
On Computing Exact Visual Hulls of Solids Bounded by Smooth Surfaces

Svetlana Lazebnik Edmond Boyer Jean Ponce
Beckman Institute Movi–Gravir–Inria Rhône-Alpes Beckman Institute

University of Illinois, Urbana, USA Montbonnot, France University of Illinois, Urbana, USA

slazebni@uiuc.edu Edmond.Boyer@inrialpes.fr ponce@cs.uiuc.edu

Abstract

This paper presents a method for computing the visual hull
that is based on two novel representations: the rim mesh,
which describes the connectivity of contour generators on
the object surface; and the visual hull mesh, which de-
scribes the exact structure of the surface of the solid formed
by intersecting a finite number of visual cones. We describe
the topological features of these meshes and show how they
can be identified in the image using epipolar constraints.
These constraints are used to derive an image-based prac-
tical reconstruction algorithm that works with weakly cal-
ibrated cameras. Experiments on synthetic and real data
validate the proposed approach.

1. Introduction

Most algorithms for surface reconstruction from outlines
compute some form of thevisual hull [10], or the intersec-
tion of solid visual cones formed by back-projecting silhou-
ettes found in the input images. The basic approach dates
back to Baumgart’s 1974 PhD thesis [1], where a polyhedral
visual hull is constructed by intersecting the viewing cones
associated with polygonal silhouettes. Volume intersec-
tion has remained the dominant paradigm for decades, im-
plemented using representations as diverse as octrees [15]
and triangular splines [14]. More recently, graphics re-
searchers have presented efficient algorithms that avoid
general 3D intersections by taking advantage of epipolar ge-
ometry [11, 13]. Given an image sequence from a camera
undergoing a continuous motion, it is also possible to avoid
explicit intersections by reconstructing the visual hull as the
envelope of the surface tangent planes along the smoothly
deforming occluding contours [2, 3, 16].

Defined in full generality, the visual hull is the maxi-
mal shape consistent with an object’s silhouettes as seen
from any viewpoint in a given region, and theexactvisual
hull is the visual hull with respect to a continuous region
of space surrounding the object [10]. In this paper we do
not treat such limiting cases, but consider the visual hull
associated with a finite number of isolated viewpoints (in

this discrete formulation, the volume intersection and the
silhouette-consistency definitions are equivalent). We rep-
resent the visual hull as a generalized polyhedron: the faces
on its surface are visual cone patches, edges are intersection
curves between two viewing cones, and vertices are isolated
points where more than two faces meet. In this context, a
visual hull is exact when it correctly captures the connec-
tivity of these features. Based on this notion of exact visual
hulls, we specify a novel reconstruction algorithm that does
not rely on polyhedral intersections or voxel-based carving,
and produces precise topological and geometric meshes.

2. Preliminaries

We assume that we are observing a solid object with weakly
calibrated pinhole cameras. The surface of the object is
smooth and without planar patches, and the cameras are
in general position. It is also assumed that apparent con-
tours of the object have been identified in each input view
and oriented counterclockwise, so that the image of the ob-
ject always lies to the left of the contour. To simplify the
presentation, we also assume that contours do not contain
singularities such as T-junctions and cusps, and restrict our
attention to objects of genus0.

In the rest of the paper, we use the following terminol-
ogy. Therim or contour generatorassociated with a camera
is the set of all surface points where the optical ray through
the pinhole grazes the object. For general viewpoints, the
rim is a smooth space curve without singularities [4]. Two
rims can intersect at isolated points on the surface, called
frontier points[3, 8, 12], where the viewing rays from both
pinholes lie in the surface tangent plane. The projection
of a rim onto the image plane of a camera is theapparent
contour. The set of rays from one camera center passing
through points on the surface forms thevisual coneassoci-
ated with that camera. As described in the introduction, the
solid formed by the intersection of all given viewing cones
is thevisual hull. Note that the shape of the viewing cones
depends only on the camera center and on the shape of the
object, not on the position of the image plane. Thus, pro-
jective geometry is sufficient to describe the structure of the

1



visual hull. In particular, it is possible to develop a visual
hull algorithm that relies only on weak calibration.

Imagine sweeping out a cone of optical rays along one
apparent contour. Since each ray must graze the object
along the rim, each ray must lie on the visual hull for some
non-empty interval around its point of tangency with the
object surface. In this way, each ray contributes an interval
to the surface of the visual hull, and the collection of these
intervals along all rays forms acone stripthat continuously
bounds the rim on each side. Strips are delimited by seg-
ments ofintersection curvesbetween pairs of visual cones.
An intersection curve generally does not lie on the surface,
except at frontier points, where the tangent planes to the
two cones and to the object coincide [5]. At these points,
the intersection curve is singular: it has four branches that
converge to create a characteristic X-shape (see Figure 1).

Figure 2 shows an example of an ovoid observed by three
cameras. Three viewing cones are drawn, along with inter-
section curves and rims. The figure shows frontier points
and triple pointswhere three viewing cones intersect. In
the figure, each frontier point is incident to four rim arcs
and four intersection curve branches, and each triple point
is incident to six intersection curve branches, only three of
which belong to the visual hull. It can be shown that these
incidence relations hold in general.

N

Ci
Cj

apparent contours

rims

intersection curve

strip 1
strip 2

frontier point

Figure 1: A surface observed by two cameras. The two rims
intersect at the frontier point where two cone strips cross.

Now we introduce the two meshes computed by our al-
gorithm. Therim meshis defined on the surface of the ac-
tual object. Its vertices are frontier points, edges are rim
segments between two successive frontier points, and faces
are regions of the surface bounded by two or more edges.
A conceptual precursor of the rim mesh is theepipolar net
of Cross and Zisserman [5], who informally discuss, but
do not construct, the arrangement of rims on the surface of
an object as the camera moves. Thevisual hull meshis a
topological description of the configuration of visual cone
patches on the surface of the solid formed by the intersec-
tion of all given visual cones. Its vertices are frontier points
(where two strips cross) and triple points (where three cones
intersect), edges are intersection curve segments between

two consecutive vertices, and faces are the cone patches that
make up the strips. Examples from Figures 1 and 2 illustrate
the fact that successive frontier points on one rim break up
the cone strip along that rim into separate faces. Thus, there
exists a one-to-one relationship between edges of the rim
mesh and faces of the visual hull mesh. Continuing with
the example of Figure 2, Figure 3 shows the rim and visual
hull meshes of the ovoid.

2

3

1

1

R

R

R
C

C

C

2

3

A

B

C

Figure 2: Configuration of rims and intersection curves for an
ovoid observed by three cameras. Rims are dashed arcs, frontier
points are labeled dots, and triple points are squares. Dotted arcs
are intersection curve branches outside the visual hull.

B

C

A’

C’

B’

A

Figure 3: The rim and visual hull meshes of the ovoid from Figure
2. Frontier points are circles, and triple points are squares. Rim
segments (edges of the rim mesh) are dashed. Intersection curve
segments (edges of the visual hull mesh), are bold lines. Note that
frontier points A0, B0, and C0 belong to the region of the surface not
visible in the previous figure.

3. Computing the Rim Mesh

We begin by computing the frontier points, which are the
vertices of the rim mesh. At a frontier pointPij due to
views i andj, the tangent plane to the surface is also the
epipolar plane determined byPij and the camera centersCi andCj . In the images, this means that corresponding
epipolar lineslij andlji are both tangent to the respective
contours at the projectionspi andpj of Pij . Figure 4 il-
lustrates this basic setup, along with other notation that we
will need later. Finding a pair of matching frontier points in
imagesi andj is a one-dimensional search problem, where

2



Pij

pi

pj

Ci

Cj

lij

eji

N
Ti

Tj

RiRj

v

t

lji

eij

Figure 4: Pij is a frontier point where two rims Ri and Rj in-
tersect. Pij projects onto points pi and pj at which the respective
contours are tangent to the two matching epipolar lines lij and lji.
we parametrize the pencil of epipolar lines by their slope
and look for linelij that is tangent to theith contour, such
that the corresponding linelji in thejth image is tangent to
the jth contour. In the presence of contour extraction and
calibration errors, there may not exist a pair of matching
epipolar lines that exactly satisfy the tangency constraint.
In this situation, we find approximately matching frontier
points such that the angle difference between the tangent
line in one image and the reprojected epipolar tangent from
the other image is minimized. Difficulties caused by data
error will be further discussed in Section 4.

We obtain all frontier points by matching their projec-
tions in two images. The four rim edges incident to a par-
ticular frontier point are given by intervals on the two ap-
parent contours that are incident to this point. Thus, there
exists a one-to-one correspondence between contour seg-
ments in the images and edges of the rim mesh. The ori-
entation of rim edges is then given by the orientation of the
corresponding contour segments. In this way, we obtain the
complete adjacency information for edges and vertices of
the rim mesh. To compute the faces, we need to know the
relative ordering in space of the four rim segments incident
on each vertex. More formally, we associate with each fron-
tier pointPij a circular listI where the four edges appear
in CCW order around the surface normal. LetTi,Tj be the
tangents to the rimsRi andRj atPij (see Figure 4). Then
the indexi appears before the indexj in the ordered listI
iff (Ti ^Tj) �N > 0; (1)

whereN is the outward-pointing surface normal (computed
as the cross product of the oriented tangent to the contour
and the viewing direction).

Equation (1) gives rim ordering in terms of of tangents
to the apparent rims, which cannot be computed given
only image information. Therefore, we need an equivalent
image-based expression for rim ordering. Consider imagei and letv be the direction from the epipoleeij to pi, the
projection ofPij . Let alsot be the tangent to the contour
atpi (see Figure 4), and letks be the apparent curvature at

pi. Then rimsRi andRj are CCW oriented atPij iff(v � t) ks > 0: (2)

The above expression is equivalent to (1), and the fol-
lowing is a brief sketch of the proof. When the viewing
direction rotates in the surface tangent plane around the
normal atPij , the tangent to the rim also rotates. The di-
rections of camera and tangent rotation are the same if the
surface is elliptic atPij and opposite if the surface is hy-
perbolic. This is a direct consequence of the fact that the
Gauss map of the surface is orientation-preserving at ellip-
tic points and orientation-reversing at hyperbolic points[6].
Thus two rimsRi andRj are CCW oriented if (a) the cam-
era rotates CCW around the normal from positioni to j and
the surface is elliptic atPij ; or (b) the camera rotates CW
and the surface is hyperbolic. The sign ofv � t is positive if
the camera rotates CCW in the tangent plane and negative
otherwise. Moreover, the sign of the apparent curvatureks
is positive if the surface is elliptic or negative if the surface
is hyperbolic [9]. Thus, expression (2) is positive in the two
above mentioned cases and negative otherwise. It is there-
fore the desired image-based expression equivalent to (1).

Given the above rim ordering criterion, it is straightfor-
ward to trace the loops of edges bounding rim faces. Sup-
pose we start with one rim segments of the rimRi and want
to find the face that lies to its left. Informally, we traverses along its direction and at its endpointPij , simply take a
left turn to get to the next edge, that is, we select the edge
precedings in the ordered circular list ofPij . We move
from endpoint to endpoint in this manner, traversing edges
either forward or backward along their orientation, takinga
left turn each time until we complete a cycle.

4. Computing the Visual Hull Mesh

As demonstrated in the previous section, we can com-
pute the topology of the rim mesh without knowing any-
thing about its geometry, except for the positions of fron-
tier points (note that under weak calibration we can only
recover these positions up to a projective transformation).
This topology constrains the adjacency relationships be-
tween triple points and intersection curves, which are the
vertices and edges of the visual hull mesh.

A triple pointPijk the intersection of three optical rays
back-projected from contour pointspi, pj , andpk in three
different images (see Figure 5). In particular,pk satisfies
thetransfer equation[7]pk = lki ^ lkj = (Fik pi) ^ (Fjk pj); (3)

whereFmn is the fundamental matrixmapping points in
imagem to epipolar lines in imagen, and homogeneous

3



pi

pk

lki

lkj

pj

lji

Pijk

Cj

Ci

Ck

Pi

Pj
Pk

Gij

gij

Figure 5: The triple pointPijk is a “phantom point” where the rays
formed by back-projecting epipolar correspondents pi, pj , and pk
meet in space. Pijk can be located by tracing the intersection curve�ij between views i and j and noticing when its projection 
ij in thekth image crosses the contour.

coordinates are used for image points. Pointspi andpj sat-
isfy symmetric equations. Any pair ofpi, pj andpk are
epipolar correspondents— that is, any two of the points lie
in the epipolar plane defined by the two camera centers and
one of the points [2]. A triple point is a standard trinocular
stereo correspondence, but it does not usually lie on the sur-
face becausepi, pj andpk are projections of three different
pointsPi,Pj , andPk on three different rims.

Just as with finding frontier points, finding triple points
is a one-parameter search. We walk along theith contour in
discrete steps and for each contour pointpi find the epipolar
line lji = Fij pi in imagej, and locate an epipolar corre-
spondentpj by intersectinglji with the jth contour. We
then obtain a third pointpk by transferringpi andpj using
(3) and check whetherpk lies on thekth contour. As shown
in Figure 5, transfer of successive epipolar correspondents
allows us to trace the intersection curve�ij betweenith andjth cones in thekth image. The triple point is revealed when
the traced curve crosses thekth contour.

In general, epipolar correspondents are not unique. In
the case shown in Figure 5, each epipolar line intersects
each contour twice (this reflects the fact that intersection
curves have multiple branches). Moreover, the epipolar cor-
respondence criterion does not say when a triple point be-
longs to the visual hull — the additional constraint is that
the point must not project outside the silhouette in any other
input view. However, if we are able to exactly compute the
positions of frontier points along the contours, we can use
this information to simplify the search for triple points.

Each face of the rim mesh is bounded by rim segments
that also belong to the surface of the visual hull, so we can

identify faces with regions on the surface of the visual hull
that have the same boundary. Consider a single facef of the
rim mesh. The edges off tell us which viewing cones con-
tribute to the visual hull inside the region identified withf ,
and give us a corresponding subset of contours that need to
be searched for triple points belonging to this region. Since
each edge off corresponds to a single contour interval in
some image, any triple point that belongs tof must project
to a point along these intervals. Thus, it is sufficient to trace
intersection curve segments between each pair of these in-
tervals and find triple points when the curve being traced
goes outside the contour in one of the other views that con-
tribute tof . Taking each face separately, we compute triple
points, intersection curves, and their connectivity. Since we
know which pair of cones gave rise to each segment of an
intersection curve, we can identify all the segments bound-
ing a cone strip. Individual faces of the strips are identified
by grouping all the intersection curve segments that project
within the contour interval that corresponds to a particular
rim segment.

The algorithm described above yields the correct visual
hull mesh given exact input data (perfectly extracted con-
tours, error-free fundamental matrices). However, noise and
calibration error tend to destroy exact topological features,
most importantly, intersection curve crossings at frontier
points. Figure 6 illustrates the situation. The epipolar linelij is tangent to the contour at pointpi in theith image. This
line corresponds to the linelji in thejth image, which is not
tangent to thejth contour, but intersects it in two epipolar
correspondentspj1 andpj2. Intersecting the visual rays
due to these three points in the epipolar plane yields two
distinct intersection curve pointsPij1 andPij2, instead of
a single frontier point. Thus, instead of being singular, the
intersection curve separates into two distinct branches that
do not meet. In order to approximate the position of a fron-
tier point, we have to matchpi with the epipolar tangency
pointpj in thejth image. However, the two points do not
lie in the same epipolar plane, and visual rays through them
do not intersect. We could estimate the location ofPij as
the midpoint of the segment connecting the points of closest
approach of the two rays, but this approximated point does
not lie on the traced intersection curves. This leads to se-
rious consistency problems for a naive implementation that
attempts to strictly enforce combinatorial constraints onex-
act visual hull structure.

Intuitively, small perturbations to exact contour and cal-
ibration data result in contours that back-project to general
cones in space, the intersection of which does not have to
share the properties of exact visual hulls. For instance,
while we know that cone strips never break up in theory
(each ray interval along the strip must contain at least one
point), in noisy data, they may break up near the frontier
points as shown in Figure 6. Nevertheless, even with large

4



Pij1

pi

pj2

Ci
Cj

Pij2

pj1

pj

Pij

lij lji

Figure 6: Tracing intersection curves given inexact data (see text).
Intersection curve branches are shown as dashed lines.

errors in the data, the intersection of cones in space is still
well defined, and we can compute it using a variant of our
exact algorithm. We trace entire intersection curves, as op-
posed to breaking them up into pieces belonging to sepa-
rate faces of the rim mesh, and then clip out all compo-
nents of the curves that project outside any of the silhou-
ettes. In the process, combinatorial information about the
curves is maintained, so that it becomes possible to recover
the geometry of cone strips. Namely, boundary points of
the strips are connected in the order induced by the contour
parametrization, and are separated into two groups that cor-
respond to segments bounding the rim on the near and the
far side with respect to their distance from the camera. This
data structure is a monotone polygon, and it can be triangu-
lated in linear time for purposes of display.

5. Experimental Results

The first input sequence consists of six synthetically gener-
ated images of an egg model. Contours were extracted using
snakes and modeled as cubic B-splines. As seen in Figure
7, the algorithm correctly generates the rim mesh and the
visual hull, both in their topological and geometric form.
The contrast between these two forms is clearly visible by
comparing two renderings of the same strip in Figure 7 (f)
and (g). The exact strip explicitly shows frontier points and
triple points, and intersection curves are forced to converge
in four branches at frontier points. The triangulated strip
does not degenerate at frontier points, because the robust
strip tracing algorithm ignores them.

We also demonstrate results for two calibrated nine-
image turntable sequences of a gourd and a vase (Figure 8).
For both of these data sets, the algorithm constructs a com-
plete rim mesh, even though many of the frontier points are
densely clustered near the top and the bottom. To better vi-
sualize the structure of these meshes, we rendered their ver-
tices and edges as graphs using a publicly available graph
drawing program. The graphs, shown in Figure 8 (b) and
(h), reveal the regular structure of rim crossings which is
impossible to observe in the images themselves. Each rim
mesh in our examples obeys Euler’s formula for topologi-
cal polyhedra of genus0, V + F = E + 2 (note that the

meshes are actually planar, even though the graph layouts
shown are not). Because of stability problems inherent in
real-world data, the algorithm does not recover topological
visual hull meshes for these two data sets. Instead, we ob-
tain precise geometric models of the visual hulls that do not
capture every triple point, but are suitable as input for com-
mon modeling and rendering applications. Figure 8 shows
these models, along with selected strips. Note that the strips
degenerate completely for relatively large intervals nearthe
top and the bottom, in the areas of dense frontier points.
This behavior is not possible in theory, but it occurs in prac-
tice, as discussed in Section 4.

6. Discussion and Future Work

Our preliminary results are intriguing. Significantly, there-
covery of exact rim meshes has proven to be robust even
with densely clustered frontier points that do not lie on
matching epipolar lines. Note that the rim mesh struc-
ture depends only on the relative ordering of frontier points
along the rims, not on absolute positions — hence the rela-
tive stability of the topology. With visual hull meshes, the
situation is different: the connectivity of intersection curves
and triple points is elusive, while the geometry may still
be recovered reliably. It will be important to investigate
the question of whether these instabilities are inherent in
the conditioning of exact visual hull computation, or are
introduced by our algorithm. We are considering a differ-
ent approach to recovering the topology of the visual hull
mesh that would take full advantage of the combinatorial
constraints given by the structure of the rim mesh. We are
also working on extending our implementation to deal with
T-junctions and surfaces of arbitrary genus, to handle more
complex and visually interesting objects.

Overall, our approach has several attractive features.
Most importantly, it is based on an analysis of the exact
structure of visual hulls from finitely many viewpoints,
which has received little attention in previous research. Our
approach takes advantage of epipolar geometry and weak
calibration — in a sense, we don’t need to know where
the cameras are. Moreover, our algorithm uses only two-
dimensional computations, and constructs a range of shape
representations, from graph-theoretic and topological, to
completely image-based, to purely geometric. For these
reasons, it brings fresh insights to the theory and practice
of the venerable problem of visual hull computation.

Acknowledgments. This work was supported in part by the
Beckman Institute, the National Science Foundation under
grant IRI-990709 and a UIUC-CNRS collaboration agree-
ment.

5



7

0

14

1

8

13

2

19

9

23

3

22

12

4

10

11

5

16

15

6

17

21

20

18

0

24

2628 29

1

30 31

33

2

32

35 36

3

37

3940

4

42

43

5

4446

48

6

4749 50

7

25

8

27 52

53

9

54 55

57

10

5659

60

11

38 61

12

34

41

63

13

14

62

15 16

64

17

65

18

67

19

51

20

45 66

21

22

58

23

(a) (b) (c) (d) (e) (f) (g)

Figure 7: Egg results. (a) the rim mesh superimposed on one of the input outlines; (b) the vertices and edges of the rim mesh shown as
a graph (24 frontier points, 48 edges, 26 faces); (c) the visual hull mesh from shown from a viewpoint not in the input set; (d) a graph of the
visual hull vertices and edges (68 vertices, 114 edges, 48 faces); (e) a triangulated geometric model of the mesh; (f) one of the strips making
up the exact visual hull mesh; (g) a triangle model of the same strip.

(a) (b) (c) (d) (e) (f)
17

0

18

1

102

2

98

99

3

19

4

20

5

21

6

90

22

7

8791

23

8

71 88

24

9

51 72

10

25 52

11

103

26

12

100

101

27

13

37

38

1495

39

158396

40

166684

41

4567

46

47

48

49

50

53

28

36

54

29

35

60

55

30

34

59

56

31

33

58

32

57

76

77

61

62

42

43

44

64

65

68

69

70

73

74

75

79

63

80

81

93

82

85

86

89

78

92

94

97

(g) (h) (i) (j) (k) (l)

Figure 8: Top row: gourd results. (a), (b) the rim mesh and corresponding graph (96 vertices, 192 edges, 98 faces); (c) intersection curves
that make up the visual hull; (d) triangulated visual hull model; (e), (f) two of the strips from the model. Bottom row: teapot results. (g), (h) rim
mesh (104 vertices, 208 edges, 106 faces); (i) intersection curves on the surface of the visual hull; (j) visual hull model; (k), (l) two cone strips.

References

[1] B.G. Baumgart, “Geometric Modeling for Computer Vision”, Ph. D.
Thesis (Tech. Report AIM-249), Stanford University, 1974.

[2] E. Boyer and M. Berger, “3D Surface Reconstruction UsingOcclud-
ing Contours”,Int. J. Comp. Vision, 22(3), 1997, pp. 219-233.

[3] R. Cipolla, K. Astrom, and P.J. Giblin, “Motion from the Frontier of
Curved Surfaces”,Proc. IEEE Int. Conf. on Comp. Vision, 1995, pp.
269-275.

[4] R. Cipolla and P.J. Giblin,Visual Motion of Curves and Surfaces,
Cambridge University Press, Cambridge, 1999.

[5] G. Cross and A. Zisserman, “Surface Reconstruction fromMultiple
Views Using Apparent Contours and Surface Texture”,NATO Ad-
vanced Research Workshop on Confluence of Computer Vision and
Computer Graphics, 2000, pp. 25-47.

[6] M. do Carmo, Differential Geometry of Curves and Surfaces,
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

[7] O. Faugeras and L. Robert, “What Can Two Images Tell Us About a
Third One?”,Int. J. Comp. Vision, 18(1), 1996, pp. 5-19.

[8] P.J. Giblin and R. Weiss, “Epipolar Curves on Surfaces”,Image and
Vision Computing, 13(1): pp. 33-44, 1995.

[9] J. Koenderink, “What Does the Occluding Contour Tell Us About
Solid Shape?”,Perception, 1984, pp. 321-330.

[10] A. Laurentini, “The Visual Hull Concept for Silhouette-based Im-
age Understanding”,IEEE Trans. on Pattern Analysis and Machine
Intelligence, 16(2), 1994, pp. 150-162.

[11] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan,
“Image-based Visual Hulls”,Proc. SIGGRAPH2000, pp. 369-374.

[12] J. Porrill and S. Pollard, “Curve Matching and Stereo Calibration”,
Image and Vision Computing, 9(1): pp. 45-50, 1991.

[13] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller, “Reconstruct-
ing 3D Tree Models from Intrumented Photographs”,IEEE Computer
Graphics and Applications, 21(3), 2001, pp. 53-61.

[14] S. Sullivan and J. Ponce, “Automatic Model Construction, Pose Es-
timation, and Object Recognition from Photographs using Triangular
Splines”,IEEE Trans. on Pattern Analysis and Machine Intelligence,
20(10), 1998, pp. 1091-1096.

[15] R. Szeliski, “Rapid Octree Construction From Image Sequences,”
CVGIP: Image Understanding, 1(58), 1993, pp. 23-32.

[16] R. Vaillant and O. Faugeras, “Using Extremal Boundaries for 3-D
Object Modeling”,IEEE Trans. on Pattern Analysis and Machine In-
telligence, 14(2), 1992, pp. 157-173.

6


