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PSEUDOSPECTRA OF LINEAR OPERATORS*

LLOYD N. TREFETHENT

Abstract. If a matrix or linear operator A is far from normal, its eigenvalues or, more generally,
its spectrum may have little to do with its behavior as measured by quantities such as ||A™| or
[lexp(tA)||. More may be learned by examining the sets in the complex plane known as the pseu-
dospectra of A, defined by level curves of the norm of the resolvent, ||(2I — A)~!||. Five years ago,
the author published a paper that presented computed pseudospectra of thirteen highly nonnormal
matrices arising in various applications. Since that time, analogous computations have been carried
out for differential and integral operators. This paper, a companion to the earlier one, presents ten
examples, each chosen to illustrate one or more mathematical or physical principles.
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1. Introduction. Eigenvalues—more generally, spectra—have been a standard
tool of the mathematical sciences for a century and a half. Since the arrival of com-
puters, they have also been a standard tool of scientific computing. For example, one
of the most influential items of numerical software over the years has been EISPACK,
a collection of Fortran subroutines for matrix eigenvalue computations used around
the world since its introduction in the mid 1970s [50].

Eigenvalues are useful for three reasons. The algorithmic reason is that if a
matrix or linear operator can be diagonalized, transforming the problem to a basis
of eigenfunctions, the solution of various problems may be speeded up. The physical
reason is that eigenvalues may give information about the behavior of an evolving
system governed by a matrix or operator. In particular, they may give information
about resonance, instability, and rates of growth or decay as t — oco. Finally, there
is a psychological reason for the usefulness of eigenvalues. Much of the human brain
is specialized for the processing of visual information, and eigenvalues take advantage
of this biological trait, supplementing the abstract notion of a matrix or operator by
a picture in the complex plane. They give an operator a personality.

Here are some examples. In structural mechanics, eigenvalues may determine
whether an automobile is too noisy or whether a building will collapse in an earth-
quake. In aeronautics, eigenvalues may determine whether the flow over a wing is
laminar or turbulent. In quantum mechanics, they may determine atomic energy lev-
els and, thus, the frequency of a laser or the spectral signature of a star. In ecology,
eigenvalues may determine whether a food web will settle into a steady equilibrium. In
probability theory, they may determine the rate of convergence of a Markov process.
In electrical engineering, they may determine the frequency response of an amplifier
or the reliability of a national power system. In numerical analysis, they may deter-
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mine whether a discretization of a differential equation will get the right answer or
how fast a conjugate gradient iteration will converge. And so on.

In these and other applications, eigenvalue analysis has proved highly successful.
For a number of years, however, an awareness has been growing that for certain
problems of science and engineering, the predictions suggested by eigenvalues do not
match what is observed. These are problems involving matrices or operators that are
not normal and, indeed, are in some sense far from normal. A normal matrix is one
that has a complete set of orthogonal eigenvectors. This is equivalent to the condition
AA* = A*A, where A* is the conjugate transpose. By contrast, the eigenvectors
of a nonnormal matrix, though they may form a complete set, are not orthogonal,
the condition number of any matrix of eigenvectors is greater than 1 and possibly
very large. For operators, the definitions are analogous, though the details become
technical. A normal linear operator is, again, one that satisfies AA* = A*A, where
A* is now a suitably defined adjoint. In this paper we shall not discuss details of
functional analysis; we only note that in all of what follows, we assume that A is a
closed linear operator in a Hilbert space and that it generates a Cj semigroup [35].
(This setting applies in particular to our Theorems 1-5.) The Hilbert space norm is
denoted by || - ||, and for our examples that come from physical problems, we always
arrange matters so that this norm corresponds to the square root of energy.

The difficulty with nonnormal matrices and operators goes beyond the need for a
Jordan canonical form instead of a diagonalization if a matrix lacks a complete set of
eigenvectors. Any use of eigenvalues to derive physical predictions relies on an implicit
transformation to eigenvector coordinates. If the matrix is normal, this transformation
is unitary—a rotation or a reflection. If it is far from normal, however, the change
to eigenvector coordinates may involve an extreme distortion of the state space. In
the new coordinates, the physics of the system may become strangely complicated. A
typical state of the system may be a superposition of huge eigenfunction components
that nearly cancel, and the evolution over time intervals of scientific interest may be
determined by how this pattern of cancellation evolves, rather than by the growth or
decay of the individual eigenfunctions. In other words, there may be no good scientific
reason for attempting to analyze the problem in terms of eigenvalues and eigenvectors.

For a fixed matrix or operator, the distortions associated with nonnormality may
be of finite magnitude and, thus, arguably of limited significance. In applications,
however, one is often faced not with a single matrix or operator but with a family
of them indexed by a parameter such as the Reynolds number, the Péclet number,
or the resistivity, and the degree of nonnormality may increase unboundedly as this
parameter approaches a limit of physical interest. For example, the condition number
of a transformation to orthogonal coordinates may grow exponentially as the phys-
ical parameter approaches its limit. In such circumstances it is impossible to get
quantitative information of uniform validity from spectral information alone.

2. Resolvent norms and pseudospectra. Since the beginning of this sub-
ject, one of the principal tools for dealing with nonnormality has been the matrix or
operator known as the resolvent. We can motivate this idea as follows.

It is well known that in applied mathematics, it is not always enough to ask
whether an operator A is singular or nonsingular; the norm of the inverse || A~!|| may
be important as well as the fact that it is finite. Thus, to an applied mathematician,
problems are not just well posed or ill posed; they lie on a continuum from well- to
ill-conditioned, with ill-posedness being the limit of infinite ill-conditioning. Now the
definition of an eigenvalue also involves the singularity or nonsingularity of a matrix or
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operator. A number z € C is an eigenvalue of a matrix A if zI — A is singular, where
I denotes the identity. In the operator case, z is in the spectrum of A if a bounded
inverse of zI — A does not exist. It should not be surprising that for applications,
it is sometimes desirable to extend these definitions too by asking not just whether
(2I — A)~! exists but whether it is large or small. The matrix or operator (21 — A)~!
is the resolvent of A at the point z € C.

From here, the following definition suggests itself. We have already defined the
spectrum of a matrix or operator A; let us denote it by A(A), a subset of the complex
plane C. (For matrices, A(A) is finite, discrete, and nonempty; for operators, anything
is possible so long as it is closed.) Now, for each € > 0, let us define a new subset of
the complex plane, the e-pseudospectrum of A, as follows:

(1) A(A) = {z€C: ||[(zI-A)7 | >et)

By convention, we write ||(2] — A)7!|| = o0 if 2 € A(A). Thus, the O-pseudospectrum
Ay(A) is the same as the spectrum, but for € > 0, it can be shown that A_(e) is a
larger set and is never empty. The e-pseudospectra of A are a family of strictly nested
closed sets, which grow to fill the whole complex plane as € — co.

Pseudospectra can also be defined in other, equivalent ways. One is in terms of
perturbations of the spectrum. For any matrix A we have
(2) A(A) = {z€C: ze A(A+ AA) for some AA with ||[AA| < e},

€

and if A is an operator, the equivalence of (1) and (2) still holds if we take the closure
of the set defined by (2) (see [5], [47]). Thus, a number z is in the interior of the
e-pseudospectrum of A if and only if it is in the spectrum of some perturbed operator
A+ AA with [|AA| <e.

A third equivalent definition, closer to computation, involves the singular value
decomposition. For any matrix or operator A we have
(3) A(A) = {z€C: opmm(z]l — A) <e},
where o, denotes the smallest singular value in the matrix case or the smallest s-
number for an operator [17]. In stating (3), we have made use of the assumption that
A acts in a Hilbert space; in a Banach space setting, we have (1) and (2) but not (3)
(see [12]).

If A is normal, then A _(A) is exactly the set of points in C at distance < e
from A(A). If A is not normal, however, it may be much larger. Here is a physical
interpretation of this observation [57]. Consider a time-dependent driven system
du/dt = Au + e*'f, where f is a fixed function in the Hilbert space under study.
The solution to this problem is u(t) = e**(2I — A)~'f. If z € A_(A), this means
that for certain choices of f, ||u(t)]|/||e*! f|| may come arbitrarily close to e~! (the
norm is now, e.g., an L? integral over a sufficiently long interval in ¢). In other words,
whereas a system governed by a normal operator exhibits resonance only if the forcing
frequency is close to the spectrum, a system governed by a nonnormal operator may
exhibit resonance or pseudoresonance at frequencies far from the spectrum. This is
one respect in which judging the behavior of nonnormal systems solely by their spectra
may be problematic.

3. Some history. The mathematical theory of nonnormal operators originated
with von Neumann and others in the first three decades of this century. In a sense, it
has been one of the central topics of functional analysis ever since, and its elements are
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widely known. For example, A Hilbert Space Problem Book by Halmos [21] contains
numerous examples illustrating the curious behavior of the spectra of nonnormal
operators. Treatments in monograph form include the book by Gohberg and Krein
[17] and the three-volume treatise of Dunford and Schwartz [15].

The use of the resolvent in the study of nonnormal operators has also been stan-
dard for many years, at least among the theoretically inclined. Of numerous contri-
butions, I shall mention two that are especially relevant to this paper. One is the
remarkable book Perturbation Theory for Linear Operators by Kato [24], in which
all kinds of questions of matrix and operator theory are beautifully treated by re-
solvent techniques. The other is the work by Kreiss over the years in the field of
finite difference methods for partial differential equations. A landmark 1962 paper
by Kreiss [26], containing what became known as the Kreiss matrix theorem, com-
pellingly described the pitfalls of eigenvalue analysis and the uses of the resolvent as
an alternative. Some of Kreiss’s ideas were presented shortly afterwards in the text
by Richtmyer and Morton [45].

A narrower question has to do with the history of pseudospectra—that is, of the
explicit investigation of the sets bounded by level curves of the norm of the resolvent.
The first mention of this idea in print that I have found is by H. J. Landau [27],
who used the term “e-spectrum.” The first sketch of a pseudospectrum of which I
know is a hand-drawn figure by Kostin and Razzakov [25] (spectral portrait). These
authors were members of a group led by Godunov in Novosibirsk, which pursued
various ideas in this vein; others in this group include Bulgakov, Kirilyuk, and Maly-
shev. The first computer-generated plot of pseudospectra of which I am aware is
by Demmel [11]. Meanwhile, other related contributions were made in the 1970s
and 1980s by various people, including Chatelin, Hinrichsen, Pritchard, Varah, and
Wilkinson. My own first use of pseudospectra (the idea had been proposed inde-
pendently at least five times) was in 1990 [54]. Since that year, publications related
to pseudospectra have been numerous. Aside from myself, some of those involved
have been Baggett, Borba, Bottcher, Braconnier, Briihl, Carpraux, Crawford, Cul-
lum, Donato, van Dorsselaer, Driscoll, Eiermann, Erhel, Frayssé, Freund, Gebhardt,
Golub, Greenbaum, Grossmann, Henningson, D. Higham, N. Higham, Hochbruck,
van der Houwen, Huysmans, Jackiewicz, Kerner, Kraaijevanger, Lubich, Lui, Lums-
daine, Marques, Nachtigal, Nevanlinna, Ottaviani, Owren, Pathria, Plato, Reddy,
Reichel, Riedel, Roch, Ruhe, Sadkane, Schmid, Silbermann, Spijker, de Swart, Toh,
Toumazou, A. Trefethen, van der Veen, Viswanath, Weideman, Wolf, and Wu.

This brings me, at last, to the subject of this paper. What has stimulated so much
recent activity is the growing power of computers, which has made it feasible to plot
pseudospectra. On the workstations of 1990, it was possible to compute pseudospec-
tra of 32x 32 matrices in a few minutes, and in 1992 I published a paper presenting
thirteen examples of this kind [55]. (The names given to the examples were Jordan
block, Limagon, Grear, Wilkinson, Frank, Kahan, Demmel, Lenferink—Spijker, Com-
panion, Gauss—Seidel, Chebyshev spectral, Random, and Random upper-triangular.)
Each example was illustrated by two plots: first, a plot of boundaries of A (A) for
e=1072,10"3,...,1078%, and second, a “plot of dots” displaying the superposition of
the eigenvalues of 100 random matrix perturbations A + AA, ||AA|| = 1073.

Since 1992, various people have begun to compute pseudospectra of differential
and integral operators, beginning with the outstanding paper on the Orr—Sommerfeld
operator by Reddy, Schmid, and Henningson [41]. Such computations are often feasi-
ble on today’s workstations, and they are certainly feasible on today’s supercomputers.
The purpose of this paper is to present ten examples of pseudospectra of operators.
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Along the way we shall present a few theorems that partially answer the question,
what do pseudospectra tell us about the behavior of an operator? (The full answer is
not known; see [18].)

This paper is in every way a sequel to [55], to which I hope all readers have access.

4. Computation of pseudospectra. Before presenting the examples, we must
make a few remarks about how pseudospectra of operators can be computed. The
starting point is, of course, the matrix case.

There is an obvious algorithm for computing the pseudospectra of a matrix A:
following (3), evaluate omin (2 —A) by standard singular value decomposition software
at the points of a grid in the complex plane; then, send these numbers (or their
logarithms) to a contour plotter. This is what was done in [55], and it remains the
basic, simple technique. Various methods have been proposed recently, however, to
speed up these computations. S.-H. Lui has made the elegant observation that if A
is first reduced to Hessenberg or triangular form, then this form can be preserved in
computations of o, (2] — A) for various values z by inverse iteration; the result is
often a speedup by a factor of ten or more [29]. Half a dozen other studies of iterative
methods for computing pseudospectra have also been carried out in the past year or
so. For one such approach, with references to several of the others, see [8].

If A is a differential or integral operator, we must, of course, discretize it. There
is little general literature on this at present, but a variety of methods have proven
successful. The obvious thing to do is simply to approximate the operator by a
matrix and then compute the pseudospectra of the matrix. This procedure can be
quite successful if the discretization is highly accurate, and, in particular, spectral
methods rather than finite differences or finite elements have been the basis of most
of the computations so far. In large-scale applications, however, it is often best not
to convert the whole problem to a single matrix. Instead, different discretization
tolerances may be appropriate for different values of z, and these tolerances can be
chosen adaptively. In some applications it also happens that the linear operator
is discretized by a matrix that depends on various parameters, in which case one
must solve an optimization problem to minimize oyin(2] — A) with respect to these
parameters. Finally, for computations on parallel computers, one must divide the
computation into subproblems. Fortunately, this is not hard, as different regions of
the z-plane can be treated independently.

In the plots presented below, I believe the pseudospectra and other curves shown
are accurate to within a millimeter or two and, in most cases, to full plotting accu-
racy. For details on how the computations were carried out—sometimes a substantial
task, and one that varies considerably from problem to problem—see the original
papers.

5. Ten examples. We now begin the presentation of our examples.

For linear operators, unlike matrices, the idea of a “random perturbation” does
not make sense, since the ball ||ul| < € is not compact. Thus, in this paper we cannot
repeat the device of [55] of presenting eigenvalues of randomly perturbed operators as
well as boundaries of pseudospectra. Instead, I have chosen a different second plot to
accompany the first plot in each of these examples. This is a plot of |exp(tA)|| as a
function of ¢, usually on a logarithmic scale. The significance of exp(tA) is that it is
the solution operator for the linear, autonomous problem du/dt = Au; in the theory
of semigroups, {exp(tA)} is the semigroup and A is its infinitesimal generator [22],
[35]. However, it should be remembered that other functions of operators besides the
exponential are also of interest in applications. Examples are A™ for discrete evolution
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F1G. 1. The Zabczyk operator, which illustrates that the growth abscissa v(A) of an unbounded
operator may exceed the spectral abscissa a(A) (see Theorem 1). The spectrum is the discrete set
{2i,44,61,...}, but the e-pseudospectral abscissa is a.(A) = 1+ € for each € > 0 and, thus, 1
in the limit € — 0. The contours in the upper plot are boundaries of e-pseudospectra A (A) for
e=10"1,10"2,10"4,1076,1078,10=19. (From Baggett [1], based on [60].)

processes, A~1 for systems of equations, and polynomial or rational functions p(A) or
r(A) for iterations such as conjugate gradients, Lanczos, or GMRES. Though we do
not discuss it here, pseudospectra are relevant to these problems too.

Let the spectral abscissa of A be defined by

a(A) = sup Rez.

z€A(A)
If A is normal, we have ||exp(tA)|| = e!*() for all t > 0; if A is not normal, we have
A < lexp(tA)]| < w(V)e )

for all ¢t > 0. Here (V) = ||[V|| ||V ~!|| denotes the condition number of a “matrix of
eigenvectors” V of A, if one exists (otherwise, the upper bound should be replaced
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by o0). For infinite-dimensional operators, the idea of a matrix of eigenvectors with
bounded condition number can be made precise via the notion of a Riesz basis [17].
We shall not give details, but our computed examples will report a number x(V);
when it is finite, this means that there exists a Riesz basis of eigenvectors with the
indicated condition number.

A related quantity is the numerical abscissa of A, defined by

w(A) = sup Rez.
zEW(A)

Here W (A) is the numerical range (= field of values) of A, the set of all scalars u*Au
(= Rayleigh quotients) corresponding to functions u with ||ul| = 1. According to
results related to the Hille-Yosida theorem [35], the numerical abscissa of A determines
the behavior of ||exp(tA)| as t — 0:

(@) Cllexp(tA) = = w(4).

Some of the upper plots of our figures include dashed curves corresponding to the
boundary of W (A); the numerical abscissa is the maximum real coordinate on such a
curve.

Ezample 1: Zabczyk operator (see [1]). If A is nonnormal, the spectrum A(A)
does not determine the behavior of ||exp(tA)|| for small t. Asymptotically as t — oo,
however, one might expect the spectrum to be decisive. In particular, define the
growth abscissa of A by

A(A) = Tim ¢~ log e

t—o0
(the limit always exists). For a matrix, we have v(A) = a(A), the spectral abscissa of
A, and the same is true for a bounded operator. For an unbounded operator, however,
it was pointed out by Hille and Phillips that v(A) > «(A) is possible.

This result may seem surprising, but it becomes easily understandable when in-
terpreted in terms of pseudospectra. A simple example was devised by Zabczyk [60],
illustrated in Figure 1. Picking parameters arbitrarily for definiteness, consider a
10 x 10 Jordan block with eigenvalue 2i. Adjoin to it a 20 x 20 Jordan block with
eigenvalue 4i. Adjoin again a 30 x 30 Jordan block with eigenvalue 6i. Continue in
this fashion to construct an operator A in ¢2 in the form of an infinite block diagonal
matrix, where each block is bigger than the last and the eigenvalues are distinct and
well separated. The spectrum of the operator is a discrete subset of the imaginary
axis: A(A) = {2i,44,64,84i,...}. For any fixed € > 0, however, the e-pseudospectrum
A (A) is a countable union of disks centered at the eigenvalues whose radii rapidly
approach 1+ € as one moves further out on the imaginary axis. It is hardly surprising
that under such circumstances, ||exp(tA)|| never levels off to a constant but maintains
the value et for all t > 0.

The intuition suggested by this Zabczyk example is in fact valid for arbitrary
operators A. For each € > 0, define the e-pseudospectral abscissa of A by

a(A)= sup Rez.
z€A(4)

The following result may be called Priiss’s theorem, as it was first established by Priiss
in [37], generalizing earlier work by Gearhart and others. We remind the reader that
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FiG. 2. The Hille-Phillips operator, the original example illustrating that v(A) may exceed
a(A). The spectrum is empty, but the resolvent norm ||(zI — A)~1|| grows doubly exponentially
(see text) as z increases to oo along the negative imaginary axis. The e-pseudospectral abscissa is
a (A) = 7/2+ € for each € > 0, and this explains why ||exp(tA)|| = e™/2 for all t (see Theorem 2).
Contours at e = 1071,1072,1074,...,107128. (From Baggett [1], based on [22].)

in this as in all our theorems, the technical assumptions are that A is a closed linear
operator in a Hilbert space and that it generates a Cj semigroup.

THEOREM 1. For any A, the growth abscissa is equal to the limit as ¢ — 0 of the
e-pseudospectral abscissas:

v(A) = lim a (A).

e—0

For the Zabczyk example of Figure 1, we have a(4) = 0, but o (A) = 1 + € for
all € > 0 and, accordingly, v(4) = 1.

Ezample 2: Hille—Phillips operator (see [1]). Eighteen years before Zabczyk, Hille
and Phillips were the first to present an example of an operator with v(4) > a(A)
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[22]. Tt is a much less elementary example. They begin with the integral operator

1 v s—1
I = w57 [ =0 )

in the Hilbert space L2[0,1]. If s is a positive integer, then J(s)f is the sth indefinite
integral of f, and for arbitrary positive real s, J(s)f can be interpreted as a fractional
integral of f. Hille and Phillips show that {J(s)} is in fact a semigroup not only
with respect to s but also, if the problem is rotated through an angle 7/2 by analytic
continuation, with respect to t = i~'s. Let A denote the infinitesimal generator of this
semigroup (a rotation by 7/2 of the generator of the fractional integration semigroup).
Results for this operator A are presented in Figure 2. This time the spectrum of A
is empty: no function u(z) on [0,1] with «w(0) = 0 is its own indefinite integral. The
operator is certainly not nilpotent, however; we have |lexp(tA)| = e™/2 for all t > 0.
Thus, a(A) = —oo and v(A) = 7/2.

Computing the pseudospectra of the Hille-Phillips operator is not easy. Though
an explicit integral representation of the resolvent is known, the integrand involved
is highly oscillatory and singular at the endpoints. Simple discretizations fail. By
a sequence of reformulations of the problem, however, a successful calculation has
been carried out by Baggett [1], and it is his results that are shown in Figure 2.
The resolvent norm for this operator grows doubly exponentially along the negative
imaginary axis: loglog ||(z2] — A)7!|| ~ |z| as Imz — —oo with Rez = 0.

To the right of the line Rez = 7/2, the Hille-Phillips operator “looks normal”:
we have a (A) = /2 + ¢ for all € > 0. This linear dependence is just like what we
observed for the Zabczyk example, where we had o (A) = 1 + e. These examples
are illustrative of a general principle: the e-pseudospectral abscissas of an operator
depend linearly on € if and only if log ||exp(tA)|| depends linearly on ¢. The following
theorem is established in [1].

THEOREM 2. |lexp(tA)| = e for all t > 0 if and only if a . (A) = v+ € for all
e>0.

Ezample 3: differentiation operator (see [14], [38]). Our third example, presented
in Figure 3, is perhaps a more familiar one. Let A be the derivative operator d/dx
acting in L?[0, d] with boundary condition u(d) = 0. The evolution process associated
with A is the partial differential equation Ou/dt = Ou/dr with u(d) = 0, whose
solution is a leftward translation at speed 1; see section 19.4 of [22]. After time d, all
solutions vanish out the left boundary; thus, exp(tA4) = 0 for ¢ > d, as shown in the
figure.

This operator A is one of the simplest examples of a nonnormal differential opera-
tor. An eigenfunction would have to have the form e** for some A, but such a function
could not satisfy the boundary condition (this differentiation operator is essentially
the inverse of the integration (11)). Thus, there are no eigenfunctions, and, in fact,
the spectrum of A is again empty. The resolvent norm, however, grows exponentially
in the left halfplane, satisfying

ed\Rez|

2|Rez|

as Rez — —oo [14]. (For fixed z with Rez < 0, we also have exponential growth as
d — 00.) The numerical range is exactly the left halfplane.

It is no coincidence that this nilpotent operator has a resolvent norm that grows
exponentially with |Rez|. In fact, these two properties are quantitatively related, as
can be proved by the use of a Paley~Wiener theorem [14]:

(1 = A7 = +O(|Rez|™")
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FIG. 3. The first-order differentiation operator in L2[0,d] with boundary condition u(d) = 0.
The resolvent norm grows at the rate e~ 4Re% as Rez — —oco, which implies that the generator is
nilpotent with period d (see Theorem 3). The plots correspond to the case d = 2, with contours at
e=10"1,10"2,...,1078; the pseudospectra are the halfplanes to the left of these boundaries. The
dashed line (the imaginary azis) is the boundary of the numerical range. (From Reddy [38] and
Driscoll and Trefethen [14].)

THEOREM 3. An operator A has exp(tA) = 0 fort > 7 if and only if A(A) is
empty and ||(zI — A)71|| = O(exp(—7Rez)) as Rez — —cc.

Ezample 4: wave operator (see [14]). As a variation on the last example, consider
the second-order wave equation ¢y = ¢, on [0, 7] with boundary conditions ¢(0,t) =
0 and

Gz (m,t) + 0 (m,t) = 0,

where ¢ is a real constant. (Subscripts denote partial derivatives.) The boundary
condition at x = 0 has reflection coefficient —1, and the boundary condition at x = 7
has reflection coefficient R = (1 — 6)/(1 + 6). Physically, waves propagate to the left
and to the right in the interval [0, 7] at speed 1, reflecting off the two boundaries. For
6 =1, the reflection coefficient at the right is R = 0, so no energy is reflected and we
have a nilpotent process of duration 2w. For § # 1, some energy is reflected; we have
an imperfectly absorbing boundary condition. This problem has been studied by Cox
and Zuazua [10], Rideau [46], and Veseli¢ [59], among others.
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FiG. 4. A wave operator with a nearly absorbing boundary condition. The steps correspond
to waves bouncing back and forth between the boundaries; their periodic structure is related to the
periodicity of the pseudospectra in the imaginary direction, and their sharpness is possible because
A has infinitely many eigenvalues of real part equal to the spectral abscissa. Contours at € =
109,10702,10794 ... [1072; the left boundaries of the first seven pseudospectra are not visible on
this scale. (From Driscoll and Trefethen [14]; see also [10], [46], [59].)

This second-order problem can be reduced to the first-order problem du/dt = Au
by introducing the variable u = (¢, #;)T. The operator A takes the symmetric
hyperbolic form

0 09/ox
9/0x 0

)

acting in L?[0, 7] x L2[0, 7]. Figure 4 plots pseudospectra and evolution norms for the
case § = 0.99, where the reflection coefficient is R = 1/199. The ||exp(tA)|| curve has
the shape of a staircase, decreasing by the factor R whenever ¢ is an integer multiple
of 2w because of the reflections at the right-hand boundary. The spectrum is the
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regularly spaced set of points
A LI + (n+ 3)i €Z
n = —lo n+ )i, n .
2w & 2

Note that the real part of this expression, the spectral abscissa a(A), matches the
average rate of decrease of ||exp(tA)| as illustrated in the figure. Between multiples
of 27, however, |lexp(tA)|| is constant. From the operator theory point of view, this
discrepancy between the average and the local behavior is possible because of the
nonnormality of A. The height of the steps, R, is also equal to «(V'), the condition
number of a normalized infinite matrix (Riesz basis) of eigenfunctions.

Ezample 5: convection—diffusion operator (see [42]). Nonnormal differential op-
erators arise most familiarly in problems mixing first and second derivatives, e.g.,
convection and diffusion. Specifically, consider the operator A = d/dx + d?/dz? act-
ing in L%[0,d] with boundary conditions u(0) = u(d) = 0, where d is a positive
constant. The spectrum A(A) is the set of points

1 w2n?

An:—i—7d2’ nZl

However, any matrix of eigenfunctions has condition number at least e%/2, and, thus,
this is a highly nonnormal problem for large d. Intuitively, the explanation is that for
large d (=~ large Péclet number in the more standard nondimensionalization), con-
vection dominates diffusion. Physically, this means that information travels upstream
(rightwards) very inefficiently in the interval [0, d]. For example, a smooth pulse be-
ginning near z = d will convect roughly without change to near x = 0 before diffusion
finally begins to take hold and the shape begins to change to that of the dominant
eigenfunction.

From these considerations one may expect that ||exp(¢A)|| should exhibit a long,
nearly constant transient before eventually settling down to exponential decay. This
behavior is apparent in Figure 5. As for the pseudospectra, they approximate parabo-
las, and it can be proved that, for each z inside the critical parabola Rez = —(Imz)?,
||(21 — A)~1|| grows exponentially as d — oo. Precise estimates are given in [42].

Ezxample 6: Papkovich—Fadle operator. The Papkovich-Fadle problem, named
after two independent authors (see [16] and [34]) concerns the biharmonic operator
A? in a semi-infinite strip. Specifically, we consider functions u(t, y) in the strip t > 0,
ly| < 1 satisfying wss + 2Uttyy + Uyyyy = 0 in the interior and u(t, £1) = u, (¢, £1)
along both infinite boundaries (subscripts again denote partial derivatives). Along
the end of the strip, data u,(0,y) = f(y) and w,(0,y) = g(y) are prescribed. This
problem has been studied by a number of authors over the years for applications in
solid mechanics, where u represents the shape of a semi-infinite clamped plate, and
in fluid mechanics, where it is the stream function of an incompressible fluid flow at
low Reynolds number (Stokes flow). Some of the many contributors to this literature
have been Gregory [19], Joseph and Sturges [23], and Spence [51].

The reason for the use of the variable ¢ is that it is natural to view the Papkovich—
Fadle problem as an evolution process with respect to that variable. How do conditions
applied at the end of the strip determine the solution for larger t? One way to
formulate the problem is in terms of the first derivatives, giving the evolution equation

ey = a ().
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Fig. 5. A convection—diffusion operator on the interval [0,d], d = 40. Contours at € =
1071,1072, ...,1077. As d — oo, the resolvent norm ||(2I — A)™|| increases exponentially for
every z inside the critical parabola Rez = 7(Imz)2. The dashed curve marks this critical parabola;

the boundary of the numerical range is the same curve shifted left by w2 /d? ~ 0.0062 [61] (From
Reddy and Trefethen [42]; see also [24].)

with solution

(uy(t, )> = exp(tA) (f> .
Ut (t7 ) g
Thus, the data in the evolution problem are block 2-vectors, and the solution operators
are block 2 x 2 matrices.

Figure 6 displays the results. Physically, the regular oscillations in the curve
|lexp(tA)|| can be interpreted as follows. In a semi-infinite channel of fluid, they cor-

respond to an infinite succession of counter-rotating vortices. (Since the amplitudes
decay exponentially, only the first three or four of these can be observed in the labo-
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F1G. 6. The Papkovich—Fadle operator derived from the biharmonic operator on a semi-infinite
strip. The continued oscillations of ||exp(tA)|| as t — oo are possible because A has more than
one eigenvalue of real part equal to the spectral abscissa. Contours at e = 0.25,0.20,0.15,0.10,0.05.
(From unpublished work by Weideman and Trefethen; see also [16], [19], [23], [34], [51].)

ratory.) In a semi-infinite solid plate, they correspond to the back-and-forth pattern
of bending that can be induced (again with exponentially decaying amplitude) by
twisting the plate at the end.

The degree of nonnormality of this operator is in some respects mild; note the large
values of € chosen for the plot of pseudospectra. However, the nonnormality becomes
more pronounced as one moves deeper into the left halfplane. This corresponds to the
singularity of this problem at the corners of the strip, a phenomenon of small space
scales that can only be resolved by the higher eigenfunctions. In fact, the numerical
abscissa of this operator is w(A) = oo; thus, by (4), the slope of the ||exp(tA)]|| curve
is infinite at ¢ = 0, though this is not visible in the figure.

This example is the result of an unpublished joint work with André Weideman.
Further details will appear in [56].
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Ezample 7: Wiener—Hopf operator (see [38]). Among nonnormal matrices, the
class whose pseudospectra are best understood are the Toeplitz matrices [43]. We
can generalize these to operators of infinite dimension by making the domain un-
bounded, which gives an infinite Toeplitz matrix; by making it continuous, which
gives a Wiener—Hopf integral operator; or both, which gives a Wiener—Hopf integral
operator on an unbounded domain. Pseudospectra of such operators have been stud-
ied by Reddy [38] and by Béttcher [5], [6], Bottcher and Wolf [7], and Roch and
Silbermann [47]. The last group have elaborated powerful C*-algebra techniques for
analysis of pseudospectra and have proved a number of theorems regarding, for ex-
ample, convergence of the pseudospectra of the finite sections of an infinite Toeplitz
matrix to those of the infinite matrix. An excellent introduction to this circle of ideas
is found in [6]. For related developments in the context of waveform relaxation, see
[30]; for Abel integral operators, see [36].

The behavior of Toeplitz and Wiener—Hopf operators can be quite wild, but pseu-
dospectra of the wilder examples have not yet been computed. Figure 7 shows an
example from [38] that is more sedate, since it is also a Volterra operator (analogous
to a triangular Toeplitz matrix). In the space L2[0,d], A is here the integral operator

(5) Af](z) = / ) £(y) dy.

The spectrum is just the origin, but the pseudospectra approximate disks tangent to
the origin in the right halfplane. The figure corresponds to d = 10.

For this example, ||exp(¢A)]|| has not been computed. In its place, let us take this
opportunity to illustrate the simplest manner in which bounds on norms of functions
of A can be obtained from pseudospectra. For any analytic function f, we have

fA) = = [T A ()

211 T

where T' is any contour enclosing the spectrum of A [24]. One interesting choice of
contour is the boundary A (A) of A_(A) for some e > 0, and from this choice, with
f(z) = et?, we get the following bound.

THEOREM 4. For any t > 0 and € > 0 we have

—1

€
6 exp(td)]| < —
(6) e

et Rez |dz|

For each e, this theorem gives us a function of ¢ that is an upper bound for
|lexp(tA)||. Suppose we take the 11 values of € in Figure 7, approximate A (A)
by a circle of diameter r. tangent to the origin, and bound the integrand above by
exp(tre). This gives 11 bounds [Jexp(tA)|| < e !ree!™ for the points (e,7.). These
are the dashed lines presented in the lower plot.

Ezample 8: Orr—Sommerfeld operator (see [41]). With our final three examples,
we move to a topic in the field of fluid mechanics: the instability of incompressible
flows in pipes and channels [13]. In the past five years it has become clear that
nonnormality plays a crucial role in destabilizing these flows.

The problem of explaining why high-speed flows are invariably turbulent is more
than a century old. The foundations were laid by O. Reynolds [44], who investigated
flow of water through a long circular pipe. At low speeds, a laminar flow is observed,
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F1G. 7. The Volterra Wiener—Hopf integral operator (5) with kernel k(x) = e® on [0,d], d = 10.
The spectrum is just the origin. Contours at € = 1072,1073,...,10712. In the lower plot, since
[lexp(tA)|| has not been computed for this example, eleven upper bounds from Theorem 4 are shown
as dashed lines. (From Reddy [38].)

corresponding to an easily identified solution of the Navier—Stokes equations (longi-
tudinal flow with velocity profile given by a parabola, assuming the idealization of an
infinitely long pipe). At higher speeds, however, instabilities invariably set in, and the
laminar solution breaks down. Reynolds’ careful experiments cast this phenomenon in
a clear light, showing that the critical parameter is not just velocity but velocity times
pipe radius divided by kinematic viscosity—the dimensionless quantity now known as
the Reynolds number, denoted here by R.

Eigenvalue analysis is the obvious tool to explain these observations. The Navier—
Stokes equations are nonlinear, but one can linearize them by considering infinitesi-
mal perturbations about the laminar flow. Formally speaking, this gives an evolution
equation du/dt = Au for some linear operator A (of course, the details are nontrivial;
this is the field of computational fluid dynamics). Does the spectrum of A extend
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into the right halfplane? If so, some perturbations will grow unstably until nonlinear
effects become important, which may then lead to turbulence. If not, then all pertur-
bations eventually decay, and the laminar flow should be stable and observable in the
laboratory.

The literature on problems of hydrodynamic stability is enormous. Early in this
century, the technique of eigenvalue analysis became established as the standard one,
receiving little challenge from 1930 to 1990 (see [13]). This is remarkable, since for
the most basic flows in question, including flow in a pipe, it entirely fails to predict
what is observed.

Our first fluid mechanics example, shown in Figure 8, corresponds to the flow of
this kind that has been studied most by applied mathematicians. This is flow between
two infinite parallel plates, known as plane Poiseuille flow—more difficult than a
circular pipe to investigate in the laboratory, but easier analytically. The standard
analysis runs as follows. The problem is Fourier transformed in the streamwise (z)
and spanwise (z) variables, giving Fourier parameters o and 8. What remains is an
operator acting on functions of the cross-stream variable y, with a discrete spectrum.
One investigates this spectrum for all @ and §, looking for the smallest Reynolds
number R at which an eigenvalue crosses into the right halfplane. It was proved by
Squire that this first crossing occurs for a two-dimensional flow; i.e., 6 =0 (Squire’s
theorem, [13], [52]). The eigenvalue problem reduces in this case to a fourth-order
ordinary differential equation, the Orr—Sommerfeld equation. The first high-accuracy
computations of Orr—Sommerfeld eigenvalues were carried out by Orszag [32], who
found that the critical Reynolds number is R ~ 5772, with a =~ 1.02. Thus, plane
Poiseuille flow is mathematically stable for R < 5772 and unstable for R > 5772.
The unstable mode for R > 5772 has been extensively studied and is known as a
Tollmien—Schlichting wave.

However, the news from the laboratory is entirely different. Here, instability and
turbulence typically appear with R ~ 1000. The form and the time scale of the
structures that appear bear no resemblance to Tollmien—Schlichting waves. Indeed,
at any Reynolds number, Tollmien—Schlichting waves are all but unobservable except
in experiments that take special steps to make them appear. Why?

Reddy, Schmid, and Henningson [41] were among the first to investigate this
problem from the point of view of nonnormality. Figure 8 shows the pseudospectra
of the “Orr—-Sommerfeld operator” implicitly described above for R = 10,000, o = 1.
At this high Reynolds number, one of the eigenvalues lies in the right halfplane—
though only barely, with a(A) = 0.00374. The rest of them form a Y-shape in
the left halfplane that has been studied by a number of authors. Reddy, Schmid, and
Henningson made the startling observation that the portion of the operator associated
with the center of this Y is exceedingly nonnormal. The basis of eigenfunctions for
this example has a condition number at least 1.59 x 102, a figure that rises with R at
an exponential rate C VR,

Based on Figure 8, then, one may conclude that the Orr—-Sommerfeld operator is
highly nonnormal and that its eigenvalues near the center of the Y are so sensitive
to perturbations that they are unlikely to be physically significant. The dominant
eigenvalue, however, still appears robust enough. By itself, this example does not yet
explain why transition at R = 5772 is not observed in the laboratory.

Ezample 9: plane Poiseuille flow operator (see [57]). What is missing from
the analysis above is three-dimensionality. Figenvalue analysis—Squire’s theorem—
predicts that only two-dimensional perturbations need to be considered to explain



400 LLOYD N. TREFETHEN

e ¥@ 5 o @

k(V) =1.59 x 10°

| a(A) =0.0037
~v(A) = 0.0037
w(A) = 0.20

-0.8 —04 0

llexp(tA)]|
(log scale)

0 50 100 150

Fi1G. 8. The Orr—Sommerfeld operator at Reynolds number R = 10,000 with Fourier parameters
a=1, 8=0. Contours at ¢ = 10~1,1072,...,1078; in the area of the cross, the resolvent norm
|(zI — A)~1|| increases exponentially as a function of R. The dashed curve marks the boundary of
the numerical range. (From Reddy, Schmid, and Henningson [41]; see also [13], [32].)

transition to turbulence. This prediction has never matched experiments, however,
and in recent years it has become apparent what is wrong with it mathematically.
Most of the action in the linearized Navier—Stokes problem at high Reynolds numbers
is in three-dimensional structures that have nothing to do with eigenmodes.

Figure 9, based on large-scale computations reported in [57], illustrates the sit-
uation. Here, instead of reducing the linearized Navier—Stokes problem by Fourier
parameters o and 3, we consider the whole operator acting on three-dimensional
perturbations of the laminar flow. The spectrum changes from a discrete set to a two-
dimensional continuum, shown in the upper plot as a shaded region. Since R > 5772,
two “Tollmien—Schlichting bumps” in the spectrum extend into the right halfplane,
corresponding to weak exponential instability. But much more significant in the up-
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per plot are the pseudospectra, which protrude substantially into the right halfplane.
These indicate that the function ||exp(tA)|| must exhibit substantial transient growth
before eventually settling down to behavior controlled by the spectral abscissa.

The lower plot of Figure 9 reveals this transient growth. On a rapid time scale,
llexp(tA)|| grows by a large factor of about 100 and lingers at a high value for a
long time. (Both the amplification factor and the length of this time interval grow
in proportion to R as R — 00.) Only for large ¢ does the weak exponential growth
associated with the eigenvalue begin to catch up. In the nonlinear problem governed
by the Navier—Stokes equations, other effects are likely to have taken over before that
eigenmode is ever seen. This, very briefly, appears to be the reason why eigenmodal
effects are so hard to observe in the laboratory for these flows.

Physically, the transient amplification just described corresponds to a simple
mechanism of streamwise vortices generating streamwise streaks. The physics is old
and well understood, but until recent years it was not appreciated how such effects
could be reconciled with eigenvalue analysis. The first paper with a complete view
of such a reconciliation was a beautiful work by Boberg and Brosa [4]. That paper,
however, went largely unnoticed for several years, leaving it to the independent and
equally impressive paper by Butler and Farrell [9] to communicate such ideas widely.
Following closely after [9] were the third and fourth members of what now appear as
a four-paper set, [39] and [57].

It was mentioned above that if the pseudospectra of an operator A protrude
significantly into the right halfplane, then there must be a transient hump in the curve
of |lexp(tA)||. One precise statement of this relationship is the following, derived from
the Laplace transform.

THEOREM 5. For any € > 0 we have

(7) sup [[exp(tA)|| > el (A).
t>0

In particular, the inequality remains valid if the right-hand side is replaced by its
supremum over € > 0.

For the present problem, we can see from the figure, for example, that for ¢ =
1073°, a (A) is about 0.012. Thus, the 10~3-°-pseudospectrum extends about 38
times further into the right halfplane than would be expected for a normal operator
with a spectrum filling the left halfplane; by Theorem 5, this implies sup,~, ||exp(tA)]]
> 38. The actual size of the hump, before the exponential growth takes over, is about
140. By choosing the optimal value of € in (7) rather than 1073, we can improve 38
to a lower bound of about 97.

Theorem 5 corresponds to the “easy half of the Kreiss matrix theorem.” The hard
half, which derives an upper bound on |exp(tA)|| from the pseudospectra, applies
only to matrices, as the bound is proportional to the dimension m; see [12], [26], [45],
[58]. In particular cases, however, upper bounds generally can be derived via contour
integrals such as that of Theorem 4.

Ezample 10: pipe Poiseuille flow operator (see [53]). Our final example looks
very different yet is physically almost the same. We now consider Reynolds’ original
problem of flow through a circular pipe instead of an infinite channel, following large-
scale computations reported in [53]. This is known as pipe Poiseuille flow.

In the channel, we had an eigenvalue in the right halfplane for R > 5772. In
the pipe, however, the failure of eigenvalue analysis is more complete. There are
no eigenvalues in the right halfplane at all, regardless of the size of R, yet in the
laboratory, transition to turbulence is typically observed if R is greater than about
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F1G. 9. Plane Poiseuille flow operator at Reynolds number R = 10,000. The shaded region is the
spectrum, which is a two-dimensional continuum. Note that the real and imaginary azes are scaled
differently. Physically, the important feature of this example is the rapid transient amplification
by a factor = 102 corresponding to a simple vortex— streak mechanism involved in transition to
turbulence and in turbulence itself. Contours at ¢ = 1072,1072:>,1073,10735. (From Trefethen,
Trefethen, Reddy, and Driscoll [57]; see also [9], [20], [39].)

2000. The pseudospectra, illustrated in Figure 10, give some indication of how this
can happen. They look much the same as in the last example, protruding substantially
into the right halfplane; the effect is slightly less pronounced than before only because
we have chosen a lower Reynolds number (to keep the complexity of the spectrum
manageable). Again, these pseudospectra in the right halfplane correspond to an
|lexp(¢A)]| curve that exhibits large transient growth of amplitude and duration scaling
in proportion to R as R — oo. The lower bound of Theorem 5 again captures more
than half of the size of the hump. Thus, as in channels, it appears that turbulence
in pipes typically comes about because small perturbations of the flow are amplified
linearly into much larger persistent structures approximately in the form of streamwise
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F1G. 10. Pipe Poiseuille flow operator at Reynolds number R = 3000. The solid curves are
the spectrum, which is very complicated; the gaps between them are genuine. The dot-dash curves
are the boundaries of the e-pseudospectra (just those portions to the right of the spectrum) for
€e=1072,10"22,1073,1073-3. (From Trefethen, Trefethen, and Schmid [53]; see also [3], [4], [33],

[49].)

streaks; these then undergo further evolution in a manner dependent on the nonlinear
terms in the Navier—Stokes equations [2]. The elucidation of the details of this process
is an active area of current research [40].

What about the bizarre spectrum depicted in Figure 10?7 For the infinite chan-
nel, there were two unbounded dimensions and, thus, two continuous Fourier param-
eters, giving rise to a spectrum that was a two-dimensional continuum. For the pipe,
however, there is only one unbounded dimension and only one continuous Fourier
parameter. The spectrum becomes a collection of one-dimensional curves and is evi-
dently of great complexity. The figure includes all of the components of the spectrum
in the portion of the complex plane displayed; for values of z between these curves,
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||(zI — A)~1]| is finite. The picture seems astonishingly complicated, considering that
the operator in question describes nothing more than the evolution of infinitesimal
perturbations of laminar flow in a pipe. But all of this excitement in the left half-
plane is of no importance physically; it is the pseudospectra in the right halfplane
that matter.

6. Looking to the future. Eigenvalue problems arise throughout computa-
tional science and engineering, most often in the context of differential or integral
operators that are reduced by discretization to large matrices. Many of these matri-
ces are nonsymmetric, which usually means nonnormal, and research into improved
methods for computing their eigenvalues, especially iterative methods, is actively un-
derway (28], [31], [48]. To date, most such computations generate just numbers, not
pictures, and most of the people who carry them out are not in the habit of investi-
gating nonnormality. As a result, it is likely that situations in which eigenvalues give
misleading information have sometimes gone unrecognized.

As computers continue to grow more powerful and as the habit of interacting
with them graphically becomes more strongly established, this state of affairs will
change. I expect that within a few years, the plotting of eigenvalues will become a
habitual practice among scientists and engineers and a standard feature offered by
software packages. Once this happens, it will be natural to include information about
pseudospectra in the plots, too, even if it is only crude estimates. We will begin to
notice things that went unnoticed before, and this will change the way we think about
eigenvalues.
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