The study area is part of the Lubrecht Experimental
Forest, which was established in 1937 to foster
research on natural resources (Nimlos, 1986). The
area is about 50 km northeast of Missoula and is in

the mountainous area of western Montana with a
moderate to strong relief. The area is 36 km’
(3600 ha) in size. Elevation ranges from 1160 to
1930 m with high elevations in the east and southwest
and low elevations running from southeast through
northwest (Fig. 2a). The climate is considered to be
semi-arid to semi-humid with hot and dry summers
(Fig. 3). Ross and Hunter (1976) estimated that the
mean annual precipitation for the Lubrecht area is
between 50 and 76 cm. Approximately 44% of the
precipitation falls during the winter (November—
March) and 24% falls during the summer (June—
August) (Nimlos, 1986). There is a strong contrast
in terms of moisture conditions between north and
south facing slopes and between low and high eleva-
tions. Slopes facing south at low elevations have poor
moisture conditions while the moisture conditions on
north-facing slopes at high elevations are wetter.
Most of the mountain slopes in the study area are
forested, dominated by Douglas-fir (Pseudotsuga
menziesii) with lesser amounts of western larch
(Larix occidentalis) and ponderosa pine (Pinus
ponderosa). Much of the timber is second growth.
There have been no wild fires since 1937. Ponderosa
pine forests dominate lower elevations, particularly
on the south facing slopes due to high temperatures
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Table 1
Soil series in the Lubrecht study area

Soil Series Soil subgroup Soil order
Soils on granite materials

Ambrant Udic Ustochrepts Inceptisol
Elkner Typic Cryochrepts Inceptisol
Ovando Typic Cryorthents Entisol
Rochester Typic Ustorthents Entisol
Soils on the belt materials

Evaro Typic Cryochrepts Inceptisol
Sharrott Lithic Ustochrepts Inceptisol
Tevis Dystric Eutrochrepts Inceptisol
Winkler Udic Ustochrepts Inceptisol
Winkler (Cool) Udic Ustochrepts Inceptisol
Soils on limestone materials

Repp Typic Ustochrepts Inceptisol
Trapps Typic Eutroboralfs Alfisol
Whitore Typic Cryochrepts Inceptisol

and lower moisture conditions on these slopes. As
elevation increases, ponderosa pine forests give way
to Douglas-fir forests with a lesser amount of western
larch and lodgepole pine (Pinus contorta). At high
elevations (over 1650 m), subalpine fir (Abies lasio-
carpa) and Engelmann-spruce (Picea engelmannii)
replace Douglas-fir and become the dominant species.

There are three major bedrock types in the area:
Belt rocks, granite, and limestone. Each bedrock
type is contiguous with Belt rocks in the north, granite
materials in the south and limestone in the middle
(Fig. 2b). Belt rocks are the oldest rock in the area
and were deposited during the Precambrian period
about one billion years ago. The sediments from
which they were formed were deposited in a shallow
sea, subsequently buried and then metamorphosed into
quartzites, argillites and siltites (Nimlos, 1986). Soils on
these materials are formed from a mantle of colluvium.
Soils formed from the Belt rock materials have a finer
texture than soils from the other two materials.

A total of 12 soil series were found to be in the area
(Table 1). Ambrant, Elkner, Ovando, and Rochester
are the soil series occurring on the granite materials.
Ambrant and Rochester are low elevation soil series
and they often occur intermittently. Ambrant has a
better-developed and deeper profile while Rochester
has a poor profile development and contains a large
amount of rock fragments. Rochester often occurs at
the dry sites where limited moisture restricts the

development of the soil profile. Elkner is a mid to
high elevation soil with a well-developed profile
while Ovando is located at high elevations where
cool temperatures limit the soil formation processes.

Soil series Evaro, Sharrott, Tevis, Winkler, and
Winkler Cool developed on the Belt materials.
Evaro is a high elevation soil with a well-developed
soil profile. Sharrott and Winkler are low elevation
soils that often occur intermittently on the Belt parent
materials. They actually are the counter-parts of
Rochester and Ambrant on belt materials. Tevis is a
mid-elevation soil with a reasonably deep profile.
Winkler Cool is a soil on north, northeast, and north-
west facing slopes at low elevations. It has a better
profile development than Winkler.

Repp, Trapps, and Whitore are limestone soils
which occur as a narrow belt between the Belt soils
in the Northwest and the granite soils in the southeast
(Fig. 2b). Repp is the least developed soil on the lime-
stone material. It is often found on the south and
southwest facing slopes at low elevations. Whitore
is the best developed soil on the limestone and is
found at high elevations. Trapps is a mid-elevation
soil. It also occurs on the north facing slopes at low
elevations. Its profile development is between Repp
and Whitore.

These 12 soil series fall into three soil orders: Alfi-
sol, Entisol and Inceptisol (Nimlos, 1986). Alfisols are
soils with leached, gray surface horizons and subsur-
face horizons with accumulations of illuvial clay.
Entisols are weakly developed soils with very little
organic-matter accumulation and no illuvial clay or
sesquioxides and they are usually found on ridge
crests in the study area. Inceptisols are young soils
with little or no illuviated clays but brown subsoil
horizons that indicate some translocations of sesqui-
oxides. About 90% of the soils (in terms of areal
extent) in the study area are Inceptisols. In general,
soils on slopes with poor moisture conditions have a
shallower soil profile than soils on slopes with wetter
moisture conditions.

2.2. The RHESSys model

Regional Hydro-Ecological Simulation System
(RHESSys) is a spatial data processing and simulation
modeling system designed to scale up the spatial
extent of water and carbon processes from stand
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Fig. 4. Overview of RHESSys. Geographic information processing techniques are used to process and organize landscape parameters into
hillslope mean parameters (landscape unit aggregation) and distribution files (within unit variability). Data in the hillslope mean parameters and

distribution files are used to drive the hydro-ecological simulation models.

Table 2

RHESSys cartridge file capturing between hillslope variations (part of the cartridge file for the Lubrecht watershed. Hillslope 1 and 2 fall outside

of the study area)

Hill slope ID  Aspect (°) Elevation (m) Gradient (°) Leaf area® index (LAI) Area (ha) A (m) m

# of elevation intervals

3 276.2 1234.0 9.3 11.1 54.5 4.1 0.05
4 32.0 1217.0 7.2 11.5 41.2 5.6 0.05
5 206.2 1568.0 17.6 12.1 339.8 4.3 0.05
6 340.3 1449.0 11.6 12.3 309.6 35 0.05
7 261.9 1187.0 72 10.8 2.5 8.6 0.05
8 61.3 1188.0 6.9 10.9 2.7 10.3 0.05
9 278.0 1251.0 23.1 10.8 10.5 4.9 0.05
10 72.0 1216.0 18.4 12.2 5.6 11.5 0.05
11 248.7 1381.0 13.7 11.3 36.3 4.6 0.05
12 318.7 1390.0 13.5 11.9 40.4 4.5 0.05
13 241.7 1334.0 16.2 11.3 925 34 0.05
14 63.8 1365.0 14.8 12.7 153.5 4.4 0.05
15 221.9 1254.0 11.0 11.4 0.8 6.7 0.05
16 29.4 1250.0 9.6 10.9 1.1 15.2 0.05
17 179.9 1402.0 132 12.1 278.4 2.3 0.05
18 348.2 1377.0 14.9 13.1 139.8 1.5 0.05
19 185.6 1529.0 17.5 12.2 139.4 2.8 0.05
20 302.9 1529.0 10.5 13.2 120.3 1.6 0.05

AP, N =~ BB PR BRNDDND—= = 000NN

* The LAI is all-sided.
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Table 3
RHESSys distribution file (frequency file) showing the representation of parameter variation within Hillslope 3 captured by elevation bands and
wetness intervals

Hillslope ID (# of Elevation bands in the hillslope)
3 2
Band Mean elevation in the band Number of wetness intervals in the band
1 1209.10 8
Wetness Mean Area LAI Ground Ko Rooting Zone
Interval ID Wetness (ha) (m’m®) Coverage (cm day™) Depth (cm)|
2 3.72 1.08 10.70 67.5 1216.2 59.4
3 5.20 9.27 11.03 69.9 1038.1 68.0
4 7.04 11.70 11.79 75.2 836.1 75.2
5 8.85 5.76 11.70 746 775.4 79.6
6 10.69 1.80 11.77 75.1 914.0 69.9
7 12.69 0.27 8.94 55.0 1600.0 4.0
8 14.67 0.27 10.63 67.0 1600.0 4.0
9 17.38 9.09 8.11 49.2 1592.6 4.9
Band Mean elevation in the band Number of wetness intervals in the band
2 1298.62 5
Wetness Mean Area LAI Ground Ko Rooting Zone
Interval ID Wetness (ha) (m’m?) Coverage (cm day™) Depth (cm)
2 3.96 0.09 10.63 67.0 802.4 86.5
3 5.29 4.05 12.05 771 568.1 101.1
4 6.91 7.20 12.41 79.6 466.1 107.6
5 8.57 2.79 12.39 79.5 485.5 107.0
6 10.69 0.09 12.18 78.0 349.9 112.2

through watersheds to regional extent (Running et al., variation in adiabatic temperature lapse rate

1989; Band et al., 1991, 1993; Nemani et al., 1993;
Mackay and Band, 1997). The system is specifically
designed to represent the surface soil, topographic and
vegetation patterns along with certain hydro-ecologi-
cal processes at the landscape level so that the neces-
sary parameters can be realistically estimated to
reproduce the dominant patterns of hydro-ecological
dynamics (such as runoff generation, evapotranspira-
tion (ET), and canopy photosynthesis) over the land-
scape (Band et al., 1993).

The system consists of two tightly integrated
components: Geographic data processing and simula-
tion modeling (Fig. 4). The geographical data proces-
sing component organizes landscape parameters into a
multi-tiered hierarchy based on key driving environ-
mental variables (Band et al., 1993; Mackay and
Band, 1997). For example, in mountainous areas,
the landscape can be first partitioned into hillslope
units that reflect differences in incident short-wave
radiation (the hillslope mean parameters file in Fig.
4, Table 2). Each hillslope is then partitioned into a
number of elevation zones capturing within-hillslope

(Lammers et al., 1997). For each of the elevation
zones in a hillslope partition, wetness intervals,
computed from the TOPMODEL topography-soils
index (see Eq. (2) below) (Beven and Kirkby, 1979;
Beven, 1986; Sivapalan et al., 1987), are used to sepa-
rate areas showing different conditions of local
hydrology. These within-hillslope variations in envir-
onmental conditions are represented in the distribu-
tion files (Table 3).

The simulation model combines forest ecosystem
process components adapted from FOREST-BGC
(Running and Coughlan, 1988; Running and Gower,
1991), a catchment hydrological model using
TOPMODEL (Beven and Kirkby, 1979), and a
simple, mountain climate simulator, MT-CLIM
(Running et al., 1987). Simulation over large, hetero-
geneous watersheds is facilitated by dividing the
landscape into a series of facets or hillslope partitions
based on geomorphometric principles. Hillslope
partitions capture most of the variance in incident
short-wave radiation (Band et al., 1991), which
means the partitions can be simulated in parallel.
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Catenary variations of topography, soils and
vegetation within each hillslope are then incorporated
as distributional information within hillslope partitions.
The distributional information accounts for the variabil-
ity of lateral subsurface flow, ET, soil drainage, snow-
melt, and canopy photosynthesis (Band et al., 1993).
This paper is concerned with the impact of different
approaches to soil landscape characterization on
three model outputs: Transpiration, canopy net photo-
synthesis (PSN) and stream flow. Canopy transpiration
(mmday ") is calculated daily using the Penman—
Monteith combination equation (Monteith, 1965)

AE = A+ (1 + (rdry)

ey

where R, is net canopy absorbed radiation (W m %), A
the slope of the saturation vapor pressure—temperature
curve (mb °C ™), p.C, m >°C") the specific heat
density of air, D (mb) the vapor pressure deficit, r,
(s mfl) the bulk aerodynamic resistance for latent heat
transfer between the vegetation canopy and its
surrounding atmosphere, y (mb°C™") the psychro-
metric constant, and r, (s m ') is the canopy total stoma-
tal resistance. Canopy resistance is the reciprocal of
canopy conductance, which is calculated as the product
of LAI and average leaf level stomatal conductance.
Stomatal conductance is controlled by light level, air
temperature, soil moisture, and vapor pressure deficit
(Jarvis, 1976; Lohammar et al., 1980). Gross canopy
photosynthesis (kg C m~* day ") is computed with the
CO, diffusion gradient, radiation and temperature
controlled mesophyll CO, conductance, the canopy
water vapor conductance, LAI and day-length (Loham-
mar et al., 1980). Night canopy respiration is computed
from night average temperature and foliar biomass.
Maintenance respiration for stem and root is computed
from biomass and daily average air and soil temperature.
Total maintenance respiration is subtracted from gross
canopy photosynthesis to give net canopy photo-
synthesis (PSN).

TOPMODEL accounts for lateral water flux and the
spatial distribution of saturation soil water deficit
(Band, 1993; Band et al., 1993). The approach taken
in TOPMODEL is considered to be ‘quasi-distribu-
ted’ and the watershed is modeled as a distribution
of points or elements that are paramized by a hydro-
logical similarity index, W, based on local topography

and soil hydraulic properties

L) @)

W, =1
' n(Titan:Bi

where a is the upslope contributing area (m?), T, the
areal averaged transmissivity (m *day "), 7 the
saturated transmissivity of the local soil, and 3; is
the local surface gradient. Saturation soil zone, in
the form of a local soil profile saturation deficit, is
computed as

S; =8+ m\— W), 3)

where S; is the local soil profile saturation deficit,
measured as a depth below full soil profile saturation
(m). S; = 0 where a soil column is fully saturated. § is
the hillslope or catchment mean saturation deficit and
is updated daily on the basis of computed ET, over-
land flow, base flow, and recharge to the saturated
zone from the unsaturated zone. The precipitation
(rain or snowmelt) that is not intercepted by canopy
or litter is routed to the unsaturated zone. m is a para-
meter used to describe the rate of exponential decline
in saturated hydraulic conductivity with depth in the
soil. A is given as

aT,

Stream flow consists of return flow (for areas when
S; < 0), direct precipitation runoff from saturated
areas of the basin, and base flow which is computed
on a hillslope basis as

S
qp = T, exp(—A) CXP(_ Z) &)

Two key soil properties are needed in RHESSys:
rooting zone depth and soil saturated hydraulic
conductivity (Kp). In this illustration, we use depth
to the bottom of B-horizon (solum depth) as a surro-
gate for rooting zone depth. Although the effective
zone of vegetation water uptake may very well extend
beyond the B-horizon into C, fully describing rooting
zone depth across landscape can be extremely diffi-
cult, if not impossible. The B-horizon provides an
initial hypothesis about the spatial variation in rooting
depths, even if we are unable to test it at this point.
Soil saturated hydraulic conductivity (K,) is approxi-
mated by soil texture based on Van Genuchten (1980)
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Fig. 5. The similarity model in SoLIM: an area is represented as a
raster data layer (a) and the soil at each pixel is represented as a
similarity vector (b).

and parameterized using the analysis of Rawls et al.
(1992). Finally, capillary rise is calculated using a
steady-state solution of the Richards Equation (Gardner,
1958).

2.3. Soil landscape paramizations

2.3.1. The two approaches to soil landscape
paramization

The soil landscape over the study area was
characterized using two different schemes in this
study. In the first scheme we derived the spatial distri-
bution of the needed soil properties from a conven-
tional soil map. Each soil polygon was assigned the
typical soil property value of its respective assigned
soil class. For example, if a soil polygon was labeled
as Soil Type One whose typical solum depth value
was 100 cm, then the solum depth for the soil in the
entire polygon was assigned the value of 100 cm.

Although very few soil polygons are labeled as single
class, property values of minor soil types that are
expected to be included in a given soil polygon cannot
be utilized in a spatially explicit way since the spatial
distribution of these inclusions is unknown. Even if
the polygon is labeled as a single class polygon,
assigning the typical soil property value may not be
appropriate since the value of a given soil property
varies within a single soil class. Again, because we do
not know how the soil property value varies within the
polygon we cannot properly use this range of soil
property values when deriving the spatial distribution
of a given soil property from a conventional soil map.
It might be possible to use a Monte Carlo techniques
to produce soil property data layer realizations by
using the range information in soil description.
However, such a soil property data layer would exhi-
bit an unrealistic ‘salt and pepper’ pattern without the
inclusion of spatial autocorrelation in the Monte Carlo
analysis. However, information on the spatial autocor-
relation of soil properties is often not reported in the
soil description and acquiring such information
requires a large amount of field data. As a result,
only the typical (mode or mean) property value is
often used when a conventional soil survey map is
used to provide GIS data layer of a given soil prop-
erty.

The second scheme was the SoLIM approach,
which consists of three major components: a similar-
ity model for representing soil spatial variation, a set
of inference techniques for populating the similarity
model, and the soil information represented under the
similarity model (Zhu, 1997). Under the similarity
model a given area is represented as a raster layer
(Fig. 5a). The size of each grid (pixel) in the raster
layer is often very small (such as 10 or 30 m on each
side) comparing with the minimum mapping size used
in conventional soil maps. The soil at a given pixel
(i,j) is then represented by an n-element similarity
vector, Sij = (S,-lj, S?,-, ...Sg...S,'«}), where 7 is the number
of prescribed soil classes (such as taxonomic units)
over the area and Sg- is the similarity value of the
soil at pixel (i,j) to the prescribed soil class k (Fig.
5b). It must be pointed out that Sgis not a probability
of whether a certain soil class occurs at a location or
not. It is an index which measures the similarity
between the local soil at (i,j) to soil class k. The
more similar a soil is to a prescribed soil class, the
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higher its similarity value (fuzzy membership). Thus,
a similarity value of 1.0 means that the soil at (i,j) is a
typical instance of the prescribed class while a
similarity value of 0.0 means that the local soil does
not belong to the prescribed soil class at all. With this
similarity model spatial variation of soil can be
described at the level of pixel size, which is often
much smaller than the minimum mapping size of
conventional soil maps. As a result, the spatial
generalization of soils in conventional soil maps is
much reduced under the similarity model. At the

(b)

Fig. 7. Comparison of A-horizon depth inferred using the SoLIM approach (a) with that derived from the conventional soil map (b).

Scott Mackay / Journal of Hydrology 248 (2001) 54-77

iy

attribute level, the soil at a given location is no longer
represented by a given class, but rather by a set of
similarity values, which allow the intermediate nature
of soil to be maintained in this similarity model. The
coupling of a raster representation in the spatial
domain with a similarity representation in the attribute
domain allows the spatial variation of soils to be
expressed and retained at much greater details under
the similarity model than it can in conventional soil
maps.

The SoLIM approach for populating the similarity
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model is based on the classic concept that soil is a
product of interaction among climatic factors, land-
form, parent material, organism, and hydrological
factors over time (Jenny, 1941; Jenny, 1980; Hudson,
1992). This concept can be expressed in qualitative
terms as

S = f(Cl,Og, Pm, Tp, 1) ©)

where Cl represents climate conditions, Og is for
organism, Pm is parent material, Tp stands for
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Fig. 8. The scatter plot of depths based on the SoLIM approach vs.
observed depths (a) and that of depths from the soil map vs.
observed depths (b) at the 33 field sites.

topography, and ¢ is time. We may infer the soil
type at a given location if we have local environmen-
tal conditions and knowledge of how these environ-
ment conditions are related to the soils. Eq. (6)
illustrates the general relationship between the soil
and its environmental factors. However, the details
of the relationship are different at different places. It
is very difficult at this stage to derive a mathematical
formula for the relationship because of the complexity
and limited understanding of both soil forming
processes and the paleo-environment. Zhu and Band
(1994) and Zhu (2000) approximate the soil-
environment relationships and the inference process
with the use of artificial intelligence (Al) and GIS/RS
techniques (Fig. 6). Al techniques were used to extract
knowledge on soil-environment relationships, to give
an approximation of f. GIS/RS techniques were used
to characterize soil formative environmental
conditions (E). The extracted knowledge and the char-
acterized environmental conditions were linked
through a set of inference techniques to populate the
similarity model for a given area.

The soil information represented under the
similarity model can be used to derive spatially
continuous soil property maps. Zhu et al. (1997)
used the following linear and additive weighting
function to estimate A-horizon depths:

y.=kKL (7)

where V;; is the estimated soil property value at
location (i,j), V¥ the typical value of a given soil
property (e.g. solum depth and hydraulic
conductivity) of soil category k, and n is the total
number of prescribed soil categories for the area.
This function is based on the assumption that, if the
local soil formative environment characterized by a
GIS resembles the environment of a given soil
category, then the property values of the local soil
should resemble the property values of the candidate
soil category. The resemblance between the environ-
ment for soil at (i,j) and the environment for soil
category k is expressed as Sf,-, which is used as an
index to measure the level of resemblance between



66 A.X. Zhu, D. Scott Mackay / Journal of Hydrology 248 (2001) 54-77

Fig. 9. Images of solum depth using two different approaches (light tone means deep solum): (a) using the SoLIM approach; (b) based on the

conventional soil map.

the soil property values of the local soil and those of
soil category k.

Zhu et al. (1997) reported that the spatial variation
of inferred A-horizon depths is more realistic and
continuous than that from the conventional soil map
(Fig. 7). At 33 field sites the inferred A-horizon depths
matched the field observed depths better than the
depths derived from the soil map (Fig. 8). They
concluded from the case study that the spatial varia-
tion of A-horizon depths was better captured in the

inferred depth image than in the depth image derived
from the soil map.

2.3.2. Solum depth and hydraulic conductivity data
sets

The spatial distributions of solum depth derived
from these two schemes (the conventional soil map
and the SoLIM approach) are shown in Fig. 9. Fig. 9a
shows the spatial variation of solum depth derived
from the SoLIM approach and Fig. 9b depicts the
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Fig. 10. Images of hydraulic conductivity over the study area based on the different approaches (light tone means high conductivity): (a) based

on the SoLIM approach; (b) derived from the conventional soil map.

distribution of solum depth based on the conventional
soil map. Both images show a similar pattern, which is
that solum is deep at high elevation (A) and on north
facing slopes (B), and is shallow at low elevation (C)
and on south facing slopes (D). However, the
differences between the two images are quite strong.
First, Fig. 9a shows a gradual variation of solum depth
while Fig. 9b depicts sharp changes at the boundaries
of soil polygons. Although these sharp changes are
possible at locations where major geological material
changes (such as areas labeled as E), often these sharp

changes are not realistic and are the artifact of the
polygon-based approach in soil mapping. The second
difference is that the solum depth from the SoLIM
approach reveals much greater details of spatial varia-
tion than that from the soil map. For example, the area
labeled as F on Fig. 9b shows a homogeneous solum
depth. In reality, there are numerous small draws and
side-slopes along the major south-facing slope (as
shown in Fig. 2a). It is expected that the soil formative
environmental conditions on these small draws and
side-slopes are different from the major south-facing
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Fig. 11. Hillslope partitions of the Lubrecht area (black areas are not included in this study).

slope and thus the soil profile development would be
different. As a result, the solum depth on these draws
and side-slopes is expected to be different from that on
the major south-facing slope. Therefore, the homoge-
neous solum depth shown in Fig. 9b is not a good
representation of the reality. On the other hand, the
solum depth derived from the SoLIM approach
depicts detailed spatial variation of solum depth
over this major south-facing slope and we expect
that the SoLIM derived solum depth would be a
more realistic representation of the soil landscape in
the area than that from the soil map.

The spatial variation of solum depth portrayed in
the solum depth image derived from SoLIM (Fig. 9a)
exhibits a similar spatial pattern of A-horizon depth
depicted in the A-horizon depth image from SoLIM
(Fig. 7a). This can be understood that there is limited
human impact in the area and that soil profile

development is largely controlled by local topography
and major bedrock materials. Areas that have deeper
A-horizons would also have deeper B-horizons. As a
result, the spatial variation of solum depth follows the
spatial variation of A-horizon depth. Thus, we expect
the solum depth image from SoLIM portrays the
spatial variation of solum depth in the area better
than that from the conventional soil map.

Saturated hydraulic conductivity (K,) for each of
the 12 soil series is approximated by soil texture
according to Rawls et al. (1992) and computed for
the whole soil profile. Although soil structure, includ-
ing macropores, plays an important role in the
hydraulic properties of soils, in this study we did not
consider soil structure in determining hydraulic
conductivity since we currently do not have informa-
tion on how specifically soil structure affects the
hydraulic behavior. However, TOPMODEL assumes
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Table 4

69

RHESSys distribution file for Hillslope 21 for the lumped param approach. Only one elevation band and one wetness interval is allowed

Hillslope ID (# of Elevation bands in the hillslope)
21 1
Band Mean elevation in the band Number of wetness intervals in the band
1 1403.69 1
Wetness Mean Area LAl Ground Ko Rooting Zone
Interval ID Wetness (ha) (m’m?) Coverage (cm day™) Depth (cm)
1 6.59 282.06 12.10 77.5 1387.8 44.6
an exponential decline in saturated hydraulic expected since for this semi-arid to semi-humid

conductivity with depth through the soil profile, as a
result of macroporosity (Beven and Kirkby, 1979),
and so this decline is also explicitly modeled in
RHESSys.

The spatial distributions of saturated hydraulic
conductivity parameterized using the two schemes
are shown in Fig. 10. Fig. 10a shows hydraulic
conductivity based on the SoLIM approach and Fig.
10b shows that based on the conventional soil map. In
general, the soil hydraulic conductivity is high on the
granite materials and low on the Belt and limestone
materials (see Fig. 2b for bedrock distribution).
Hydraulic conductivity also shows contrasts between
north and south facing slopes, and between high and
low elevations due to the level of soil profile devel-
opment. It is high on south facing slopes and at low
elevations where soil profile development is weak and
the accumulation of fine particles in the sub soil
horizon is less. On the other hand, the accumulation
of fine particles in the sub soil horizon is much stron-
ger on north-facing slopes and at high elevations. As a
result, the soil hydraulic conductivity in soils on
north-facing slopes and at high elevations is often
low. Both Fig. 10a and b show this general pattern.
However, Fig. 10a portrays much greater detailed
spatial variation of hydraulic conductivity within
each major slope area. For example, Fig. 10b shows
the hydraulic conductivity to be the same over the
major north-facing slope (area labeled as H). On the
other hand, Fig. 10a depicts the hydraulic conductiv-
ity over the same area to be heterogeneous. Hydraulic
conductivity is portrayed in Fig. 10a to be higher for
areas with a south facing exposure (labeled as K) than
that for areas with a northern exposure or along small
draws (labeled as N). This contrast in hydraulic
conductivity between the areas with different
exposures and at different landform positions is

region the moisture conditions for areas with a
southern exposure are poor and thus soil profile
development is very limited. As a result, the soil
profiles over these areas consist mostly of coarse
materials and hydraulic conductivity is high. On the
other hand, higher moisture conditions persist in areas
with a northern exposure or in concave areas of the
landscape, and so the soil profile development is
better in these areas. These soils often have a fine-
textured sub horizon and the hydraulic conductivity
of soils in these areas is lower than that over areas
with a southern exposure. Thus, we expect that the
detailed variation of hydraulic conductivity over the
landscape depicted in Fig. 10a approximate the spatial
variation of hydraulic conductivity better than that
derived from the conventional soil map.

2.4. Experiment design

The impacts of the aforementioned differences in
soil landscape paramizations on hydro-ecological
modeling are examined in the following two ways.
First, we examine the impacts on the modeling of
overall hydro-ecological responses over an entire
area. The overall responses are simulated using two
different approaches: The lumped parameter approach
and the distributed parameter approach (Maidment,
1993). For both approaches the area was first parti-
tioned into a number of hillslopes (Fig. 11) using the
hillslope partition algorithm described in Band
(1989). The difference between the two approaches
is how information is organized for each hillslope.
For the lumped parameter approach, only the mean
conditions of model parameters for each hillslope
are represented, but no information on their variations
within the hillslope is retained. This is accomplished
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Fig. 12. Comparison of stream flows simulated with RHESSys for the whole watershed using the lumped parameter approach.

under RHESSys by allowing only one elevation band
and one wetness interval within each hillslope (Table 4).

For the distributed parameter approach, each hill-
slope was divided into elevation zones with each zone
extending 100 m of elevation. Each elevation zone
(band) was further divided into wetness, W, intervals
using increment sizes of two (Table 3). This way of
parameterization allows for the representation of the
co-variation of model params within each hillslope.

For each modeling approach, two sets of model
parameter files were generated. The two sets only
differ from each other in how information on solum
depth and hydraulic conductivity were obtained. For
one set, the soil information was derived from the
conventional soil map of the area. For the other, the
soil information was derived from the SoLIM
approach using the methodology described in Section
2.3.

The second way of examining the impact of
detailed soil spatial variation is to investigate the
differences in the spatial distribution of modeled
hydro-ecological responses (ET and PSN) across the
study area. This was achieved by running RHESSys
under the distributed parameter approach outlined

above and by mapping modeled responses across the
study area.

3. Results and discussions

3.1. Impacts on modeling overall hydro-ecological
responses

3.1.1. Lumped parameter approach

The simulated stream flows from the watershed
using the lumped parameter approach are shown in
Fig. 12. Under the lumped parameter approach both
simulated stream flows fluctuate dramatically with
response to rain and snow melt events. This fluctua-
tion can be explained by the fact that the lumped
hillslope contributes runoff only when it is fully satu-
rated. However, the stream flow based on the soil
information from SoLIM fluctuates much less than
that based on the conventional soil map.

The difference in fluctuation of stream flows can be
explained by the improved spatial co-variation of soil
properties and other landscape variables. The soils in
both the spatial and attribute domains are highly
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Fig. 13. Comparison of PSN simulated with RHESSys for the whole watershed using the lumped parameter approach.

generalized under the conventional soil mapping
approach, but are less generalized with SoLIM.
Under the conventional soil mapping approach,
different and small soil bodies over a major slope
are often mapped as inclusions of a soil polygon for
the slope. The characteristics of these smaller soil
bodies are often not considered when the soil map is
used to characterize the soil landscape for hydro-
ecological models. The omission of these smaller
soil bodies can over- or under-estimate the hillslope
mean soil property values. This is particularly
apparent in semi-arid climatic regions where there
are large extremes in radiation interception and soil
water availability. For instance, in our study area the
inclusions on a major south-facing slope are often
east- and west-facing side slopes where moisture
conditions are wetter due to their topographic con-
cavity and lower potential ET. These conditions
favor soil profile development, which in turn leads
to deeper solum depth. In addition, soil profile devel-
opment in our study area means the accumulation of
finer particles in the sub soil horizons since the
bedrocks in this area produce very coarse textured
materials. Thus, the texture of soils on these side

slopes is typical finer than that on the major south-
facing slope, and the hydraulic conductivity is lower
on these side slopes. These differences in soil
properties are not incorporated into the mean under
the conventional soil mapping, but are included in the
SoLIM approach.

In addition, there can be significant deviation in soil
properties from the typical values for the dominant
class for an area due to the continuous gradation of
exposure. For example, the dominant soil class for a
major south-facing slope will best represent the soils
for the purely south-facing slopes. As we move away
from purely south-facing slopes to other aspects this
dominant class may not reflect the changes in soils
over the area. If we use the property associated with
the dominant class to represent the soils in the entire
polygon, then the solum depths will be under-
estimated and hydraulic conductivity will be over-
estimated. Alternatively, SoLIM uses the similarity
model to accommodate this deviation, thus local soil
conditions are included in the estimate of the mean.

Underestimation of solum depth results in a soil
profile that can be saturated with less amount of
precipitation and overestimation of hydraulic



72 A.X. Zhu, D. Scott Mackay / Journal of Hydrology 248 (2001) 54-77

2.25

—Based on soil information from SoLIM

2.00

~~~~~~ Based on soil information from soil map

1.75

1.50

1.25

1.00

0.75

Stream Flow (mm)

0.50

0.25

0.0 7

120

150

T T I T T I !
180 210 240 270 300 330 360

Julian Day

Fig. 14. Comparison of stream flows simulated with RHESSys for the whole watershed using the distributed parameter approach.

conductivity means that the water can move through
the soil column more quickly. Thus soils respond
more quickly and abruptly to precipitation events
and produce a highly fluctuated hydrograph (Fig. 12).
Due to the improved representation of soil-landscape
under the SoLLIM scheme, the soil conditions on the
side slopes and their deviation from the dominant type
are considered in the model paramization. As a result,
the peaks of the simulated hydrograph are lower.

Annual variations of net photosynthesis (PSN)
simulated using the lumped parameter model are
shown Fig. 13. PSN is not influenced by soil para-
meter variability during the first five and half
months of the year. However, it starts to differ
towards later part of June and the difference
continues throughout the summer into early
September, after which simulated PSN become
the same again.

The three episodes coincide with the three periods
of climatic conditions for the area (Fig. 3). The year
starts for the area with low temperature and low
precipitation (mostly in the form of snow). As the
year progresses, the temperature and precipitation
increases. With higher temperatures snow starts to

melt. As a result, soil water contents are high. There
is no moisture stress for the area. When the area enters
early summer (later June), the temperature still
increases but the amount of precipitation decreases.
By that time the snow has melted, and subsequent
soil water recharge is limited to infrequent rainfall
events. However, during summer months there is a
soil water draw down via ET. Eventually, the area
experiences moisture stress and photosynthetic
activities reduces. By the end of summer tempera-
ture decreases and the amount of precipitation
increases. Soil water contents increase and moist-
ure stress dissipates.

The simulated PSN differs between the two soil
paramization schemes during the period of moisture
stress when stomatal closure occurs. It is understand-
able that during the time when recharge to soil water
equals or surpasses soil water depletion the amount of
available water stored in soil profile is not important.
However, the ability of storing water in a soil profile
(a function of soil water holding capacity and solum
depth) becomes very critical when soil water deple-
tion is faster than recharge since plants draw water
from soil storage. As time goes on soil water over
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Fig. 15. Comparison of PSN simulated with RHESSys for the whole watershed using the distributed parameter approach.

areas with lower soil water storage will be depleted
faster and moisture stress shows up earlier and is more
severe. As a result, PSN will be further reduced. Fig.
13 shows that the PSN simulated based on the soil
information from the conventional soil map is much
lower over the period of moisture stress than that
simulated using the information from SoLIM. This
can be explained with reference to the earlier discus-
sion that the conventional soil map typically under-
estimates solum depth and overestimates hydraulic
conductivity on south facing slopes. Since south
facing slopes dry faster than north facing slopes due
to higher radiation interception, the soil water storage
in the soils over these south facing slopes are lower
based on the soil map and the moisture stress shows
up earlier and more severe than that based on SoLIM
(Fig. 13).

3.1.2. Distributed parameter approach

Stream flow and PSN simulated using the
distributed approach are shown in Figs. 14 and 15.
The stream flow hydrographs are very different from
those from the lumped parameter approach (Fig. 12)

due to the fact the distributed approach not only
considers the mean conditions, but also incorporates
spatial variation within each hillslope. Under a distrib-
uted framework surface runoff generation occurs over
a partial contributing area, as opposed to all or none of
the hillslope area in the lumped parameter approach.
The detailed comparison and discussion on the
differences between the lumped versus distributed
approaches can be found in Band et al. (1993) and
are out of the scope of this study. However, what
we want to discuss is the difference in the impacts
of different soil landscape paramization strategies on
the lumped and distributed modeling approaches. The
difference between the two hydrographs under the
distributed approach is small compared to that under
the lumped parameter approach. This is due to the fact
the distributed approach considers the spatial co-
variation of local topography (elevation and slope
gradient) and drainage area within a given hillslope.
Thus, much of local variation of soil properties (such
as solum depth and hydraulic conductivity) is
expressed by this detailed description of other
landscape parameters. As a result the difference
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Fig. 16. Spatial distributions of transpiration simulated from RHESSys for year day 181 when there is no moisture stress over the area: (a) based
on the soil information derived from SoLIM; (b) based on soil information from the soil map.

in simulated stream flow between the two different
soil landscape parametrization schemes is small
under the distributed approach.

PSN simulated under the distributed approach
exhibits similar temporal pattern as discussed in
Section 3.1.1 (Fig. 15). However, the difference in
PSN between the two different soil landscape para-
meterization schemes is again much smaller. In parti-
cular, the difference in PSN between the two schemes
starts much later in the growing season (Fig. 15). This
can be explained by the fact that the representation of
spatial co-variation of local topography and drainage
area under the distributed approach captures the major

variation of local soil conditions, and the impacts of
over- or under-estimation of soil properties in the
conventional soil map are much reduced under the
distributed approach.

3.2. Impacts on modeling the spatial variation of
hydro-ecological responses

Spatial distributions of the simulated transpiration
under the different soil landscape paramization
schemes are shown in Figs. 16 and 17. We are not
showing spatial distributions of PSN, as it is explained
by the same limiting factor (i.e. stomatal conductance)
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Fig. 17. Spatial distributions of transpiration simulated from RHESSys for year date 200 when there is a moisture stress over the area: (a) based
on the soil information derived from SoLIM; (b) based on soil information from the soil map.

as ET in this highly water-limited environment. Fig.
16 shows the spatial distributions of the simulated
transpiration for year day 181. The differences
between the two images (Fig. 16a and b) are very
subtle. This means that the detailed soil paramization
from SoLIM has no significant impact on the spatial
distribution of the simulated transpiration for that day.
This can be explained by the fact that during that
period of time moisture stress has not yet occurred
(Fig. 3), and the amount of available water stored in
soil profiles has not yet played an important role in
sustaining ecological responses. Thus, the impact of
detailed description of local variation of solum depth

and hydraulic conductivity on soil water content
cannot be reflected in the ecological process.
However, on year day 200 when the area is experien-
cing severe moisture stress the spatial distributions of
simulated transpiration is different (Fig. 17a and b),
particularly areas over major south facing slopes
(Area A) where solum depth is underestimated. This
is due to the fact that the amount of transpiration is
now largely dependent on the amount of available
water stored in the soil profiles. The impact of under-
estimating solum depth and over-estimating soil
hydraulic conductivities on soil moisture content
over these south facing slopes is now manifested in



76 A.X. Zhu, D. Scott Mackay / Journal of Hydrology 248 (2001) 54-77

the spatial distribution of simulated ecological
processes.

4. Conclusions

This study reveals that the detailed soil landscape
paramization using the SoLIM scheme has significant
impacts on the simulated hydro-ecological processes
with the lumped parameter approach. The peak stream
flows were reduced when using SoLIM in comparison
to the flows based on the soil information from a
conventional soil map. The detailed soil information
from SoLIM does not have much impact on the
simulation of PSN over the period when there is a
sufficient water recharge to soil profiles. However,
the simulated PSN production based on the detailed
soil information is higher over the moisture stress
period than that based on the soil information from
the conventional soil map.

With the distributed parameter approach the
detailed soil spatial information derived from the
SoLIM scheme has much less impact on the simula-
tion of hydro-ecological processes. The simulated
hydrograph based on detailed soil information is
very similar to that based on the soil information
from the soil map. The difference in simulated PSN
production during the period of moisture stress is
smaller between the two different soil landscape para-
meterizations and this difference also occurred much
later in the moisture stress period than it was
under the lumped parameter approach. The
impacts of detailed soil parameterization on spatial
distribution of simulated transpiration occurred
mainly over south facing slopes during the period
of moisture stress.

These findings imply that distributed parameter
models applied in mountainous watersheds may
account for a large portion of the co-variation in soil
properties since soil development and hydrologic
fluxes are both dominated by topography in these
environments. This suggests that, at least for short-
term hydrologic simulations, topographically domi-
nated systems with adequate plant available water
may be simulated with conventional soil maps using
a distributed approach. We note that small differences
in timing of moisture stress may have cumulative
effects on the simulated productivity of forest eco-

systems. For inter-annual or longer simulations the
cumulative effects on productivity may lead to differ-
ences in forest growth and over time forest water use.
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