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Abstract

In this article we are going to construct a family of type II; subfactors each containing a middle

subfactor. As a result of the above construction we show that the set of the indices of hyperfinite irreducible

subfactors contains the interval [37.0037,).
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1. Introduction and Priliminaries

In the next chapter we are going to use locally trivial
subfactors to construct a set of middle subfactors. The
important of locally trivial subfactos was indicated by
S.Popa at [9]. The simplest locally trivial subfactors are
those having only two orthogonal projections in their
relative commutant. It is well known that these subfactors
are isomorphic to Jones subfactors.. Also it is easy easy to
show that these kind of subfactors do not posses middle
subfactors. For the locally trivial subfactors that their
relative commutant have dimension larger than two we
believe that the above result is still valid ie’there are no
middle subfactors. Suppose we are Given a pair L ¢ M of
subfactors that are limiting algebras of a tower of
commuting squares.

Then using the results in [1] we can show that if the
inclusion graphs of the corresponding finite C* algebras
are A graphs, then the subfactors L < M do not have
middle subfactors. One of the problems in the index
theory, is to find the set of all the values for the indices of
hyperfinite irreducible subfactors. Using the above
constructions, we are going to show that the above set
contains the interval (37.0037,).

2. Main Results

For a given pair of subfactors N = M, With [M:N] = A
<oo. Let e be a projection in M that induces the expectation
N onto Q = (e)'~N. Let P,,P, = 1-P, be a partition of unity
in Q. Using standard argu-ments as in [5], there exists an
isomorphism @, taking Np1onto Np2. Let L(P;) be the set
of all the elements of the form L(P;) = (X +®(x); xeNP1).
Then it is well known that L(P,), is a locally trivial
subfactor of N. Also by (Lemma2.2.1) [5], [N : LP] =

1=tr(P1) + 1=tr(P2). Where tr is a unique normalized trace
on M. Suppose P1, does not communicate with e, = e. Set
y = P1eP2 = 0. Note that the relative commutant of L(P,),
inside M is spanned by the projection P,. Since y, does not
communicate with P;, we have that the algebra, H(P,) =<
L(P,); Y > is a middle subfac-tor which is strictly larger
than L(P,) If under certain conditions H(P,) becomes
strictly smaller than M, then H(P;) becomes a proper
middle sub-factor. In this case by the above arguments it
is easy to see that the inclusions H(P;)> L(P,) and
H(P,)cM are irreducible inclusion of subfactors. Let us
denote r; = [ H(Py) : L(P;)] and r, = [M : H(P,)]. Let IR,
be the set of all irreducible subfactors of finite index. Let
us denote by IIR, the set of indices of all subfactors in IR.
Then by (Proposition2.1.15) [5] ryr; is in HIR. It is easy to
check that the set of of the elements f of the form f =Xje;
ujgziegw;, with g = Eq(P2), z€Q, uj= P1xP1, wj = P1y;P4,
X;eN y;eN where J is a set of indices is dense in (H(P1))P:.
Let e; be a projection in N, such that EQ(e;) = A. Then e;
induces the expectation of Q onto the subfactor Q; =
(e)nQ. Next for a number r, rellR, construct an
irreducible subfac-tor Q,, Q,cQ, with [Q;: Q,] =r. We
can define the projection ez, Using (corollary 1.8) [13],
there exits a projection ez in Qg, such that e; induces the
expectation of Q, onto The subfactor Qs;, with Q; =
(e3)'mQ,. This process will induce the following tonnel,
MoN > Q > Q; o Q,> Qa. Let us set Py = gejeswith g a
projection in Qs. Now we can check that the following set
of elements, f of the form,

2 2
f=R(1-2) e (X s xj25Y; | R =(1-2)° ReorR,
with z = ZJ.EJ Xjzjyj ., with Xj,z;,y; as in the above

and J a set of indices will be a dense subset of (H(Py))P..
In particular assuming now that H(P;) = M implies that
the above set of elements are dense in MP4. Furthermore as
we mentioned in the above for any number rellR; e;eQ;
can be chosen such that tr(es) = r. For example suppose
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tr(e,) = tr(ep) = .5. Then it is easy to see that there exists a
unitary V e(es)'nN = L, with L a type z; Von Neumann

algebra, such that V e;V* =1 — e;. Then we can express
the f from the above as f = A(1 —k)zelegzeleg + (e18380V
e1€3)(e183V*ze163). For a given real number S, let [S], be
the largest integer which is smaller or equal to [S]. Let us
set S, = S — [S]. Let us assume now that H(P;) = M, We
will get the following results.

Lemma 1 Keeping the same notations as in the above

let 271 =[ﬂ‘1}+}tr‘1. Then there exist unitary operators
U, U,, Uz in L and projection p<e,;, such that f can be
expresses as in the following, f = (1—/12)(ele3eoqelq*zele3
+€16380Ue g *U * 2163 + 018 8389U 26U ; Ze1€3

+0,81830U3eU37e183). With o1, will be equal to 1 if
[/1‘1} odd integer and equal to zero otherwise. Simi-larly

o2 is equal to 1 if A7 is not an integer and equal to zero
otherwise.

Proof First suppose tr(e) ™ = A = 2n, for some positive
integer n, then let f; =e, f5,......, fon be a partition of
unity by orthogonal projections in L, such that for any odd
integer k < 2n, there exists a unitary Vi € Ly, , ¢ ., With

fie =Vic fieaaVic -

€,656q fri 12618
implies, ~ f :<1—z>2[2?=1[ e s D

Using our definition of f; = ey, this

+ele3eovi f2i_1Vi 2863
Let U:Z?f”v-. Then U is a unitary in L. Set
g= ZI _, fai The we have,

f =(1—/1) (e1e38002€1€3 +€18380UgU * zeje3). Next for
each 1 <i<n, there exists a unitary m; € L, , ¢, , such

that me,mI = fy_1. Hence g= Z me,mI Next since

for i=#j, (mieimi)(mjejm) 0. Thus we get

tr(mielmrmjelm]f)zo. For i=]j, let us define

y :elm]fmiel. Then it is easy to check tr(yy*):o. This
implies that y = 0. Another useful relation that we will

need later is the following equality, equ*e1 =ne, that can
be checked easily. Let us define the operator h, with

h:(zimi)el(zkm;):qelq* with, 1< i, k < n and
q =Zimi . Then using the above relations we can see

that h is a projection, tr(h) = tr(g), and UhUis orthogonal

to h. Hence we get, tr(h) = tr(UhU*) = .5. This will
implies that f can be expressed as,

f= (1—/1)2 (elegeoqelq*zeleg +e1e3e0qu1q*U *zeleg)

Suppose A = 2n+1. Then we have the following partition
of unity, e=f}, fs,......, fon, fong - Where the above
projections have equal traces. Furthermore ther exists a
unitary Up € Lg ¢, ., such that f can be expressed as,

eleSquelq*zele3 + ele3e0qulq*U *28_1_83

f=(1-12) 2 then
+ejesegU 08,0 Upzeie;

we have the following partition of unity by the following

projections, e= fy, f,, f3,......, Ton, 01 fonig, 00 fp. Where

o, and o,, can only take values 0 or 1, depending if the
corresponding projections f,,.; and fy are or are not equal
to zero. Furthermore for k = 0, all non zero projections fk's,
have equal traces and tr(fy) < A. Hence generally f can be

e1e3600e1 Z€;€3

/1)2 +e1e3e0qu1q*U*zeleS

expressed as, f=(1-

+01616389U 00U ;ze1e3
+O'2€1€3€0U 36 pU;zele3
Where U and U, are as in the above, Uz a unitary in
Le,+ £, @nd p, is a sub projection of e;and isin Lg , ¢ . At
this point note that we can extend U, and Us to be unitaries
in L. Finally we can express f, as

(ere3e00eres )(e.l.e3q*zele3 )

) +(ere3eqUqe 3 )(e1e3q*U “zeje5 )
f=(1-12)

*
+071 (€18380U 2€1€3) (eleSU 22€€3 )

*
+09 (ele3EOU 3663p ) (ele3U 326163 )

Now let wus set the following notations.
M = €63€00€183, Ny =e€1€3e0Ude1e3, N3 =e18380U 58183,
ng =ejesegUzeres and G = Ng ¢, -
Lemma 2 Keeping the same notations as in the above, and
assuming that o; and o, both different from zero and
without loss of generality, we have the following equalities.

ENe1,e3 (n;nk)zele3, j# k’ENe1’e3 (n nk) 0,k=1134.

Proof Note that since e; commues with all the above
operators, drop-ping e; from all the operations does not

makes any different from the final outcome. So in the
following operations we ignore the existence of es. In

particular we can identify Ne, with G = Ne, - Since the

proof of the above equalities are very similar, we only

show some of the equalities. We  have
nlnI:eleoqelq*eOel. Hence we get, EG(nlnf)
Next  nyn =eq U epeeoae

Es (mn) = A%’V ey

= lzequ*el = Mzel.
= /lelq*U *eoqel. Thus
= /Izelq*U *qel. But we have, elequ*el In= equ*elln
=¢. This implies, Eg (nan): n?2%q qe,q'U qe,q qe
=n?a%q'U’U (qelq*)U* (qelq*)qel. But U (qelq*)U* is
orthogonal qelq* which implies that Eg (n;nl)zo.. Fur-
thermore ngng = ejUepe1e180U 8 = AeUseoqe;.  Hence

we get, EG(ngn;)zﬂzel. Next ngnlzeluzeoeleleoqel
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= ZeUseqqe;.  This implies, Eg(ngny)=2%eU5qe;

= eluzqelq*qel In= U;U zeluzq*elq*qel /n. But using

the above relations, (Uzeluz)(qelq*):o, which implies
Eg (n;nl):o. Now let us calculate EG(nfn4).

* * 2 *
Se (”1“4)= Se (elq eoeleleouselp)=ﬁ €9 Use, p
:Zzelq*Ugel pU§U3. Now using the above relations we
can show that elq*U3 pUé =0, hence Eg (nfn4) =0.

Assuming that Me;e; is acting standardly on H = [Me;e;]
and L(P;) = M, the above lemma implies that the operator
identity can be spanned by at most four orthogonal
projections in G each of trace less or equal to A. Hence by
Remarks(1.4) [13], we get the following Corollary,
Corollary 3 Keeping the same notations as before, for
[M:N] > 4, H(P,) is a proper middle subfactor.

As before let IR represents the set of all indices of
irreducible hyperfinite subfactors.

Suppose H(P,) is a proper middle subfactor, ie' L(P;) <
H(P,) < M, where the inclusions are restrict. Let us denote
r1 = [H(P):L(PY)] and r, = [M:L(P1)]. Also using the
fundamental property of the index of subfactors, rir,=r =
[M:L(P)] = [M : N][N : L(Py]. But [M : N] =»* and
[N:iL(P)] = (tr(P1)(tr(P2))™* Hence r = rr, =
A (tr(P1)tr(P2))™ And by the results of [5], rellR. Now
notice that by the result of S.Popa in "Subfactors and
classification in von Neumann algebras” Corollary(4.4) of
the above article indicate the gap in IIR between the
values 4 and 2++/5. In fact 2++/5 = 4.026, corresponds
to the square of the norm of Coxeter graph E10 and there
exists a subfactor of such an index. By its definition P1 =
ge:ez and we had A = tr(e;) A1 = tr(es). Hence tr(P1) =
tr(q)AA1. Let us set ¢ = tr(q), and w = 2++/5 then ¢ can
take any value in the interval [0,1]. Note also that (A1)
can take any value in IIR larger than .5. Let us denote,

a=2A%, B=ca,then g = tr(P1). Note that (a)_l can
take any value in IR larger than or equal to 2@ . Hence if
we set B =cA4, then we have 0< B <1/(2w). Since
can be taken to be any projection in Qs, tr(P1), can get any
value in the interval [0,1/(2@)] . This implies the
following theorem.

Theorem 4 Keeping the same notations as in the above,
suppose A~* = w and (2,1)71 =2. Let N o M, [M:N]=A""

be a pair of irreducible subfactors and lets define a
projection p = ge;es, for some projection q in Qs. Then
H(P,) =<L(P,), p.ep>> is a proper irreducible subfactor of
M. In particular letting q to vary in Qs, we will get that IR

includes  the interval  [@/(1/20)(1-1/20),% |

~[37.0037,0).

At this end note that by the above arguments there
exists a function @, acting on the above interval
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