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Abstract

We derived a posteriori error estimates for the Dirichlet problem with vanishing boundary for quasi-linear elliptic operator:

−∇ · (α(x,∇u)∇u) = f (x) in Ω ⊂ R2,
u = 0 on ∂Ω,

where Ω is assumed to be a polygonal bounded domain in R2, f ∈ L2(Ω), and α is a bounded function which satisfies the
strictly monotone assumption. We estimated the actual error in the H1-norm by an indicator η which is composed of L2-
norms of the element residual and the jump residual. The main result is divided into two parts; the upper bound and the
lower bound for the error. Both of them are accompanied with the data oscillation and the α-approximation term emerged
from nonlinearity. The design of the adaptive finite element algorithm were included accordingly.

Keywords: Adaptive Finite Element, Quasi-Linear Elliptic PDEs

1. Introduction

A posteriori error estimation began playing role in analyzing the accuracy of the numerical solution with a pioneering
work of Babuška and Rheinboldt (Babuška, I., 1978). A local estimator not only shows us how good the approximation
performs, but sometimes also acts as an indicator used to determine whether that local mesh should be refined. From this
usage, a new mesh will be created with the expectation that it will improve the accuracy of the approximation in efficiency
way, without increasing the degree of polynomials used in the approximation. All of this ensemble forms the following
procedure:

SOLVE→ ESTIMATE→ MARK→ REFINE.

In principle, the local estimator, or indicator, should be derived elementwise from the problem residual which is computed
from the discrete solution and the given data of the problem. Thus, after solving, the indicators will be output from the
submodule ESTIMATE. All elements with higher value of the indicators than the user’s tolerance must be marked. Those
marked elements then must be divided by some appropriate strategies. The new discrete problem with the resulted
finer mesh is now ready to be solved again. The adaptive algorithm iterates the above procedure until the overall error is
determined small enough. Applying finite element method in the step SOLVE allows us to call this process as the adaptive
finite element method (AFEM).

The introductory principles of adaptive finite elements and additional references can be found in the books by Ainsworth
and Oden (Ainsworth, M., 2000), and Verfürth (Verfürth, R., 1996). For the linear case we refer to the works of Morin,
Nochetto, and Siebert (Morin, P., 2000), where the convergence for second order elliptic equations with piecewise constant
coefficients and without lower order terms were investigated by using a technique originated by Dörfler (Dörfler, W.,
1996). They also introduced the notion of data oscillation meant to quantify information missed in projecting the residual
with discrete functions which is a process associated with the finite element method. Thereafter, Mekchay and Nochetto
extended these results for general second order linear elliptic PDEs (Mekchay, K., 2005), and (in cooperation with Morin)
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for the Laplace-Beltrami operator on surfaces (Mekchay, K., 2011). Recently, Garau, Morin, and Zuppa (Garau, E.
M., 2011) designed an adaptive finite element algorithm for solving quasi-linear elliptic problems based on a Kačanov
iteration. They estimated the problem residual instead of the actual error, which need a practical way to deal with the
negative norm in the dual space H−1. The quasi-optimal convergence rate of the algorithm were proved in (Garau, E. M.,
in press).

The objective of this article is to obtain a posteriori error estimates for the Dirichlet problem with vanishing boundary for
quasi-linear elliptic operator:

−∇ · (α(x,∇u)∇u) = f (x) in Ω ⊂ R2,
u = 0 on ∂Ω, (1)

where Ω is assumed to be a polygonal bounded domain in R2, f ∈ L2(Ω), and α is a bounded function which satisfies the
monotonic properties (see assumptions (3)-(4) below) for admission of a unique weak solution. We estimated the actual
error in the H1-norm by an indicator η which is composed of L2- norms of the element residual and the jump residual.

This paper is organized as follows. In §2, we give the weak formulation of (1) and its corresponding discrete problem,
together with some assumptions imposed to α for admission of a unique weak solution. The analysis of a posteriori error
estimation is described in §3, which is divided into two parts; the upper bound and the lower bound for the error. Then
we discuss about the adaptive algorithm in the last section.

2. Problem Formulations

By L2(Ω), we denote the usual Lebesgue space with norm

∥ f ∥0 =
(∫
Ω

| f (x)|2dx
)1/2

.

The Sobolev space of functions u ∈ L2(Ω) with weak derivatives ∇u ∈ L2(Ω) is denoted by H1(Ω) with semi norm

|u|1 =
(∫
Ω

|∇u(x)|2dx
)1/2

,

and norm
∥u∥1 =

(
∥u∥20 + |u|21

)1/2
.

Normally, ∥u∥0,ω and ∥u∥1,ω represent L2-norm and H1-norm restricted on the subdomain ω, respectively. According to
the boundary condition of Dirichlet type, H1

0(Ω) is a subset of H1(Ω) composed of functions vanishing on ∂Ω.

We multiply the PDE (1) by a smooth test function ϕ ∈ C∞(Ω) and integrate by parts overΩ to admit the weak formulation:
find u ∈ H1

0(Ω) such that
A(u; u, ϕ) = L(ϕ) ∀ϕ ∈ H1

0(Ω), (2)

where A(u; v, ϕ) =
∫
Ω
α(·,∇u)∇v · ∇ϕ and L(ϕ) =

∫
Ω

fϕ. Let us define a nonlinear vector field a⃗ on Ω × Rn by

a⃗(x, p) = α(x, p)p. (3)

According to the monotonicity methods described in (Evans, L. C., 1998), to guarantee the existence of a unique weak
solution of (2), the vector field a⃗ is assumed to be strictly monotone in the second variable; that is

(a⃗(p) − a⃗(q)) · (p − q) ≥ θ|p − q|2, (4)

for all x ∈ Ω, for all p, q ∈ R2 and for some constant θ > 0. Some examples of problems falling into the case are given by:
(I) The equations of prescribed mean curvature:

α(x,∇u) := [1 + ∥∇u∥2]−1/2.

(II) The p-Laplacian:
α(x,∇u) := ∥∇u∥p−2, p > 1.

(III) The subsonic flow of a irrotational, ideal, compressible gas:

α(x,∇u) :=
[
1 − γ − 1

2
∥∇u∥2

]− 1
γ−1

, γ > 1.
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Consider Vh ⊂ H1
0(Ω), a class of continuous piecewise linear functions over the shape regular conforming triangulation

Th of Ω, i.e.
Vh := {v ∈ H1

0(Ω) | v|T ∈ P1(T ),∀T ∈ Th}, (5)

where P1(T ) is the set of linear polynomial on T . Note that all T in Th are triangular elements and Ω =
∪

T∈Th
T . The

Lagrange basis functions {Φi} satisfy

Φi(x j) = δi j =

{
1 if i = j
0 if i , j for x j ∈ Ω.

The discrete problem corresponding to (2) is then constructed as: find uh ∈ Vh such that

A(uh; uh, ϕh) = L(ϕh), ∀ϕh ∈ Vh. (6)

3. A Posteriori Error Analysis

Before we get to the analysis, we would like to introduce some symbols associated with geometric information of the
triangulation. We define dT the diameter of triangle T and dS the length of side S . Let Sh denote the set of all interior
sides of the triangulation Th.

Consider A(u; eh, v) where eh = u − uh is the error. Note that we use the abbreviations α = α(·, u) and αh = α(·, uh)
whenever convenient. By means of Green’s identity, we obtain this formula

A(u; eh, v) =

∫
Ω

f v −
∫
Ω

αh∇uh · ∇v −
∫
Ω

(α − αh)∇uh) · ∇v (7)

=
∑
T∈Th

[∫
T

( f + ∇ · (αh∇uh))v −
∫
∂T

(αh∇uh) · νT v
]
−

∫
Ω

(α − αh)∇uh) · ∇v

for all v ∈ H1
0(Ω). Here νT is the unit outward normal vector of T .

Let the functionals RT and JS represent the element residual

RT (uh) := f + ∇ · (αh∇uh), in T ∈ Th (8)

and the jump residual

JS (uh) := −[(α+h∇u+h ) · ν+ + (α−h∇u−h ) · ν−] =: [[(αh∇uh)]]S · νS , on S ∈ Sh, (9)

where S is the side shared by two triangles, T+ and T− with the unit outward normal vectors ν+ and ν−, respectively (see
Figure 2), and νS := ν−. Equation (7) then turns into:

A(u; eh, v) =
∑
T∈Th

∫
T

RT (uh)v +
∑
S∈Sh

∫
S

JS (uh)v +
∫
Ω

(αh − α)∇uh · ∇v, (10)

for all v ∈ H1
0(Ω). Let us define the local error indicator as

η2
h(T ) = d2

T ∥RT (uh)∥20,T +
dT

2

∑
S∈∂T

∥JS (uh)∥20,S , (11)

and the global estimator as
η2

h(Ω) =
∑
T∈Th

η2
h(T ). (12)

3.1 Upper Bound

From the error representation (10), we obtain the upper bound for the error as follow.

Theorem 1 (Upper bound) Let uh be the approximate solution of the model problem with the error eh. Then

∥eh∥1 ≤ Cηh(Ω) + ∥(αh − α)∇uh∥0,

where the constant C depends only on the shape regularity of the triangulation Th of Ω.

In order to prove Theorem 1, we need the following lemma constructed by Clément (Clément, P., 1975).

22 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 2; April 2012

Lemma 2 (Clément’s interpolations) Let Th be a shape-regular triangulation of Ω. Then there exists a linear mapping
Ih : H1(Ω)→ Vh such that

∥v − Ihv∥m,T ≤ Cd1−m
T ∥v∥1,ωT for v ∈ H1(Ω), m = 0, 1, T ∈ Th

∥v − Ihv∥0,S ≤ Cd1/2
T ∥v∥1,ωT for v ∈ H1(Ω), S ∈ ∂T, T ∈ Th, (13)

where the constant C depends only on the shape regularity of the triangulation Th, and ωT is the patch of all elements
that share at least one vertex with T , see Figure 1.

Proof of Theorem 1 Let Ih : H1
0(Ω) → Vh be the L2-projection. If we use Ihv as a test function in (7), by (6) we can

easily show that

A(u; eh, Ihv) =
∫
Ω

(αh − α)∇uh · ∇Ihv. (14)

Substitute Ihv again in place of v in (10), we obtain∑
T∈Th

∫
T

RT (uh)Ihv +
∑
S∈S h

∫
S

JS (uh)Ihv = 0. (15)

Thus it is reasonable to rewrite (10) as

A(u; eh, v) =
∑
T∈Th

∫
T

RT (uh)(v − Ihv) +
∑
S∈Sh

∫
S

JS (uh)(v − Ihv)

+

∫
Ω

(αh − α)∇uh · ∇v. (16)

Thanks to the Clément’s interpolations (Lemma 2) and Cauchy-Schwarz inequality, there holds

A(u; eh, v) ≤ C

∑
T∈Th

dT ∥RT (uh)∥0,T ∥v∥1,ωT +
∑
S∈Sh

d1/2
T ∥JS (uh)∥0,S ∥v∥1,ωS


+∥(αh − α)∇uh∥0∥∇v∥0

≤ C∥v∥1

∑
T∈Th

d2
T ∥RT (uh)∥20,T +

∑
S∈Sh

dT ∥JS (uh)∥20,S

1/2

+∥(αh − α)∇uh∥0∥v∥1 (17)

for some generic constant C > 0 depending only on regularity of the triangulation. Here ωS denotes the patch of two
elements sharing the side S , see Figure 1.

Substituting eh in place of v in (17) results in

A(u; eh, eh) ≤ Cηh(Ω)∥eh∥1 + ∥(αh − α)∇uh∥0∥eh∥1. (18)

The monotonic assumption (4) allows us to claim that A(u; eh, eh) ≥ θ∥eh∥21, for a positive constant θ. We then finally
obtain the upper estimate for the error

∥eh∥1 ≤ Cηh(Ω) + ∥(αh − α)∇uh∥0. (19)

Remark 1 Theorem 1 tells us that the error is controlled by the error estimator ηh(Ω) and the oscillation from nonlinear
term ∥(αh −α)∇uh∥0. Then it is helpful in designing a stopping criterion for the AFEM, if ∥(αh −α)∇uh∥0 is small enough.
Since α is not computable, we need some further analysis to handle with ∥(αh − α)∇uh∥0. For example, let us assume that
a⃗ is Lipschitz continuous, i.e. there is a constant c such that

∥a⃗(p) − a⃗(q)∥ ≤ c∥p − q∥, (20)

for all p, q ∈ Vh and for any norm ∥ · ∥ defined on Vh. Consider the α-approximation term:

∥(αh − α)∇uh∥0 = ∥(αh∇uh − α∇u) + (α∇u − α∇uh)∥0,
≤ c∥∇(u − uh)∥0 + ∥α∇(u − uh)∥0.

Since α is a bounded function, there is a real number M < ∞ such that

∥(αh − α)∇uh∥0 ≤ (c + M)∥eh∥1.
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If (c + M) is lower than 1, the α-approximation term in (19) can be ignored.

3.2 Lower Bound

In order to obtain a similar lower bound for the error, we need to estimate the indicator ηh(T ) locally on T . The idea is to
estimate the two components of ηh(T ): ∥RT (uh)∥0,T and ∥JS ∥0,S in terms of ∥eh∥1. From now on we write RT (uh) as RT and
JS (uh) as JS in short. With the idea of bubble functions introduced by (Verfürth, R., 1996), we obtain the following local
lower bound.

Theorem 3 (Local lower bound) Let uh be the approximate solution of the model problem with the error eh. Then

η2
h(T ) ≤ C

{
∥eh∥21,ω̃T

+ osc2
h(ω̃T ) + ∥(αh − α)∇uh∥20,ω̃T

}
,

where ω̃T is the patch of elements sharing a common side with T (see Figure 1), and the oscillation on T is defined by

osc2
h(T ) := d2

T ∥R̄T − RT ∥20,T +
dT

2

∑
S∈∂T

∥J̄S − JS ∥20,S . (21)

The oscillation on a subset ω ∈ Ω is defined by

osc2
h(ω) :=

∑
T∈Th,T⊂ω

osc2
h(T ). (22)

Here, the constant C depends only on the shape regularity of the triangulation Th.

Before giving the proof of Theorem 3, we introduce here the notions of bubble functions used for estimations of the
interior and edge residuals.

For each T ∈ Th, we define ψT to be a polynomial function on T vanishing on ∂T and 0 ≤ ψT ≤ 1 = maxψT .

For each S ∈ Sh, we define also χS to be a polynomial function on ωS , as denoted in (17), vanishing on ∂ωS and
0 ≤ χS ≤ 1 = max χS .

The proof of Theorem 3 relies on the properties on bubble functions as stated in the following Lemmas which are proved
in (Ainsworth, M., 2000).

Lemma 4 Let P(T ) ⊂ H1(T ) be a finite dimensional subspace and let ψT denote the interior bubble function over the
element T . Then there exists a constant C such that for all v ∈ P(T )

C−1∥v∥20,T ≤
∫

T
ψT v2 ≤ C∥v∥20,T (23)

and
C−1∥v∥0,T ≤ ∥ψT v∥0,T + dT |ψT v|1,T ≤ C∥v∥0,T (24)

where the constant C is independent of v and dT .

Lemma 5 Let P(ωS ) ⊂ H1(ωS ) be a finite dimensional subspace. Let S ⊂ ∂T be an edge and let χS be the corresponding
edge bubble function. Then there exists a constant C such that for all v ∈ P(ωS )

C−1∥v∥20,S ≤
∫

S
χS v2 ≤ C∥v∥20,S (25)

and
d−1/2

T ∥χS v∥0,T + d1/2
T |χS v|1,T ≤ C∥v∥0,S (26)

where the constant C is independent of v and dT .

Proof of Theorem 3

(a) Estimation of interior residual:

Let R̄T be a polynomial approximation to RT on T . Ones can see that supp(ψT R̄T ) ⊂ T . It may be extended to the rest
of the domain as a continuous function by defining its value outside the element to zero. The resulting extended function
then belongs to H1

0(Ω) and thus can be used as a test function in the residual equation (10),

A(uh; eh, ψT R̄T ) =
∫

T
RT (ψT R̄T ) +

∫
T

(αh − α)∇uh · ∇(ψT R̄T ). (27)
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Notice that ∫
T
ψT R̄2

T =

∫
T
ψT R̄T (R̄T − RT ) +

∫
T
ψT R̄T RT . (28)

The right hand side may be bounded with the aid of the Cauchy-Schwarz inequality. Property (24) of the interior bubble
function combined with (27) help us derive∫

T
ψT R̄2

T ≤ ∥ψT R̄T ∥0,T ∥R̄T − RT ∥0,T + ∥αh∇eh∥0,T |ψT R̄T |1,T

+∥(αh − α)∇uh∥0,T |ψT R̄T |1,T (29)

≤ C∥R̄T ∥0,T
{
∥R̄T − RT ∥0,T + d−1

T ∥eh∥1,T + d−1
T ∥(αh − α)∇uh∥0,T

}
,

for some generic constant C > 0. Applying property (23) of the interior bubble function together with the triangle
inequality leads to the bound for the element residual

∥RT ∥0,T ≤ C
{
∥R̄T − RT ∥0,T + d−1

T ∥eh∥1,T + d−1
T ∥(αh − α)∇uh∥0,T

}
. (30)

(b) Estimation of edge residual:

We first extend the jump residual JS , defined originally on S , constantly along the normal direction of S such that it is
defined on ωS , and denote this extension by Ex(JS ) . Similarly, let J̄S be a polynomial approximation to the jump Ex(JS )
on the patch ωS . In the same manner, the function χS J̄S having supp(χS J̄S ) ⊂ ωs can be extended to the whole domain
and can be used as a choice of v in (10):

A(uh; eh, χS J̄S ) =
∫
ωS

χS J̄S RT +

∫
S
χS J̄S JS +

∫
ωS

(αh − α)∇uh · ∇χS J̄S . (31)

Now consider ∫
S
χS J̄2

S =

∫
S
χS J̄S (J̄S − JS ) +

∫
S
χS J̄S JS . (32)

Each of the right hand side terms is dealt with the edge bubble function’s properties and the scaled trace inequality for
side S ∈ ∂T . We arrive at∫

S
χS J̄2

S ≤ ∥χS J̄S ∥0,S ∥J̄S − JS ∥0,S + ∥α∇eh∥0,ωS |χS J̄S |1,ωS + ∥χS J̄S ∥0,ωS ∥RT ∥0,ωS

+∥(αh − α)∇uh∥0,ωS |χS J̄T |1,ωS ,

∥J̄S ∥20,S ≤ C∥J̄S ∥0,S
{
∥J̄S − JS ∥0,S + d−1/2

T ∥eh∥1,ωS + d1/2
T ∥RT ∥0,ωS

+ d−1/2
T ∥(αh − α)∇uh∥0,ωS

}
, (33)

for some generic constant C > 0. As a consequence of (30) and the triangle inequality, we have the estimate to the jump
residual

∥JS ∥0,S ≤ C
{
∥J̄S − JS ∥0,S + d−1/2

T ∥eh∥1,ωS + d1/2
T ∥R̄T − RT ∥0,ωS

+d−1/2
T ∥(αh − α)∇uh∥0,ωS

}
. (34)

The asserted estimate for ηh(T )2 is thus obtained by the combination of the square of (30) and the sum squares of (34).

η2
h(T ) ≤ C

{
∥eh∥21,ω̃T

+ osc2
h(ω̃T ) + ∥(αh − α)∇uh∥20,ω̃T

}
. (35)

Remark 2 Ones can see from Theorem 3 that, if osc(ω̃T ) and ∥(αh − α)∇uh∥0,ω̃T is sufficiently small relative to the error,
the error eh will be large when the indicator ηh(T ) is large. This is inline with the idea of marking strategy that mark
those elements if their local indicators are higher than user’s tolerance. By Remark 1, the α-approximation term can be
absorbed to the error. However, the oscillation still needs to be controlled by a reasonable marking.

4. Adaptive Algorithm

For a given conforming shape regular triangulation T0 along with input data α and f , the adaptive finite element algorithm
proceeds as the following:
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Pick an initial guess u0 with u0 = 0 on ∂Ω, choose 0 < θE < 1, and set h = 1.

1. uh=SOLVE(Th, uh−1, α, f ).

2. {ηh(T ), osch(T )}T∈Th = ESTIMATE(Th, uh, α, f ).

3. T̂h =MARK(Th, {ηh(T ), osch(T )}T∈Th ).

4. Th+1 = REFINE(Th, T̂h)

5. Set h = h + 1 and go to Step 1.

Next, we discuss about the detail of each procedure at the hth-iteration.

The procedure SOLVE: A relatively simple way to solve nonlinear problem is the Kacanov method (Han, W.,1997)
which is kind of linearlization. Given the initial approximation U0 = uh−1, we merely solve a sequence of linear problems

A(Uk−1; Uk, ϕh) = L(ϕh), ∀ϕh ∈ Vh, (36)

for k = 1, 2, . . ., instead of the nonlinear problem (6), until UK and Uk−1 are close enough. Then the procedure outputs
the approximate solution uh = UK . Nevertheless, some drawbacks of this fixed-point method are time consuming and
requiring of some suitable assumptions for converging.

The procedure ESTIMATE: This procedure returns all quantities required in the procedure mark which are ηh(T ) and
osch(T ) for all T ∈ Th. However, if necessary the approximation of the oscillation of the nonlinear term may be included.

The procedure MARK: To construct a subset T̂h of Th, we use the Marking Strategy E introduced by Dörfler (Dörfler,
W., 1996) which guarantees the error reduction.

Marking Strategy E: Given a parameter 0 < θE < 1, construct a minimal subset T̂h of Th such that∑
T∈T̂h

η2
h(T ) ≥ θ2

Eη
2
h(Ω), (37)

and mark all elements in T̂h for refinement.

Another strategy used to control the oscillation reduction is the Marking Strategy O introduced by Morin et al. (Morin,
P., 2000).

Marking Strategy O: Given a parameter 0 < θO < 1 and the subset T̂h ⊂ Th produced by Marking Strategy E, enlarge
T̂h to a minimal set such that ∑

T∈T̂h

osc2
h(T ) ≥ θ2

Oosc2
h(Ω), (38)

and mark all elements in T̂h for refinement.

Remark 3 In light of the investigation in (Cascon, J. M., 2008), the rate of convergence for separate marking is suboptimal
except for some range of marking parameters θE and θO. Observing that the indicator dominates oscillation, it is sufficient
to use only the marking strategy E.

The procedure REFINE: This procedure takes the triangulation Th and the subset T̂h of marked elements as inputs. In
order to preserve the shape regularity, all elements in T̂h will be refine by newest vertex bisection rule for at least n times
(n ≥ 1). Of course, some more elements outside T̂h are also bisected to obtain a new conforming triangulation Th+1.
Notice that the resulting spaces are nested, i.e., Vh ⊂ Vh+1.
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Han, W., Jensen, S., & Shimansky, I. (1997). The Kačanov method for some nonlinear problems. Applied Numerical
Mathematics, 24, 57-79. http://dx.doi.org/10.1016/s0168-9274(97)00009-3

Mekchay K., & Nochetto, R. H. (2005). Convergence of adaptive finite element methods for general second order linear
elliptic PDEs. SIAM Journal on Numerical Analysis, 43, 1803-1827. http://dx.doi.org/10.1137/04060929x

Mekchay, K., Morin, P., & Nochetto, R. H. (2011). AFEM for the Laplace-Beltrami operator on
graphs: Design and conditional contraction property. Mathematics of Computation, 80, 625-648.
http://dx.doi.org/10.1090/s0025-5718-2010-02435-4

Morin, P., Nochetto, R. H., & Siebert, K. G. (2000). Data oscillation and convergence of adaptive FEM. SIAM Journal on
Numerical Analysis, 38 (2), 466-488. http://dx.doi.org/10.1137/s0036142999360044

Morin, P., Nochetto, R. H., & Siebert, K. G. (2002). Convergence of adaptive finite element methods. SIAM Review, 44,
631-658. http://dx.doi.org/10.1137/s0036144502409093

Verfürth, R. (1996). A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Technique. Chichester:
Wiley-Teubner.

ωT ω̃T

ωS

Figure 1. The neighborhood of T (ωT ), the patch of T (ω̃T ), and the patch of S (ωS ) are shown by the shaded area

Figure 2. The unit outward normal vector ν+ and ν− of T+ and T− on the common side S
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