On Computing Exact Visual Hulls of Solids Bounded by Smooth Surfaces
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Abstract this discrete formulation, the volume intersection and the

silhouette-consistency definitions are equivalent). e re

This paper presents a method for computing the visual hull resent the visual hull as a generalized polyhedron: thesface
that is based on two novel representations: the rim mesh,0n its surface are visual cone patches, edges are intensecti
which describes the connectivity of contour generators on Curves between two viewing cones, and vertices are isolated
the object surface; and the visual hull mesh, which de- points where more than two faces meet. In this context, a
scribes the exact structure of the surface of the solid farme Visual hull is exact when it correctly captures the connec-
by intersecting a finite number of visual cones. We describetivity of these features. Based on this notion of exact Misua
the topological features of these meshes and show how thefiulls, we specify a novel reconstruction algorithm thatsloe
can be identified in the image using epipolar constraints. not rely on polyhedral intersections or voxel-based cagyin
These constraints are used to derive an image-based pracand produces precise topological and geometric meshes.
tical reconstruction algorithm that works with weakly cal-

ibrated cameras. Experiments on synthetic and real data .. .

validate the proposed approach. 2. Preliminaries

We assume that we are observing a solid object with weakly
1. Introduction calibrated pinhole cameras. The surface of the object is

smooth and without planar patches, and the cameras are
Most algorithms for surface reconstruction from outlines in general position. It is also assumed that apparent con-
compute some form of thesual hull[10], or the intersec-  tours of the object have been identified in each input view
tion of solid visual cones formed by back-projecting silhou and oriented counterclockwise, so that the image of the ob-
ettes found in the input images. The basic approach dategect always lies to the left of the contour. To simplify the
back to Baumgart’s 1974 PhD thesis [1], where a polyhedral presentation, we also assume that contours do not contain
visual hull is constructed by intersecting the viewing cone singularities such as T-junctions and cusps, and restuict o
associated with polygonal silhouettes. Volume intersec- attention to objects of gends
tion has remained the dominant paradigm for decades, im-  |n the rest of the paper, we use the following terminol-

plemented using representations as diverse as octrees [13)gy. Therim or contour generatoassociated with a camera
and triangular splines [14]. More recently, graphics re- s the set of all surface points where the optical ray through
searchers have presented efficient algorithms that avoidthe pinhole grazes the object. For general viewpoints, the
general 3D intersections by taking advantage of epipolar ge rim is a smooth space curve without singularities [4]. Two
ometry [11, 13]. Given an image sequence from a camerarims can intersect at isolated points on the surface, called
undergoing a continuous motion, it is also possible to avoid frontier points[3, 8, 12], where the viewing rays from both
eXpliCitinterseCtionS by reconStrUCting the visual hslthe pinh0|es lie in the surface tangent p|ane_ The projection
envelope of the surface tangent planes along the smoothlyf a rim onto the image plane of a camera is #pparent
deforming occluding contours [2, 3, 16]. contour The set of rays from one camera center passing
Defined in full generality, the visual hull is the maxi- through points on the surface forms thisual coneassoci-
mal shape consistent with an object’s silhouettes as seerated with that camera. As described in the introduction, the
from any viewpoint in a given region, and tlegactvisual solid formed by the intersection of all given viewing cones
hull is the visual hull with respect to a continuous region is thevisual hull Note that the shape of the viewing cones
of space surrounding the object [10]. In this paper we do depends only on the camera center and on the shape of the
not treat such limiting cases, but consider the visual hull object, not on the position of the image plane. Thus, pro-
associated with a finite number of isolated viewpoints (in jective geometry is sufficient to describe the structuréhef t



visual hull. In particular, it is possible to develop a visua two consecutive vertices, and faces are the cone patches tha
hull algorithm that relies only on weak calibration. make up the strips. Examples from Figures 1 and 2 illustrate
|magine Sweeping out a cone of Optica| rays a|0ng one the fact that successive frontier pOintS on one rim break up
apparent contour. Since each ray must graze the Objeci:he cone Strip along that rim into Separate faces. ThU%ther
along the rim, each ray must lie on the visual hull for some €Xists a one-to-one relationship between edges of the rim
non-empty interval around its point of tangency with the mesh and faces of the visual hull mesh. Continuing with
object surface. In this way, each ray contributes an interva the example of Figure 2, Figure 3 shows the rim and visual
to the surface of the visual hull, and the collection of these hull meshes of the ovoid.
intervals along all rays formseone stripthat continuously
bounds the rim on each side. Strips are delimited by seg-
ments ofintersection curvebetween pairs of visual cones.
An intersection curve generally does not lie on the surface,
except at frontier points, where the tangent planes to the
two cones and to the object coincide [5]. At these points,
the intersection curve is singular: it has four branches tha
converge to create a characteristic X-shape (see Figure 1).

Figure 2 shows an example of an ovoid observed by three
cameras. Three viewing cones are drawn, along with inter-
section curves and rims. The figure shows frontier points
andtriple pointswhere three viewing cones intersect. In
the figure, each frontier point is incident to four rim arcs
and four intersection curve branches, and each triple point
is incident to six intersection curve branches, onIy three o Figure 2: Configuration of rims and intersection curves for an

which belona to the visual hull. It can be shown that these ovoid observed by three cameras. Rims are dashed arcs, frontier
g ’ points are labeled dots, and triple points are squares. Dotted arcs

incidence relations hold in general. are intersection curve branches outside the visual hull.

O
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apparent contours

¢ G Figure 3: The rim and visual hull meshes of the ovoid from Figure
2. Frontier points are circles, and triple points are squares. Rim
segments (edges of the rim mesh) are dashed. Intersection curve
segments (edges of the visual hull mesh), are bold lines. Note that
frontier points A’, B', and C' belong to the region of the surface not

Now we introduce the two meshes computed by our al- Visible in the previous figure.
gorithm. Therim meshis defined on the surface of the ac-
tual object. Its vertices are frontier points, edges are rim 3, Computing the Rim Mesh
segments between two successive frontier points, and faces
are regions of the surface bounded by two or more edgesWe begin by computing the frontier points, which are the
A conceptual precursor of the rim mesh is #ygipolar net vertices of the rim mesh. At a frontier poilR;; due to
of Cross and Zisserman [5], who informally discuss, but views: andj, the tangent plane to the surface is also the
do not construct, the arrangement of rims on the surface ofepipolar plane determined ;; and the camera centers
an object as the camera moves. Migual hull meshs a C; andC;. In the images, this means that corresponding
topological description of the configuration of visual cone epipolar linesl;; andl;; are both tangent to the respective
patches on the surface of the solid formed by the intersec-contours at the projections; andp; of P;;. Figure 4 il-
tion of all given visual cones. Its vertices are frontierigsi lustrates this basic setup, along with other notation treat w
(where two strips cross) and triple points (where three sone will need later. Finding a pair of matching frontier points i
intersect), edges are intersection curve segments betweeimages; and; is a one-dimensional search problem, where

Figure 1: A surface observed by two cameras. The two rims
intersect at the frontier point where two cone strips cross.



pi. ThenrimsR; andR; are CCW oriented dP;; iff
(v-t) ks > 0. (2)

The above expression is equivalent to (1), and the fol-
lowing is a brief sketch of the proof. When the viewing
direction rotates in the surface tangent plane around the
normal atP;;, the tangent to the rim also rotates. The di-
rections of camera and tangent rotation are the same if the

Figure 4: P;; is a frontier point where two rims R; and R; in- surface is elliptic al?;; and opposite if the surface is hy-
tersect. P;; projects onto points p; and p; at which the respective perbolic. This is a direct consequence of the fact that the
contours are tangent to the two matching epipolar lines 1;; and 1;;. Gauss map of the surface is orientation-preserving at-ellip

tic points and orientation-reversing at hyperbolic po[6is
we parametrize the pencil of epipolar lines by their slope Thus two rimsR; andR; are CCW oriented if (a) the cam-
and look for linel;; that is tangent to théeth contour, such era rotates CCW around the normal from positiaa j and
that the corresponding lirlg; in the jth image is tangentto  the surface is elliptic aP;;; or (b) the camera rotates CW
the jth contour. In the presence of contour extraction and and the surface is hyperbolic. The signwoft is positive if
calibration errors, there may not exist a pair of matching the camera rotates CCW in the tangent plane and negative
epipolar lines that exactly satisfy the tangency constrain otherwise. Moreover, the sign of the apparent curvakyre
In this situation, we find approximately matching frontier s positive if the surface is elliptic or negative if the saré
points such that the angle difference between the tangenis hyperbolic [9]. Thus, expression (2) is positive in th@tw
line in one image and the reprojected epipolar tangent fromabove mentioned cases and negative otherwise. It is there-
the other image is minimized. Difficulties caused by data fore the desired image-based expression equivalent to (1).

error will be further discussed in Section 4. Given the above rim ordering criterion, it is straightfor-
We obtain all frontier points by matching their projec- ward to trace the loops of edges bounding rim faces. Sup-

tions in two images. The four rim edges incident to a par- pose we start with one rim segmertf the rim R; and want

ticular frontier point are given by intervals on the two ap- to find the face that lies to its left. Informally, we traverse

parent contours that are incident to this point. Thus, there s along its direction and at its endpoiBt;, simply take a

exists a one-to-one correspondence between contour sedeft turn to get to the next edge, that is, we select the edge

ments in the images and edges of the rim mesh. The ori-precedings in the ordered circular list oP;;. We move

entation of rim edges is then given by the orientation of the from endpoint to endpoint in this manner, traversing edges

corresponding contour segments. In this way, we obtain theeijther forward or backward along their orientation, taking

complete adjacency information for edges and vertices of eft turn each time until we complete a cycle.

the rim mesh. To compute the faces, we need to know the

relative ordering in space of the four rim segments incident . .

on each vertex.gMorgformally, we associate?with each fron- 4. CompUtl ng the Visual Hull Mesh

tier pointP;; a circular list where the four edges appear

in CCW order around the surface normal. &, T; be the

tangents to the rim®; andR; atP;; (see Figure 4). Then

the indexi appears before the indgxin the ordered list/

iff

As demonstrated in the previous section, we can com-
pute the topology of the rim mesh without knowing any-
thing about its geometry, except for the positions of fron-
tier points (note that under weak calibration we can only
recover these positions up to a projective transformation)
(T; AT;)-N >0, (1) This topology constrains the adjacency relationships be-
tween triple points and intersection curves, which are the
whereN is the outward-pointing surface normal (computed vertices and edges of the visual hull mesh.
as the cross product of the oriented tangent to the contour 5 triple point P;;, the intersection of three optical rays

and the viewing direction). back-projected from contour points, p;, andpy, in three
Equation (1) gives rim ordering in terms of of tangents different images (see Figure 5). In particulpy, satisfies

to the apparent rims, which cannot be computed given thetransfer equatiori7]

only image information. Therefore, we need an equivalent

image-based expression for rim ordering. Consider image Pr = Lii Alg; = (Fie pi) A (Fjk pj), (3)

¢ and letv be the direction from the epipolks; to p;, the

projection of P;;. Let alsot be the tangent to the contour whereF,,,, is the fundamental matrixnapping points in

atp; (see Figure 4), and lét, be the apparent curvature at imagem to epipolar lines in image,, and homogeneous



identify faces with regions on the surface of the visual hull
that have the same boundary. Consider a single faiféhe

rim mesh. The edges gftell us which viewing cones con-
tribute to the visual hull inside the region identified wifh

and give us a corresponding subset of contours that need to
be searched for triple points belonging to this region. 8inc
each edge of corresponds to a single contour interval in
some image, any triple point that belongsftmust project

to a point along these intervals. Thus, it is sufficient taéra
intersection curve segments between each pair of these in-
tervals and find triple points when the curve being traced
goes outside the contour in one of the other views that con-
tribute to f. Taking each face separately, we compute triple
points, intersection curves, and their connectivity. Sine
know which pair of cones gave rise to each segment of an
intersection curve, we can identify all the segments bound-
) ing a cone strip. Individual faces of the strips are iderdifie
Figure 5: The triple point P, is a “phantom point” where the rays by grouping all the intersection curve segments that ptojec

formed by back-projecting epipolar correspondents p;, p;, and py e ; .
meetin space. P;;;, can be located by tracing the intersection curve within the contour interval that corresponds toa pamCUIa

I';; between views i and j and noticing when its projection ;; in the rim segment.

kth image crosses the contour. The algorithm described above yields the correct visual
hull mesh given exact input data (perfectly extracted con-

coordinates are used forimage points. Popytandp; sat-  tours, error-free fundamental matrices). However, noigk a

isfy symmetric equations. Any pair gf;, p; andp, are  calibration error tend to destroy exact topological feasur
epipolar correspondents- that is, any two of the points lie  most importantly, intersection curve crossings at frantie
in the epipolar plane defined by the two camera centers andhoints. Figure 6 illustrates the situation. The epipolaeli
one of the points [2]. A triple point is a standard trinocular 1;; is tangent to the contour at poipt in theith image. This
stereo correspondence, but it does not usually lie on the surline corresponds to the lirlg; in the jth image, which is not
face becausp;, p; andpy, are projections of three different  tangent to theith contour, but intersects it in two epipolar
pointsP;, P;, andP;, on three different rims. correspondentp;; andp;». Intersecting the visual rays
Just as with finding frontier points, finding triple points due to these three points in the epipolar plane yields two
is a one-parameter search. We walk alongitheontourin  distinct intersection curve poinB;;; andP;;,, instead of
discrete steps and for each contour pgiptind the epipolar @ single frontier point. Thus, instead of being singulag, th
linel;; = Fy; p; in imagey, and locate an epipolar corre-  intersection curve separates into two distinct branchas th
spondentp; by intersectingl;; with the jth contour. We do not meet. In order to approximate the position of a fron-
then obtain a third poinp;, by transferringp; andp; using tier point, we have to match; with the epipolar tangency
(3) and check whethgy;, lies on thekth contour. As shown  pointp; in the jth image. However, the two points do not
in Figure 5, transfer of successive epipolar correspordent lie in the same epipolar plane, and visual rays through them
allows us to trace the intersection cuilvg betweenth and do not intersect. We could estimate the locatiorPgf as
jth cones in théth image. The triple pointis revealed when the midpoint of the segment connecting the points of closest
the traced curve crosses thih contour. approach of the two rays, but this approximated point does
In general, epipolar correspondents are not unique. Innot lie on the traced intersection curves. This leads to se-

the case shown in Figure 5, each epipolar line intersectsfious consister_my problems for a_naive_implemeqtationthat
each contour twice (this reflects the fact that intersection attempts to strictly enforce combinatorial constraintsan
curves have multiple branches). Moreover, the epipolar cor act visual hull structure.
respondence criterion does not say when a triple point be-  Intuitively, small perturbations to exact contour and cal-
longs to the visual hull — the additional constraint is that ibration data result in contours that back-project to gaher
the point must not project outside the silhouette in anyothe cones in space, the intersection of which does not have to
input view. However, if we are able to exactly compute the share the properties of exact visual hulls. For instance,
positions of frontier points along the contours, we can use While we know that cone strips never break up in theory
this information to simplify the search for triple points. (each ray interval along the strip must contain at least one
Each face of the rim mesh is bounded by rim segmentsPint), in noisy data, they may break up near the frontier
that also belong to the surface of the visual hull, so we canP0INts as shown in Figure 6. Nevertheless, even with large



meshes are actually planar, even though the graph layouts

shown are not). Because of stability problems inherent in

real-world data, the algorithm does not recover topoldgica

visual hull meshes for these two data sets. Instead, we ob-

tain precise geometric models of the visual hulls that do not

capture every triple point, but are suitable as input for eom

mon modeling and rendering applications. Figure 8 shows

these models, along with selected strips. Note that thgsstri

Figure 6: Tracing intersection curves given inexact data (see text). degenerate completeiy for relatively large mterval_s nher_

Intersection curve branches are shown as dashed lines. top and the bottom, in the areas of dense frontier points.
This behavior is not possible in theory, but it occurs in prac

errors in the data, the intersection of cones in space Is stil tice, as discussed in Section 4.

well defined, and we can compute it using a variant of our

exact algorithm. We trace entire intersection curves, as op

posed to breaking them up into pieces belonging to sepa-

rate faces of the rim mesh, and then clip out all compo- . )

nents of the curves that project outside any of the silhou- 6. DiScuSsIon and Future Work

ettes. In the process, combinatorial information about the

curves is maintained, so that it becomes possible to recovery preliminary results are intriguing. Significantly, the

the geometry of cone strips. Namely, boundary points of ¢oyery of exact rim meshes has proven to be robust even
the strips are connected in the order induced by the contourii, densely clustered frontier points that do not lie on
parametrization, and are sep_arated ir_1to two groups that €Ol matching epipolar lines. Note that the rim mesh struc-
respond to segments bounding the rim on the near and thg,re gepends only on the relative ordering of frontier psint
far side with respect to their distance from the camera. This along the rims, not on absolute positions — hence the rela-

data structure is a monotone polygon, and it can be triangu-jjye stability of the topology. With visual hull meshes, the

lated in linear time for purposes of display. situation is different: the connectivity of intersectiamees
and triple points is elusive, while the geometry may still
5. Experimental Results be recovered reliably. It will be important to investigate

the question of whether these instabilities are inherent in

The first input sequence consists of six synthetically gener the conditioning of exact visual hull computation, or are
ated images of an egg model. Contours were extracted usindntroduced by our algorithm. We are considering a differ-
snakes and modeled as cubic B-splines. As seen in Figuréent approach to recovering the topology of the visual hull
7, the aigorithm Correctiy generates the rim mesh and themeSh that would take full advantage of the combinatorial
visual hull, both in their topological and geometric form. constraints given by the structure of the rim mesh. We are
The contrast between these two forms is clearly visible by @lso working on extending our implementation to deal with
Comparing two renderings of the same Strip in Figure 7 (f) T—junctions and surfaces of arbitrary genus, to handle more
and (g). The exact strip explicitly shows frontier pointglan complex and visually interesting objects.
triple points, and intersection curves are forced to cogwer Overall, our approach has several attractive features.
in four branches at frontier points. The triangulated strip Most importantly, it is based on an analysis of the exact
does not degenerate at frontier points, because the robusstructure of visual hulls from finitely many viewpoints,
strip tracing algorithm ignores them. which has received little attention in previous researctr. O
We also demonstrate results for two calibrated nine- approach takes advantage of epipolar geometry and weak
image turntable sequences of a gourd and a vase (Figure 8)calibration — in a sense, we don’t need to know where
For both of these data sets, the algorithm constructs a comthe cameras are. Moreover, our algorithm uses only two-
plete rim mesh, even though many of the frontier points are dimensional computations, and constructs a range of shape
densely clustered near the top and the bottom. To better vi-representations, from graph-theoretic and topologiaal, t
sualize the structure of these meshes, we rendered their vercompletely image-based, to purely geometric. For these
tices and edges as graphs using a publicly available grapHeasons, it brings fresh insights to the theory and practice
drawing program. The graphsi shown in Figure 8 (b) and of the venerable prOblem of visual hull Computation.
(h), reveal the regular structure of rim crossings which is
impossible to observe in the images themselves. Each rimAcknowledgments. This work was supported in part by the
mesh in our examples obeys Euler’s formula for topologi- Beckman Institute, the National Science Foundation under
cal polyhedra of genu8, V + F = E + 2 (note that the  grant IRI-990709 and a UIUC-CNRS collaboration agree-
ment.
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Figure 7: Egg results. (a) the rim mesh superimposed on one of the input outlines; (b) the vertices and edges of the rim mesh shown as
a graph (24 frontier points, 48 edges, 26 faces); (c) the visual hull mesh from shown from a viewpoint not in the input set; (d) a graph of the
visual hull vertices and edges (68 vertices, 114 edges, 48 faces); (e) a triangulated geometric model of the mesh; (f) one of the strips making
up the exact visual hull mesh; (g) a triangle model of the same strip.
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Figure 8: Top row: gourd results. (a), (b) the rim mesh and corresponding graph (96 vertices, 192 edges, 98 faces); (c) intersection curves
that make up the visual hull; (d) triangulated visual hull model; (e), (f) two of the strips from the model. Bottom row: teapot results. (g), (h) rim
mesh (104 vertices, 208 edges, 106 faces); (i) intersection curves on the surface of the visual hull; (j) visual hull model; (k), (I) two cone strips.

Refer ences [9] J. Koenderink, “What Does the Occluding Contour Tell Uboiit
Solid Shape?”Perception 1984, pp. 321-330.
[1] B.G. Baumgart, “Geometric Modeling for Computer Visfoih. D.

Thesis (Tech. Report AIM-249). Stanford University, 1974 [10] A. Laurentini, “The Visual Hull Concept for Silhouetteased Im-

age Understanding’lEEE Trans. on Pattern Analysis and Machine

[2] E. Boyer and M. Berger, “3D Surface Reconstruction Usberlud- Intelligence 16(2), 1994, pp. 150-162.

ing Contours”,Int. J. Comp. Vision22(3), 1997, pp. 219-233. [11] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. MtAn,

[3] R. Cipolla, K. Astrom, and P.J. Giblin, “Motion from therdhtier of Image-based Visual HullsProc. SIGGRAPF2000, pp. 369-374.

Curved SurfacesProc. IEEE Int. Conf. on Comp. Visipi995, pp.

[12] J. Porrill and S. Pollard, “Curve Matching and Steredil@ation”,
269-275.

Image and Vision Computin@(1): pp. 45-50, 1991.

[4] R. Cipolla and P.J. GiblinVisual Motion of Curves and Surfaces  [13] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Tellere¢Bnstruct-
Cambridge University Press, Cambridge, 1999. ing 3D Tree Models from Intrumented PhotograpH&EE Computer

) ) ) Graphics and Application®21(3), 2001, pp. 53-61.
[5] G. Cross and A. Zisserman, “Surface Reconstruction fidaitiple

Views Using Apparent Contours and Surface TextuldATO Ad- [14] S. Sullivan and J. Ponce, “Automatic Model Construtti®ose Es-
vanced Research Workshop on Confluence of Computer Visibn an timation, and Object Recognition from Photographs usingrigular
Computer Graphics2000, pp. 25-47. Splines”,IEEE Trans. on Pattern Analysis and Machine Intelligence

20(10), 1998, pp. 1091-1096.
[6] M. do Carmo, Differential Geometry of Curves and Surfaces

Prentice-Hall, Englewood Cliffs, New Jersey, 1976. [15] R. Szeliski, “Rapid Octree Construction From Image Bates,”

CVGIP: Image Understandind.(58), 1993, pp. 23-32.
[7] O. Faugeras and L. Robert, “What Can Two Images Tell Usuilzo

Third One?”,Int. J. Comp. Vision18(1), 1996, pp. 5-19. [16] R. Vaillant and O. Faugeras, “Using Extremal Boundarier 3-D
Object Modeling”,IEEE Trans. on Pattern Analysis and Machine In-
[8] P.J.Giblin and R. Weiss, “Epipolar Curves on Surfacésiage and telligence 14(2), 1992, pp. 157-173.

Vision Computing13(1): pp. 33-44, 1995.



