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WIDE-SENSE ESTIMATION ON THE SPECIAL ORTHOGONAL

GROUP∗

ALESSANDRO CHIUSO† , GIORGIO PICCI‡ , AND STEFANO SOATTO§

Abstract. In this paper we consider a simple estimation problem on the special orthogonal

group SO(n) and indicate a possible way to construct approximate filters which is much in the same

spirit of the “wide sense” approach to linear filtering theory. Our interest is mainly motivated by

applications to computer vision.

1. Introduction. Estimation on differentiable manifolds arises in a variety of

applications such as target tracking, robotics and computer vision, see e.g. [14, 19,

20, 6]. In general the estimation problem on a differentiable manifold can be seen as a

nonlinear estimation problem once (local) coordinates are introduced. Most of times

the “solution” involves a stochastic partial differential equation for the conditional

density whose solution is extremely difficult.

Finite dimensional filters may exist in the rare cases where invariant solutions of

the PDE for the conditional density exist within a finitely parametrized class of densi-

ties. In such situations the partial differential equation can be reduced to an ordinary

one whose solution is normally much simpler. This relates also to the existence of

finite dimensional estimation algebras associated with the filtering problem, see [4],

[1], [24] and references therein.

Although many attempts have been made in the past to obtain approximate

solutions to the general nonlinear filtering problem, (see e.g. [3] and the references

therein) the special case of the orthogonal group offers a rich structure and at least a

chance of a deeper understanding of the problem.

We shall follow a similar approach to that initiated in the references [8] and [7],

which consider estimation on a sphere. We shall see that the very special structure

of the orthogonal group can be used to obtain a solution which is similar to the one

obtained for the sphere.

2. Langevin Densities on the Special Orthogonal Group. First, let us

recall what we mean by “probability density” on a manifold. Recall that a measure

on an n-dimensional manifold is an n-form (volume form), which can be expressed in
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local coordinates with respect to the Lebesgue measure in IRn. A random variable

with values on a manifold induces a (finite) measure on the manifold. When some

regularity conditions are satisfied (absolute continuity), this measure can be expressed

as the integral of a density function with respect to the base measure on the manifold

(Radon-Nikodym).

It is known that every compact Lie Group G admits a unique bi-invariant (i.e.

left and right invariant) measure µ such that µ(G) = 1 [2, p. 247]. This is called

the Haar or base measure of the group G. Densities in SO(n) will be expressed with

respect to the Haar measure.

Our aim is to develop a sort of “wide-sense” setting for doing estimation on the

orthogonal group. To this purpose we need to introduce a family of distributions on

the orthogonal group which should play a similar role to the Gaussian in Euclidean

spaces. This family can also be seen as an instance of the Gibbs-Boltzmann distribu-

tions encountered in statistical physics.

It is reasonable to assume that observable quantities related to the orthogonal

group are actions of the (elements of) the group on S
n−1, i.e. objects of the form

Ru, u ∈ S
n−1. Take ui, i = 1, .., n to be an orthonormal basis and suppose that we

would like to measure how far the rotation R is from a “reference rotation” M , which

maps ui into vi
.
= Mui. For future use define U

.
= [u1, .., un] and V

.
= [v1, .., vn].

It is reasonable to measure how close the unit vectors vi and Riui are by the inner

products σi
.
= 〈vi, Rui〉. Assume now some side information is available which assigns

to us the average values σ̄i
.
= Eσi, i = 1, .., n. It is well known from the theory of

exponential families [10] that the maximum entropy distribution p(R) which admits

first moments Eσi = σ̄i, takes the Gibbs-Boltzmann form

(1) p(R) =
1

Z(k)
exp

(

n
∑

i=1

ki〈vi, Rui〉
)

where the partition function Z(k) is a function of certain parameters k
.
= [k1, .., kn]

which are bijectively related to the mean values σ̄i, i = 1, .., n.

Defining K
.
= diag{k}, the function p(R) can be written in the more convenient

form as

(2)

p(R) = 1
Z(k)exp{Tr

(

KV ⊤RU
)

}
= 1

Z(k) exp{Tr
(

UKU⊤(V U⊤)⊤R
)

}
= 1

Z(k) exp{Tr
(

ΣM⊤R
)

}

where Σ
.
= UKU⊤ and M

.
= V U⊤. Note that, when k1 = ... = kn = k, the function

Tr
(

ΣM⊤R
)

= kTr
(

M⊤R
)

is, up to a multiplicative constant, the Hilbert-Schmidt

inner product 〈M ,R 〉HS , of matrices.

Without loss of generality we shall assume that the diagonal elements of K are

ordered, |k1| ≥ |k2| ≥ ... ≥ |kn|; it is also possible to show that one can, without
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loss of generality, take k1 ≥ k2 ≥ ... ≥ kn−1 ≥ 0 while kn can either be positive or

negative1.

It is natural to ask whether considering a larger number of observables 〈ui, Rvi〉
may give rise to a different distribution. To this purpose consider the pairs of vectors

(xi, yi), i = 1, ...,m, m > n, xi, yi ∈ IRn, and the associated density of the form

(3) p(R) =
1

Z(µ)
exp

(

m
∑

i=1

µi〈yi, Rxi〉
)

, µ
.
= [µ1, ..., µm].

Consider the Singular Value Decomposition

(4) [x1, ..., xm][µ1y1, ..., µnym]⊤ = UxyKxyV
⊤
xy

where Kxy is the diagonal matrix of singular values. We shall from now on assume

that the decomposition (4) has been adjusted so that det(Uxy) = det(Vxy) = 1. This

can be achieved by changing the sign of the last column of Vxy and of the element in

position (n, n) in the diagonal matrix K.

By an argument similar to the one used in (2), it is easy to see that the maximum

entropy distribution (3) has the form

(5) p(R) =
1

Z(kxy)
exp{Tr

(

ΣxyM
⊤
xyR

)

}

where kxy is the vector of singular values; i.e. Kxy = diag(kxy) and

Σxy = UxyKxyU
⊤
xy Mxy = VxyU

⊤
xy .

Remarkably (5) is of the same form as (1).

The above motivates considering the exponential family of densities on SO(n)

(6) L(M,Σ) = {ℓ(R) ∝ exp{Tr
(

ΣMTR
)

R ∈ SO(n)}

where

Σ = Σ⊤ = UKU⊤,K = diag{k1, .., kn}, k1 ≥ ... ≥ kn−1 ≥ 0, |kn| ≤ kn−1,M ∈ SO(n)

which we shall call Langevin densities for their analogy with the Langevin densities

on the unit sphere [22] [8].

Example 2.1. Let n = 2 and let M = I; parametrize R(θ) ∈ SO(2) as

R(θ) =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

,

1After the ki’s have been ordered by absolute value, one can make ki (i < n) positive, by changing

its sign and by simultaneously changing the sign of vi. The sign of kn however is determined by the

constraint det(M) = det(UV ⊤) = 1.
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then the density p(R) takes the form

p(R) ∝ exp{(k1 + k2) cos(θ)}

which is the well-known Langevin (also known as Fisher or Von Mises) distribution

on S
1 [22]. This clearly depends only on the sum k = k1 + k2, which is nonnegative

and plays the role of concentration parameter.

It is fairly easy to check that the matrix parameter M is the mode of the density

and the eigenvalues of the symmetric matrix Σ = UKU⊤ are a measure of concentra-

tion. The normalization factor of the density, which we denoted by Z(k), depends only

on the singular value matrix K as can be easily seen by making use of bi-invariance

(i.e. making left and right translations by M⊤ and U respectively.)

The following lemma clarifies the role of the concentration parameters k = [k1, ...,

kn].

Lemma 2.1. Assume the random rotation R ∈ SO(n) is distributed according to

L(M,Σ). If k1 → ∞, then with probability one,

(7) R = M















1 0 . . . 0

0
...

0

[ Rn−1 ]















U⊤

i.e. R can be parametrized by an element Rn−1 ∈ SO(n − 1). Moreover, Rn−1 is

distributed as L(I,Kn−1), Kn−1 = diag{k2, ..., kn}. Furthemore, if n− 1 = 2 one can

as well take K2 = diag{k, k}, k = k2+k3

2 . Under this circumstance, the normalization

constant Z(k) depends only upon the sum k2 +k3 (which is necessarily non-negative).

The lemma of course can be iterated, letting k1,..,kn−2 go to infinity. It is worth

observing that when kn−2 → ∞ the density depends only upon the average k =
kn−1+kn

2 . Hence, if also kn−1 → ∞ the density collapses to a delta function on SO(n)

giving all mass to the mode matrix M . Obviously, when all k′is go to zero the density

becomes uniform.

An appealing property of the Langevin densities, which is the analog of a prop-

erty enjoyed by Langevin distributions on the unit sphere is stated in the following

proposition:

Proposition 2.1. Among all probability densities p on the special orthogonal

group having the same mean vector

(8) R̂ =

∫

SO(n)

Rp(R) dµ(R)

the Langevin distribution L(M,Σ) is the one of maximal entropy. The parameters

Σ and M are recovered from the singular value decomposition2 R̂ = V SU⊤ as M =

2As in (4) the sign of K(n,n) is adjusted so that det(U) = det(V ) = 1.
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V U⊤, Σ = UKSU
⊤ where KS is a diagonal matrix whose diagonal elements are

functions of S.

Proof. Assume (8) holds with R̂ = V SU⊤, U ∈ SO(n), V ∈ SO(n). Consider

R̄
.
= V ⊤RU . Using bi-invariance it follows that E[R̄] = S. This can be rephrased in

the form

E[ 〈ei, R̄ej〉 ] = S(i, j) = S(i, i)δij

where ei is the i− th canonical vector in IRn. By well-known reasoning (see e.g. [10])

it follows that the maximum entropy density has the form

p(R̄) ∝ exp{
∑

i,j

kij〈ei, R̄ej〉} .

It is now a simple check based on symmetry arguments to show that kij = kji = δijkii

must hold3. This implies that

p(R̄) ∝ exp{Tr
(

KR̄
)

}.

Using now bi-invariance of the Haar measure the probability density function of R =

UR̄V ⊤ is

p(R) = p(R̄)|R̄=V ⊤RU

∝ exp{Tr
(

KV ⊤RU
)

}
∝ exp{Tr

(

KU⊤UV ⊤RU
)

}
∝ exp{Tr

(

UKU⊤UV ⊤R
)

}
∝ exp{Tr

(

ΣM⊤R
)

}

with Σ
.
= UKU⊤ and M

.
= VM⊤. This concludes the proof.

3. A Simple Approximation Result. Proposition 2.1 above has a strong

connection with the following approximation problem:

Problem 3.1. Let p(R) be a probability density on SO(n) with respect to the Haar

measure; find a best approximation in the class of Langevin densities with respect to

the Kullback-Leibler divergence as a criterion of fit.

The approximation would then allow to represent approximately the original den-

sity p(R) by a finite number of parameters, which is the basis for wide-sense estima-

tion. Problem 3.1 could actually be rephrased in more general terms substituting the

Langevin class with a general exponential family of densities in SO(n).

We will see that in principle the approximation is very simple, modulo the com-

putation of a normalization constant.

3The numbers kij should be determined by the condition that EpR̄ = S. Therefore it is sufficient

to verify that when kij = kji = δijkii, the mean EpR̄ is a diagonal matrix.
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Let ℓ(R) ∈ L(M,Σ), we want to find

(9) ℓ̂ = arg min
ℓ∈L

K(p, ℓ) = arg min
ℓ∈L

Ep log
p

ℓ
.

Of course, since p(R) is fixed, the minimum Kullback-Leibler distance problem (9)

can be equivalently be rephrased as a

(10) ℓ̂ = arg max
ℓ∈L

Ep log ℓ .

This can be made explicit as follows:

(11) (M̂, Σ̂) = arg max
M∈SO(n),Σ=Σ⊤∈IRn × n

− logZ(k) + Tr
(

ΣM⊤EpR
)

,

where EpR = R̂ = VRSRU
⊤
R , VR, UR ∈ SO(n). Hence, we need only to know the

“mean” to compute the best (in the Kullback-Leibler sense) approximation in the

Langevin class. Since Z(k) does not depend on U and M , these matrices can be

determined by solving

(12) (Û , M̂) = arg max
U,M∈SO(n)

Tr
(

UKU⊤M⊤VRSRU
⊤
R

)

.

It is very simple to see that Û = UR and M̂ = VRU
⊤
R . Determining K now boils down

to solving:

(13) K̂ = arg max
K=diag(k)

− logZ(k) + Tr (KSR)

and the final result is given by

(M̂, Σ̂) = (VRU
⊤
R , URK̂U

⊤
R ).

The diagonal elements of K could also be determined by enforcing

(14) SR =
1

Z(k)

∫

SO(n)

R exp [Tr(KR)] dµ(R).

Unfortunately the solution of (14) (or (13)) requires the analytical expression

of the partition function Z(k); to the best of our knowledge this is not available in

general. Special cases in which Z(k) can be computed are: (i) n = 2, i.e. R ∈ SO(2)

(ii) n = 3, i.e. R ∈ SO(3) and k1 = k2 = k3 = k (which we shall, for obvious reasons,

call “isotropic” case later on). The case R ∈ SO(3) but K 6= kI is more involved.

A series expansion of Z(k) = Z(k1, k2, k3) has been derived in this case. However,

further work is needed to understand whether this series expansion can be utilized to

solve (14) (or (13)). In this paper we follow a different route; we shall approximate
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the map attaching the diagonal matrix SR to k using Markov Chain Monte Carlo

techniques. The details are found in Section 7.

In computer vision and robotics applications one is mainly interested in R ∈
SO(3). Since, as mentioned above, only the case K = kI can be handled explicitly,

we formulate below a version of Problem 3.1 in which the class of densities is restricted

to have the form ℓ ∈ L(M,kI).

Problem 3.2. Let p(R) be a probability density on SO(n) with respect to the Haar

measure; find a best approximation in the class of Langevin densities ℓ ∈ L(M,kI)

with respect to the Kullback-Leibler divergence as a criterion of fit.

The solution of the problem

(15) ℓ̂ = arg min
ℓ∈L(M,kI)

K(p, ℓ)

can be rephrased as

(16) (M̂, k̂) = arg max
M∈SO(n),k≥0

− logZ(k) + Tr
(

kM⊤EpR
)

,

where EpR = R̂ = VRSRU
⊤
R , VR, UR ∈ SO(n). Using the same argument as above,

the solution is given by

(17)
M̂ = VRU

⊤
R

k̂ = arg maxk≥0 − logZ(k) + kTr (SR) .

Note that k̂ depends only on the trace of SR. Hence two random variables having

different mean vectors R̂1 = SR1
and R̂2 = SR2

but such that Tr(SR1
) = Tr(SR2

)

will have the same approximation in L(M,kI). If R itself is distributed according to

L(M,kI), its mean vector satisfies the equality

R̂ = VRSRU
⊤
R = sRVRU

⊤
R = sRM

that is, SR = sRI. There is a one to one correspondence between sR and k. We shall

come back to the relation between k and sR in the next Section.

Proposition 3.1. Given the mean value R̂ = VRSRU
⊤
R , the best approximation

ℓ(M̂, k̂I) in the isotropic Langevin class L(M,kI) can be obtained by setting M̂ =

VRU
⊤
R , and by choosing k̂ as the value of k such that

E
ℓ(k̂,M̂)R = Tr(SR)V ⊤

R U⊤
R .

4. Partition Function and Mean Values. We have seen that the computation

of the approximating density in the Langevin class requires the knowledge of the

partition function Z(k). In this section we specialize to the case n = 3.

In order to compute the integral

(18) Z(k1, k2, k3)
.
=

∫

SO(3)

exp{Tr(KR)}dµ(R)



192 ALESSANDRO CHIUSO, GIORGIO PICCI, AND STEFANO SOATTO

we make use of exponential coordinates:

R = exp (θ∧) θ ∈ IR3, θ∧ .
=







0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0






.

The direction α
.
= θ/‖θ‖ ∈ S

2 of the coefficient vector θ = [θ1 θ2 θ3]
⊤ is the axis

of rotation while its length ρ
.
= ‖θ‖ ∈ IR+ is the rotation angle. The well-known

Rodrigues formula provides a closed form expression for R as a function of θ:

(19)
R = exp (θ∧) = I + sin(‖θ‖) θ∧

‖θ‖ + (1 − cos(‖θ‖)) (θ∧)2

‖θ‖2

= I + sin(ρ)α∧ + (1 − cos(ρ))(α∧)2

if θ 6= 0, and R = I otherwise. The formula can be made bijective by restricting

‖θ‖ ≤ π. With this notation, it is easy to check that rii, i = 1, 2, 3, the diagonal

elements of R, have the expressions

rii = 1 + (α2
i − 1)(1 − cos(ρ)) i = 1, 2, 3.

Let us now define Bπ
.
= {θ ∈ IR3 : ρ ≤ π, α ∈ S

2}, the ball of radius π in IR3.

This set provides (up to zero Lebesgue measure sets) a covering of SO(3). In order

to compute the integral (18) we need to express the Haar measure in exponential

coordinates; this is a standard computation which gives:

dµ(R(θ)) =
sin2(‖θ‖/2)

‖θ‖2
dθ1dθ2dθ3.

Introducing polar coordinates for α = α(ψ, φ), the vector θ ∈ Bπ is parametrized by

ρ = ‖θ‖, ψ ∈ [0, π], φ ∈ [0, 2π], and the Haar measure takes the form

(20) dµ(R(ρ, ψ, φ)) = sin2
(ρ

2

)

sin(ψ)dρdψdφ .

This yields:

(21)

Z(k1, k2, k3) =
∫

SO(3) exp{Tr(KR)}dµ(R)

=
∫ π

0

∫ π

0

∫ 2π

0
exp{∑3

i=1 k1riisin
2
(

ρ
2

)

sin(ψ)dρdψdφ

=
∫ π

0

∫ π

0

∫ 2π

0 exp
(

∑3
i=1 kiα

2
i

)

exp (N(α, k) cos(ρ)) sin2
(

ρ
2

)

sin(ψ)dρdψdφ

where N(α, k)
.
=
∑3

i=1

(

ki − kiα
2
i

)

. It is now convenient to recall that sin2
(

ρ
2

)

=
1
2 (1 − cos(ρ)). Using well known expressions for the modified Bessel functions of the

first kind [23] the inner integral, with respect to ρ, in (21) is easily seen to be

(22)
π

2

1

π

∫ π

0

exp (N(α,K) cos(ρ)) (1 − cos(ρ)) dρ =
π

2
(I0(N(α, k)) − I1(N(α, k)))

where I0 and I1 are respectively the zeroth and first order modified Bessel function

of the first kind.
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Fig. 1. Left: normalization constant 1
Z(k)

as a function of k. Right: “mean value” sR(k) as a

function of k.

Unfortunately, integrating (22) on the unit sphere turns out to be difficult, and we

have not been able to come up with an explicit analytic expression. Note that, when

k1 = k2 = k3 = k, N(α, (k, k, k)) = 2k holds; in this case the expression simplifies

significantly; in fact, under this assumption, the radial integral (22) reduces to

π

2

1

π

∫ π

0

exp (N(α,K)cos(ρ)) (1 − cos(ρ)) dρ =
π

2
(I0(2k)) − I1(2k))

which does not depend on α. Hence, using also exp
(

∑3
i=1 kα

2
i

)

= exp(k),

(23) Z(k) = 2π2exp (k) (I0(2k) − I1(2k)) .

Hence, in the “isotropic” case K = kI the Langevin distribution on SO(3) has

the form

p(R) =
1

2π2exp(k) (I0(2k) − I1(2k))
exp{kTr(M⊤R)}.

Note that, as k → 0 the Langevin density p(R) → 1
2π2 , the uniform density4 on

SO(3). It is very simple to check that, for M = I,

(24)

R̂
.
=

∫

SO(3)

R
1

2π2exp(k) (I0(2k) − I1(2k))
exp{kTr(R)}dµ(R) = SR(k) = sR(k)I

holds. Equation (24) provides a correspondence between k and sR. The function

sR(k) is plotted in Figure 1, right panel.

5. Stochastic Differential Equations on the Orthogonal Group. Let b(t)

= [b1(t)b2(t) . . . ,bm(t)]⊤ be standard Brownian motion in R
m and consider the

stochastic differential equation (in the Itô sense)

(25) dR(t) = f(R)dt+

m
∑

i=1

gi(R)dbi(t) .

4Note that the volume of SO(3) with the Haar measure given in (20) is 2π2.
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The conditions under which R(t) ∈ SO(n), ∀t ≥ 0 have been derived by Brockett,

[4], by imposing that

(26)
d
(

R⊤(t)R(t)
)

= 0 = d
(

R(t)R⊤(t)
)

R(0) ∈ SO(n)

where the differential is in the Itô sense. Recalling that, by Itô rule, dbi(t)dbj(t) =

δijdt, this is equivalent to requiring that

(27)
0 = f(R)R−1(t) +R(t)f⊤(t) +

∑m

i=1 gi(R)g⊤i (R)

0 = gi(R)R−1(t) +R(t)g⊤i (R) i = 1, ..,m.

Without loss of generality we can write f(R) = A(R, t)R(t) and gi(R) = Bi(R, t)R(t)

so that we may re-write (25) in the form

(28) dR(t) = A(R, t)R(t)dt +

m
∑

i=1

Bi(R, t)dbi(t)R(t)

where, by (27),

(29)
0 = A(R, t) +A⊤(R, t) +

∑m
i=1 Bi(R, t)B

⊤
i (R, t)

0 = Bi(R, t) +B⊤
i (R, t) i = 1, ..,m

must hold. This shows that the Bi’s and A(R, t) + 1
2

∑m

i=1 Bi(R, t)B
⊤
i (R, t) must be

skew symmetric matrices, i.e. must belong to so(n), the Lie Algebra of SO(n). A

matrix in this Lie algebra can be expressed as a linear combination of the elements of

a basis of elementary rotations {Ek k = 1, ..., N = n(n−1)
2 }5 so that every R ∈ SO(n)

takes the form R = exp{∑k θkEk }. The direction θ/‖θ‖ of the coefficient vector

θ = [θ1 θ2 . . . θN ]⊤ is the axis of rotation while its length ‖θ‖ is the rotation angle.

We shall use the wedge (or “external”) product notation:

θ∧ .
=
∑

k

θkEk .

The simplest form of the model (28) is obtained when A and Bi’s are constant.

Denoting A+ 1
2

∑m
i=1BiB

⊤
i by ω∧ and introducing:

(30) Bi = Li∧ =

N
∑

j=1

lijEj ∆L
.
=

m
∑

i=1

(Li∧)(Li∧)⊤

5The elementary rotations for SO(3) are

E1 =







0 0 0

0 0 −1

0 1 0






E2 =







0 0 1

0 0 0

−1 0 0






E3 =







0 −1 0

1 0 0

0 0 0






,
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we obtain

(31) A = (ω∧) − 1

2

m
∑

i=1

(Li∧)(Li∧)⊤ = (ω∧) − 1

2
∆L

which leads to the stochastic differential equation

(32) dR(t) =

(

ω ∧ −1

2
∆L

)

R(t)dt+
m
∑

i=1

dbi(t)Li ∧R(t).

This can also be rewritten in the more suggestive form

(33) dR(t) = dΘ(t)R(t) − 1

2
∆LR(t)dt

with dΘ
.
= dθ∧, the infinitesimal random rotation of instantaneous angular velocity

ω modeled by

(34) dθ = ωdt+ Ldb(t)

where the infinitesimal stochastic component Ldb(t)
.
=
∑m

i=1 Lidbi(t), is induced by

a standard Brownian motion b(t) in IRN .

This is indeed the form of general infinitesimal random rotation which has been

named “Skew Brownian Motion” in SO(n) by McKean [13].

Note finally that − 1
2∆LR(t)dt is the Ito’s correction term which is needed to keep

the path t 7→ R(t) in SO(n).

6. Approximate Filtering for the “Skew Brownian Motion” under Lin-

ear Observations. In this section we shall assume that R(t) is a rotation process

induced by a skew Brownian motion, of the form (32). We shall postulate that the

initial condition R(0) has a Langevin distribution

(35) R(0) ∼ ℓ(R; Σ0,M0) =
1

Z(K0)
eTr(Σ0M⊤

0
R)

and that at each sample instant t = kT , are collected m linear noisy observations of

the form

(36) yj(kT ) = Rǫj(kT )R(kT )xj , xj ∈ IR3 j = 1, . . . ,m

where the “rotational noise” terms Rǫj(kT ) are independent Langevin-distributed and

hence induce a conditional density of the form

(37) p(y1(kT ),y2(kT ), . . . ,ym(kT ) | R(kT )) =
∏

j

k0j

4π sinh(k0j)
ek0jx⊤

j R⊤(kT )yj(kT ) .

At time t = 0, the a posteriori density is given by 6:

6We have dropped the time index for notational convenience
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(38)
p (R | yj , j = 1, . . . ,m) ∝ p(R)

∏m

j=1 p(yj | R)

∝ exp
(

Tr
[(

Σ0M
⊤
0 +

∑m

i=1 k0jxjy
⊤
j

)

R
])

.

Hence the a posteriori density is still Langevin; i.e. the Langevin on SO(n) is a

conjugate prior [18] to the Langevin likelihood on S
n−1. Computing the Singular

Value Decomposition

(39) UpSpV
⊤
p = Σ0M

⊤
0 +

m
∑

i=1

k0jxjy
⊤
j

we obtain the parameters

(40)
M̂ = VpU

⊤
p

Σ̂ = UpSpU
⊤
p .

Clearly the procedure can be iterated if the “target” R(t) is fixed (ω = 0 L = 0).

This is rather trivial and we shall not further discuss this case.

Instead, we consider the more interesting case in which both ω and L are not

necessarily zero. Let us first assume that, at time t = kT , the conditional density of

R(t) given the (strict) past of the measurements, Yk−1 .
= {yi(0), . . . ,yi((k−1)T ), i =

1, ..,m}, is Langevin-distributed; i.e.

p(R(kT ) | Yk−1) = L(M̂(k | k − 1), Σ̂(k | k − 1)).

By the same argument used above, it it fairly easy to see that p(R(kT ) | Yk) is

still Langevin with parameters M̂(k | k) and Σ̂(k | k) which can be computed by a

SVD step as in (38), (39) and (40). We shall denote the measurement update step

abstractly by two maps Φ, Ψ, as follows

(41)
M̂(k | k) = Φ(M̂(k | k − 1), Σ̂(k | k − 1),y1(k(T )), . . . ,ym(kT ))

Σ̂(k | k) = Ψ(M(k | k − 1), Σ̂(k | k − 1),y1(k(T )), . . . ,ym(kT )).

The “prediction” step is implemented by two maps, which we abstractly denote as

(42)
M̂(k + 1|k) = Γ(M̂(k | k), Σ̂(k | k))
Σ̂(k + 1|k) = Ξ(M̂(k | k), Σ̂(k | k)).

This step is a little more involved. In fact, assuming that an estimate R̂(kT | kT ) is

available, the prediction R̂(kT+T | kT ) is readily computed integrating the (ordinary)

differential equation:

(43) dR̂(t|kT ) =

(

ω ∧ −1

2
∆L

)

R̂(t|kT ) dt

with initial condition R̂(kT | kT ). This equation is obtained by simply taking the

(conditional) expectation of (32) since the martingale term vanishes under expectation
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and only the drift survives. Unfortunately however the Langevin class is not invariant

under the evolution of (32) and at this point one needs to resort to approximations.

As stated in Problem 3.1, one can approximate the posterior density by a distri-

bution in the Langevin class. This only requires computing the mean vector. Yet,

the computation of the parameters R̂(kT | kT ) from M̂(k | k) and Σ̂(k | k) and of

M̂(k+1 | k) and Σ̂(k+1 | k) given R̂(kT +T | kT ) is not entirely trivial. This is due

to the fact, already pointed out in Section 4, that the map relating the parameters

M,Σ of p(R) = ℓ(R;M,Σ) to Ep[R], is available in closed form only in the isotropic

case Σ = kI. In the next Section we shall discuss a computational procedure which

allows to approximate these maps for general Σ.

7. Approximation of the Map (M,Σ) → Ep[R]. The map attaching M,Σ

to Ep[R] can be approximated arbitrarily well using Monte Carlo techniques. As

discussed in Proposition 2.1 it suffices to address the case M = I and Σ = diag{k1, k2,

k3}; the general case follows making use of left and right translations (left and right

multiplications in SO(3)).

As discussed in Proposition 2.1, if p(R) ∝ exp{Tr(diag{k1, k2, k3}R)} = exp{Tr(
diag{k}R)}, then S = Ep[R] is also diagonal; namely

Ep[R] = S = diag{s1, s2, s3} = diag{s}

therefore, it is sufficient to compute the map which links k to s.

This computation can be performed off-line once and for all. It needs not be

repeated during the actual on-line signal processing. Therefore, the computational

load and/or computing time of the procedure need not concern us.

A simple yet effective solution would be to compute s for a number of values k;

this can be done with arbitrary accuracy by Monte Carlo techniques. It is in fact

sufficient to simulate from p(R) ∝ exp{Tr(diag{k}R)} using a Metropolis-Hasting

type of algorithm (note that the normalization constant needs not be known) and

then compute sample averages.

Since the function s(k) is smooth (see Figure 2), provided s(k) is known on a

sufficiently fine grid ki, i = 1, ..,K, the function s(k) can be obtained via interpolation

in a variety of ways, e.g. using RKHS techniques [21]. For the sake of exposition, we

have computed s on a grid of values in the set

(44) ki = {k1 = 10, k2 ∈ [0, 5], k1 ∈ [−k2, k2]}.

The value of k1 has been kept fixed only for presentation of the results, which are

reported in Figure 2.

The results have been obtained by running a standard Metropolis-Hasting chain

for N = 50000 steps. Average values are then taken. For sake of comparison, we

report in Figure 3 the results for the isotropic case. The estimate obtained by the
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s1 = EpR(1, 1)
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Fig. 2. Estimates of the diagonal elements of the mean value R̂ = Ep(R) for M = I and

Σ = diag{k} obtained via Markov Chain Monte Carlo. Left to right: s1 = EpR(1, 1), s2 = EpR(2, 2)

and s3 = EpR(3, 3). The value of k1 has been kept fixed to 10, while k2 ∈ [0, 10] and k3 ∈ [−k2, k2]

(the functions s1, s2, s3 are conventionally set to zero for |k3| > k2.)
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sR(k) = Tr{EpR}/3
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Fig. 3. MCMC estimates vs. true values (see Section 4) of sR(k) = Tr{EpR}/3 in the isotropic

case Σ = kI.

Monte Carlo method of s(k) is within about 0.5% error of the theoretical value (note

that the error is roughly of the order 1/
√

50000). The results have been obtained

in a few hours of computing time on a standard laptop computer; no interpolation

nor smoothing have been performed; of course much more accurate results could be

obtained, for instance, constraints on the monotonicity of s(k) could be enforced.

Conclusions. In this paper we have discussed a simple Bayesian estimation prob-

lem in SO(n) which has applications to attitude estimation and to pose reconstruction

problems in computer vision. Sequential estimation of a fixed rotation in space can be

implemented by a simple closed-form recursive MAP estimator. For a general stochas-

tic rotation process in SO(n) described by a stochastic differential equation driven by

“rotational Brownian motion” the problem has no exact closed form solution but we

have indicated how “wide-sense” approximate filters can be constructed.
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