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Abstract This paper is concerned with the three dimensional motion of a nonlinear dynamical system. The
motion is described by nonlinear partial differential equation, which is converted by Galerkin method to three
dimensional ordinary differential equations. The three dimensional differential equations, under the influence of
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the stability of the system and the effects of the parameters of the system, respectively.

Keywords: Galerkin method, resonances, nonlinearities

Cite This Article: Usama H. Hegazy, and Mousa A. ALshawish, “Harmonic Oscillations and Resonances in
3-D Nonlinear Dynamical System.” International Journal of Partial Differential Equations and Applications, vol.

4, no. 1 (2016): 7-15. doi: 10.12691/ijpdea-4-1-2.

1. Introduction

Problems involving nonlinear differential equations are
extremely diverse, and methods of solutions or analysis
are problem dependent. Nonlinear systems are interesting
for engineers, physicists and mathematicians because most
physical systems are nonlinear in nature. The sub-
combination internal resonance of a uniform cantilever
beam of varying orientation with a tip mass under vertical
base excitation is studied. The Euler-Bernoulli theory
slender beam was used to derive the governing nonlinear
partial differential equation [1]. The dynamic stability of a
moving string in three-dimensional vibration is investigated
[2]. Three nonlinear integro-differential equations of motion
are studied and the analysis is focused on the case of
primary resonance of the first in-plane flexural mode
when its frequency is approximately twice the frequency
of the first out-of-plane flexural-torsional mode [3]. The
method of multiple time scales is applied to investigate the
response of nonlinear mechanical systems with internal
and external resonances. The stability of vibrating systems
is investigated by applying both the frequency response
equation and the phase plane methods. The numerical
solutions are focused on both the effects of the different
parameters and the behavior of the system at the considered
resonance cases [4,5]. The nonlinear characteristics in the
large amplitude three-dimensional free vibrations of inclined
sagged elastic cables are investigated [6]. The nonlinear
forced vibration of a plate-cavity system is analytically
studied. Galerkin method is used to derive coupled nonlinear
equations of the system. In order to solve the nonlinear
equations of plate-cavity system, multiple scales method
is employed. Closed form expressions are obtained for the
frequency-amplitude relationship in different resonance
conditions [7]. The steady-state periodic response of the
forced vibration for an axially moving viscoelastic beam

in the supercritical speed range is studied [8]. For this
motion, the model is cast in the standard form of continuous
gyroscopic systems. Internal Various approximate analytical
methods are developed for obtaining solutions for strongly
nonlinear differential equations in a complex function.
The methods of harmonic balance, Krylov-Bogoliubov
and elliptic perturbation are utilized [9]. The problem of
suppressing the vibrations of a hinged-hinged flexible
beam when subjected to external harmonic and parametric
excitations is considered and studied. The multiple scale
perturbation method is applied to obtain a first-order
approximate solution. The equilibrium curves for various
controller parameters are plotted. The stability of the
steady state solution is investigated using frequency-
response equations. The approximate solution was
numerically verified. It is found that all predictions from
analytical solutions were in good agreement with the
numerical simulations [10].

2. Equations of Motion

The nonlinear partial differential equation governing the
flexural deflection u(x,t) of the beam, subject to harmonic

axial excitation p = py — p; cosQt , is given by [11,12]
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under the following boundary conditions:
u(x)=0and2—u=0atx=0,x=L. (2)
X

Equation (1) can be converted to a three dimensional
nonlinear ordinary differential equations applying the
method of Galerkins and using the following expression

u(xt) = g(t)sin(ﬂ—ijr h(t)sin[@J+ k(t)sin[gﬁ—xj )
L L L
into equation (1). Then we have
9" +of g+ e(@g’+mh®g+npgk? + 3ok
+1149% +159%K) + £% (75 9k* + 17792k + 13gh %k
2.3 4 4 3,2 5 <4)
+19h” g~ +moh "k +711h" g +11297K” + 730
+m4h%k2g + 9%k + mgh?g2k) = £F cosOt,
h"+wah + (B’ + 4hgk + 2,h® + 3hk? + 4,hg?)
+&2(Ashg? + 2gh%Kk % + A7h° + Aghgk® + Aghk* (5)
+A30n°9% + A,09kh® + 4,hg %k + A5hkg?) = &F cosQt,

K"+ W3k + £(5k' +1h?k + 7, gk? + 73gh?
+740° +75k3) + £2 (16k® + 7,94k + 750 %K> ©

+T9k293 + Tlohzgs + T11h4g + leghzkz

+T13kh292 + T14gs + 715h4k + T16h2k3) =¢F cosQt.

3. Perturbation Solution

The method of multiple scales is applied to determine
an approximate solution for the differential equations (4-
6). Assuming that g, h and k are in the forms

9(To, 1) = 9o (To, T1) + €01 (Tp, 1) +-..,
h(To.T1) = hg(Tg. Ty) + ey (To, Ty) +-.., (7
kO—O'Tl) = kO(TO’Tl) +8k1(|—0,T1)+...,

WhereTy =t , Ty =Ty = &t.
The time derivatives are written as

%:DO +&Dy+...,
12 ®)
dt—zz D02+28D0D1+...,
Where
Dy =—2-,p, =2, ©)
0Ty om

Substituting egs. (7-9) into egs. (4-6) and equating
coefficients of same powers of ¢ yields:
0(80):

(10)
(11

(D§+a;f)k0:o (12)

0(81):
D2 + @2 ) gy = —2D, —aDygg —mhy?
( o+ )91 oD190 090 —mhy“do (13)
~115Ko? 0o —113M0°Ko —7490° — 11590°Ko + F cos(€2t)

(Do2 +a’22)h1 =—2DyDyhg — BDghg — Ao goko

(14)
—ﬂ,zho:3 - ﬂghokoz - 14h0 goz + F cosQt.
( D02 + 0)32 ) kl = —2DO leo —5D0k0 — Tlhozko
(15)
—Tzkozgo —r3h0290 - r4903 —r5k03 + F cos(Qt).
The solution of egs. (10-12) is expressed as
0o (To.Ty) = A(Tye'™"0 + AT e 0. (16)

hy (To,Ty) = B(T)e'2™0 + B(Ty)e 20, (17)
ko(To, 1) = C(T)e3™0 +C(Ty)e 30, (18)

Where A, B,C are complex functions inT; Substituting egs.
(16-18) into egs (13-15),we get
—2i; A —aiay A- 23 BBA)
(D02+a’12)91= an e 2_771 e'1’o
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Where cc denotes a complex conjugate of the preceding
term.

The general solution of egs. (19-20) can be written in
the following form

(—273CBB - 2155CAA)
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From egs. (22-24) the following resonance cases are
extracted:

. Internal Resonance:
1. o =g,
2. @ = wy = 3,
. External Resonance:
a. Primary resonance
1. Q=aw,
2. Q=0w,,
3. Q=aw3,
b. Simultaneous resonance
1. Q=m0 =w, =w3.

4. Stability Analysis

We shall consider the resonance case Q = @, when w; =

w, = 3. Using the detuning parameter o, the resonance
case are expressed as

Q=wy +£01,0, =Wy + 609,03 =y +£03.  (25)

Substituting eq. (25) into egs. (19-21) and eliminating
terms that produce secular term then performing some
algebraic manipulations, we obtain the following
modulation equations:

~2iay A — iy A— 21 BBA oo
~21,CCA -3, A%A
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Letting
b5

A=1a1ei31, B=£a2e"92, C=1a3eI .
2 2 2

where aj,a,,83,6,,0,,05 are functions of T;. Separating

real and imaginary parts gives the following six equations
governing the amplitude and phase modulations

, 1 2 1 2
g =& (01 —09) ——— 3" ———1pay
4an 4oy
3 3 1 2
Tag T4 T, a8y 83 C0SV -
“1 “ (29)

1 2 1 2
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1 9 1
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8y 20
.1 1 0
al :——aal——7733.2 a3 Sin 1Z1
2 4an
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20 8y

1 2. 1 .
———158 agsinv, + —Fsinvg
8wy, 2

V4! V3/ V]_, ay 3 4
| -2 =gy —— L a
2[5 10 10] 5 3 160)2/151 2

3 2 3 5 5 3 4
—— A a," ——— 72, ————Agay A
160)2/7'63 T6m, 722 16602193 2
3 1
——ﬂioalazzl ——11231233232 (31)
16602 4(02

1 1
- 28a1a2a33 COSVy ———— /Illala3a23 CoSvy

Agqay a33 COS Vs,

1 s, 1
——— Agdy aAq~ COS -
20, 02 % Va5,

, 1 1 3 .
a, = —=fa, ———— Aoa,a,a," sinv
2 =7, 32602183123 2
1 3 . 1 3.2 .
— asa,” SiNVy ———— A8, a  sinv, (32)
20, 41121333, Sinv3 20, 672 %3 1"

1 3 .
—%ﬂgalazaa, sinvg,

, 1 2 3 3
agvip = 33(o1 —03) s 71333 By T5a3

+ —er aag? — irgalazz 3 748° [cosvyg (33)
4oy 4y 83

1, 1
———71dy az COSvy +—— F cos V12,
8ag 2a3

2 1 2
————T%3d3 don 73818y
sinvyg
—8— 74a13 (34)

1, 1
—8—2'18.2 a35|nV11 +2—FS|nV12.

where
v, = =6 +o3T; —oyTy,
Vo = 03 —91 +G3T1 —Gle,
v3 =20, —03 -0, — 031 — 0,1y,
vy =—Vp,v5 =—0 +o1T; —ooTy,
Ve =0, —b3 -0, — 03T,
vy =6 —o1Ty + 05Ty,
vg =0 —63 -0, + oy,
vg =6 -0, o3,
vip = & — 3 + 05Ty — 03T,
i1 = 202 —293 - 20'3T,
Vip = —93 + O-lTl - GST]_.

The steady-state solutions of egs. (29-34) are obtained
by setting &y = a) = a3 =v5 =vg =v;, = 0. into egs. (29-34).
This results in the following nonlinear algebraic equations,
which are called the frequency response equations:

Alale + A2a14 + A3a12 + A4 = O (35)
A5a26 +A6a24 +A7a22 +A832 +Ag =0. (36)
A10a36 + A11a34 + A123.33 + A13a32 + A143.3 + A15 =0. (37)

The coefficients A;,i= (1,2,..,15) , are given in
Appendix.

5. Numerical Results and Discussions

In this section, the Runge-Kutta fourth order method is
applied to determine the numerical time series solutions (t,
9), (t, h), and (t, k)and the phase planes (g, v), (h, v), (k, v),
respectively, for the three modes of the nonlinear system
(4-6). Moreover, the fixed points of the model is obtained
by solving the frequency response equations (35-37)
numerically.

5.1. Time-response Solution

A non-resonant time response and the phase plane of
the three modes of vibration of the system is shown in
Figure 1. In Figure 2, different resonance cases are
investigated and an approximate percentage of increase, if
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exists, in maximum steady-state amplitude compared to  that in the non-resonant case is indicated.
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g A |
032- 0.1
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064 . . . . . . 0.3
0 100 200 300 400 500 00 0.10- ods- i 0bs olo
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Time amplitude

Figure 1. Non-resonant time solution of the 3-D model to external excitation

0.63 03]
1 0,1: The first
g ™ o o1 4 mode
D.d—: 0.3:
i 0.10. 005 ods olo

100 200 300 4o sdo 600 [i
Time amplitude
0.
VM y 4
d i 7 The second
0'1‘: mode
0.3
100 200 300 a0 500 600 0.]o- 005 0 05 0lo
Time amplitude
0 0.3
0.1
k ] .
0.1 The third
o 073_— mode
100 200 300 4do 500 600 oo 0,05 [i ohs olo
Time amplifude
Figure 2(a). The internal resonance condition @ = w3 = 2.6
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Figure 2(b). The internal resonance condition @ = @y = w3 = 2.6
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iE 1.54
0.5 t
= .D- ¥ ﬂé The first
0.5 U'_jl’ mode
-1 1.5
100 200 300 4do 500 00 06 04 0% ] 02 04 0%
Time camplitude
HH
8 ™,
L] vooqi )]
U AN ’ The second
L b mode
L 1 1 4
il 100 00 300 Fin) 500 600 j -1 o5 d s i 15
Time amplifude
2
14 1]
0.5
o v The third
0.5 -1 mode
-14 2]
il 100 200 300 ado 500 600 0B 05 0% 0% "4 "oz o4 os 0B
Time ampliftude

Figure 2(d). The Simultaneous resonance condition €2 = O =Wy =3 = 2.2

(a) Internal resonance cases

(“’l = a)3),(150%, None, None), Figure 2(a)

(a)l =wy = a)3) (150%, None, None), Figure 2(b)

(b) External resonance cases
(1) primary resonance:

(Q = a)3),(150%,150%,160%), Figure 2(c).
(2) Simultaneous resonances

(=0 = ) = 03),(250%, 250%,160%), Figure 2(d).

5.2. Theoretical Frequency Response Solution

The numerical results are presented graphically in Figs.
(3-5) as the amplitudes a;,a,,a3 against the detuning
parameters oy,0,,03 for different values of other

parameters. Each curve in these figures consists of two
branches. Considering Figure 3(a) as basic case to
compare with, it can be seen from Figure 3(b), (c) that the

steady-state amplitude a, decreases as each of o, 73, @ are
increased but in Figure 3(e) the steady- state amplitude &

increases as each of F increases .Whereas the frequency
response curves in Figure 3(h) are shifted to the right as
o, increases.

Considering Figure 4(a) as basic case to compare with,
it can be seen from Figure 4(c) that the steady-state
amplitude a, increases as each of F are increasing. But in
Figures 4(b),(c), (d) and(i), the steady- state amplitude a,
decreases as each of a,az, 5, w,are increased. In Figure
4(h) the curves are shifted to the right as oy increases.
Whereas, the frequency response curve are bent to right as
/g varies from negative to positive values, showing
hardening nonlinearity effect, Figure 4(f), (g).

Considering Figure 5(a) as basic case to compare with,
it can be seen From Figures 5(b),(c) that the steady-state
amplitude a3 increases as each of a;,z,, F are increased.
The nonlinearity effect of z5 is shown in Figure 5(f), (g),
whereas the curves are being shifted in Figure 5(d).
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Figure 3. Frequency response curves of the first mode of the system at resonance 7 = 0.5,7p = 0.6,;73 = 04,74 =0.2,775 =0.8, ap = 0.03,

ag =0.05,09 =0.02,0 =0.08, F =0.8,;n =1.9
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Figure 4. Frequency response curves of the second mode of the system at resonance a3 = 0.01,07 =0.03, 8 =0.08,F = 0.8,wp =22, 4 =0.5,

Jp = 06,43 =0.4,44 =08,a = 0.04



14 International Journal of Partial Differential Equations and Applications

3
4
F — 48
3
4 5 T 2T AT R - T B |

g3

{c) Excitation force amplitude

(f) Nonlinear parameter

(g) Nonlinear parameter

{h} Natural frequency

Figure 5. Frequency response curves of the third mode of the system at resonance a; = 0.04,ap =0.03,01 =0.03,6 =0.08, F =0.8,w3 = 2.6,

71 = 055,75 = 062,73 = 044,74 = 0.22,75 = 0.88

6. Conclusions

We have studied the analytic and numerical solutions of
three dimensional nonlinear differential equations that
describe the oscillations of abeam subjected to external
forces. The multiple scales method and Runge-Kutta
fourth order numerical method are utilized to investigate
the system behavior and its stability .All possible
resonance cases were be extracted and effect of different
parameters on system behavior at resonant condition were
studied. We may conclude the following:

(1) The steady-state amplitude of the first mode

increases as each of the external force amplitude

F and nonlinear coefficients 75,75 are increased.

(2) The steady-state amplitude of the first mode
decreases as each of the linear damping
coefficient o and the nonlinear coefficient 7,

and the natural frequency « are increased.

(3) The steady-state amplitude of the second and
third mode increase as the external force
amplitude F increases.

(4) The steady-state amplitude of the second mode
decreases as each of the linear damping
coefficient # and nonlinear coefficient A, and the

second mode amplitude a, and the natural
frequency @, are increased.

(5) The steady-state amplitude of the third mode
increases as each of the external force amplitude
F and the first mode amplitude a, are increased.

Nomenclature

o, Wy, Natural frequencies of the system

€ Small  dimensionless  perturbation
parameter

a,pB,o Linear damping coefficients

N, A, T Nonlinear parameters

F Excitation force amplitude

Q Excitation frequency

Dy, Dy Differential operators

r Radius of gyration of cross-section area
m Mass per unit length of beam

E Young's modulus

| Moment of inertia

L Length of beam

t Time

Po, P1 Real coefficients
To Fast time scale
T Slow time scale

t, g*, h",k",Q" Non- dimensional quantities
;. hy, k;(i=0,1) Perturbation variables expansion
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6,.6,,05 Phase angles of the polar forms

A(Ty),B(Ty),C(Ty) Complex valued quantities

cc Complex conjugate for preceding terms
at the same equation

0i,i=12,3 Detuning parameter

&, 8,83 Steady-state amplitudes
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The coefficients presented in (36), are as follows:
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