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Abstract  In this article we are going to construct a family of type П1 subfactors each containing a middle 
subfactor. As a result of the above construction we show that the set of the indices of hyperfinite irreducible 
subfactors contains the interval [37.0037,∞). 
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1. Introduction and Priliminaries 
In the next chapter we are going to use locally trivial 

subfactors to construct a set of middle subfactors. The 
important of locally trivial subfactos was indicated by 
S.Popa at [9]. The simplest locally trivial subfactors are 
those having only two orthogonal projections in their 
relative commutant. It is well known that these subfactors 
are isomorphic to Jones subfactors.. Also it is easy easy to 
show that these kind of subfactors do not posses middle 
subfactors. For the locally trivial subfactors that their 
relative commutant have dimension larger than two we 
believe that the above result is still valid ie’there are no 
middle subfactors. Suppose we are Given a pair L ⊂ M of 
subfactors that are limiting algebras of a tower of 
commuting squares. 

Then using the results in [1] we can show that if the 
inclusion graphs of the corresponding finite C* algebras 
are A graphs, then the subfactors L ⊂ M do not have 
middle subfactors. One of the problems in the index 
theory, is to find the set of all the values for the indices of 
hyperfinite irreducible subfactors. Using the above 
constructions, we are going to show that the above set 
contains the interval (37.0037,∞). 

2. Main Results 
For a given pair of subfactors N ⊂ M, With [M:N] = λ-1 

<∞. Let e be a projection in M that induces the expectation 
N onto Q = (e)′∩N. Let P1,P2 = 1-P1 be a partition of unity 
in Q. Using standard argu-ments as in [5], there exists an 
isomorphism Ф, taking NP1 onto NP2. Let L(P1) be the set 
of all the elements of the form L(P1) = (x +Ф(x); x∈NP1 ). 
Then it is well known that L(P1), is a locally trivial 
subfactor of N. Also by (Lemma2.2.1) [5], [N : LP ] = 

1=tr(P1) + 1=tr(P2). Where tr is a unique normalized trace 
on M. Suppose P1, does not communicate with e0 = e. Set 
y = P1eP2 ≠ 0. Note that the relative commutant of L(P1), 
inside M is spanned by the projection P1. Since y, does not 
communicate with P1, we have that the algebra, H(P1) =< 
L(P1); Y > is a middle subfac-tor which is strictly larger 
than L(P1) If under certain conditions H(P1) becomes 
strictly smaller than M, then H(P1) becomes a proper 
middle sub-factor. In this case by the above arguments it 
is easy to see that the inclusions H(P1)⊃ L(P1) and  
H(P1)⊂M are irreducible inclusion of subfactors. Let us 
denote r1 = [ H(P1) : L(P1)] and r2 = [M : H(P1)]. Let IR, 
be the set of all irreducible subfactors of finite index. Let 
us denote by IIR, the set of indices of all subfactors in IR. 
Then by (Proposition2.1.15) [5] r1r2 is in IIR. It is easy to 
check that the set of of the elements f of the form f =Σj∈J 
ujgzjegwj, with g = EQ(P2), zj∈Q, uj = P1xjP1, wj = P1yjP1, 
xj∈N yj∈N where J is a set of indices is dense in (H(P1))P1. 

Let e1 be a projection in N, such that EQ(e1) = λ. Then e1 
induces the expectation of Q onto the subfactor Q1 = 
(e)′∩Q. Next for a number r, r∈IIR, construct an 
irreducible subfac-tor Q2, Q2⊆Q1, with [Q1 : Q2] = r. We 
can define the projection e3, Using (corollary 1.8) [13], 
there exits a projection e3 in Q1, such that e3 induces the 
expectation of Q2 onto The subfactor Q3, with Q3 = 
(e3)′∩Q2. This process will induce the following tonnel, 
M⊃N ⊃ Q ⊃ Q1 ⊃ Q2 ⊃ Q3. Let us set P1 = qe1e3 with q a 
projection in Q3. Now we can check that the following set 
of elements, f of the form, 

( ) ( ) ( )2 2
1 0 1 1 0 1,1 1j j jj Jf P e x z y P P e zPλ λ∈= − = −∑  

with z = j j jj J x z y∈∑ , with , ,j j jx z y  as in the above 

and J a set of indices will be a dense subset of (H(P1))P1. 

In particular assuming now that H(P1) = M implies that 
the above set of elements are dense in MP1. Furthermore as 
we mentioned in the above for any number r∈IIR; e3∈Q1 
can be chosen such that tr(e3) = r. For example suppose 
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tr(e1) = tr(e0) = .5. Then it is easy to see that there exists a 
unitary V ∈(e3)′∩N = L, with L a type 1π  Von Neumann 
algebra, such that V e1V* = 1 − e1. Then we can express 
the f from the above as f = λ(1 −λ)2e1e3ze1e3 + (e1e3e0V 
e1e3)(e1e3V*ze1e3). For a given real number S, let [S], be 
the largest integer which is smaller or equal to [S]. Let us 
set Sr = S − [S]. Let us assume now that H(P1) = M, We 
will get the following results. 

Lemma 1 Keeping the same notations as in the above 

let 1 1 1.rλ λ λ− − − = +   Then there exist unitary operators 

U, U2, U3 in L and projection p≤e1, such that f can be 
expresses as in the following, ( )(2

1 3 0 1 1 31 *f e e e qe q ze eλ= −  

*
1 3 0 1 1 3 1 1 3 0 2 1 2 1 3* *e e e Ue q U ze e e e e U e U ze eσ+ +  

*
2 1 3 0 3 1 3 1 3).e e e U e U ze eσ+  With σ1, will be equal to 1 if 
1λ− 

   odd integer and equal to zero otherwise. Simi-larly 

σ2 is equal to 1 if 1λ−  is not an integer and equal to zero 
otherwise. 
Proof First suppose tr(e0)−1 = λ−1 = 2n, for some positive 
integer n, then let 1 1 2 2, ,......,f e f f n=  be a partition of 
unity by orthogonal projections in L, such that for any odd 
integer k < 2n, there exists a unitary 1k f fk kV L + +∈ , with 

*
1k k k kf V f V+= . Using our definition of f1 = e1, this 

implies, ( ) 1 3 0 2 1 1 32
*1

1 3 0 2 1 1 3
1 .

in
i

i i i

e e e f ze e
f

e e e V f V ze e
λ

−
=

−

  
 = −    +  
∑  

Let 1 .i n
iiU V=

== ∑  Then U is a unitary in L. Set 

2 11 .i n
iig f=
−== ∑  The we have, 

( ) ( )2
1 3 0 1 3 1 3 0 1 31 * .f e e e gze e e e e UgU ze eλ= − +  Next for 

each 1 ≤ i ≤ n, there exists a unitary 1 2 1i e f im L + −∈  such 

that *
2 1.i i i im e m f −=  Hence *

1 .i n
i i iig m e m=

== ∑  Next since 

for ,i j≠  ( )( )* * 0.i i i j j jm e m m e m =  Thus we get 

( )* *
1 1 0.i i j jtr m e m m e m =  For ,i j≠  let us define 

*
1 1.j iy e m m e=  Then it is easy to check ( )* 0.tr yy =  This 

implies that y = 0. Another useful relation that we will 
need later is the following equality, *

1 1 1e qq e ne=  that can 
be checked easily. Let us define the operator h, with 

( ) ( )* *
1 1i ki kh m e m qe q= =∑ ∑  with, 1≤ i, k ≤ n and 

iiq m= ∑ . Then using the above relations we can see 

that h is a projection, tr(h) = tr(g), and *UhU is orthogonal 
to h. Hence we get, tr(h) = tr( *UhU ) = .5. This will 
implies that f can be expressed as, 

( ) ( )2 * *
1 3 0 1 1 3 1 3 0 1 1 31 *f e e e qe q ze e e e e Uqe q U ze eλ= − +  

Suppose λ−1 = 2n+1. Then we have the following partition 
of unity, 1 2 2 2 1, ,......, ,n ne f f f f += . Where the above 
projections have equal traces. Furthermore ther exists a 
unitary 2 1 2 1e f nU L + +∈  such that f can be expressed as, 

( )
* * *

1 3 0 1 1 3 1 3 0 1 1 32
* *

1 3 0 2 1 2 1 3

1 .
e e e qe q ze e e e e Uqe q U ze e

f
e e e U qe q U ze e

λ
+

= −
+

 
 
 
 

 then 

we have the following partition of unity by the following 
projections, 1 2 3 2 1 2 1 2 0, , ,......, , , .n ne f f f f f fσ σ+=  Where 
σ1 and σ2, can only take values 0 or 1, depending if the 
corresponding projections f2n+1 and f0 are or are not equal 
to zero. Furthermore for k ≠ 0, all non zero projections fk's, 
have equal traces and tr(f0) < λ. Hence generally f can be 

expressed as, ( )

*
1 3 0 1 1 3

* *
2 1 3 0 1 1 3

*
1 1 3 0 2 1 2 1 3

*
2 1 3 0 3 1 3 1 3

1 .

e e e qe q ze e

e e e Uqe q U ze e
f

e e e U e U ze e

e e e U e pU ze e

λ
σ

σ

 
 
 +
 = −
 +
 
 + 

 

Where U and U2 are as in the above, U3 a unitary in 

1 0e fL +  and p, is a sub projection of e1 and is in 1e fL + . At 
this point note that we can extend U2 and U3 to be unitaries 
in L. Finally we can express f, as 

 ( )

( )( )
( )( )
( )( )
( )( )

*
1 3 0 1 3 1 3 1 3

* *
1 3 0 1 3 1 3 1 32

*
1 1 3 0 2 1 3 1 3 2 1 3

*
2 1 3 0 3 1 3 1 3 3 1 3

1 .

e e e qe e e e q ze e

e e e Uqe e e e q U ze e
f

e e e U e e e e U ze e

e e e U e e p e e U ze e

λ
σ

σ

 
 
 
+ 

= −  
 +
 
 + 
 

 

Now let us set the following notations. 
1 1 3 0 1 3,n e e e qe e=  2 1 3 0 1 3,n e e e Uqe e=  3 1 3 0 2 1 3,n e e e U e e=  

4 1 3 0 3 1 3n e e e U e e=  and 1, 3e eG N= . 

Lemma 2 Keeping the same notations as in the above, and 
assuming that σ1 and σ2 both different from zero and 
without loss of generality, we have the following equalities. 

( ) ( )* *
1 31, 3 1, 3

, , 0, 1,1,3, 4.N k k N j ke e e e
E n n e e j k E n n k= ≠ = =  

Proof Note that since 3e  commues with all the above 
operators, drop-ping 3e  from all the operations does not 
makes any different from the final outcome. So in the 
following operations we ignore the existence of 3e . In 
particular we can identify 1eN  with 1eG N= . Since the 
proof of the above equalities are very similar, we only 
show some of the equalities. We have 

* *
1 1 1 0 1 0 1.n n e e qe q e e=  Hence we get, ( )*

1 1GE n n  

2 * 2
1 1 1.e qq e n eλ λ= =  Next * * *

2 1 1 0 1 0 1n n e q U e e e qe=  
* *

1 0 1.e q U e qeλ=  Thus ( )* 2 * *
2 1 1 1GE n n e q U qeλ=  

2 * *
1 1e q U qeλ= . But we have, * *

1 1 1 1 1/ /e e qq e n e qq e n=  

1.e=  This implies, ( )* 2 2 * * * *
2 1 1 1 1 1GE n n n e q qe q U qe q qeλ−=  

( ) ( )2 2 * * * * *
1 1 1 1n e q U U qe q U qe q qeλ−= . But ( )* *

1U qe q U  is 

orthogonal *
1qe q  which implies that ( )*

2 1 0.GE n n = . Fur-

thermore * * *
3 3 1 2 0 1 1 0 2 1 1 2 0 1.n n e U e e e e U e e U e qeλ= =  Hence 

we get, ( )* 2
3 3 1.GE n n eλ=  Next * *

3 1 1 2 0 1 1 0 1n n e U e e e e qe=  
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*
1 2 0 1.e U e qeλ=  This implies, ( ) 2 *

3 1 1 2 1GE n n e U qeλ=  
* * * * * *

1 2 1 1 2 2 1 2 1 1/ / .e U qe q qe n U U e U q e q qe n= =  But using 

the above relations, ( )( )* *
2 1 2 1 0,U e U qe q =  which implies 

( )*
3 1 0.GE n n =  Now let us calculate ( )*

1 4 .GE n n  

( ) ( )* * 2 *
1 4 1 0 1 1 0 3 1 1 3 1G GE n n E e q e e e e U e p e q U e pλ= =  

2 * *
1 3 1 3 3e q U e pU Uλ= . Now using the above relations we 

can show that * *
1 3 3 0,e q U pU =  hence ( )*

1 4 0.GE n n =  

Assuming that Me1e3 is acting standardly on H = [Me1e3 ] 
and L(P1) = M, the above lemma implies that the operator 
identity can be spanned by at most four orthogonal 
projections in G each of trace less or equal to λ. Hence by 
Remarks(1.4) [13], we get the following Corollary, 
Corollary 3 Keeping the same notations as before, for 
[M:N] > 4, H(P1) is a proper middle subfactor. 

As before let IIR represents the set of all indices of 
irreducible hyperfinite subfactors. 

Suppose H(P1) is a proper middle subfactor, ie' L(P1) ⊂ 
H(P1) ⊂ M, where the inclusions are restrict. Let us denote 
r1 = [H(P1):L(P1)] and r2 = [M:L(P1)]. Also using the 
fundamental property of the index of subfactors, r1r2 = r = 
[M:L(P1)] = [M : N][N : L(P1)]. But [M : N] =λ−1 and 
[N:L(P1)] = (tr(P1)(tr(P2))−1 Hence r = r1r2 = 
λ−1(tr(P1)tr(P2))−1 And by the results of [5], r∈IIR. Now 
notice that by the result of S.Popa in "Subfactors and 
classification in von Neumann algebras" Corollary(4.4) of 
the above article indicate the gap in IIR between the 
values 4 and 2 5+ . In fact 2 5 4.026,+   corresponds 
to the square of the norm of Coxeter graph E10 and there 
exists a subfactor of such an index. By its definition P1 = 
qe1e3 and we had λ = tr(e1) λ1 = tr(e3). Hence tr(P1) = 
tr(q)λλ1. Let us set c = tr(q), and 2 5ω = +  then c can 
take any value in the interval [0,1]. Note also that (λ1)−1 
can take any value in IIR larger than .5. Let us denote, 

1,α λλ=  cβ α= , then β  = tr(P1). Note that ( ) 1α −
 can 

take any value in IIR larger than or equal to 2ω . Hence if 
we set 1,cβ λλ=  then we have ( )0 1/ 2 .β ω≤ ≤  Since q 
can be taken to be any projection in Q3, tr(P1), can get any 
value in the interval ( )0,1/ 2ω   . This implies the 
following theorem. 

Theorem 4 Keeping the same notations as in the above, 

suppose 1λ ω− =  and ( ) 1
1 2.λ − =  Let N ⊃ M, [M:N]=λ−1 

be a pair of irreducible subfactors and lets define a 
projection p = qe1e3, for some projection q in Q3. Then 
H(P1) =<L(P1), p1ep2> is a proper irreducible subfactor of 
M. In particular letting q to vary in Q3, we will get that IIR 
includes the interval ( )( )/ 1/ 2 1 1/ 2 ,ω ω ω− ∞    

[ )37.0037,∞ . 
At this end note that by the above arguments there 

exists a function Ф, acting on the above interval 
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