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1. Introduction 
Problems involving nonlinear differential equations are 

extremely diverse, and methods of solutions or analysis 
are problem dependent. Nonlinear systems are interesting 
for engineers, physicists and mathematicians because most 
physical systems are nonlinear in nature. The sub-
combination internal resonance of a uniform cantilever 
beam of varying orientation with a tip mass under vertical 
base excitation is studied. The Euler–Bernoulli theory 
slender beam was used to derive the governing nonlinear 
partial differential equation [1]. The dynamic stability of a 
moving string in three-dimensional vibration is investigated 
[2]. Three nonlinear integro-differential equations of motion 
are studied and the analysis is focused on the case of 
primary resonance of the first in-plane flexural mode 
when its frequency is approximately twice the frequency 
of the first out-of-plane flexural-torsional mode [3]. The 
method of multiple time scales is applied to investigate the 
response of nonlinear mechanical systems with internal 
and external resonances. The stability of vibrating systems 
is investigated by applying both the frequency response 
equation and the phase plane methods. The numerical 
solutions are focused on both the effects of the different 
parameters and the behavior of the system at the considered 
resonance cases [4,5]. The nonlinear characteristics in the 
large amplitude three-dimensional free vibrations of inclined 
sagged elastic cables are investigated [6]. The nonlinear 
forced vibration of a plate-cavity system is analytically 
studied. Galerkin method is used to derive coupled nonlinear 
equations of the system. In order to solve the nonlinear 
equations of plate-cavity system, multiple scales method 
is employed. Closed form expressions are obtained for the 
frequency-amplitude relationship in different resonance 
conditions [7]. The steady-state periodic response of the 
forced vibration for an axially moving viscoelastic beam 

in the supercritical speed range is studied [8]. For this 
motion, the model is cast in the standard form of continuous 
gyroscopic systems. Internal Various approximate analytical 
methods are developed for obtaining solutions for strongly 
nonlinear differential equations in a complex function. 
The methods of harmonic balance, Krylov-Bogoliubov 
and elliptic perturbation are utilized [9]. The problem of 
suppressing the vibrations of a hinged-hinged flexible 
beam when subjected to external harmonic and parametric 
excitations is considered and studied. The multiple scale 
perturbation method is applied to obtain a first-order 
approximate solution. The equilibrium curves for various 
controller parameters are plotted. The stability of the 
steady state solution is investigated using frequency-
response equations. The approximate solution was 
numerically verified. It is found that all predictions from 
analytical solutions were in good agreement with the 
numerical simulations [10]. 

2. Equations of Motion 
The nonlinear partial differential equation governing the 

flexural deflection ( , )u x t  of the beam, subject to harmonic 
axial excitation 0 1 cosp p p t= − Ω , is given by [11,12] 
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under the following boundary conditions: 

 ( ) 0 0 0, .uu x and atx x L
x
∂

= = = =
∂  (2) 

Equation (1) can be converted to a three dimensional 
nonlinear ordinary differential equations applying the 
method of Galerkins and using the following expression  
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into equation (1). Then we have 

 

2 2 2
1 1 2 3 2

3 2 2 4 2 3 2 3
4 5 6 7 8

2 3 4 4 3 2 5
9 10 11 12 13

2 2 4 2 2
14 15 16

(

) (

) cos ,

g g g h g gk h k

g g k gk g k h k

h g h k h g g k g

h k g g k h g k F t

ω ε α η η η

η η ε η η η

η η η η η

η η η ε

′′ ′+ + + + +

+ + + + +

+ + + + +

+ + + = Ω

  (4) 

 
3 2 3 2 2 3

10 11 12 13

2 3 2 2
2 1 2 3 4

2 4 3 2 5 3 4
5 6 7 8 9

) cos ,

( )

(

h g gkh hg k hkg F t

h w h h hgk h hk hg

hg h k h hgk hk

λ λ λ λ ε

ε β λ λ λ λ

ε λ λ λ λ λ

+ + + + = Ω

′′ ′+ + + + + +

+ + + + +  (5) 

2 2 2 2
3 1 2 3

3 3 2 5 4 2 3
4 5 6 7 8

2 3 2 3 4 2 2
9 10 11 12

2 2 5 4 2 3
13 14 15 16

(

) (

) cos .

k w k k h k gk gh

g k k g k g k

k g h g h g gh k

kh g g h k h k F t

ε δ τ τ τ

τ τ ε τ τ τ

τ τ τ τ

τ τ τ τ ε

′′ ′+ + + + +

+ + + + +

+ + + +

+ + + + = Ω

  (6) 

3. Perturbation Solution 
The method of multiple scales is applied to determine 

an approximate solution for the differential equations (4-
6). Assuming that g, h and k are in the forms 
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Where 0T t= , 1 0 .T T tε ε= =  
The time derivatives are written as 
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Substituting eqs. (7-9) into eqs. (4-6) and equating 
coefficients of same powers of ε yields: 
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The solution of eqs. (10-12) is expressed as 
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Where , ,A B C are complex functions in 1T  Substituting eqs. 
(16-18) into eqs (13-15),we get 
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Where cc denotes a complex conjugate of the preceding 
term. 

The general solution of eqs. (19-20) can be written in 
the following form 
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From eqs. (22-24) the following resonance cases are 
extracted: 
• Internal Resonance:  

1. 1 3ω ω= , 
2. 1 2 3ω ω ω= = , 

• External Resonance: 
a. Primary resonance 

1. 1ωΩ = , 
2. 2ωΩ = , 
3. 3ωΩ = , 

b. Simultaneous resonance 
1. 1 2 3ω ω ωΩ = = = . 

4. Stability Analysis 
We shall consider the resonance case Ω ≈ 2ω when ω1 ≈ 

ω2 ≈ ω3. Using the detuning parameter σ, the resonance 
case are expressed as 

 2 1 1 2 2 3 2 3, , .ω εσ ω ω εσ ω ω εσΩ = + = + = +  (25) 

Substituting eq. (25) into eqs. (19-21) and eliminating 
terms that produce secular term then performing some 
algebraic manipulations, we obtain the following 
modulation equations: 
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governing the amplitude and phase modulations 
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The steady-state solutions of eqs. (29-34) are obtained 
by setting 1 2 3 5 8 12 0.a a a ν ν ν′ ′ ′ ′ ′ ′= = = = = = into eqs. (29-34). 
This results in the following nonlinear algebraic equations, 
which are called the frequency response equations: 
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The coefficients , iiΛ = (1,2,...,15) , are given in 
Appendix. 

5. Numerical Results and Discussions 
In this section, the Runge-Kutta fourth order method is 

applied to determine the numerical time series solutions (t, 
g), (t, h), and (t, k)and the phase planes (g, v), (h, v), (k, v), 
respectively, for the three modes of the nonlinear system 
(4-6). Moreover, the fixed points of the model is obtained 
by solving the frequency response equations (35-37) 
numerically. 

5.1. Time-response Solution 
A non-resonant time response and the phase plane of 

the three modes of vibration of the system is shown in 
Figure 1. In Figure 2, different resonance cases are 
investigated and an approximate percentage of increase, if 
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exists, in maximum steady-state amplitude compared to that in the non-resonant case is indicated. 

 
Figure 1. Non-resonant time solution of the 3-D model to external excitation 

 
Figure 2(a). The internal resonance condition 1 3 2.6ω ω= =  

 
Figure 2(b). The internal resonance condition 1 2 3 2.6ω ω ω= = =  
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Figure 2(c). The primary resonance condition 3 2.6ωΩ = =  

 
Figure 2(d). The Simultaneous resonance condition 1 2 3 2.2ω ω ωΩ = = = =  

(a) Internal resonance cases 

 ( ) ( ), 150%, None, None , Figure 2(a)1 3ω ω=  

 ( ) , (150%, None, None),Figure 2(b)1 2 3ω ω ω= =  

(b) External resonance cases 
(1) primary resonance: 

 ( ) ( ), 150%,150%,160% , Figure 2(c).3ωΩ =  

(2) Simultaneous resonances 

( ) ( ), 250%,250%,160% , Figure 2(d).1 2 3ω ω ωΩ = = =  

5.2. Theoretical Frequency Response Solution 
The numerical results are presented graphically in Figs. 

(3-5) as the amplitudes 1 2 3, ,a a a  against the detuning 
parameters 1 2 3, ,σ σ σ  for different values of other 
parameters. Each curve in these figures consists of two 
branches. Considering Figure 3(a) as basic case to 
compare with, it can be seen from Figure 3(b), (c) that the 

steady-state amplitude 1a decreases as each of 3 1, ,α η ω are 
increased but in Figure 3(e) the steady- state amplitude 1a  
increases as each of F  increases .Whereas the frequency 
response curves in Figure 3(h) are shifted to the right as 

2σ  increases. 
Considering Figure 4(a) as basic case to compare with, 

it can be seen from Figure 4(c) that the steady-state 
amplitude 2a  increases as each of F are increasing. But in 
Figures 4(b),(c), (d) and(i), the steady- state amplitude 2a  
decreases as each of  1 3 2, , ,a a β ω are increased. In Figure 
4(h) the curves are shifted to the right as 1σ  increases. 
Whereas, the frequency response curve are bent to right as

3λ varies from negative to positive values, showing 
hardening nonlinearity effect, Figure 4(f), (g). 

Considering Figure 5(a) as basic case to compare with, 
it can be seen From Figures 5(b),(c) that the steady-state 
amplitude 3a  increases as each of 1 2, ,a Fτ are increased. 
The nonlinearity effect of 5τ  is shown in Figure 5(f), (g), 
whereas the curves are being shifted in Figure 5(d). 
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Figure 3. Frequency response curves of the first mode of the system at resonance 0.5, 0.6, 0.4, 0.2, 0.81 2 3 4 5η η η η η= = = = = , 0.03,2a =  

0.05, 0.02, 0.08, 0.8, 1.93 2 1a Fσ α ω= = = = =  

 
Figure 4. Frequency response curves of the second mode of the system at resonance 0.01, 0.03, 0.08, 0.8, 2.23 1 2a Fσ β ω= = = = = , 0.5,1λ =  

0.6, 0.4, 0.8, 0.042 3 4 1aλ λ λ= = = =  
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Figure 5. Frequency response curves of the third mode of the system at resonance 0.04, 0.03, 0.03, 0.08, 0.8, 2.61 2 1 3a a Fσ δ ω= = = = = = , 

0.55, 0.62, 0.44, 0.22, 0.881 2 3 4 5τ τ τ τ τ= = = = =  

6. Conclusions 
We have studied the analytic and numerical solutions of 

three dimensional nonlinear differential equations that 
describe the oscillations of abeam subjected to external 
forces. The multiple scales method and Runge-Kutta 
fourth order numerical method are utilized to investigate 
the system behavior and its stability .All possible 
resonance cases were be extracted and effect of different 
parameters on system behavior at resonant condition were 
studied. We may conclude the following: 

(1) The steady-state amplitude of the first mode 
increases as each of the external force amplitude 
F  and nonlinear coefficients 3 5,η η  are increased. 

(2) The steady-state amplitude of the first mode 
decreases as each of the linear damping 
coefficient α and the nonlinear coefficient 4η
and the natural frequency 1ω are increased. 

(3) The steady-state amplitude of the second and 
third mode increase as the external force 
amplitude F increases. 

(4) The steady-state amplitude of the second mode 
decreases as each of the linear damping 
coefficient β  and nonlinear coefficient 2λ and the 
second mode amplitude 2a and the natural 
frequency 2ω are increased. 

(5) The steady-state amplitude of the third mode 
increases as each of the external force amplitude 
F and the first mode amplitude 1a are increased. 

Nomenclature 

1 2 3, ,ω ω ω  Natural frequencies of the system 
ε  Small dimensionless perturbation 

parameter 
, ,α β δ   Linear damping coefficients 
, ,i i iη λ τ   Nonlinear parameters 

F   Excitation force amplitude 
Ω   Excitation frequency 

0 1,D D   Differential operators 
r   Radius of gyration of cross-section area 
m   Mass per unit length of beam 
E   Young's modulus 
I   Moment of inertia 
L   Length of beam 
t   Time 

0 1,p p   Real coefficients 
0T   Fast time scale 
1T   Slow time scale 
* * * * *, , , ,t g h k Ω  Non- dimensional quantities 

, , ( 0,1)i i ig h k i =  Perturbation variables expansion 
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1 2 3, ,θ θ θ  Phase angles of the polar forms 
1 1 1( ), ( ), ( )A T B T C T  Complex valued quantities 

cc  Complex conjugate for preceding terms 
at the same equation 

, 1, 2,3i iσ =  Detuning parameter 
1 2 3, ,a a a  Steady-state amplitudes 
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Appendix 
The coefficients presented in (35), are as follows : 

2 2 2 2 2
4 1 2 3 5 3 2 5 32 2 2

1 1 1 1

2 2 2
1 4 2 4 2 1 4 2 2 4 32 2 2

11 1 1

3 1 1 1
,

4 4 64 8

10 3 3 3,
464 16 16

a a aa a η σ η η η η
ω ω ω ω

η η σ η η η η
ωω ω ω

− − − −Λ = Λ = + +  

2 4 2 4 2 2 2 2 2 2
3 1 2 2 3 1 2 2 3 1 2 2 1 1 2 1 1 3 2 2 32 2 2

1 1 1 11 1 1

2 2 2 2 2 2 2 2
1 2 1 2 3 5 2 3 3 2 3 3 3 5 32 2 2 2

1 1 1 1

1 1 1 1 1 1 1
2 2 2 216 16 8

1 1 1 1 12
4 16 4 2 8

a a a a a a a a

a a a a a F a F

η η η η η σ η σ η σ η σ
ω ω ω ωω ω ω

σ σ σ σ α η η η η η
ω ω ω ω

Λ = + + + − − +

− + + + + + + + ，

 

2 4 2 2 2
4 3 2 3 3 3 22 2 2

1 1 1

1 3 1 .
16 2 4

a a a a F Fη η
ω ω ω

Λ = − − −  

The coefficients presented in (36), are as follows: 
2 2 2

5 2 6 2 3 2 3 3 2 2 2 4 12 2 2
2 22 2 2

9 3 3 3 3, ,
8 864 16 16

a aλ λ σ λ λ λ σ λ λ
ω ωω ω ω

Λ = Λ = − + − +
 

2 2 2 2 4 2 4 2 2 2
7 3 4 1 3 3 3 3 2 3 3 3 4 1 3 4 1 2 32 2 2

2 22 2 2

2 2 2 2 2 2 2 2
2 3 3 2 4 1 1 1 3 1 1 32 2

2 2 2 2

1 1 1 1 3 1 1 1
4 2 4 4 48 16 64

1 1 1 1 1 ,
4 4 4 16 16

a a a a a a

a a a a a a

λ λ σ λ σ σ λ λ σ λ σ σ
ω ωω ω ω

σ λ σ λ β λ λ
ω ω ω ω

Λ = − + + + − + +

− − + − −
 

2 2
8 1 1 3 4 1 92 2 2

2 2 2

2 1 1, .
8 8 4

a a F a F Fλ λ
ω ω ω

Λ = + Λ = −  

The coefficients presented in (37), are as follows : 
2 2 2 2 2 2

10 5 11 3 5 1 5 1 5 2 2 1 2 12 2 2
3 33 3 3

9 3 3 3 1, 4 ,
4 464 16 16

a a aτ σ τ σ τ τ τ τ τ
ω ωω ω ω

Λ = Λ = − + − −
 

2 2 2 2 4 2 2
12 1 2 1 2 13 1 1 3 1 1 2 1 2 3 3 1 22 2

3 33 3

4 2 2
2 1 2 4 1 2 3 1 22 2 2

3 3 3

1 1 3 1, 2
2 216 16

1 3 1 ,
4 16 8

a a a a a

a F a a a

τ τ σ σ σ σ τ τ σ σ τ
ω ωω ω

τ τ τ τ τ
ω ω ω

Λ = − Λ = − − + + +

+ − −
 

2 3 2 4
14 1 2 1 4 1 2 1 3 1 22 2 2

3 3 3

1 3 1 ,
8 32 16

a F a a a aτ τ τ τ τ
ω ω ω

Λ = − −
 

2 3 2 2 6 4 2 2 2 4
15 3 1 2 4 1 4 1 3 4 1 2 3 1 22 2 2 2 2 2

3 3 3 3 3 3

1 6 1 9 3 1 .
4 16 4 64 16 16

a a F a F F a a a a aτ τ τ τ τ τ
ω ω ω ω ω ω

Λ = + − − − −
 

 


