
SEQUOIA 2000 -- A REFLECTION ON THE FIRST THREE YEARS

Michael Stonebraker
EECS Department

University of California, Berkeley

Abstract
This paper describes the SEQUOIA 2000 project

and its implementation efforts during the first three years.
Included are the objectives we had, how we chose to
address them and some of the lessons we learned from
this endeavor.

1. INTRODUCTION
The purpose of the SEQUOIA 2000 project is to

build a better computing environment for Global Change
Researchers, hereafter referred to as SEQUOIA 2000
clients. Such researchers investigate issues such as global
warming, ozone depletion, environment toxification, and
species extinction, and are members of Earth Sciences
Departments at Universities and National Laboratories.
SEQUOIA 2000 is the Digital Equipment Corporation
(DEC) flagship research project for the 1990’s, replacing
Project Athena at MIT, and its original conception is
described in [STON91].

The participants in SEQUOIA 2000 are four types
of investigators:

Computer Science Researchers. Their charge is to build a
prototype environment which better serves the needs of
the target clients. Investigators are associated with
SEQUOIA 2000 from the Computer Science Division at
Berkeley, the Computer Science Department at UC/San
Diego, the School of Library and Information Studies at
Berkeley and the San Diego Supercomputer Center.

Earth Science Researchers. Their charge is to explain
their needs to the Computer Science investigators and to
use the resulting prototype environment to perform better
science. Earth Science investigators are associated with
SEQUOIA 2000 from the Department of Geography at
UC/Santa Barbara, the Atmospheric Science Department
at UCLA, the Climate Research Division at the Scripps
Institution of Oceanography, and the Department of
Earth, Air and Water at UC/Davis.

Governmental agencies. In order to ensure that the
"rubber meets the road" rather than the sky, governmental
organizations have been recruited which are impacted by
global change matters. The responsibility of these
members is to steer SEQUOIA 2000 research, so it moves
in a direction ensuring its applicability to their problems.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This research was sponsored Digital Equipment Corporation under Contract Number 1243

Governmental participation in SEQUOIA 2000 comes
from the State of California Department of Water
Resources (DWR), the State of California Department of
Forestry, the Co-ordinated Environment Research
Laboratory (CERL) of the US Army, NASA, NOAA and
the United States Geologic Survey (USGS).

Industry. Their charge is to use the SEQUOIA 2000 tech-
nology and offer guidance and research directions. In
addition, they are a source of free or discounted comput-
ing equipment. Current industrial participants are Epoch,
Hewlett-Packard, Hughes, Illustra, Metrum, MCI, Pic-
turetel, RSI, SAIC, Siemens, and TRW.

The purpose of this paper is to reflect on our goals,
how we decided to attempt to achieve them and the
results we accomplished during the first three years. As a
result, Section 2 first indicates the Sequoia 2000 goals and
the architecture that we decided to pursue to achieve these
goals. Moreover, it discusses the state of our software
efforts in the various areas. The most important lesson
that we have learned is that SEQUOIA 2000 must be con-
sidered as an end-to-end problem. Hence, clients can
only be satisfied if all pieces of our architecture work
together in a harmonious fashion. Also, many services
required by the clients must be provided by all elements
of the architecture, each working together. In Section 3
we illustrate this end-to-end characteristic of SEQUOIA
2000 by discussing three issues that cross all parts of the
system. Then Section 4 indicates other specific lessons
that we have learned from the first three years. Lastly,
Section 5 concludes the paper.

2. THE SEQUOIA 2000 ARCHITECTURE

2.1. Introduction
Our architecture is motivated by four fundamental

Computer Science objectives, which we present in turn.

1) Support high performance I/O on terabyte data sets

Our clients are frustrated by current computing environ-
ments because they cannot effectively store the massive
amounts of data desired for research purposes. Our four
academic clients plus DWR collectively would like to
store about 100 Terabytes of information. Much of this is
common data sets used by multiple investigators. As a
result, they would like high performance system software

1

that would effectively allow sharing of assorted tertiary
memory devices. Unlike other scientific computing users,
much of their I/O activity is random access. For example,
DWR is digitizing the agency’s 500,000 slide library and
is putting it on line using the SEQUOIA 2000 environ-
ment. This data set has some locality of reference but
will have considerable random activity.

2) Put all data in a DBMS

Our clients have been sold on the merits of moving all
their data to a Data Base Management System (DBMS).
In this way, the meta data that describes their data sets
can be maintained, assisting them with the ability to
retrieve needed information. More importantly, it will
facilitate sharing of information. Because a DBMS will
insist on a common schema for shared information, it will
allow the researchers to define this schema, and then all
must use a common notation for shared data. This will be
a big improvement over the current situation where every
data set exists in a unique format, and must be converted
by any researcher who wishes to use it.

3) Provide better visualization tools

Our clients are users of the popular scientific visualization
tools such as Explorer, Khoros, AVS and IDL. They are
frustrated by aspects of these products and are anxious for
a next generation toolkit.

4) Provide high speed networking

Our clients realize that a 100 terabyte storage server(s)
will not be located on their desktop. Moreover, it is likely
to be at the other end of a wide area network (WAN)
from their client machines. Since their visualization
scenarios invariably involve animation, for example
showing the last 10 years of the ozone hole by playing
time forward, they require ultra high speed networking to
move sequences of images from a server machine to a
client machine.

To address these concerns, we adopted the four-
level architecture described in Figure 1. In the next four
subsections we discuss our efforts at each of these levels.
We then close the section with a discussion of SEQUOIA
2000 networking, which provides the "glue" to connect
the elements of the architecture.

2.2. The Footprint Layer
This software system shields higher level software,

such as file systems, from device specific characteristics
of robotic devices. These include specific robot com-
mands, block sizes and media specific issues. As such,
Footprint can be thought of as a common robot device
driver. At the moment we have a footprint implementa-
tion for each of the four tertiary memory devices used by
the project. These are a Sony WORM optical disk
jukebox, an HP rewritable optical disk jukebox, a Metrum
VHS tape

Collectively these four devices and the CPUs and
disk storage systems in front of them have been named

Bigfoot after the legendary very tall recluse spotted occa-
sionally in the Pacific Northwest. Bigfoot is deployed on
DECsystem hardware running the Ultrix operating sys-
tem. In the near future we expect to port our software
environment to the Alpha platform running the Alpha/NT
operating system.

2.3. The File System Layer
On top of Footprint we have written two file sys-

tems that manage data in the Bigfoot multi-level memory
hierarchy. The first file system is Highlight [KOHL93]. It
is an extension of the Log Structured File System (LFS)
pioneered for disk devices by Ousterhout and Rosenblum
[ROSE92]. Specifically, LFS treats a disk device as a sin-
gle continuous log onto which newly written disk blocks
are appended. Moreover, blocks are never overwritten, so
a disk device can always be written sequentially. Hence,
LFS turns a random write environment into a sequential
write environment. In particular problem areas, this may
lead to much higher performance, and benchmark data
which supports this conclusion can be found in [SELT93].
In addition, LFS can always identify the last few blocks
that were written prior to a crash by finding the end of the
log at recovery time. Repair of the file system is then
very fast, because potentially damaged blocks are easily
found. This approach should be contrasted to conven-
tional file systems where a laborious check of the disk
must be performed to ascertain disk integrity.

We have extended LFS to support tertiary memory
by adding a second log structured file system on top of
Footprint for tertiary memory. This file system also
writes tertiary memory blocks sequentially, obtaining the
performance characteristics of LFS. Lastly, Highlight
adds migration and bookkeeping code that treats the disk
LFS file system as a cache for the tertiary memory one.
In summary, Highlight should give very good perfor-
mance on a workload that is "write-mostly". Since
SEQUOIA 2000 clients want to archive vast amounts of
data, Highlight has the potential for good performance in
the SEQUOIA 2000 environment.

The second file system is Inversion [OLSO93].
Most Data Base Management Systems, including the one
we are using for SEQUOIA 2000, support binary large
objects (blobs), which are arbitrary length, variable-length
byte strings. Like several commercial systems, our data
manager POSTGRES [STON90] stores large objects in a
customized storage system directly on a raw storage dev-
ice. As a result, it is a straightforward exercise to support
conventional files on top of DBMS large objects. In this
way, every read or write is turned by the front end into a
query or update, which is processed directly by the
DBMS. Simulating files on top of DBMS large objects
has several advantages. First, DBMS services such as
transaction management and security are automatically
supported for files. In additional novel characteristics of
our next generation DBMS, including time travel, and an
extensible type system for all DBMS objects, are
automatically available for files. Of course, the possible
disadvantage of files on top of a DBMS is poor perfor-
mance. As reported in [OLSO93], Inversion performance
is exceedingly good when large amounts of data are read
and written, a characteristic of the SEQUOIA 2000

2

The SEQUOIA 2000 Architecture
Figure 1

workload.

At the present time, Highlight is more or less opera-
tional on 4.3BSD Unix. However, the effort to port the
code to Ultrix turned out to be rather difficult, and we
have not succeeded in generating a working Highlight on
Ultrix. Inversion, on the other hand, is deployed on Ultrix
and used to manage our Sony WORM jukebox. Unfor-
tunately, the reliability of our prototype system has not
measured up to user expectations. Our clients have a
strong desire for Commercial Off-The-Shelf (COTS)
software, and are frustrated by documentation glitches,
bugs, and crashes.

As a result, we have also deployed two commercial
file systems, Epoch and Unitree. Epoch has proved to be
quite reliable but does not support either of our large
capacity robots. Hence, it is used heavily, but only for
small data sets. There are many versions of Unitree, and
the one we are running (Alpha/OSF-1 Unitree for the
Metrum) has not met user expectations. As such, we face
a conundrum with regard to tertiary memory file systems.
Our prototypes are not sufficiently stable to warrant
"prime time"; however COTS packages available for the
Alpha/Metrum combination have the same problem. We
are scratching our head on how to move forward, and our
advice to other tertiary memory users is to test any
software you are considering very carefully.

2.4. The DBMS Layer
As noted in Figure 1, some users will simply run

application programs against the file system, and will
have no use for DBMS technology. Others will store their
data in a DBMS. In order to have any chance of meeting
SEQUOIA 2000 client needs, a DBMS must support spa-
tial data such as points, lines, and polygons. In addition it
must support the large spatial arrays in which satellite
imagery is naturally stored. As noted in [STON93], these
characteristics are not met by popular general purpose
relational and object-oriented DBMSs. The best fit to
client needs is a special purpose Geographic Information
Systems (GIS), or a next general prototype DBMS. Since
we have one such next-generation system within the

project, we have elected to focus our DBMS work on this
system, POSTGRES.

To make POSTGRES suitable for SEQUOIA 2000
use, we require a schema for all SEQUOIA data. This
data base design process is evolving as a cooperative
exercise between various data base experts at Berkeley,
SDSC, CERL and SAIC. The Sequoia schema is the col-
lection of metadata describing the data stored in the
POSTGRES DBMS on Bigfoot. Specifically, these meta-
data comprise:

g a standard vocabulary of terms with agreed-upon
definitions that are used to describe the data;

g a set of types, instances of which may store data
values;

g a hierarchical collection of classes that describe
aggregations of the basic types; and

g functions defined on the types and classes.

The SEQUOIA 2000 schema accommodates four
broad categories of data: scalar, vector, raster, and text.
Scalar quantities are stored as POSTGRES types and
assembled into classes in the usual way. Vector quanti-
ties are stored in special line and polygon types. Vectors
are fully enumerated (as opposed to an arc-node represen-
tation) to take advantage of POSTGRES indexed
searches. The advantages of this representation are dis-
cussed in more detail in [STON93].

Raster data comprises the bulk of SEQUOIA 2000
data. These data are stored in POSTGRES multi-
dimensional arrays objects. The contents of textual
objects (in PostScript, or scanned page bitmaps) are
stored in a POSTGRES document type. Both documents
and arrays make use of a POSTGRES large object storage
manager that can support arbitrary length objects.

In addition, we are in the process of loading this
schema with several terabytes of client data. This load
process is expected to continue for the duration of the
project. In addition, schema migration must be planned
for as the schema evolves. How to reformat a multi-
terabyte data base in finite time is currently an open ques-
tion that is troubling us.

3

Furthermore, we have tuned POSTGRES to meet
the needs of our clients. The interface to POSTGRES
arrays has been improved and a novel chunking strategy
[SARA93] is now operational. Instead of storing an array
by ordering the array indices from fastest to slowest
changing, this system chooses a stride for each dimension
and stores "hyperslabs" of the correct stride sizes in each
storage object. When user queries inspect the array in
more than one way, this technique results in dramatically
superior retrieval performance.

Moreover, SEQUOIA clients typically run queries
with user-defined functions in the predicate. Moreover,
many of the predicates are very expensive in CPU time to
compute. For example, The Santa Barbara group has
written a function, SNOW, that recognizes the snow
covered regions in a satellite image. It is a user-defined
POSTGRES function that accepts an image as an argu-
ment and returns a collection of polygons. A typical
query using the SNOW function for the table:

IMAGES (id, date, content)

would be to find the images that were more than 50%
snow observed subsequent to June 1992. In SQL, this
query is expressed as:

select id
from IMAGES
where AREA (SNOW (content)) > 0.5
and date > "June 1, 1992"

The first clause in the predicate consumes millions of
instructions to evaluate, while the second requires a few
hundred. As such, the DBMS must be cognizant of the
CPU cost of clauses when constructing a query plan, a
cost component ignored by most previous optimization
work. In [HELL93], we indicate our work in extending
the POSTGRES optimizer to deal intelligently with
expensive functions. Furthermore, it is highly desirable
to allow popular expensive functions to be precomputed.
In this way they can be evaluated once, rather than once
per query in which they appear. Our approach to this
issue is to allow data bases indexes on a function of the
data, rather than just on the data object itself. Hence, the
data base administrator can specify that a B-tree index be
built for the function, AREA (SNOW(content)). As such,
areas of images are arranged in sort order in a B-tree and
the first clause in the above query is now very cheap to
compute. Using this technique the function is computed
at data entry or data update time and not a query evalua-
tion time. A consequence of function indexing is that it
may be very time consuming to insert a new image into
the data base, since function computation is now included
in the load transaction. To deal with the undesirability of
having very lengthy response time for loads, we have also
explored lazy indexing and partial indexing. In this way,
index building does not need to be synchronous with data
loading.

2.5. The Application Layer
There are five elements of our application layer,

which we consider in turn. The first is the use of an off-
the-shelf visualization tool, and we have converged
around the use of IDL and AVS for project activities.
AVS is liked for its easy-to-use "boxes and arrows" user

interface, while IDL has a more conventional linear pro-
gramming notation. On the other hand, IDL is liked for
its better 2-D graphics features. Both IDL and AVS
allow a user to read and write file data. To connect to the
DBMS, we have written an AVS-POSTGRES bridge.
This program allows one to construct an ad-hoc
POSTGRES query and pipe the result into an AVS
boxes-and-arrows network. As a result, our clients can
use AVS for further processing on any data retrieved
from the DBMS. Finally, IDL is being interfaced to AVS
by the vendor. As a result data retrieved from the data
base can be moved into IDL using AVS as an intermedi-
ary.

AVS has a collection of severe disadvantages as a
visualization tool for our clients. First, it has a type sys-
tem that is different from the POSTGRES type system
and has no direct knowledge of the common SEQUOIA
2000 schema. In addition AVS has a severe appetite for
main memory. Architecturally, AVS depends on virtual
memory to pass results between various boxes. In addi-
tion, it maintains the output of each box in virtual
memory for the duration of an execution session. In this
way, the user can change a run-time parameter some-
where in the network, and AVS will recompute only the
"downstream" boxes by taking advantage of the previous
output. As a result, SEQUOIA 2000 clients, who produce
very large intermediate results, consume large amounts of
both virtual and real memory. In fact, they report that 64
Megs of real memory on a workstation is often not
enough to enable serious AVS use. Furthermore, AVS
has no support for "zooming" into data of interest to
obtain higher resolution, nor does it keep track of the his-
tory of how any given data element was constructed, i.e.
the so-called data lineage of an item. Lastly, AVS has a
"video player" model for animation, which it too primi-
tive for many SEQUOIA 2000 clients.

To correct these deficiencies, we have designed a
new boxes-and-arrows programming environment that is
"DBMS-centric", i.e. the environment type system is the
same as the DBMS type system. Moreover, the user
interface gives the user a "flight simulator" paradigm for
browsing the output of a network. In this way, the visual-
izer can "navigate" around his data and then zoom in to
obtain additional data on items of particular interest. This
environment, named Tioga, is a joint project between
Berkeley and SDSC, and its preliminary design is
presented in [STON93B]. Moreover, a first prototype
(early Tioga) is currently running and its features are
described in [WOOD94].

A third cornerstone of our architecture is a brows-
ing capability for textual information of interest to our
clients, called Lassen. This text system has two com-
ponents. The first is a facility for constructing weighted
keyword indexes for the the words in a POSTGRES docu-
ment. This indexing systems, Cheshire [LARS91], builds
on the pioneering work of the Cornell Smart system and
operates as the action part of a POSTGRES rule
[STON90] which is triggered on each document insertion,
update or removal. The second piece of Lassen is a
natural language understanding front-end query tool that
allows a user to ask for all documents which satisfy a col-
lection of keywords by inquiring in a subset of Natural

4

English. Lassen is now operational, and retrievals can be
requested against the currently loaded collection of
SEQUOIA 2000 documents.

In addition, we expect to move Lassen to a Z39.50
protocol. In this way, the client portion of Lassen would
emit Z39.50 and we would write a Z39.50 to POSTGRES
translator on the server side. In this way, the Lassen
client code can access non-SEQUOIA 2000 information
and the SEQUOIA 2000 server can be accessed by text
retrieval front ends other than Cheshire.

Our fourth thrust in the application layer is a facil-
ity to interface the UCLA General Circulation Model
(GCM) to POSTGRES. This program is a "data pump"
because it pumps data out the simulation model and into
POSTGRES. As such, it has been named the big lift after
the DWR pumping station that raises Northern California
water over the Tehachapi Mountains into Southern Cali-
fornia.

Basically, the UCLA GCM produces a vector of
simulation output variables for each time step of a lengthy
run for each tile in a three dimensional grid of the atmo-
sphere and ocean. Depending on the scale of the model,
its resolution, and the capability of the serial or parallel
machine on which the model is running, the UCLA GCM
can produce anywhere for 0.1 - 10.0 Mbytes/sec of out-
put. The purpose of the big lift is to install this data into a
POSTGRES data base, in real time. UCLA scientists can
then use AVS or eventually Tioga to visualize their simu-
lation output. It is likely that the big lift will have to
exploit parallelism in the data manager, if it is required to
keep up with the execution of the model on a massively
parallel architecture.

The last application system is called Hollywood.
Since SEQUOIA 2000 is a distributed project, we learned
early that airplane tickets and electronic mail were not
sufficient to keep project members working coherently as
a distributed team. As a result, we purchased conference
room videoteleconferencing equipment for each project
site. This technology costs around $50,000 per site and
allows multiway teleconferences over ISDN lines.

Although the conference room equipment has
helped project communication immensely, it must be set
up and torn down at each use because it occupies rooms
at each site, otherwise used as classrooms. As such, it
tends to be used for arranged conferences, and not for
"spur of the moment" interactions. To alleviate this
shortcoming, SEQUOIA 2000 has also invested in desk-
top videoteleconferencing. A video compression board,
microphone, speakers, network connection, video camera,
and appropriate software will turn a conventional works-
tation into a desktop teleconferencing facility. In addi-
tion, video can be easily transmitted over the network
interface, present in virtually all SEQUOIA 2000 client
machines. We are using the Mbone software suite to con-
nect about 30 of our client machines in this fashion, and
are moving most of our teleconferencing activities over to
desktop technology. This effort, named Hollywood,
strives to further improve the ability of SEQUOIA 2000
researchers to communicate.

It should be clearly noted that the SEQUOIA 2000
researchers do not really need "groupware", i.e. the ability

to have common windows on multiple client machines
separated by a WAN, in which common code can be run,
updated and inspected. Rather, our researchers need a
way to hold impromptu discussions on project business.
As such they want a low-cost multicast "picturephone"
capability, and our desktop videoteleconferencing efforts
are focused in this direction.

2.6. The Network Layer
The last topic to discuss is the SEQUOIA 2000 net-

working agenda. In Figure 1, it is possible for the imple-
mentation of each layer to exist on a different machine.
Specifically, the application can be remote from the
DBMS which can be remote from the file system which
can be remote from the storage device. Each layer
assumes a local UNIX socket connection or a LAN or
WAN connection using TCP/IP. Actual connections
among SEQUOIA 2000 sites use either the internet or a
dedicated T3 network, provided to the project as part of
the University of California contribution to the SEQUOIA
2000 project.

The networking team has taken the position that
DEC Alphas are plenty fast enough to route T3 packets.
Hence, the project is using conventional workstations as
routers instead of "custom iron". Furthermore,
SEQUOIA/net has installed a unique guaranteed
delivery service, through which an application can make
a contract with the network that will guarantee a specific
bandwidth and latency if the client agrees not to try to
send faster than the contract. These algorithms require a
"set-up" phase for a connection that will allocate
bandwidth on all the lines and in all the switches, and are
based on the work in [FERR90].

Lastly, the network researchers are concerned that
Ultrix and OSF-1 copy every byte four times in between
retrieving it from the disk and sending it out over a net-
work connection. Even Alphas may not be fast enough to
endure this kind of backplane bandwidth. As such, we
have made modifications to Ultrix that will "fast path" the
network connection through the operating system to cut
down on senseless overhead.

3. SEQUOIA 2000 AS AN END-TO-END
PROBLEM

The major lesson that we have learned from
SEQUOIA 2000 is that many issues faced by our clients
cannot be isolated to a single layer in the SEQUOIA 2000
architecture. In this section, we illustrate three such end-
to-end problems, guaranteed delivery, compression and
abstracts.

3.1. Guaranteed Delivery
It is clear that guaranteed delivery must be an end-

to-end contract. Suppose a SEQUOIA 2000 client wishes
to visualize a specific computation, for example, say he
wants to observe Hurricane Andrew as it moves from the
Bahamas to Florida to Louisiana. Specifically, he wishes
to visualize appropriate satellite imagery at 500 x 500
resolution in 8 bit color at 10 frames per second. Hence,
he requires 2.5 Mbytes/sec of bandwidth to his screen.
The following scenario might be the computation steps

5

that occur:

The DBMS must run a query to fetch the satellite
imagery. It might require returning a 16 bit data value for
each pixel that will ultimately go to the screen. Hence,
the DBMS must agree to execute the query in such a way
that it returns 5.0 Mbytes/sec.

The storage system at the server will fetch some number
of I/O blocks from secondary and/or tertiary memory.
DBMS query optimizers can make an accurate guess for
how many blocks they need to read to satisfy the query. It
is an easy extension for the DBMS to generate a
guaranteed delivery contract which the storage manager
must satisfy that will in turn allow the DBMS to satisfy its
contract.

The network must agree to deliver 5.0 Mbytes/sec. over
the link connecting the client to the server. The
SEQUOIA/net software expects exactly this sort of con-
tract request.

The visualization package must agree to translate the 16
bit data element into an 8 bit color and render the result
onto the screen at 2.5 Mbytes/sec.

In short, guaranteed delivery is a collection of con-
tracts which must be adhered to by the DBMS, the visual-
ization package, the storage system and the network. One
approach to architecting these contracts is discussed in
[STON93B].

3.2. Abstracts
One aspect of the SEQUOIA 2000 visualization

process is the the necessity of abstracts. Consider the
above Hurricane Andrew example. The client might ini-
tially want to browse the Hurricane at 100 x 100 resolu-
tion. Then, if he found something of interest, he would
like to zoom in and increase the resolution, usually to the
maximum available in the original data. This ability to
change the amount of resolution in an image dynamically
has been termed abstracts.

It should be clearly noted that abstracts are a much
more powerful construct than merely providing resolution
adjustment. Specifically, obtaining more detail may entail
moving from one representation to another. For example,
one could have an icon for a document, zoom in to see the
abstract and then zoom in further to see the entire docu-
ment. Hence, zooming can change from iconic to textual
representation. This use of abstracts was popularized in
the DBMS community by SDMS [HERO80].

SEQUOIA 2000 clients wish to have abstracts.
However, it is clear that they can be managed by the visu-
alization tool, the network, the DBMS, or the file system.
In the former case abstracts are defined for boxes-and-
arrows networks as noted in [STON93B]. In the DBMS,
abstracts would be defined for individual data elements or
for data classes. Furthermore, if the network manages
abstracts, then it will use them to automatically lower
resolution to eliminate congestion. Much research on the
optimization of network abstracts (called hierarchical
encoding of data in that community) has been presented.
Lastly, in the file system abstracts would be defined for

files. There are SEQUOIA 2000 researchers pursuing all
four possibilities, and it is expected that this notion will
be one of the powerful constructs to be used by
SEQUOIA 2000 software, perhaps in multiple ways.

3.3. Compression
The SEQUOIA 2000 clients are adamant on this

matter; they are open to any compression scheme as long
as it is lossless. As scientists, they believe that ultimate
resolution may be required to understand some future
phenomenon. Moreover, it is not possible to predict what
or where this phenomenon might occur. Hence, the only
alternative is to keep everything at full resolution.

Some SEQUOIA 2000 data is not economically
compressible, and should be stored in clear form. For
such data, the inclusion of abstracts offers a mechanism to
lower the bandwidth required between the storage device
and the visualization program. However, no saving of
tertiary memory space via compression is available for
such data.

On the other hand, certain data is compressible, and
should be stored in compressed form. As such, the ques-
tion arises as to when compression and decompression
should occur. The only concept that makes any sense is
the principle of just in time decompression. For exam-
ple, if the storage manager compresses data as it is written
and then decompresses it on a read, then the network
manager may then recompress the data for transmission
over a WAN to a remote site where it will be
decompressed a second time. Obviously, data should be
moved in compressed form and only decompressed when
absolutely necessary. In general, this will mean in the
visualization system on the client machine. If search cri-
teria are performed on the data, then the DBMS may have
to decompress the data to perform the search. Lastly, it is
possible that an application resides on the same machine
as the storage manager. If so, the file system must be in
charge of decompressing the data. As should be clear, all
software modules in the SEQUOIA 2000 architecture
must co-operate to perform just-in-time decompression
and as-early-as-possible compression. Like guaranteed
delivery, compression is is a task in which everybody
must cooperate.

4. SPECIFIC LESSONS LEARNED
In this section we discuss other specific lessons that

we have learned from the first three years of the
SEQUOIA 2000 experience.

1) Infrastructure is necessary, time-consuming and very
expensive.

It was crystal clean within a short period of time that e-
mail and airplane tickets would not result in the desired
degree of co-operation from geographically dispersed
researchers from different disciplines. As such, a
significant investment in infrastructure was made. This
included "all hands" meetings, which are now held twice
a year, and video teleconferencing equipment at each site.
Over this video link, we interact by holding a weekly dis-
tributed seminar, semi monthly operations committee
meetings, occasional steering committee meetings, and

6

meetings between researchers with common interests.
Current video teleconferencing equipment has lousy
video quality, and it takes special skills to run "distance
meetings". Nevertheless, the equipment has proved valu-
able in generating cohesion in the dispersed project. We
have now installed desktop video teleconferencing sys-
tems on 30 Sequoia workstations, and expect to replace
our current conference room equipment with next-
generation desktop technology.

In addition, we have run a "distance learning"
experiment in which a course taught by one of the
SEQUOIA 2000 faculty at the Santa Barbara campus was
broadcast over our video teleconferencing equipment to 4
other sites, where students could take the course for credit
at their respective campuses. This experiment proved
very popular and students have requested additional
courses taught in this manner. Of course, the overhead of
setting this up was overwhelming; a new course had to be
added at each campus, and every step in the approval pro-
cess required briefings on the fact that the real instructor
was from a different campus, and how everything was
going to work.

On the other hand, we also tried running a Com-
puter Science Colloquium using this technology. In all,
we broadcast from various sites to six Computer Science
departments around the country. Student interest started
off very high, because they could listen to a "star-
studded" lineup of speakers. Such speakers could be
recruited easily, because they only had to locate the
nearest compatible equipment and then get to that site. In
this way, no airplane travel was required. However, this
experiment failed badly because attendance dropped off
badly as the semester wore on. By the end, attendance
was down to embarassing levels.

The basic problem was that speakers were typically
not skilled in using the medium. Hence, they would put
way too much information on slides and then flip though
slides before remote sites could get a complete transmis-
sion. In the hands of untrained presenters, the technology
is a disaster. Also, the question and answer period could
not be very interactive because of the multitude of sites.
As such, the experiment ended after one semester and will
not be repeated.

2) There was often a mismatch between the expectations
of the Sequoia Earth Scientists and Computer Scientists.

Rather simplistically, the Computer Scientists on the
SEQUOIA 2000 team wanted access to knowlegable
application specialists who could describe their problem
in terms understandable to the Computer Scientist. The
"CS type" then wanted to think through an elegant solu-
tion, verify with the "ES type" that it was appropriate, and
then prototype the result.

The ES types wanted bulletproof "production qual-
ity" solutions to their problems. In short, the ES types
wanted a Commercial Off The Shelf (COTS) solution
while the CS types wanted to write a proof of concept
prototype. Put differently, the ES types were unsym-
pathetic about poor documentation, bugs, and crashes.

It has taken considerable time to get the expecta-
tions of everybody "onto the same page". This has been

especially true for ES use of POSTGRES, which suffers
from all three of the above characteristics.

We found that the best way to make forward pro-
gress was to ensure that each ES group using SEQUOIA
2000 prototype code had one or more sophisticated staff
programmers who could deal successfully with the quirks
of prototype code. With CS expertise surrounding the ES
types, the problems in this area became much more
manageable. We found that such expertise could be dis-
tributed; in fact support programmers for SEQUOIA 2000
clients are often not at the same physical location as the
client.

3) Interdisciplinary Research is fundamentally difficult.

I recall one endless discussion on the construction of a
SEQUOIA 2000 benchmark that led eventually to the one
in [STON93]. The CS types were arguing strongly for a
representative abstract example of ES data access, i.e. the
"specmark" of Earth Science. On the other hand, the ES
types were equally adamant that the benchmark convey
the exact data accesses of one of their real applications.

The ultimate result was the realization that the word
"benchmark" means different things to CS and ES people.
To ES people it means a "scenario", while to CS types, it
means an abstract example. This vignette was typical of
the struggle for each of two disciplines to understand the
other. Fundamentally, this is a time consuming process,
and ample interaction time should be planned for any pro-
ject that must deal with multiple disciplines.

In SEQUOIA 2000, we made very effective use of
"converters", i.e. a person of one discipline planted
directly in the research group of the other discipline. This
person, using the "informal interchange in the hall" com-
munication system could serve as an interpreter and trans-
lator for the other discipline. Converters were
encouraged by setting up a formal "exchange program",
whereby central SEQUOIA 2000 resources would pay the
living expenses of any exchange personnel.

4) Data base technology is a "big leap" for Earth Scien-
tists.

Our initial plan was to simply drop data base technology
into the project and the Earth Scientists would pick it up
and use it. Unfortunately, they are strongly cultured in a
"data is in files" mentality, and it was a very difficult tran-
sition for them to move to a data base view. Only after 3
years are the inherent advantages of DBMS technology
beginning to sink in.

In addition, we followed the standard wisdom of
appointing the most technically literate Earth Scientist as
the leader of the data base design effort. This person
chaired a committee of mostly CS types, charged with
producing a schema.

This technique failed dismally. First, there was
considerable disagreement among the CS types whether
we were designing an interchange format, by which sites
could reliably exchange data sets, (i.e. an on-the-wire
representation) or a schema for stored data at a site. Most
Earth Science standards (e.g. HDF, NetCDF) are of the
first form, and there was substantial enthusiasm for

7

simply picking one of these formats. On the other hand,
other CS types argued that an on-the-wire representation
mixes the data (e.g. a satellite image) and the meta data
describing it (e.g. the frequency of the sensor, the date of
the data collection and the name of the satellite) into a
single highly encoded bit string. A better design would
separate the two kinds of data and construct a good stored
schema for it.

A second problem is the multitude of legacy for-
mats currently in use and the desires by various Earth
Scientists not to have to change the format they were
currently using. This led to many arguments about the
merits of one legacy format versus another, and usually
led to the conclusion that both should be supported in
addition to a neutral representation with clean semantics.

A third problem is that Earth Science data is funda-
mentally very complex. For example, Earth Scientists
store geographic points, which are 3-D positions on the
face of the Earth. There are some 20 popular projections
of 3-D space onto 2-D. These include (latitude, longi-
tude), Mercator projection and Lambert Equal Azimuthal
projection. It is necessary to associate with every
instance of a geographic point the projection system that
is being used. Another problem is units. Some geo-
graphic data are represented as integers, with miles as the
fundamental unit; other as floats with meters as the under-
lying unit. In addition, satellite imagery must be mas-
saged in a variety of ways to "cook" it from raw data into
a usable form. Cooking includes converting imagery
from a one-dimensional stream of data recorded in satel-
lite flight order into a two-dimensional representation.
Many details of this cooking process must be recorded
about all imagery. This blows up the meta data about
imagery as well as forces the Earth Scientist to simply
write down all the extra data elements.

Schema design turned out to be laborious and very
difficult. Moreover, the Earth Scientists didn’t understand
data base design very well and hence were not well
equipped to take on the extreme complexity of the task.
As a result, we have reconstructed our data base design
effort and put it in the hands of a 2 person team of CS
types. Their mission is to produce a schema by interact-
ing with the ES types, and being as dictatorial as neces-
sary to get the job done.

5) Tertiary memory file systems are immature

At the beginning of the project, we were commited to an
"all DEC" hardware environment, since they were the
major project sponsor. However, there was no COTS ter-
tiary memory file system that ran on DEC hardware and
supported our storage devices. Rather than relax our
hardware environment, we elected to write our own file
system. As noted earlier, Inversion and Highlight were
the result of this effort. However, neither worked with
reliability the clients found suitable. Later we found two
tertiary memory file systems that ran on DEC iron. Nei-
ther proved any more reliable than our "homebrew" solu-
tions. Moreover, the importation of COTS software had
the effect of stopping the development of our internal file
systems, since the appropriate developers saw that their
efforts were, at best, a backup strategy. Finally, we

moved to running tertiary memory on non-DEC servers,
and managed to get more reliable file systems. Unfor-
tunately, even with this hardware relaxation, we have still
not been able to find reliable software for our largest tape
jukebox. Conversations with other users have largely
confirmed our frustrating experience, and reliable tertiary
memory software is hard to find.

In the future, we expect to test COTS software
rigorously before we commit to it. Moreover, we would
be more inclined to stick with homebrew software, since
it is under our control. If it doesn’t work, at least we can
do something about it (i.e. try to fix it), rather than just
plead with the COTS vendor.

6) Project management is a serious problem

SEQUOIA 2000 is a large project. At the last "all hands"
meeting, there were about 110 people, broken down as 30
Computer Scientists, 40 Earth Scientists and 40 visitors
from industry. There are multiple efforts on multiple
campuses that must "plug and play". Keeping distributed
development in synchronization is an extreme challenge.
Furthermore, project management is not a skill fostered in
a University environment. Additionally, it is not one that
is rewarded in the University evaluation of faculty.

As such, the principal investigators viewed project
management as a drain on their time that could be better
invested in research activities. An obvious solution
would be for SEQUOIA 2000 to hire a professional pro-
ject manager. Unfortunately, it is impossible to pay a
non-faculty person the going rates for such skilled per-
sons. Another strategy which we attempted was to solicit
a visitor from one of our industrial sponsors with the
desired skill mix. Unfortunately, our efforts in this direc-
tion did not succeed. Hence, we were never able to
recruit project management expertize to SEQUOIA 2000.

As a result project management was performed
poorly at best. In any future large project, this component
should be addressed satisfactorily up front by project per-
sonnel.

7) Multicampus projects are extremely painful

SEQUOIA 2000 work is ongoing in 7 different organiza-
tions within the University of California system. As such,
there is a constant need to transfer money and people
between these organizations. Moving either has proved
unbelievably tedious within the University of California
bureaucracy. It consumes a full time staff person to deal
with these matters, and even then, tends to take forever.
Moreover, it seems that SEQUOIA 2000 is constantly
bending the personnel rules of the University.

As a result, multi-institution projects are extremely
painful. There is a lot to be said for "put everybody in
one place".

5. CONCLUSIONS
The SEQUOIA 2000 project plans a software dis-

tribution consisting of Footprint, Highlight, Inversion,
POSTGRES, the AVS-POSTGRES bridge, the big lift,
guaranteed delivery routing software, Lassen, and Tioga

8

during late 1994. In addition, DEC and the University of
California have agreed to form the cornerstone of a
partnership to sponsor a second 3 year phase of
SEQUOIA 2000 research and development. The exact
goals of phase 2 are currently under investigation.

REFERENCES
[FERR90] Ferrari, D., "Client Requirements

for Real-time Communication
Services," IEEE Communica-
tions, November 1990.

[HELL93] Hellerstein, J. and Stonebraker,
M., "Predicate Migration:
Optimizing Queries with Expen-
sive Predicates," Proc. 1993
ACM SIGMOD Conference on
Management of Data, Washing-
ton, D.C., May 1993.

[HERO80] Herot, C., "SDMS: A Spatial
Data Base System," ACM
TODS, June 1980.

[KOHL93] Kohl, J. et. al., "Highlight: Using
a Log-structured File System for
Tertiary Storage Management,"
Proc. 1993 Winter USENIX
Meeting, San Diego, Ca., Jan
1993.

[LARS91] Larson, R., "Classification, Clus-
tering, Probabilistic Information
Retrieval and the On-Line Cata-
log," Library Quarterly, April
1991.

[OLSO93] Olson, M., "The Design and
Implementation of the Inversion
File System," Proc. 1993 Winter
USENIX Meeting, San Diego,
Ca., Jan 1993.

[ROSE92] Rosenblum, M. and Ousterhout,
J., "The Design and Implementa-
tion of a Log-structured File Sys-
tem," ACM TOCS, Feb. 1992.

[SARA93] Sarawagi, S. and Stonebraker,
M., "Efficient Organization of
Large Multidimensional Arrays,"
Proc. 1993 IEEE Data Engineer-
ing Conference, Houston, Tx.,
Feb 1993.

[SELT93] Seltzer, M. et. al., "An Imple-
mentation of a Log-structured
File System for UNIX," Proc.
1993 Winter USENIX Meeting,
San Diego, Ca., Jan 1993.

[STON90] Stonebraker, M. et al., "The
Implementation of POSTGRES,"
IEEE TKDE, March 1990.

[STON91] Stonebraker, M. and Dozier, J.,
"Large Capacity Object Servers
to Support Global Change
Research," SEQUOIA 2000

Technical Report 91/1, Berkeley,
Ca., July 1991.

[STON93] Stonebraker, M. et. al., "The
SEQUOIA 2000 Benchmark,"
Proc. 1993 ACM SIGMOD
Conference on Management of
Data, Washington, D.C., May
1993.

[STON93B] Stonebraker, M. et. al., "Tioga:
Providing Data Management for
Scientific Visualization Applica-
tions," Proc. 1993 VLDB
Conference, Dublin, Ireland,
August 1993.

[WOOD94] Woodruff, A. et. al., "Zooming
and Tunneling in Tioga: Sup-
porting Navigation in Multidi-
mensional Space," SEQUOIA
2000 Technical Report 94/48,
Berkeley, Ca., March 1994.

9

