EVH2 protocol

Performance analysis and Wireshark dissector development

&

£y,
STEFAN AHMAN $KTHS
and] T

MARCUS WALLSTERSSON Lot

KTH Information and
Communication Technology

Degree projectin
Communication Systems
First level, 15.0 HEC
Stockholm, Sweden

EVH2 protocol

Performance analysis and Wireshark dissector development

Stefan Ahman
Marcus Wallstersson

Bachelor of Science Thesis

Communication Systems
School of Information and Communication Technology
KTH Royal Institute of Technology

Stockholm, Sweden

30 June 2012

Examiner: Professor Gerald Q. Maguire Jr.

© Stefan Ahman and Marcus Wallstersson, 30 June 2012

Abstract

EVH?2 is a proprietary application layer protocol developed by Aptilo Networks
and used in their software product. Currently the only way to inspect EVH?2 traffic
is by using their own application. This application inspects no traffic other than
EVH2. Since Aptilo continuously develops this protocol it is important to see
how changes in the protocol affect its performance. This thesis examines possible
ways to facilitate the use and development of the protocol.

To analyse EVH2 network traffic along with traffic from other protocols
another approach is needed. Wireshark is an application capable of inspecting
traffic of multiple protocols simultaneously and uses dissectors to decode each
packet. This thesis describes the development and evaluation of a Wireshark
plugin dissector for inspection of EVH?2 traffic.

Performance tests of EVH2 will provide feedback about protocol changes.
This thesis creates a platform for performance evaluation by introducing a test
suite for performance testing. A performance evaluation of EVH2 was conducted
using the developed test suite.

Keywords: Wireshark, protocol, dissector, performance, analysis, EVH2, Aptilo
Networks, test suite

Sammanfattning

EVH?2 ir ett proprietért applikationslagerprotokoll utvecklat av Aptilo Networks
som anvdnds i deras mjukvaruprodukt. For nirvarande kan EVH2-trafik endast
inspekteras med deras egenutvecklade applikation. Denna applikation har inte
nagot stod for att inspektera annan trafik &n EVH2. Eftersom Aptilo kontinuerligt
utvecklar detta protokollet dr det viktigt att kunna se hur fordandringar i protokollet
paverkar dess prestanda. Detta examenarbete undersoker mojliga sitt att underlit-
ta anvindningen och utvecklingen av protokollet.

For att kunna inspektera EVH2-trafik tillsammans med trafik fran andra
protokoll behdvs en annan 16sning dn den nuvarande. Wireshark &r en applikation
som har stod for att inspektera flera protokoll samtidigt dédr protokollpaketen
avkodas med dissectors (dissektorer oversatt till svenska). I detta examensarbete
beskrivs och utvdrderas utvecklingen av ett Wireshark dissector plugin for
inspektion av EVH2-trafik.

Genom att prestandatesta EVH2 kan prestandaskillnader pavisas vid fordand-
ringar 1 protokollet. Detta examensarbete tar fram en plattform for prestandaut-
virdering genom att introducera en testsvit for prestandatestning. Den utvecklade
testsviten anvéndes for att utfora prestandtestning av EVH2.

il

Acknowledgements

We wish to express our sincere gratitude to our supervisors at Aptilo Networks,
Pontus Soderstrom and Peter Eriksson, who gave us the chance to do this thesis.
We also wish to express our appreciation of our examiner Professor Gerald Q.
Maguire Jr. for his great support and feedback during this thesis. Many thanks
to staff at the development department of Aptilo, especially Martin Hedenfalk for
his help and advice during the development process.

Finally, we would like to thank everyone at Aptilo Netwoks for a great time at
the office.

Contents

1 Introduction 1
1.1 Background |

1.2 Goals 2

1.3 ThesiSpurpose v v v v i it e 2

1.4 Limitationso e e e e e e e e 2

1.5 Thesisoutline 3

2 EVH2 5
2.1 Protocolsingeneral 5
2.1.1 Protocolstack, 7

2.1.2 Application layer protocols 7

2.2 WhatisEVH2? 8

2.3 Messageformat oL 9
231 EVH2Header. 9

232 EVH2Attribute 10

2.4 Architecture 11
2.4.1 Server/Clientmodel 11

242 Daemonmodel, 12

25 Evh2tools 13
2.6 EVH2dictionary 14

3 Wireshark 15
3.1 Whatis Wireshark? 15
3.2 Usageof Wireshark 16
32.1 Capturingpackets. 16

3.2.2 Analysingpackets 17

3.3 DISSECtOrS . . v v v e e e e e e e 17
3.3.1 Protocoldissection 19

332 Requirements 20

3.3.3 Dictionaries e 20

3.3.4 Protocoldetection 21

vii

viil CONTENTS
3.3.5 DIiSsector typeso i i 21

4 Performance evaluation 23
4.1 Tools fordataanalysis 23
4.1.1 Spreadsheet 23

412 Matlab 23

413 R .. e 24

4.2 Previousevaluations 24
4.3 Performance questions 24

5 Method 27
5.1 Workmethod 27
S.1.1 Scrum 27

51.1.1 Roles. 27

5.1.1.2 Backlog 28

5.1.1.3 Sprint 28

5.1.14 Burndown 28

5.1.2 Redmine 29

5.1.3 Applying the scrum method 29

514 Git ..o 30

5.1.5 Documentation 30

5.2 Environments 31
5.3 Performancetestsetup 31

6 Implementation 33
6.1 Dissector e 33
6.1.1 Developmentprocess 33

6.1.2 Wiresharksource 33

6.1.3 Structure of the dissector 34

6.1.4 Dissectortype.o 35

6.1.5 Dictionary 36

6.1.6 Protocol detection 36

6.2 Testsuite 37
6.2.1 Packetgenerator, 37

6.2.2 Evh2performance 38

6.2.2.1 Accuratetestdata 38

6.2.2.2 Roundtriptime 40

6.2.2.3 Creation time of EVH2 messages 40

6.2.2.4 Grouped attribute access 40

6.2.2.5 Dataoutput 41

6.23 Ranalysis. 41

CONTENTS

=

s =" O O

6.2.3.1 R Scriptdevelopment

6.2.3.2 Data analysis .
6.2.3.3 Presentation .
6.3 Usage of the test suite

Results

7.1 EVH2dissector

7.2 Test suite measurements
7.2.1 Integer types
7.2.2 1 bit comparison
7.2.3 Message creation
7.2.4 Number of attributes . .
7.2.5 Grouped attribute access

Analysis

8.1 Analysing the dissector
8.2 Analysing the test suite
8.3 Performance of EVH2

Conclusion

91 Goals
9.2 What has been left undone? . . .
9.3 Next obvious things to be done .
9.4 Required reflections

Surveys

Tests
B.1 Ungroupedtests
B.2 Groupedtests

Command-line outputs
Interfaces
Graphs

R-Script table outputs
F.1 Multiple independent runs . . .
F.2 Multiple independent runs (1 bit)

A complete comparison output

1X

53
53
54
57

59
59
60
60
61

67

69
69
72

73

79

83

89
90
92

95

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
33
34
3.5

5.1

6.1
6.2

7.1
7.2

8.1
8.2
8.3

A.l

D.1
D.2
D3

E.1
E.2

A human protocol and a computer network protocol
HTTP message conversation
EVH2 protocol header
EVH2 protocol attribute header
EVH2: Server/Client model
EVH2d: Daemonmodel

Wireshark: Capture interface
Wireshark: Inspection interface
Encapsulation of a EVH2 packet
EVH2 message in Wireshark without a EVH2 dissector
Example of a subtree containing fouritems

Overview of the scrummethod [1]

Dissected EVH2 fields presented in packet details pane
Structure of a test and its testcases

Different types of attributes
RTT comparison of integer types (int8, int16, int32, int64)

The graph of authd-aaa-requeset_rtt.csv.
The graph of grouped_rtt.csv
The graph of comparison between grouped_rtt.csv

and authd-aaa-requeset_rtt.csv

Usage of analysis applications at Aptilo Networks

Wireshark interface overview (displaying captured EVH2 data) . .
Wireshark packet list (displaying captured EVH2 data)
Wireshark detail view (displaying captured EVH2 data)

The graph of authd-aaa-requeset_rtt.csv.
The graph of grouped_rtt.csv

X1

Xii

E.3
E.4
E.5

E.6

F.1
F2
F3
F4
E5
F.6
E7
F.8
F9

G.1

G.2
G3
G4

LIST OF FIGURES

The graph of grouped_rtt.csvwithonlydots 85
RTT for events sent with increasing size 86
RTT comparison of boolean versus integer with 1 bit set (boolean,

int8, intl6, int32,int64) 87
The graph of grouped vs. ungrouped attributes 88
The summary of grouped vs. ungrouped attributes 89
The summary of independent runsof int8 90
The summary of independent runsof int16 90
The summary of independent runsof int32 91
The summary of independent runs of int64 91
The summary of independent runs of int§ (1 bit) 92
The summary of independent runs of int16 (1 bit) 92
The summary of independent runs of int32 (1 bit) 93
The summary of independent runs of int64 (1 bit) 93
The graph of comparison between grouped_rtt.csv

and authd-aaa-requeset_rtt.csv 95
The summary of grouped_rtt.csv 96
The summary of authd-aaa-requeset_rtt.csv. 96

The summary of grouped_rtt.csv and
authd-aaa-requeset_rtt.csv 97

List of Tables

5.1

6.1
6.2

7.1
7.2
7.3

Development sprints 29
The flags implemented in evh2performance 39
The flags implemented in the R Seript 43
The mean RTT of independent runs for the integer types 48
The RTT of boolean and integer types (I bit) 49
Comparison of small versus bigevents 50

Xiii

List of listings

0O\ LNt W~

— = = \O
N = O

Test for 100 messages 1 attribute (100 x 32 bytes = 3200 bytes) . . 69

Test for 50 messages 2 attributes (50 x 44 bytes = 2200 bytes) . . 69
Test for 1 message 100 attributes (1 x 1200 bytes = 1200 bytes) . 70
Test for increasing size beyond MTU 70
Test containing one test case of an event with ungrouped attributes 71
Test containing one test case of an event with grouped attributes . 72
Summary output int evh2performance 73
Full table output in evh2performance (see Listing 9 and Listing 10) 74
Full table output in evh2performance (cont’d) 75
Full table output in evh2performance (cont’d) 76
CSV output form evh2performance 77
evh2sniff interface (displaying captured EVH2 data) 79

XV

List of Acronyms and Abbreviations

This thesis requires the reader to be familiar with terms and concepts of computer
networking and computer science. In this section acronyms and abbreviations are
described shortly before using them in the thesis.

BGP

C

CPU

CSv
DHCP
DNS

EVH2

FTP

GUI

HTTP
ICMP
IEEE 802.3
IEEE 802.11
TANA

IP

IPSec

IPv4

Border Gateway Protocol

C programming language

Central Process Unit
Comma-separated value

Dynamic Host Configuration Protocol
Domain Name System

Event Handler Protocol

File Transfer Protocol

Graphical User Interface

The Hypertext Transfer Protocol
Internet Control Message Protocol
Ethernet

Wireless LAN

Internet Assigned Numbers Authority
Internet Protocol

Internet Protocol Security

Internet Protocol version 4

xXvii

XVviii

IPv6
LAN
NFS
OSPF
PCAP
PPP
PPTP
QoS
RIP
SCTP
SLIP
SMTP
STDIN
STDOUT
SVN
TCP
TSN.1
UDP
UNIX
XML

LIST OF ACRONYMS AND ABBREVIATIONS

Internet Protocol version 6

Local Area Network

Network File System

Open Shortest Path First

Library for packet capture
Point-to-Point Protocol

Point-to-Point Tunneling Protocol
Quality of Service

Routing Information Protocol

Stream Control Transmission Protocol
Serial Line Internet Protocol

Simple Mail Transfer Protocol
Standard input

Standard output

Apache Subversion

Transmission Control Protocol
Transfer Syntax Notation One

User Datagram Protocol

Uniplexed Information and Computing System (UNICS)

Extensible Markup Language

Chapter 1

Introduction

This chapter contains some background information about why this thesis was
conducted, then describes the thesis project’s goals, purpose, and limitations.

1.1 Background

EVH2 is an application layer protocol developed by the company Aptilo Networks
and used for communication between their software components, but also it is
used for system debugging. The protocol utilizes a binary encode, thus making
analyzing protocol messages and dealing with implementation errors difficult and
time-consuming for developers without proper tools.

The use of continuous testing and performance evaluations benefit the de-
velopment process of a software product. A test suite for performance testing
will give the developer an overview of how the product is affected by changes
to the code. When incrementally improving code, testing is often only done by
looking at a specific part of the application regardless of other parts that might be
negatively affected by these changes. This kind of problem is often not detected
due to lack of thorough regression testing. By continuously testing the code these
problems can be quickly detected and fixed, saving the developer many hours.
Today only a few performance tests for EVH2 have been implemented. Better
testing will be implemented as part of a test suite to be used as a tool for evaluating
the EVH2’s performance.

There are no tools for inspecting EVH2 traffic together with other protocols.
This complicates the improvement of the protocol as well as complicating
troubleshooting during installation of new components. To facilitate development
and improvement a EVH2 dissector for Wireshark is needed.

1

2 CHAPTER 1. INTRODUCTION

1.2 Goals

The goals of this thesis project are to implement two tools: A EVH2 Wireshark
dissector and a EVH2 test suite. These tools will be used for a performance
evaluation of EVH2 and to facilitate the developer’s daily work with the protocol.

The Wireshark dissector will be able to dissect EVH2 and present the contents
of a message, translated with the EVH2 dictionary. The dissector will provide
developers with the ability to inspect and evaluate EVH2, along with other
protocols in the same application.

The test suite will be a tool for developers and can be used to perform
regression testing. The tool will test and measure relevant performance areas such
as:

e Runtime of functions used to handle EVH2 messages,
e CPU-load when processing EVH2 messages at sender or receiver, and

e The round trip time of a EVH2 message

1.3 Thesis purpose

Implementing tools for performance analysis of EVH2 will facilitate development
of the protocol by providing developers with performance feedback following
protocol changes. A Wireshark dissector for EVH2 will save developers time
as they will be able to inspect multiple protocols including EVH2 using one
application.

1.4 Limitations

This thesis will address testing and performance evaluation of EVH2. Potential
performance improvements to EVH2 detected during the evaluation will not be
implemented (but might be noted in internal memos to the developers).

Only dissectors on the application layer will be addressed. The implemented
dissector will not be contributed to the Wireshark source code, but used only by
Aptilo as EVH2 is a protocol proprietary to Aptilo.

1.5. THESIS OUTLINE 3

1.5 Thesis outline
The thesis is structured with the following chapters:

Chapter 1
Introduction to the problem and its context as well as goals, purpose, and
limitations.

Chapter 2
Protocols in general and application layer protocols will be described. A
brief explanation of the EVH2 protocol will be given covering the protocol’s
structure and how the protocol can be used. Previous evaluations will be
mentioned, as well as the existing tools for testing and analysing EVH2.

Chapter 3
Information about Wireshark, dissectors, and implementation of dissectors.

Chapter 4
Information about applications for evaluation of test data, previous evalua-
tions of EVH2, and relevant areas to be tested.

Chapter 5
Describes the methods, tools, and environments used in this thesis project.

Chapter 6
Explains the implementation of the Wireshark dissector and test suite.

Chapter 7
Presents results of the dissector, test suite, and test suite measurements.

Chapter 8
The analysis of the Wireshark dissector, test suite, and performance
evaluation of EVH?2 are discussed.

Chapter 9
Conclusions of this thesis. Presents obtained goals and suggests future work
that can be done.

Chapter 2
EVH?2

The reader of this thesis is expected to have basic knowledge of computer
networking. This chapter will briefly review some of the relevant protocols.
The EVH2 protocol will be explained in detail including its structure and usage.
Different tools for testing and analysis will be briefly described.

2.1 Protocols in general

When you communicate with another person, the conversation usually is initiated
with a greeting followed by a question or a statement. One requirement is that
the other person speak the same language, otherwise your question can not be
answered. This is similar to the case of network protocols as the communicating
hosts must speak a protocol at the same time in order to exchange data. The
protocols operate on different layers of the protocol stack, where each layer has
a special role in the communication between endpoints. A parable of a network
protocol and a human conversation are shown in Figure 2.1.

CHAPTER 2. EVH2

” ” L.- -_I
o L
(ACK, SYN)
(ACK)
%’ GET file.html
2:00 <file.html>

Figure 2.1: A human protocol and a computer network protocol

2.1. PROTOCOLS IN GENERAL 7

2.1.1 Protocol stack

The TCP/IP protocol stack is separated into five layers (from top to bottom):
application layer, transport layer, network layer, data link layer, and physical
layer. A brief summary of where different protocols belong (protocol stack) is
found below:

Application layer
EVH2, DNS, FTP, HTTP, NFS, DHCP, SMTP, RIP, BGP

Transport layer
TCP, UDP, SCTP

Network layer
IP, IPsec, ICMP, OSPF

Data link layer
PPP, SLIP, PPTP

Physical layer
IEEE 802.3, IEEE 802.11

2.1.2 Application layer protocols

The application layer protocol is the richest layer due to the amount of different
networking applications. Every application has a unique way to communicate
between endpoints. The application data is passed to the layer beneath it.

An application layer protocol is used for example when browsing the web.
HTTP is used to retrieve a web page to be rendered for viewing in the client’s
browser (see Figure 2.2). The conversation begins with a 3-way TCP handshake.
A GET request is sent specifying the requested HTML that is used to realize a
web page. The server responds by sending a response message containing the
requested data. This procedure is repeated to get the resources needed to render
the page in the client’s web browser.

8 CHAPTER 2. EVH2

AL,
"4
BE

TCP (ACK)

GET ffile.html
HTTP/1.1

HTTP/1.1
200 OK

GET /picture.png
HTTP/1.1

HTTP/1.1
200 OK

Figure 2.2: HTTP message conversation

2.2 What is EVH2?

EVH?2 is a request-response protocol implemented in the application layer of the
protocol stack. The protocol is used in Aptilo’s software to send messages among
different components. These messages are exchanged via the localhost and remote
hosts. EVH?2 is a binary protocol where requests and responses have the same
format. This section will describe the packet structure and the implementation of
the EVH?2 protocol.[2]

2.3. MESSAGE FORMAT 9

2.3 Message format

Each protocol has a predefined structure, in the case of EVH2 it is structured as a
header with optional attributes. This section explains the fields of the header and
attributes.

2.3.1 EVH2 Header

The current message format of EVH2 version 3 is shown in Figure 2.3.

0 7 8 910 15 23 31

Version |FMT| Flags Reserved
Length
Key Reserved
Sequence
Timestamp
Attribute(s)...

Figure 2.3: EVH2 protocol header. Attribute(s) are optional

Version
The version of the protocol (currently 3). Unsigned 8-bit integer.

F
Flag specifying that the event has been forwarded from another machine.
M
Flag specifying that multiple responses are being sent. The last response
has this flag cleared.
T
Flag specifying that the event should be traced. The meaning of "traced" is
not part of the EVH2 protocol specification.
Flags
5-bit flag field (currently unused). Unused bits must be set to zero.
Length

Total length of message including header and all attributes. Unsigned 32-bit
integer, network byte order.

10 CHAPTER 2. EVH2

Key
Unique identifier specifying what kind of message this is. Unsigned 16-bit
integer, network byte order.

Sequence
Number used to correlate requests with responses. Unsigned 32-bit integer,
network byte order.

Timestamp
Set by the sending part when message is sent. Unsigned 32-bit integer,
network byte order.

Reserved
Reserved for future use. Must be set to zero when sending and ignored on
receive.

Attribute
Field containing one or more attributes, described in section 2.3.2

2.3.2 EVH2 Attribute

Each message can contain zero or more attributes, all with the same format
(illustrated in Figure 2.4). Attributes can be grouped since the value of these
attributes can contain multiple attributes in a tree structure. Attributes only
containing values are referred to as ungrouped.

0 31

Key

Length

Value...

Figure 2.4: EVH2 protocol attribute header

Key
Unique identifier specifying the attribute. Unsigned 32-bit integer, network
byte order.

Length
Total length of the attribute including key, length and value. Unsigned 32-
bit integer, network byte order.

2.4. ARCHITECTURE 11

Value
Value of attribute. Array of length - 8 octets.

The interpretation of the Value depends on the Key, since the protocol itself does
not specify the meaning of any values. Possible types of attributes are:

Octets
Array of bytes.

String
C style strings.

IPv4 / IPv6 address

Boolean
Single byte, non-zero value representing TRUE, while zero represents
FALSE

Integer
8, 16, 32, and 64-bit signed integers

Time
Unix time stamp

Radius
RADIUS attribute

Diameter
Diameter attribute

2.4 Architecture

EVH2 messages can be sent in two ways, in a client-server fashion or by broadcast
using the EVH2 daemon (evh2d).

2.4.1 Server/Client model

When sending messages using a client-server architecture, a client makes a
request, for example for some data. The server will respond to the request with
the data within the attributes (see Figure 2.5).

12 CHAPTER 2. EVH2

Client Server

Figure 2.5: EVH2: Server/Client model

2.4.2 Daemon model

The evh2d daemon broadcasts messages produced by a certain server. Clients
can connect to the daemon and subscribe to different types of messages. When a
server sends a message to evh2d, the daemon will broadcast this message to all its
subscribers (see Figure 2.6).

Eventx @ eventy @
evh2d

58808

Subscribe X Subscribe X and Y Subscribe X and Y Subscribe X Subscribe Y

Figure 2.6: EVH2d: Daemon model

2.5. EVH2TOOLS 13

2.5 Evh2tools

Today there are four application forming a toolkit called evh2tools. These four
applications are used to test EVH2. The protocol and all the EVH2 applications
were developed by Aptilo Networks. The toolkit can send, receive, listen to
message traffic, and perform very limited performance testing. All applications
are written as command line applications in C and use an EVH2 library to create,
send, receive, and manipulate EVH2 messages. These applications are described
in the following paragraphs.

Evh2receive connects to a server specified by hostname and port number. All
the incoming messages on this connection will be received and displayed. There
are no performance tests made when receiving messages.

Evh2send is used to send events directly to a client running evh2receive by
specifying the destination hostname and port number. If no host is specified, then
events will be sent to evh2d on port 9090. When sending a message, a timer will
measure the time it takes to send the message and print it on the console. Note
that this time only includes the actual message sending and the print out of the
sent message, the time the application waits for the ACK is not included. It is
possible to provide the application with predefined messages on STDIN. These
messages are separated by newline and will be sent sequentially.

Evh2listen is used to subscribe and listen for specific messages sent by evh2d.
The application will by default listen on TCP port 9090. It is possible to listen
for a specified number of messages by adding an option flag at runtime. When
specified number of messages have been received, the application will terminate
and print the measured receive time.

Evh2sniff is a packet capture application developed by Aptilo and used
internally within the company. Like most other analysis tools, this application
uses pcap to implement features such as filters and selecting interfaces. A negative
aspect of this tool is its incompatibility with other protocols, hence the developers
are limited to capturing only EVH2 traffic.

These tools makes use of a dictionary application that can translate numerical
values to explanatory strings and vice versa. This makes it easier for the user to
send and receive messages in textual form. All messages received by evh2listen
and evh2sniff can be recorded and written to STDOUT in the format used for
input to evh2send.

14 CHAPTER 2. EVH2

2.6 EVH2 dictionary

The EVH2 dictionary is a text file and has to be converted before it can be used
with an application. The translation data from the text file is parsed and header
files containing the translations are created. To use the dictionary the header file
evh2parse must be included. This header file defines functions for dictionary
lookups. The function (dictionary_init) defined in evh2parse will instantiate the
dictionary by copying the translations from the header files into several red-black
trees. A red-black tree is a self balanced binary tree. Once it has been instantiated
the dictionary can be used to lookup translations. Lookups can be done to either
concert a key to a string or vice versa. The dictionary can also lookup the data
type of an attribute. To use the dictionary functionality in an application some
proprietary packages developed by Aptilo need to be installed. The dictionary
depends on these packages since it uses functionality provided by them, therefore
it can only be used at Aptilo.

Chapter 3
Wireshark

This chapter will describe Wireshark in general, dissectors, and possible ways to
implement dissectors.

3.1 What is Wireshark?

Wireshark is the world’s foremost network protocol analyser[3]. The application
is open source and is widely used for network analysis, protocol development,
protocol analysis, and education. To capture packets, Wireshark uses the libpcap
library developed by the Tcpdump team for UNIX [4]. The Windows version of
the packet capturing library is called WinPcap and was developed by Riverbed
Technology[5]. Wireshark can be downloaded fromthe Wireshark web page as an
application[6] or as source code from the SVN-repository[7].

Wireshark currently has support for more than 850 protocols and the number is
growing with each update. These protocols range from common protocols such as
IP and DHCP to more advanced protocols such as like AppleTalk and BitTorrent.
As Chris Sanders says in his book Practical Packet Analysis, “In the unlikely case
that Wireshark doesn’t support a protocol you need, you can code that support
yourself and submit your code to the Wireshark developers for inclusion in the
application*[8].

15

16 CHAPTER 3. WIRESHARK

3.2 Usage of Wireshark

This subsection explains how Wireshark is used.

3.2.1 Capturing packets

Since Wireshark has a user-friendly graphical user interface (GUI) it is really
simple to capture packets and then analyse them. The application is capable
of capturing packets by monitoring different interfaces or reading pcap-files
containing pre-captured data (see Figure 3.1). Unlike evh2sniff, with Wireshark it
is possible to get a clear overview of the captured packets and to generate graphs,
as well as flowcharts of traffic. Wireshark’s main GUI consists of three different
panes: Packet List, Packet Details, and Packet Bytes. The network traffic will be
shown in the Packet List pane and visualized with different colors, which gives
the user a good overview as shown in Figure 3.2. The packet list by default only
shows basic information about each packet, such as: source, destination, type of
protocol, and a timestamp. It is possible to add custom fields or remove current
fields. The Packet Details view is shown by selecting a row in the packet list (i.e.,
by selecting a packet for which you want to see the details).

® X11 Applications Edit Window Help TanNe OE | « TE O Q
8 00 I\ The Wireshark Network Analyzer [Wireshark 1.6.5 (SVN Rev 40429 from /trunk-1.6)]
Eile Edit View Go HEEBNEN Analyze Statistics Telephony Tools [nternals Help
/f::‘ Interfaces... Ctri+| B B 0 ? .k % @\ @\ @\ m ﬁ é@ &
@l Options... Ctri+K
Filter @i Start Ctrl+E | ¥ | Expression...
-

@ Popular Network Protocol Analyzer
il Capture Elters... 40429 from /trunk-1.6)
Device Description IP Packets Packets/s a

Interface List #leno @i start | @l options
= Live list of the capture interfaces ebsite

(counts incoming packets) &1 fwo @i start | @ options
Start capture on Interface £l utuno fe80:.caza: 14ff:fe13:6b2a @i start | @l options d‘e |

nline version
% ?28 ®enl fe80::e2f8:47fF:fe27:961c @i start | @l options
? ::ulmo #1p2p0 Bistart | BHOPUIONS | | ¢ (o retyas possible
& p2p0 #1100 e80::1 @i start | @foptions
2l 100
. H Help K Close ‘
Capture Options —
Start a capture with detailed options
Capture Help

How to Capture

Step by step to a successful capture setup

Network Media {

Specific information for capturing on:

Ethernet, WLAN, ...

O[Ready to load or capture i[No Packets {Profile: Default

Figure 3.1: Wireshark: Capture interface

3.3. DISSECTORS 17

X11 Applications Edit Window Help génNe OB ; « FTE Q
800 X| dhcp.pcap [Wireshark 1.6.5 (SVN Rev 40429 from /trunk-1.6)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BEaes cEXeE A¢swTLEE QAR @EBE% 8
Filter ‘ jExpress\oh...

No. ‘T\me ‘ Source ‘ Destination ‘ Protocol ‘ Length ‘ Info
1 0.000000 0.0.0.0 255.255.255.255 DHCP 314 DHCP Discover - Transaction ID 0x3dld

3 0.070031 0.0.0.0 255.255.255. 255 DHCP. 314 DHCP Request - Transaction ID Ox3dle
4 0.070345 - Transaction ID Ox3dle

b Frame 2: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits)
P Ethernet T, Src: DellComp_ad:f1:9b (00:08:74:ad:f1:9b), Dst: Grandstr_0l:fc:42 (00:0b:82:01:fc:42)

b Internet Protocol Version 4, Src: 192.168.0.1 (192.168.0.1), Dst: 192.168.0.10 (192.168.0.10)
b User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)

>

Message type: Boot Reply (2)

Hardware type: Ethernet

Hardware address length: 6

Hops: 0

Transaction ID: 0x00003d1d

Seconds elapsed: O

Bootp flags: 0x0000 (Unicast)

-

Client IP address: 0.0.0.0 (0.0.0.0)

Your (client) IP address: 192.168.0.10 (192.168.0.10)
Next server IP address: 192.168.0.1 (192.168.0.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)

0020 00 0a G0 42 00 44 Ol 24 22 33 ...C.D.4 "3
0

@[Bootstrap Protocol (bootp), ... JPackets: 4 Displayed: 4 Marked: O Load time: 0:00.000 {Profile: Default

Figure 3.2: Wireshark: Inspection interface

3.2.2 Analysing packets

Dissectors will decode the corresponding protocol and its fields of the selected
packet and present it in the Packet Details pane (see Figure 3.2). The protocols
and fields are displayed in a tree view and can be expanded and collapsed. Without
the corresponding dissector the protocol’s content would simply be presented as
a string of bytes. The raw data is always visible in the Packet Bytes pane and
Wireshark is configurable to show the data in either hexadecimal or bits.

3.3 Dissectors

To use Wireshark for analysis of a certain protocol the Wireshark application must
know how to interpret the protocol. This interpretation is implemented in C as a
dissector and each protocol has its own dissector. The dissector translates the raw
data from a packet, then presents the packet’s content in the Packet Details pane.

A packet of a certain layer in the protocol stack is encapsulated in packets
of each underlying layer. Due to this encapsulation multiple dissectors needs to
cooperate when dissecting a captured packet. An example of an encapsulated
EVH2 message is shown in Figure 3.3.

18 CHAPTER 3. WIRESHARK

The dissection steps are:

e Ethernet dissector is used to dissect the Ethernet header (step 1),
e The payload of Ethernet is dissected by the IPv6 dissector (step 2),
e The payload of IPv6 is dissected by the TCP dissector (step 3), and

e The payload of TCP is a EVH2 packet and should be dissected by the EVH2
dissector (to be implemented) (step 4).

If no dissector for EVH2 is available in Wireshark when inspecting a EVH2
capture, the EVH2 packet will not be recognized and therefore not dissected. The
packet will be dissected with EVH2 as an unknown payload during the dissection
of the transport protocol. The payload will only be shown as bytes (see Figure
3.4).

1. Ethernet
IPv6
TCP Payload

EVH2

2. IPv6
TCP
EVH2

} Payload

3. TCP
EVH2 } Payload

4. EVH2

Figure 3.3: Encapsulation of a EVH2 packet

3.3. DISSECTORS 19

Mo, | Tirme | Source D estination | Protoco|| Length| Infa
1 0. 0280080 i1 1 TCP 24 47422 > 1358 [SYN] Sece(
2 0.000024 il il TCP 94 1358 > 47422 [SYN, ACK]
3 0. 090042 i1 i1 TCP 86 47422 = 1358 [ACK] Sece:
4 0. 088277 i1 :1 121 47422 = 1358
5 0.000308 01 1l TCP 86 1358 = 47422 [ACK] Seqe!
& 0. 000538 i1 1 TCP 166 1358 > 47422 [PSH, ACK]
7 0.000574 il il TCP 86 47422 = 1358 [ACK] Seqe:
8 0. 000613 i1 1 TCP 166 47422 = 1358 [PSH, AcK]
9 0. 090650 il S TCP 26 1258 > 47422 [FIN, ACK]
10 0. 000683 01 1l TCP 86 47422 = 1358 [FIN, ACK]
11 . OBOE9E i1 1 TCP 26 1358 > 47422 [ACK] Sec!
b
I Ethernet II, Src: ©0:00:00:00:00: 00 (00: 00:00: 00:00: 60), Dst: 00:@0: 00: 00: 00: 00 (00: 00: 00: 00: O8: 0O)
P Internet Protocol Versien &, Srec: ::1 (::1), Dst: ::1 (::1)
P Transmissien Conmtrol Protocel, Src Port: 47422 (47422), Dst Port: 1358 (1358), Seq: 1, Ack: 1, Len: 35
=~ Data (35 bytes)
Data: @ 230321 Ebb7 1zd. ..
[Length: 35]

Figure 3.4: EVH2 message in Wireshark without a EVH2 dissector

3.3.1 Protocol dissection

The data (bytes) of the packet to be dissected are passed to the dissector in the
form of a buffer. This buffer contains the complete packet and all the protocol
fields will be represented by the bytes in the buffer. The dissection function will
retrieve fields in the form of bytes from the buffer and add them to a protocol
tree. The protocol tree is a tree structure containing the dissected data to be
presented in the Packet Details pane. Wireshark has built in functions to retrieve
a field and add it to the tree as an item (proto_tree_add_item) or subtree
(proto_tree_add_subtree) (see Wireshark documentation[9], section 1.6.2).
Example of items and subtrees are shown in Figure 3.5.

¥ Timestamps: TSval 593445206, TSecr 604813561
Kind: Timestamp (8)
Length: 10
Timestamp value: 593445206
Timestamp echo reply: 604813561

Figure 3.5: Example of a subtree containing four items

When a dissector is done dissecting all its fields, it will either stop or call
another dissector. The call to another dissector is needed to dissect the payload as
was described in Figure 3.3.

20 CHAPTER 3. WIRESHARK

3.3.2 Requirements

Any implementation of a dissector requires a minimum of three functions to
work with the Wireshark application. These functions are described briefly
below. PROTOABBREV symbolizes the abbreviation of the protocol to be dis-
sected. During application startup the dissector has to be registered by calling
proto_register PROTOABBREV and proto_reg_handoff_PROTOABBREV.

The function proto_register_PROTOABBREV will first register all the fields
of the protocol (name, data type, and description). This registration is needed for
Wireshark to add the fields as items or subtrees during dissection and to specify
how the fields will be displayed (see Wireshark documentation[9], section 1.6).
All possible subtrees must be registered, this is done to remember if a subtree was
expanded or collapsed when changing the view of the packet. Additionally the
complete name of the protocol and its abbreviation are registered.

With a call to proto_reg_handoff_PROTOABBREV the dissector registers how
packets from this protocol should be recognized. The transport protocol in
combination with a port number can be used in many cases to detect a specific
application layer protocol. If the port number is not fixed, then a heuristic
dissector should be used instead of the previous mentioned non-heuristic dissector
(see section 3.3.4).

The actual dissection functionality is implemented in dissect_PROTOABBREV.
The buffer mentioned in section 3.3.1 is passed to this function. The dissection
starts with an offset set to the beginning of the buffer and reads the first field of
the packet. This offset is used as a reference to the dissector to enable it to know
which byte in the buffer comes next. The offset increases by the number of bytes
a dissected field spans. The field will be added as an item in the protocol tree to
display its content. Some fields can be added as subtrees in which case they can
contain multiple items. A flag field are commonly added as a subtree where a
summary of all flags are shown. Each flag is added as an item in the flag subtree.
If the payload of the packet contains a packet from another protocol, then the
corresponding dissector must be called to dissect this payload.

3.3.3 Dictionaries

Some protocols use dictionaries to translate numerical values (keys) into more
understandable strings. The dictionaries are used to facilitate the analysis of the
protocol’s packets. For example, the Diameter dissector uses a combination of
two methods a XML dictionary and value strings[10].

The XML-dictionary can be read by the dissector to translate each key to an
explanatory string and then adding the string as an addition to the key in the
protocol tree. Some smaller sets of key to string representations are stored in

3.3. DISSECTORS 21

arrays of value strings which are part of the dissector’s source code. A value
string 1is a struct (represented as “value_string” in C) containing a key and a
string. Wireshark uses the value string array to translate a field of the protocol
and presents the translated field instead of the key. A field using a value string
array must register its use in the function proto_register_PROTOABBREV (see
Wireshark documentation[9], section 1.6).

3.3.4 Protocol detection

In the function proto_reg_handoff_PROTOABBREV the dissector registers how
the packets will be detected. There are three alternatives to do this, either with a
non-heuristic dissector, a heuristic dissector, or a combination of both.

A non-heuristic dissector registers a transport protocol in combination with
a port number. This alternative can be used for protocols with a reserved port
number assigned by IANA[11]. Even with a port number reservation, protocol
traffic from a different protocol can appear at a reserved port number. Wireshark
will then attempt to dissect the packet with a incompatible dissector and the
dissection will fail. The user can manually choose which dissector to use.

To solve this problem Wireshark has heuristic dissectors[12]. These are only
registered with the associated transport protocol(s). In addition the function
dissect_PROTOABBREV must implement some heuristic tests to check if the
captured data belongs the chosen protocol. This can be done by checking
for combinations of fields that are unique for the protocol. When Wireshark
receives for example, TCP packet data, the application will lookup the non-
heuristic dissector registered to TCP and the port number of the traffic. If no
suitable dissector was found, then the application will go through all the heuristic
dissectors until one which fulfills all the heuristic conditions is found.

3.3.5 Dissector types

Dissectors can be implemented in two ways, as a built in or a plugin[13]. Both are
included in the Wireshark source code, but the way to include them differs. The
built in dissector is the most common and its source code is distributed with the
source code of Wireshark. If a built in dissector is not contributed to the Wireshark
source code, then a custom build is needed to include it. A custom build is made
by manually compiling the Wireshark source code with the additional specific
code that you want to include. The plugin dissector is built as shared library
file, in UNIX as a so-file and a dll-file in Windows. This shared library file can
be distributed as a plugin to an already installed version of Wireshark. To make
Wireshark read the plugin users running UNIX-systems need to place the plugin
file in a specified location (~/.wireshark/plugins).

Chapter 4

Performance evaluation

When working with protocols several tools/methods can be used for performance
evaluation. By providing measured data from performance tests, an application
suitable for data analysis can be used to evaluate the protocol’s performance.
Different tools for testing and analysis will be described in this chapter.

4.1 Tools for data analysis

When test data needs to be analysed there are many suitable tools for the
job. These tools range from spreadsheets to more advanced programming
environments for analysis. Advanced programming tools are more powerful for
analyzing data and generating graphical presentations of this data.

4.1.1 Spreadsheet

Spreadsheets are simple and provide a common tool for calculation. These
are typically manipulated with an application that is easy to work with. Some
of the spreadsheet applications are Microsoft Excel[14], OpenOffice Calc[15],
and iWork Numbers[16]. All of them provide the user with tools for statistical
calculations. Excel and Numbers require a (paid) license, but OpenOffice Calc is
free software.

4.1.2 Matlab

Matlab is a programming environment developed by MathWorks. The application
is designed to be a powerful tool for data analysis, visualization, algorithm devel-
opment, simulations, and numerical computations. Matlab offers a large library
of built-in functions which makes it a great tool for all forms of calculations[17].

23

24 CHAPTER 4. PERFORMANCE EVALUATION

Matlab is a commercial program and some of the packages are also commercial
software.[18]

413 R

The R programming language and environment was developed for statistical
computation and graphics. The R website says: “Many users think of R as
a statistics system. We prefer to think of it of an environment within which
statistical techniques are implemented”’[19]. R is an open source program and
built upon a similar language called S [20]. The programming language makes
it possible for users to write functions in addition to using the built in ones. If
necessary the user can manipulate R objects by using C[21], although this is not
as simple as writing a R Script.

A R Script is a text file containing basically the same command as the user
would input via the command line. To run a R Script file after having already
launched R from a command line you say:

source (directory/file.R)

or run the script directly from the command line with an (optional) input file by
typing:

R —--slave file.R < [some_file]

4.2 Previous evaluations

EVH2 has not been evaluated before, although functions of the EVH2 library
has been added with hope to improve performance. No tests have been made to
ensure that these added functions actually improved performance. A performance
evaluation will provide the necessary data in order for quality of service (QoS)
limits to be set.

4.3 Performance questions

To get the packets delivered and acknowledged faster between the software
components the round trip time (RTT) needs to be minimized. Different data
types and message sizes may affect the RTT between hosts. The runtime of EVH2
library functions are relevant to measure from a regression testing perspective.

During a meeting with Aptilo a number of questions about the performance of
EVH?2 were discussed. Some of these questions are:

4.3. PERFORMANCE QUESTIONS 25

e Can the number of integer types in EVH2 be reduced?
This would make the library functions less complex by handling fewer
integer types.

e How fast (in terms of execution time) are the EVH2 library functions
for message creation?
Different messages could be tested with grouped or ungrouped attributes.

e How big is the RTT difference when sending a boolean value versus an
int with only one bit set?

e Is there a transmission time difference to send one message with multi-
ple attributes or a stream of multiple messages with single attributes?

e Which of the two methods for reading grouped attributes from EVH2

messages has the fastest execution time? (evh2_get_attr_grouped
and evh2_ cursor_ x)
The EVH2 library was first developed to support non-recursive access
to attributes. Access to a grouped attribute is made by calling the
function evh2_get_attr_grouped. This function creates and allocates
memory of another EVH2 message and copies the attribute(s) into the new
message. From this message the attribute(s) are accessed by the usual
EVH2 library functions. If the accessed attribute in turn is grouped, then the
function evh2_get_attr_grouped must be called again. To avoid memory
allocation EVH2 library was extended with recursion supported functions
(evh2_cursor_*) for traversing grouped attributes. There is no assurance
that these functions are faster since no performance testing has been done.
This “cursor” is capable of traversing the existing grouped attribute instead
of allocating a new message.

Chapter 5
Method

When working with a team or a colleague the working method and planning are
extremely important. A large part of the project concerns planning how things
will be done. Choosing the right tool for the project is time-consuming since
different projects require different tools. This chapter describes how this thesis
was planned, along with a description of the tools that were used.

5.1 Work method

This subsection describes the method used and how it was applied to this thesis.
In addition the tools that were used are briefly described.

5.1.1 Scrum

Scrum is an agile software development method for managing software projects
and application development. The method is described in the following sections.

5.1.1.1 Roles

The product owner plays the role of the customer to the developer team and
ensures that the team delivers what the customer expects. The product owner
writes down the product parts in the form of items called tasks and prioritizes
them. These tasks ends up in the product backlog (explained in section 5.1.1.2).

The development team usually consists of 3-9 people with different specifica-
tion regions. These people are responsible for the product deliverable(s).

The scrum master is the person who is accountable for removing any
impediments to the the team to deliver their sprint goal. An important part of
the role is to be a supervisor to the developer team and keep the team focused on
tasks in the current sprint (explained in section 5.1.1.3) .

27

28 CHAPTER 5. METHOD

Potentially
Shippable
Product
Increment

2-4
Week
Sprint

Meeting
Every 24 hrs

Product
Backlog

COPYRIGHT 2008-2010 MITCH LACEY
HTTP//WWW.MITCHLACEY.COM

Figure 5.1: Overview of the scrum method [1]

5.1.1.2 Backlog

The backlog is divided into to a product backlog and a sprint backlog (see Figure
5.1). The product backlog contain all the tasks and requirements necessary to
deliver the product. The product owner sorts these tasks according to their priority
regarding risk, business value, and dependencies. Every 2-4 weeks the product
owner sets up a new sprint backlog including the tasks to be done for that sprint.

5.1.1.3 Sprint

A sprint’s duration varies normally from two weeks to a month depending on the
project. Every sprint is introduced with a planning meeting where the tasks are
identified and the time necessary for each task is estimated. During each sprint a
daily scrum meeting is held, usually in the mornings (see Figure 5.1). The meeting
is time fixed is usually and around 15 minutes long. The scrum master makes a
brief check of what each team member did yesterday, how it went, and if any
problems were occurred.

5.1.1.4 Burndown

Every task either gets rated by points or time by the product owner. This generates
a burndown chart.

5.1. WORK METHOD 29

5.1.2 Redmine

To organize this project, a program called Redmine has been used[22]. Redmine
is a web based project management system running on Ruby rails[23]. Tons of
embedded features can be added and the tool can be customized to a specific
project. With the Gantt feature (bar chart illustrating project schedule) time
planning is clearly and easily arranged. A roadmap was setup where the “issues”
were organized to get a better overview of the project. An “issue” in Redmine is
equivalent to a Scrum task.

5.1.3 Applying the scrum method

Since this development team consisted of two persons the roles were not strict.
The planning and development were done in a cooperative way. During the
development process only a couple of scrum meetings were held because of the
use of a shared workspace and continuous contact.

The project was divided into two parts. Each part was small enough to fit
in one sprint which ended after a total of two sprints (see Table 5.1). The four
weeks of development were splitted uniformly. The product backlog and the task-
planning turned out to be trivial as each part of the project was placed in its own
sprint backlog.

Table 5.1: Development sprints

Sprint Description

1 Development of the EVH2 dissector

2 Development of test suite and corrections of the dissector

At the end of the first sprint a demo meeting was held with Aptilo Networks.
The meeting began with a short presentation of the work achieved during the
sprint. The presentation was followed by a hands on demonstration of the
developed product to present its functionality. The implementation was presented
by showcasing code where the structure of the code was explained and important
parts were described. At the end of the meeting the participants were free to ask
questions and encouraged to provide feedback. This demo gave an opportunity to
get feedback before the next sprint.

In addition to the four weeks of development, two weeks were spent planning
the project. Managing the tasks and the rest of the planning were done using

30 CHAPTER 5. METHOD

Redmine. The task board was reconstructed with a whiteboard and a task board-
plugin for Redmine. Another four weeks were spent writing the report.

5.1.4 Git

Git is an open source distributed version control system used for handling
development projects (more information is available at [24]). The reason why
Git was used is because Aptilo manages their whole code base using this version
control system. To participate in development a new branch was created from
the existing code of evh2tools in the master branch. The master branch contains
the original code of the project. A branch operation creates an exact copy of
a branch and allows the developer to add new code and modify existing code
without touching the master branch. When development is completed a merge
operation is done to contribute the developed code to the master branch.

5.1.5 Documentation

During the literature study the main source of information was primarily Aptilo[2]
and Wireshark documentation[25].

Information about the EVH2 protocol was found in Aptilo’s internal documen-
tation. This documentation can only be accessed from within the local domain at
Aptilo.

During the development process of the dissector the Wireshark documen-
tation was used frequently. The developer documentation provided guidelines
of how to write code according to Wireshark’s coding style (see Wireshark
documentation[9], section 1.1). The code must follow this coding style since
the Wireshark source code needs to be compiled on several platforms and using
different compilers. The developer documentation provides basic skeleton code
with example functions. This is a great starting point for dissector development
(see Wireshark documentation[9], section 1.2).

Wireshark has a mailing list wireshark-dev[26] for developers. Questions
about Wireshark development can be asked via this mailing list. All mail
conversations are sent out to the subscribers and the mail conversations can be
read online without a subscription. This mailing list was a very useful information
source for dissector development.

5.2. ENVIRONMENTS 31

5.2 Environments

Aptilo uses a custom operating system called ALE. The ALE operating system
is their own product platform and is built upon a Linux distribution where their
software components are running.

Another common operating system at Aptilo is Ubuntu, based on the Debian
Linux distribution[27]. Since CentOS and Ubuntu are Linux distributions, they
are both free unlike Microsoft Windows[28] operating system which is used by
many developers at Aptilo.

5.3 Performance test setup

The performance testing were carried out on two HP DL360 G6 servers running
ALE. The specification of each server is a Quad-Core Intel(R) Xeon(R) E5504 @
2.00 GHz processor and 4 GB of RAM. These severs were exlusively used for the
performance testing in this thesis project.

Chapter 6

Implementation

This chapter will discuss the implementation of the dissector and test suite, how
they were implemented, and why specific design decisions were made.

6.1 Dissector

The dissector was implemented to extend Wireshark to support EVH2. Using
Wireshark as dissection application of EVH?2 traffic multiple protocols can be
analysed together. Wireshark will facilitate the inspection of EVH2 and other
protocols, unlike evh2sniff which is only capable of inspecting EVH2.

6.1.1 Development process

The development of the dissector was split into two parts, a version without
dictionary support following by a version containing dictionary support. This
split was done to ensure a basic version capable of dissecting EVH2 would be
created. Since the dictionary was needed to lookup the data type of an attribute
value the implementation of the basic version was skipped. This resulted into a
single version of the dissector with the dictionary included from the beginning.

6.1.2 Wireshark source

The Wireshark source code provides the necessary libraries and functions for
development of a generic dissector. The dissector’s source code makes use of
the Wireshark libraries and functions.

Wireshark is built with a series of makefiles generated by a configure script.
The configure script generates makefiles for the dissector. The source code for
Wireshark (version 1.6.7) was downloaded from the Wireshark web page[6].

33

34 CHAPTER 6. IMPLEMENTATION

6.1.3 Structure of the dissector

The dissector for EVH2 was implemented on Ubuntu 11.10 in C using the
skeleton code in the Wireshark documentation (see Wireshark documentation[9],
section 1.2). The skeleton code exemplifies the required functions (that were
mentioned in section 3.3.2). The dissector implements the three required func-
tions: proto_reg_handoff_evh2, proto_register_evh2, and dissect_evh2.
In addition to these functions dissect_evh2_attribute was implemented for
dissection of the attributes.

The function proto_reg_handoff_evh2 registers the dissector in Wireshark
for EVH2 detection (see section 3.3.4). All fields of the EVH2 protocol are
registered by the function proto_register_evh2. This function defines the
name, data type, and description for each field. The attribute value field is defined
once for each possible data type. This multiple definition of the value field is done
because Wireshark use these definitions to determine how to present the data in
the Packet Details pane.

The function dissect_evh2 dissects and adds the required header fields
except for the flag field as items. The dissected flag field is added as a subtree
containing each flag bit as an item. The flag field was implemented as a subtree to
give a summary of all flags (in hexadecimal) in a collapsed view, but with details
about each flag in an expanded view (see Figure 6.1).

During the dissection the offset is increased for each dissected field. When the
offset reaches the length of the packet, then the dissection will end. If the header
fields are dissected and the offset is less than the length, the EVH2 packet contains
one or more attributes that needs dissection.

The function dissect_evh2_attribute is called from dissect_evh2 for
each attribute to be dissected. It will add the attribute as a subtree with the
length field and key field added as items. If the attribute type is ungrouped,
then the value field is added as an item according to its data type, which is
registered in proto_register_evh2 (as mentioned in section 3.3.2). In case
of a grouped attribute dissect_evh2_attribute is recursively called to dissect
the attribute(s) within the group. Each recursive call will add an attribute
subtree instead of a value field item. The recursion will traverse and dissect
the complete branch of the grouped attribute. When a attribute is dissected
dissect_evh2_attribute returns the total number of dissected bytes.

The bytes returned from the function call to dissect_evh2_attribute
inside dissect_evh2 will be added to the offset. While the offset is smaller than
the packet length, dissection of attributes will continue. When the offset reaches
the packet length the dissection is complete (see figure 6.1).

6.1. DISSECTOR 35

' Frame 4: 121 bytes on wire (968 bits), 121 bytes captursd (268 bits)

I Ethernet II, Src: ©0:00:00:00:00:00 (89:09: 08: 00: 00: 08), Dst: ©9:09: 00: 00: 60: 00 |68: 89: 89: 66: 00: 68)
P Internst Protecsl Version 6, Sre: ::1 (::1), Dst: ::1 (::1)
I Transmission Control Protocol, Src Port: 47422 (47422), Dst Port: 1358 (1358), Seq: 1, Ack: 1, Len: 35
~ EWHZ Protocol
Version: 3
7 Flags: 0x80
F: Net set
M: Not set
T: Net set
Reserved: Mot set
Reserved: Not set
Reserved: Mot set
Reserved: Not set
Reserved: Not set
Reserved: 0x@880
Length: 35
Key: 801 (Test)
Reserved: 0x0000
Sequence: @
Timestamp: Apr 24, 2012 16:49:51. 008000000 CEST
= Attribute: User-Name(201) 1=15
Key: 301 (User-Name)
Length: 15
Value: Steffe

@
[TR TR A |

Figure 6.1: Dissected EVH2 fields presented in packet details pane

6.1.4 Dissector type

This dissector was first implemented as a built in dissector using the skeleton
code. With this approach the complete Wireshark source needed to be recompiled
to build the dissector. Since the dissector not will be contributed to the Wireshark
source code it must be distributed in a custom build of Wireshark. When
upgrading Wireshark to a newer version a custom build is always needed to
include the dissector.

By developing a dissector plugin a custom build is not needed. The user can
add the plugin to an existing version of Wireshark. The previously developed built
in dissector code was reused to create the plugin dissector. In addition makefiles
and code for plugin (a shared library file) creation was required. As the dissector
plugin documentation[13] recommends the additional files were copied from the
Gryphon plugin dissector folder in the Wireshark source code[29]. These files
were edited according to the dissector plugin documentation to be compatible with
the EVH2 dissector plugin. A dissector plugin can be built separately without
recompiling the complete Wireshark source. Once its built, a shared library
file containing the dissector is easily distributed to users with a binary copy of
Wireshark.

36 CHAPTER 6. IMPLEMENTATION

6.1.5 Dictionary

A dictionary is needed to translate the keys of the events and attributes. Since
Aptilo Networks had already developed a dictionary for EVH2, this dictionary
was used in the dissector instead of writing a custom implementation using XML
or value strings (see section 3.3.3). Using this dictionary only one external
dictionary file needs to be maintained, e.g. when new keys are added they are
added to this external dictionary file. The functions used by the dictionary are
declared in a header file which is included in the dissector.

The dictionary is instantiated during the startup of Wireshark by a call from
proto_register_evh2. The translated textual representation of a field will be
appended to the item. The textual representation and the numerical are both
presented in the Packet Details pane, as was shown for key 301 in Figure 6.1.

6.1.6 Protocol detection

The dissector was at first developed as a non-heuristic dissector registered for TCP,
UDP, and SCTP with the fixed port number 1358 in proto_reg_handoff_evh2.
This port number was picked since the capture file used for testing had traffic on
this port. EVH?2 traffic may occur on port numbers other than the registered port
number. When EVH2 traffic is captured on another port than the registered it will
not be automatically recognized. Packets that are not automatically recognized
can be dissected by manually specifying the packet’s protocol type in Wireshark.
Subsequently a heuristic dissector had to be implemented because the EVH2
traffic in general is not sent over a specific port number.

The code in proto_reg_handoff_evh2 was changed to register the dissector
as a heuristic dissector. Unlike the non-heuristic dissector this type of registration
does not register a port number, but only the transport protocols that might be
used, in this case UDP, TCP, and SCTP. Heuristic tests were implemented in the
beginning of dissect_evh2:

e Packet size must be equal or greater than the size of the event header (20
bytes),

Packet size must be greater than 28 bytes if attribute(s) are present,

Version field must be set to the current version of EVH2 (currently 3),

Reserved flags must be set to zero, and

Reserved fields must be set to zero.

6.2. TEST SUITE 37

6.2 Test suite

A test suite was created to measure the protocol’s current performance and to
visualize changes in the protocol’s performance. The following chapter will
describe how this test suite is utilized. The following sections describe how the
test suite was implemented.

6.2.1 Packet generator

To send lots of packets in a specific order and do this repeatedly a certain number
of times, a lot of data needs to be sent. The packet generator is a bash script
which generates a test case(s) in the form of an event(s) with an attribute(s) (see
Listing 4 in Appendix B). The generator was implemented with the command line
parameters: event type, attribute, number of events, and increase amount. The
number of events is used to specify how many events it should generate. The size
of each generated event is increased by increasing the number of attributes of each
generated event (increases with the number of attributes specified in "increase
amount"). Generated test cases can be stored in a file, this forms a test that can
be used for performance testing. Figure 6.2 describes the structure of a test file
containing multiple test cases.

Case
/ Repeat

Test User-Name=Carl

Test / Repeat

Test User-Name=Carl

\
Il e

Case / Repeat

Test Source-IP=192.168.0.234

- / Repeat

Test Source-IP=192.168.0.234

Figure 6.2: Structure of a test and its test cases

38 CHAPTER 6. IMPLEMENTATION

6.2.2 Evh2performance

A complementary application to the evh2tools was developed because of the
present lack of performance testing. Evh2performance extends evh2send because
the former tool’s ability to send EVH2 messages. To answer the questions
discussed in section 4.3 evh2performance was implemented with appropriate
functionality for testing in these areas.

The application is written in C and can read EVH?2 test cases by command line,
STDIN, and from file. Each test case is passed to one of its three test functions
that measures the RTT, message creation time, and grouped attribute access time
for a test case. In addition to the test case time measurement a total test time is
measured. This total test time is measured during the same period as a test case
but it is incremented for each test case and therefore represents the sum of the test
case measurements. All three test functions will measure the size of the tested
EVH2 packages, providing an option to analyse the measured test times against
the packet size. The three functions implemented to conduct the actual testing are
described in sections 6.2.2.2, 6.2.2.3, and 6.2.2.4.

6.2.2.1 Accurate test data

To compare two different sets of test data the measurement must be performed
with the same conditions, e.g. tests must be identical in the two measurements.
Predefined tests were created to provide the application with tests usable for such
a comparison. Comparing test data from different tests is pointless because of the
lack of relation between the actual tests.

The accuracy of the measured data is increased with the number of measure-
ments since a better mean value can be calculated. Multiple runs of the same test
case will therefore increase the accuracy of the test data. This was achieved by
implementing functionality to repeat each test case a given number of times during
a test run. The number of repeats is specified by the flag -R <num> in Table 6.1,
if the flag is not used repeat is set to one by default.

6.2. TEST SUITE

Table 6.1: The flags implemented in evh2performance

39

Flag Full flag Description
-h --host Select host
-p --port Select port

-d <val> --debug

Set debuglevel, <val> 0 to 1

-r <val> --showresponse Output response packet information,
<val>0to 4

-T <val> --test Choose the test type to run, <val> 0 to 2

-f --files Run predefined test(s) from file. Separate
multiple files with ","

-C --CSV Output in CSV format

-s --case-summary Print summary of each case

-t --table Print table

-R <num> --repeat Repeat sending the same message <num>
times

-u -—-udp Use UDP

-U --unix Use Unix socket

-3 --sctp Use SCTP

_7 --help Display help

40 CHAPTER 6. IMPLEMENTATION

6.2.2.2 Round trip time

To measure the round trip time of a EVH2 message evh2performance sends one
or more EVH2 messages to a receiver (by default on TCP). After each message
is sent the application will wait for an ACK to be received. The time from when
the message is sent until the ACK is received is the measured RTT. Note that this
time does not include any of the time required to create and read the packet size
of the EVH2 message, only the round trip network delay, the processing time, and
the time to generate the ACK. This test is run by using the test flag set to 0 (-T
0). Each test case will be repeatedly sent the number of times set by the flag -R
<num>.

6.2.2.3 Creation time of EVH2 messages

This function tests the EVH2 library functions for EVH2 message creation, and
is run with the test flag set to 1 (-T 1). This test measures the time is takes to
create a evh2 message and add all its attributes. The time measurements exclude
the time it takes to read the size of the created message, the size is not needed for
message creation it is only measured for analytical purposes. This function will
not send any of the created messages, it will only repeat the creation of each test
case the number repeats set by the flag -R <num>.

6.2.2.4 Grouped attribute access

Access of grouped attributes in a EVH2 message is done by either using the
evh2_get_attr_grouped or evh2_cursor_* functions. Due to time limitations
in this thesis project this test function was only implemented with support to test
attribute access with evh2_get_attr_grouped. The evh2_cursor_* functions
are implemented in the EVH2 library but there are no functions that use them
for access of grouped attributes. The library only provides functions for attribute
access that use evh2_get_attr_grouped for grouped attributes. There was not
enough time to write new library functions using evh2_cursor_* for comparison
of the two methods.

The actual testing is done with the test flag set to 2 (-T 2). A EVH2
message is created from a test case and the attributes of the message are all
accessed by the library functions for attribute access (library functions that use
evh2_get_attr_grouped). This access will be repeated as many times as set by
the flag -R <num>. The time measurements is done only for the access, creation
time of the EVH2 message is not included.

6.2. TEST SUITE 41

6.2.2.5 Data output

The default output from evh2performace is a summary of the measurements done
in the executed test (see Listing 7 in Appendix C). Regardless to the test function
used it displays the number of messages, number of test cases, number of repeats
and total runtime. Mean, max, and min values is presented accordingly to the
measurements of the test function used e.g., RTT, message creation time, or
traversal time.

To get a detailed results view the flags -t and -s are used. Evh2performance
then prints measurements of every message sent in a user friendly table format, at
the end of each test case a summary table is displayed (see Listing 8 in Appendix
C). The table displays the following data:

e First column is an enumeration of the total number of repeats in a test (1, 2,
3,..),

Second column is the name of the file containing the test case(s),

Third column is the size of the EVH2 message (in bytes),

Fourth column is the measured time (Round trip, message creation or
traversal. Measured in milliseconds), and

Fifth column is the total test time of a test case (measured in milliseconds).

By generating this output to STDOUT the developer can pipe the output to
another application, redirect it to a file, or simply view it in their console window.
The output format can be changed by specifying the optional parameter “-C” (see
Apendix). This option will format the output as comma separated values (i.e., as
a CSV file). The CSV format was chosen due to both its simplicity and because
it is frequently supported by the analysis packages of many companies[30]. The
use of this format increases the opportunity to use individual analysis programs.
At Aptilo Networks, the most common analysis program is Microsoft Excel (see
Figure A.1 in Appendix A).

6.2.3 R analysis

R was partly chosen because of its command line support rather than the GUI
based Matlab. As noted earlier R is an environment for statistical data analysis
and graphics, while Matlab’s origins are in numerical computation. Additionally,
R is to preferable since it is free[19], unlike Matlab[31] The following sections
describes how R was utilized to analyse the test results.

42 CHAPTER 6. IMPLEMENTATION

6.2.3.1 R Script development

To analyse the output data from evh2performance a R script was developed. A R
script was suitable due to the frequent measurements that a developer will make
and script’s command line support. The script initializes the config parameters,
e.g: the required external packages, paths, and measurement units. To facilitate
the use of the script with external packages functionality was developed for the
script to check if every package given in the config parameters is installed, if not
- then the missing packages will thereafter be installed.

This script includes two packages, one called ggplot2 (and possible depen-
dencies) and is used for graph creation. Among the fifty functions in the ‘ggplot2
reference manual’ only a few were relevant when for visualizing the test data from
evh2performance. Each function has serveral parameters called aesthetics[32].
These complementary functions were used in the script:

e geom_points - a scatter plot which displays the relationship between two
continuous variables. The colors relative to the columns were set with the
aesthetics. This function is used to get a more detailed overview of the
test data than just a curve (An example of this is shown in Figure E.3 in
Appendix E).

e stat_smooth - a curve fitting of the approximate values. The standard error
(with a confidence interval of 0.95) relative to the curve was set with the
aesthetics. This function is used to get a simple and more understandable
overview of the actual test result (An example of this is shown in Figure 8.2
in Appendix E).

The second package included in the script is gridExtra and is used for table
plotting.

6.2.3.2 Data analysis

The script parses formatted (comma-separated) CSV files and creates a data set
from it. A data set is a common storage type in R and is often used when plotting.
Plot-labels, such as titles, are set depending of the column names in the CSV-
header:

[count], [case], [test], [packet_size], [test_times], [runtime], [timestamp]
There are three possible names in the [test_times]-column: rtt (Round

trip time), mct (Message creation time), tt (Traversal time). Each abbreviation is
mapped to corresponding name.

6.2. TEST SUITE 43

A feature in the script called compare mode was developed to compare
multiple test runs. When this feature is used, all the CSV-files in the specified
compare-path (the config parameters) will be compared and visualized in the
same graph-plot. The test data will be grouped based upon their timestamp to
distinguish the different runs. This feature is implemented in order to facilitate
use of the test suite, since manual comparison of two different diagrams with
(possibly) different axis scales is very time consuming. Two single graphs without
compare mode can be seen in Appendix E (Figure 8.1 and Figure 8.2) together
with a compounded graph in Appendix G (Figure 8.3).

The plot axes and other features are determined by user input (option
arguments) and can be set from command line by saying: --args [flags]. The
implemented flags can be seen in Table 6.2.

Table 6.2: The flags implemented in the R Script

Flag Description

P Set x-axis to packet size (default is time)
c Compare mode
d Visualizes each measured value as a dot in the plot.

6.2.3.3 Presentation

To present the test results from the R script a PDF-file is generated containing
a graph based on a test run. The intention is for the developer to take a look
at the graph and determine if changes to the code were an improvement or not.
In addition to the graph several tables are generated using gridExtra. One table
for each test contains the test cases and finally a table summarizes all tests. The
tables will contain statistical calculations of the measured data such as: minimum,
maximum, mean, and sum. The PDF-file will be created in the directory given in
the config (default . /pdf/) and the filename is automatically generated based on
atemplate ([y-axis]_[x-axis]_[timestamp].pdf).

44 CHAPTER 6. IMPLEMENTATION

6.3 Usage of the test suite

The test suite is simple to use, with only three steps the developer will be able to
notice potential performance differences.

Run the script with the current implementation of EVH2 and analyse the output:
R -slave -f suite.R < testdata --args (p d)

Make changes to the implementation, e.g. add a new feature or a bug fix.

Add the two test runs to the compare directory. Run the script again with compare
mode:

R -slave suite.R --args c (p d)

Chapter 7

Results

This chapter will present the results from development of the Wireshark dissector
and test suite. Additionally it presents results of performance testing done with
the test suite.

7.1 EVH2 dissector

The development of a EVH2 dissector resulted in a plugin dissector for Wireshark,
the plugin file is in the form of a shared object file (.so and .d11). The dissector
is capable of automatically detecting EVH2 by heuristic tests that checks if the
packet has the structure of a EVH2 packet. The dissection routines dissects
the complete evh2 packet and translates key fields in the header and attributes
with the application EVH2 dictionary. The dissector is capable of dissecting
all attribute types mentioned in section 2.3.2. The only flaw is dissection of
RADIUS and Diameter attribute types that are displayed as a byte string, all other
types are displayed in appropriate formats (see Figure 7.1). To use the dissector
in wireshark the plugin must be present, additionally the EVH2 dictionary and
its dependent packges must be installed. Dissection in Wireshark of different
protocols alongside with EVH2 is possible since Wireshark with the plugin has
support for EVH2.

45

46 CHAPTER 7. RESULTS

= Attribute: SIM-RANDIZ2003) 1=25
Key: 3003 (SIM-RAND)
Length: 25
Value: ff5913dflefc3e2c2732109b11392d71F2
¥ Attribute: User-Hame(381) 1=13
Key: 301 (Usar-Name)
Length: 13
Valus: Anna
¥ Attribute: Valueil4z) 1=12
Key: 142 (Value)
Length: 12
Value: 2147483647
¥ Attribute: IP-Address-vw4i3304) 1=12
Key: 3304 (IP-Address-v4)
Length: 12
Value: 10.9.20.123 (10.9.20.123)
¥ Attribute: IP-Address-vw6i33085) 1=24
Key: 3305 (IP-Address-vE)
Length: 24
Value: 2001: dbd: 400: e : 402b (2001: dbg: 400: &: : 402h)
= Attribute: Enabled(158) 1=3
Key: 150 [(Enabled)
Length: 9
Value: False
= Attribute: Timestamp|los) 1=1&
Key: 106 (Timestamp)
Length: 16
Value: Jan 1, 1970 01:00:00. 1339252071 CET
= Attribute: RADIUS-Attr(log) 1=23
Key: 108 (RADIUS-Attr)
Length: 23
¥ Attribute: Diameter-Attribute(losz2) 1=20
Key: 1002 (Diameter-Attribute)
Length: 20
Value: 0000010c0000000c00000001

Figure 7.1: Different types of attributes

7.2 Test suite measurements

The test suite consists of three tools: Packet generator, evh2performance, and
a R-script. Evh2performance is implemented to test round trip time, message
creation time, and grouped attribute access time. Simple test cases can be created
with the packet generator for use with evh2perfomance. The test results from
evh2perfomance can be outputted in the form of a table or as CSV. CSV files
are analysed with the R-script that generates PDF-reports with graphs of the

7.2. TEST SUITE MEASUREMENTS 47

measurements and summary tables of the measurements. A comparison mode
can be used to compare and present multiple CSV files in the same PDF-report.

The test suite was used to answer the questions in Section 4.3 by perform-
ing performance tests with evh2performance. CSV files with test data from
evh2performance were analysed with the R-script, the different tests and the
results are presented in the sections below.

7.2.1 Integer types

Can the number of integer types in EVH2 be reduced? To test the difference
between integer types the round trip time was measured. It was done by sending
50000 messages of each of the following test cases:

Test Status=127
Test case with int8 attribute (29 bytes)

Test Protocol=127
Test case with int16 attribute (30 bytes)

Test Value=127
Test case with int32 attribute (32 bytes)

Test Duration-Left=127
Test case with int64 attribute (36 bytes)

The analysed test data is presented in Figure 7.2, the results shows that int 64
had fastest mean RTT followed by int32, int16, and int8. Since this was not
expected six independent test runs of the same test case were made, the mean
RTT differed between these tests. This independent testing was done for all test
cases to get a more exact mean value. The graph and tables comparing the six
independent runs of each test case are displayed in Appendix E and in Section F.1
in Appendix F. This resulted in new mean values shown in Table 7.1.

48

S)

Round trip time (m:

CHAPTER 7. RESULTS

Round trip time (2012-06-09 13:35:16)

o
N
N

Test(s)

int8_rtt.csv
~—— int64_rtt.csv
~—— int32_rtt.csv
int16_rtt.csv
0.20- \/

| | | | |
0 2000 4000 8000 10000

6000
Time (ms)

Figure 7.2: RTT comparison of integer types (int8, int16, int32, int64)

Table 7.1: The mean RTT of independent runs for the integer types

Data type RTT

int8 0,183 ms

intl6 0,176 ms

int32 0,188 ms

int64 0,195 ms

7.2. TEST SUITE MEASUREMENTS 49

7.2.2 1 bit comparison

How big is the RTT difference when sending a boolean value versus an int
with only one bit set? To test the difference between using boolean or integers
for boolean values the round trip time was measured. It was done by sending
50000 messages of each of the following test cases:

Test Status=1
Test case with int8 attribute (29 bytes)

Test Protocol=1l
Test case with int16 attribute (30 bytes)

Test Value=1l
Test case with int32 attribute (32 bytes)

Test Duration-Left=1
Test case with int64 attribute (36 bytes)

Test Enabled=1
Test case with boolean attribute (29 bytes)

The RTT had the same behavior in this test as the test in section 7.2.1 where
the mean RTT differed between independent runs. One run of each test case is
compared in the graph in Figure E.5. Tests with six independent runs of each test
case resulted in the mean RTT in Table 7.2. The test results of the six independent
runs of each test case are displayed in section F.2 in Appendix F.

Table 7.2: The RTT of boolean and integer types (1 bit)

Data type RTT

int8 0,203 ms

intl6 0,197 ms

int32 0,197 ms

int64 0,191 ms

boolean 0,204 ms

50 CHAPTER 7. RESULTS

7.2.3 Message creation

How fast (in terms of execution time) are the EVH2 library functions for
message creation? Message creation time was tested by comparing the time it
took to create messages with grouped attributes versus messages with ungrouped
attributes. Each message was created 50000 times and the number of attributes in
both tests were 27. The tests used are displayed in Listings 5 and 6. A graph of
the results are shown in Figure E.6, and a summary of the results in Figure F.1.

7.2.4 Number of attributes

Is there a transmission time difference to send one message with multiple
attributes or a stream of multiple messages with single attributes? This was
tested by sending messages with a total of 100 attributes. Three tests were used:
100 messages with 1 attribute (see Listing 1 in Appendix B), 50 messages with 2
attributes (see Listing 2 in Appendix B), and 1 message with 100 attributes (see
Listing 3 in Appendix B).

Each test was repeated 500 times to get accuracy of the measurements. The
time it took for the different tests to send all events 500 times and wait for the
ACK are displayed in Table 7.3 where the column Sum is a summary of all RTT
measured. This test showed that sending 1 event with 100 attributes took the most
time.

Table 7.3: Comparison of small versus big events

Test Min (ms) Max (ms) Mean (ms) Sum (ms)
50event-2attr_rtt.csv 0,099 0,487 0,16 3990,617
levent-100attr_rtt.csv 0,255 0,551 0,308 154,221
100event-lattr rtt.csv 0,09 1,284 0,2 10023,423
All tests 0,09 1,284 0,223 14168,2261

Another test was conducted to see how the RTT is affected if the size of a
packet exceeds the maximum transmission unit (MTU) of 1500 bytes. This was
done by running a test containing events with an increasing number of attributes,
the EVH2 packet sizes ranged from 32 bytes to 3140 bytes (see Listing 4). The
result is displayed in Figure E.4.

7.2. TEST SUITE MEASUREMENTS 51

7.2.5 Grouped attribute access

Which of the two methods for reading grouped attributes from EVH2
messages has the fastest execution time (evh2_get_attr_ grouped and
evh2_cursor_x)? Since the test function in evh2performance only supports
access with the function evh2_get_attr_grouped no comparison could be done
to answer this question.

Chapter 8

Analysis

This chapter will analyse the outcome of this thesis project. It will discuss the
dissector plugin, test suite, and performance tests.

8.1 Analysing the dissector

Writing a EVH2 dissector plugin for Wireshark was a good solution to solve
the problem of inspecting traffic from other protocols mixed with the EVH2
protocol. The personnel at Aptilo do not need to use evh2sniff in combination
with Wireshark, because Wireshark now supports EVH2 through the plugin. This
solution provides the necessary functionality from evh2sniff together with the
additional powerful functionality of Wireshark as the analysis tools. Wireshark
with the EVH2 plugin can be used for deeper analysis of EVH2 traffic.

The approach of developing the dissector as a plugin makes it easy to distribute
and update. When a new version of the dissector is released the users simply
update their plugin and can start to use the new version directly. The plugin was
a better solution than a built-in dissector. The built-in dissector would require
custom builds of Wireshark to be distributed to the users at Aptilo since the
dissector code was not contributed to the source code of the Wireshark project.

The use of the evh2-dictionary in the dissector was a good solution from
a development perspective. It saved development time since it was already
implemented. However, from a user perspective this was not the best solution,
the dictionary’s dependencies on other packages made distribution and usage of
the code a bit more complex. To use the dissector the user had to install all the
packages on their workstation that this code depends upon. Because this plugin
dissector was developed for internal use at Aptilo this was an acceptable solution
even if it was a bit complex.

During the development process the dissector was implemented in two

53

54 CHAPTER 8. ANALYSIS

versions: a non-heuristic and a heuristic version for EVH2 detection. Both
solutions have advantages and disadvantages, the heuristic version automatically
detects EVH2 packets on arbitrary port numbers using its heuristic tests. The non-
heuristic version automatically detects packets sent on a fixed port number, but
detection can manually be overridden. A disadvantage with the heuristic version
is that it cannot be manually overridden, if the protocol is updated (e.g. there is
a change in version number of the protocol) and if a packet fails a heuristic test,
then Wireshark will not be able not detect that the packet in fact is a EVH2 packet.
Such a change to the protocol will require that the heuristic tests must be adjusted
to match the protocol changes, and a new plugin version must be distributed. The
final solution was the heuristic version since EVH?2 traffic is sent on arbitrary port
numbers. Updating the heuristic tests and distributing a new version of the plugin
in the event of protocol changes was considered to be more user friendly, rather
than requiring the user to manually override the EVH2 detection every time they
use the dissector.

The dissector plugin for Wireshark facilitates the inspection of EVH2 with
a more user friendly application than evh2sniff. A comparison of the two
application interfaces are shown in Appendix D (evh2sniff in Listing 12 and
Wireshark in Figures D.1 to D.3). The traffic shown was captured at the same
time using the same interface.

8.2 Analysing the test suite

There are a lot of different programmers and programmer types and it is rare
that everyone has the same opinion. Evh2performance is a first step towards
a platform, designed to suit as many developers as possible and to save them
time when developing EVH2 applications. The command line output suits the
programmer that only needs a quick performance test. Additionally, the CSV-file
is perfect if the measurements are to be analysed in a graphical way. The test suite
are already simple, but the usage can be simplified even more by creating bash
scripts that perform the whole procedure (generate test, test, and plot results).

Evh2performance is capable of measuring the RTT, message creation time,
and grouped attribute access time, but has the potential to expand the sets of test
done since the developers can add further functions to this code.

One feature that made a big difference in the R-Script was the compare mode,
both with aspect of time and simplicity. The script is run once, instead of once
per test. The visual difference after studying Figure 8.1 and Figure 8.2 alone,
followed by examing the combined graph (Figure 8.3). Since the ratio between
the axes remains the same, the comparison is much simpler than trying to compare
them separately. This will certainly save the developer a lot of time.

8.2. ANALYSING THE TEST SUITE 55

The tables were initially though to simply be a complement to the dot-graphs,
but the tables turned out to be very valuable when an exact value is needed, rather
than just dots in the plots. Further calculations can be performed manually using
the data from the tables (e.g. in combination with the test data stored for longer
periods and later comparing them).

Round trip time (2012-06-09 13:31:40)

©
N

Test(s)
authd-aaa-request_rtt.csv

Bound trip time (ms)

Time (ms)

Figure 8.1: The graph of authd-aaa-requeset_rtt.csv

56

CHAPTER 8. ANALYSIS

Round trip time (2012-06-09 13:32:00)

Round trip time (ms)

Time (ms)

Figure 8.2: The graph of grouped_rtt.csv

Round trip time (2012-06-09 13:32:19)

@
E
@
£
2
£o:
°
5
]
I}
o

Time (ms)

Figure 8.3: The graph of comparison between grouped_rtt.csv
and authd-aaa-requeset_rtt.csv

8.3. PERFORMANCE OF EVH?2 57

8.3 Performance of EVH2

Performance tests were performed to gather measurement data to answer the
questions in section 4.3. The data measured by evh2performance varied a lot
between independent runs of the same test, this variation made it hard to get
reliable data. To get a more reliable estimate of the actual performance the
mean values of several independent runs were calculated manually. The tests
results obtained from any single test run are not accurate enough to rely on for
performance evaluation purposes.

e Can the number of integer types in EVH2 be reduced?

Differences in RTT between the different integer types is small, the results
show that there tends to be only a small difference, although int64 has
the longest RTT. The test cases used to test the integer types were not big
enough. The tests cases should contain more attributes of each type so that
the packet size would vary greatly between an int8 and an int64 test case.
Such a test case is expected to show a larger difference in RTT. Additional
testing with better test cases is needed to answer this question.

e How big is the RTT difference when sending a boolean value versus an
int with only one bit set?
This test had the same problems as the previous were the test cases was
not large enough. Hence this question also needs better testing in order to
answer it. Analysing the packet sizes of int8 and boolean shows that the
attributes value of int8 and boolean are both 1 byte in the EVH2 protocol.
Boolean values may indeed have the same RTT as int8, but better testing is
needed to verify this.

e How fast (in terms of execution time) are the EVH2 library functions
for message creation?
This test showed that creating EVH2 messages with grouped attributes takes
longer time than to create ungrouped attributes. This was as expected
since grouped attributes are more complex than ungrouped attributes. The
differance in execution time is not very big, hence more extensive testing is
necessary to get better results.

e Is there a transmission time difference to send one message with multi-
ple attributes or a stream of multiple messages with single attributes?
The testing showed that one attribute with multiple attributes had a signif-
icant faster transmission time to send each test 500 times (see Table 7.3).
A message with 100 attributes has a size of 1200 bytes and in comparison
100 messages with one attribute each has a total size of 3200 bytes. The

58

CHAPTER 8. ANALYSIS

overhead in packet size of sending a stream of messages affected the total
transmission time. The conclusion of this test is that it is better to send
messages with multiple attributes in a transmission time perspective. If the
size of the transmitted packet exceeds the MTU of 1500 bytes the RTT is
increased since the packet is fragmented into multiple packets. The graph
E.4 shows that when the packet size gets close to 1500 bytes the RTT is
increased, the same behavior can be seen at 3000 bytes when the packet is
fragmented yet again. This must be considered when choosing the number
of attributes to send in each EVH2 message.

Which of the two methods for reading grouped attributes from EVH2
messages has the fastest execution time? (evh2_get_attr_ grouped
and evh2_cursor_x)

This question could not be answered since the test function was not
completed due to time constraints.

Chapter 9

Conclusion

During this thesis project a lot of new knowledge was gained about dissectors,
Wireshark development and performance testing. Conclusions were made that
test cases are extremely important when testing the performance of a protocol.
The test cases in this thesis were too trivial to get useful knowledge about the
EVH?2 protocol from a performance perspective. To achieve reliable test results
more complex (e.g. grouped and longer) test cases needs to be used for testing.
Additionally the tests show that the conditions of the test system changes due to
running the previous test cases. Hence it is necessary to avoid using data from
the early part of a test run as these early events were likely to be processed when
the system was largely idle (hence these results are not comparable with tests
performed when the system is already busy).

When developing dissectors for Wireshark, it is really important to read the
developer documentation[25]. This documentation was a big help during the
development of the dissector. Another great information source about dissectors
was the source code of other dissectors. By reading the code written by other
developers a great deal of useful knowledge was gained. This knowledge gave
an understanding of some of the problems encountered and helped to solve them.
Generally both the developer documentation and the source code are valuable for
anyone who wants to develop dissectors for Wireshark.

9.1 Goals

The main goal was the development of the two tools: a test suite and a dissector,
were successfully achieved. The Wireshark dissector was more important to
Aptilo than the test suite, but in the end it is up to developers to use these tools.
The dissector can be used today and will probably be a great solution for Aptilo’s
software developers. The test suite on the other hand will need major improvement

59

60 CHAPTER 9. CONCLUSION

before it can be used as a general performance analysis tool.

The Wireshark dissector is able to dissect EVH2 packets along with other
protocols and present the content for the user. Because of this the inspection is
much better and more detailed than before with evh2sniff.

The test suite was able to test the runtime of EVH2 library functions and round
trip time of EVH2 messages. Unfortunately, due to time limitations, no CPU-
loads were measured. Knowing the CPU load would be the next thing to measure
during performance evaluation. First the library functions need to be implemented
to measure the traversal time and of course an extensive test needs to be run in
order to produce reliable data.

9.2 What has been left undone?

The only thing left undone in the EVH2 dissector is the presentation of RADIUS
and Diameter attributes. In this version the code of the dissector is implemented
to display these attributes as a byte string, this should be improved by adding
functionality that parses these attributes serialized by EVH2, thus these attributes
could be presented in a more understandable format.

In the evh2performance application the test function for attribute access was
not completed with support for the evh2_cursor_* functions, when the EVH2
library is extended with these functions the test function should be completed.
Additionally, a script could be developed that both runs the tests and analyses the
results with the R-script.

9.3 Next obvious things to be done

Another dictionary implementation is an obvious thing to implement in a future
version of the EVH2 dissector. A dictionary that uses the dictionary text file from
the EVH2 dictionary and reads it into the dissector during start up of Wireshark.
This version should be implemented to be independent of any of the packages
developed by Aptilo. A new dictionary would make the distribution of the
dissector less complicated and must be done if the dissector should be included in
the source code of Wireshark.

The dissector could be implemented as a combination of a heuristic and non-
heuristic dissector. This combination would allow packets to be automatically
detected regardless of port number. Additionally, the non-heuristic part of the
code would provide the support needed to manually override protocol detection.
This would make it possible to manually detect EVH2 packets when a heuristic

9.4. REQUIRED REFLECTIONS 61

test fails due to protocol changes. Information about this combination is described
in the developer documentation [12].

Evh2performance must be improved with support to do multiple independent
runs of the same test, so that test results could be computed from all these
independent runs to provide higher accuracy of the test data. In addition to
this larger and more relevant test cases must be developed that can be used
for future performance analysis. Additional test functions could be added in
evh2performance to extend its testing capabilities. As mentioned a warm up-
timer needs to be implemented to avoid using data from early part of a test run.
However, the most important challange is to run much longer test runs in order to
achieve reliable test data.

9.4 Required reflections

This thesis project benefits Aptilo in economical aspects by reducing inspection
time of EVH2 traffic, because a single application is less time consuming to use
and therfore saves money. In addition a single traffic inspection tool minimizes
the human error factor that may occur during use of two separate applications.
Furthermore, the dissector and test suite can be used by Aptilo to find performance
and functionality problems wich then can be corrected. This results in a better and
more competitive software product. When problems are detected and corrected it
will benefit the customers and product end users. User experience is enhanced
especially if the performance is improved. Satisfied customers are very important
since they will hopefully reccomend the product to others resulting in more sales.

The applications developed in this thesis project will help to reduce stress of
the developers, since they provide an easy and quick way to inspect traffic and
test performance. Test performance reports created by the R-script provides a
base that is suitable for discussions during meetings due to its clear visualization
of the measuements.

Bibliography

[1]

(2]
[3]

[4]

Mitch Lacey. Scrum framework flow diagram - Mitch Lacey & Associates -
scrum and agile training. [Accessed: May 23, 2012], 2010. URL http://
www.mitchlacey.com/resources/scrum-framework-flow-diagram.

Aptilo Networks AB. Aptilo documentation, April 2012.

Wireshark Foundation. Wireshark documentation. [Accessed: April 12,
2012], n.d. URL http://anonsvn.wireshark.org/wireshark/trunk/
doc/.

Tepdump/Libpcap. Tcpdump/Libpcap public repository. [Accessed: May
2,2012], n.d. URL http://www.tcpdump.org/.

Riverbed Technology. WinPcap - home. [Accessed: May 2, 2012], n.d.
URL http://www.winpcap.org/.

Wireshark Foundation. Wireshark - mailing lists. [Accessed: May 23, 2012
],n.d. URL http://www.wireshark.org/lists/.

Wireshark Foundation. Wireshark - about. [Accessed: May 2, 2012], n.d.
URL http://www.wireshark.org/about.html.

Chris Sanders. Practical Packet Analysis, Second Edition. No Starch Press,
second edition, June 2011. ISBN 978-1-59327-266-1. URL http://my.
safaribooksonline.com/9781593272661.

Gerald Combs, James Coe, Gilbert Ramirez, James Foster, Olivier Abad,
Laurent Deniel, Guy Harris, and Ulf Lamping. README.developer. [
Accessed: April 12,2012], n.d. URL http://anonsvn.wireshark.org/
wireshark/trunk/doc/README.developer.

David Frascone and Luis E. Garcia Ontanon. Diameter dissector -
wireshark SVN. [Accessed: May 16, 2012], nd. URL http:
//anonsvn.wireshark.org/wireshark/trunk/epan/dissectors/
packet-diameter.c.

63

http://www.mitchlacey.com/resources/scrum-framework-flow-diagram
http://www.mitchlacey.com/resources/scrum-framework-flow-diagram
http://anonsvn.wireshark.org/wireshark/trunk/doc/
http://anonsvn.wireshark.org/wireshark/trunk/doc/
http://www.tcpdump.org/
http://www.winpcap.org/
http://www.wireshark.org/lists/
http://www.wireshark.org/about.html
http://my.safaribooksonline.com/9781593272661
http://my.safaribooksonline.com/9781593272661
http://anonsvn.wireshark.org/wireshark/trunk/doc/README.developer
http://anonsvn.wireshark.org/wireshark/trunk/doc/README.developer
http://anonsvn.wireshark.org/wireshark/trunk/epan/dissectors/packet-diameter.c
http://anonsvn.wireshark.org/wireshark/trunk/epan/dissectors/packet-diameter.c
http://anonsvn.wireshark.org/wireshark/trunk/epan/dissectors/packet-diameter.c

64 BIBLIOGRAPHY

[11] Internet Assigned Numbers Authority. IANA — internet assigned numbers
authority. [Accessed: May 23, 2012], n.d. URL http://www.iana.org/.

[12] Ulf Lamping. README.heuristic. [Accessed: April 12, 2012], August
2008. URL http://anonsvn.wireshark.org/wireshark/trunk/doc/
README.heuristic.

[13] Guy Harris and Ed Warnicke. README.plugins. [Accessed: April 12,
2012], n.d. URL http://anonsvn.wireshark.org/wireshark/trunk/
doc/README.plugins.

[14] Microsoft Corporation. Microsoft excel 2010 - office.com. [Accessed: May
2,2012], n.d. URL http://office.microsoft.com/sv-se/excel/.

[15] The Apache Software Foundation. OpenOffice.org. [Accessed: May 2,
2012], n.d. URL http://www.openoffice.org/sv/product/#calc.

[16] Apple Inc. Apple - iWork - numbers - create perfect spreadsheets in minutes.
[Accessed: May 2, 2012], n.d. URL http://www.apple.com/iwork/
numbers/.

[17] The MathWorks Inc. Function reference (MATLAB®)). [Accessed: June
4, 2012], n.d. URL http://www.mathworks.se/help/techdoc/ref/
£f16-6011.html.

[18] The MathWorks Inc. MathWorks nordic - online store - buy MATLAB,
simulink, and other products. [Accessed: May 23, 2012], 2012. URL
http://www.mathworks.se/store/default.do.

[19] The R Foundation. The R project for statistical computing. [Accessed: May
2,2012], n.d. URL http://www.r-project.org/.

[20] John Chambers. The S system. [Accessed: May 2, 2012], January 2001.
URL http://stat.bell-labs.com/S/.

[21] The R Foundation. R - about. [Accessed: May 2, 2012], n.d. URL
http://www.r-project.org/about.html.

[22] Jean-Philippe Lang. Redmine. [Accessed: May 15, 2012], n.d. URL
http://www.redmine.org/projects/redmine/wiki.

[23] David Heinemeier Hansson. Ruby on rails: Download. [Accessed: May 15,
2012], n.d. URL http://rubyonrails.org/download.

[24] Git. Git. [Accessed: May 23,2012], n.d. URL http://git-scm.com/.

http://www.iana.org/
http://anonsvn.wireshark.org/wireshark/trunk/doc/README.heuristic
http://anonsvn.wireshark.org/wireshark/trunk/doc/README.heuristic
http://anonsvn.wireshark.org/wireshark/trunk/doc/README.plugins
http://anonsvn.wireshark.org/wireshark/trunk/doc/README.plugins
http://office.microsoft.com/sv-se/excel/
http://www.openoffice.org/sv/product/#calc
http://www.apple.com/iwork/numbers/
http://www.apple.com/iwork/numbers/
http://www.mathworks.se/help/techdoc/ref/f16-6011.html
http://www.mathworks.se/help/techdoc/ref/f16-6011.html
http://www.mathworks.se/store/default.do
http://www.r-project.org/
http://stat.bell-labs.com/S/
http://www.r-project.org/about.html
http://www.redmine.org/projects/redmine/wiki
http://rubyonrails.org/download
http://git-scm.com/

BIBLIOGRAPHY 65

[25]

[26]

[27]

[29]

Wireshark Foundation. Wireshark SVN repository. [Accessed: May 23,
2012], n.d. URL http://anonsvn.wireshark.org/wireshark/trunk/.

Wireshark Foundation. Wireshark - download. [Accessed: May 23, 2012],
n.d. URL http://www.wireshark.org/download.html.

Canonical Litd. Ubuntu and debian. [Accessed: May 15,
2012], n.d. URL http://www.ubuntu.com/project/about-ubuntu/
ubuntu-and-debian.

Microsoft Corporation. Windows 7. [Accessed: May 15, 2012 |,
n.d. URL http://www.microsoftstore.se/shop/sv-SE/Microsoft/
Windows/Windows-7.

Steve Limkemann and Olivier Abad. Gryphon plugin - wireshark SVN. [
Accessed: April 16,2012], n.d. URL http://anonsvn.wireshark.org/
wireshark/trunk/plugins/gryphon/.

Y. Shafranovich. RFC 4180 - common format and MIME type for Comma-
Separated values (CSV) files. [Accessed: May 16, 2012], October 2005.
URL http://tools.ietf.org/html/rfc4180.

The MathWorks Inc. MathWorks nordic - MATLAB and simulink for
technical computing. [Accessed: May 2, 2012], n.d. URL http:
//www.mathworks.se/.

Hadley Wickham. Ggplot. [Accessed: May 20, 2012], n.d. URL http:
//had.co.nz/ggplot/.

http://anonsvn.wireshark.org/wireshark/trunk/
http://www.wireshark.org/download.html
http://www.ubuntu.com/project/about-ubuntu/ubuntu-and-debian
http://www.ubuntu.com/project/about-ubuntu/ubuntu-and-debian
http://www.microsoftstore.se/shop/sv-SE/Microsoft/Windows/Windows-7
http://www.microsoftstore.se/shop/sv-SE/Microsoft/Windows/Windows-7
http://anonsvn.wireshark.org/wireshark/trunk/plugins/gryphon/
http://anonsvn.wireshark.org/wireshark/trunk/plugins/gryphon/
http://tools.ietf.org/html/rfc4180
http://www.mathworks.se/
http://www.mathworks.se/
http://had.co.nz/ggplot/
http://had.co.nz/ggplot/

Appendix A

Surveys

4 -

I
™

N
suosiad Jo JaquinN

l_

O_

—up3 enn

—100Lady

—2leD 32O uado

— |©9X3 YOSOIDIN

— Japyoidr

— J818WC

—uos+dain

- zinydeis

—10/dnuo

'\

Figure A.1: Usage of analysis applications at Aptilo Networks

67

Appendix B

Tests

B.1 Ungrouped tests

Test Value=2147483647
Test Value=2147483647
Test Value=2147483647

Listing 1: Test for 100 messages 1 attribute (100 x 32 bytes = 3200 bytes)

Test Value=2147483647 Value=2147483647
Test Value=2147483647 Value=2147483647
Test Value=2147483647 Value=2147483647

Listing 2: Test for 50 messages 2 attributes (50 x 44 bytes = 2200 bytes)

69

70

APPENDIX B. TESTS

Test Value=2147483647 Value=2147483647 Value=2147483647

Listing 3: Test for 1 message 100 attributes (1 x 1200 bytes = 1200 bytes)

Test
Test
Test
Test
Test
Test

Value=127
Value=127
Value=127
Value=127
Value=127
Value=127

Value=127

Value=127 Value=127

Value=127 Value=127 Value=127

Value=127 Value=127 Value=127 Value=127

Value=127 Value=127 Value=127 Value=127 Value=127

Listing 4: Test for increasing size beyond MTU

B.1. UNGROUPED TESTS 71

Test DB-Field-Name="1"
DB-Field-Name="1"
DB-Field-Name="MSISDN"
DB-Field-Value-String="46711223344"
DB-Field-Name="1"
DB-Field-Name="BILLINGPERIODST"
DB-Field-Value-String="1"
DB-Field-Name="1"
DB-Field-Name="DATASPEED"
DB-Field-Value-String="514"
DB-Field-Name="1"
DB-Field-Name="IPALLOCATION"
DB-Field-Value-String="PUBLIC"
DB-Field-Name="1"
DB-Field-Name="SUBSCRIPTIONTYPE"
DB-Field-Value-String="POSTPAID"
DB-Field-Name="1"
DB-Field-Name="COUNTRY"
DB-Field-Value-String="SE"
DB-Field-Name="1"
DB-Field-Name="BWLPROFILE"
DB-Field-Value-String="1"
DB-Field-Name="1"
DB-Field-Name="CUSTOMERTYPE"
DB-Field-Value-String="CONSUMER"
DB-Vclock=6bce61606060cc60cal5521clf566d3ee27£a2d83a832991318£95¢el
DB-Key="46711223344"

Listing 5: Test containing one test case of an event with ungrouped attributes

72 APPENDIX B. TESTS

B.2 Grouped tests

Test DB-Payload={
DB-Field={
DB-Field-Name="MSISDN" DB-Field-Value-String="46711223344"
}
DB-Field={
DB-Field-Name="BILLINGPERIODST" DB-Field-Value-String="1"
}
DB-Field={
DB-Field-Name="DATASPEED" DB-Field-Value-String="514"
}
DB-Field={
DB-Field-Name="IPALLOCATION" DB-Field-Value-String="PUBLIC"
}
DB-Field={
DB-Field-Name="SUBSCRIPTIONTYPE" DB-Field-Value-String="POSTPAID"
}
DB-Field={
DB-Field-Name="COUNTRY" DB-Field-Value-String="SE"
}
DB-Field={
DB-Field-Name="BWLPROFILE" DB-Field-Value-String="1"
}
DB-Field={
DB-Field-Name="CUSTOMERTYPE" DB-Field-Value-String="CONSUMER"

}
DB-Vclock=6bce61606060cc60cal5521clf566d3ee27fa2d83a832991318£95el
DB-Key="46711223344"

Listing 6: Test containing one test case of an event with grouped attributes

Appendix C

Command-line outputs

Number of messages:
Number of test cases:
Number of repeats:
Total runtime:

Round trip time

Min: 0.0960 ms
Max: 0.4340 ms
Mean: 0.1981 ms

FHEFHE AR A R R
Summary of Round trip time test

FHEFE AR AR AR AR R R R R R R R R R A R R

FHEFFFEHF AR R R R R R R

20000

2

10000
3963.681641 ms

Listing 7: Summary output int evh2performance

73

74 APPENDIX C. COMMAND-LINE OUTPUTS

Test Packet Size Round trip time Time

1 authd-aaa-request 251 bytes 0.401 ms 0.401 ms

2 authd-aaa-request 251 bytes 0.330 ms 0.731 ms

3 authd-aaa-request 251 bytes 0.461 ms 1.192 ms

4 authd-aaa-request 251 bytes 0.328 ms 1.520 ms

5 authd-aaa-request 251 bytes 0.321 ms 1.841 ms

6 authd-aaa-request 251 bytes 0.313 ms 2.154 ms

7 authd-aaa-request 251 bytes 0.306 ms 2.460 ms

8 authd-aaa-request 251 bytes 0.301 ms 2.761 ms

9 authd-aaa-request 251 bytes 0.363 ms 3.124 ms

10 authd-aaa-request 251 bytes 0.323 ms 3.448 ms

Summary of Test case 1

Number of messages: 10 Total runtime: 3.448000 ms
Round trip time

Min: 0.3010 ms Max: 0.4610 ms Mean: 0.3447 ms

Listing 8: Full table output in evh2performance (see Listing 9 and Listing 10)

75

Test case 2

11 grouped 426 bytes 0.324 ms 0.325 ms
12 grouped 426 bytes 0.281 ms 0.606 ms
13 grouped 426 bytes 0.318 ms 0.925 ms
14 grouped 426 bytes 0.315 ms 1.240 ms
15 grouped 426 bytes 0.278 ms 1.519 ms
16 grouped 426 bytes 0.352 ms 1.871 ms
17 grouped 426 bytes 0.273 ms 2.145 ms
18 grouped 426 bytes 0.346 ms 2.491 ms
19 grouped 426 bytes 0.311 ms 2.802 ms
20 grouped 426 bytes 0.321 ms 3.123 ms
Summary of Test case 2

Number of messages: 10 Total runtime: 3.123000 ms

Round trip time

Min: 0.2730 ms Max: 0.3520 ms Mean: 0.3119 ms

Listing 9: Full table output in evh2performance (cont’d)

76

APPENDIX C. COMMAND-LINE OUTPUTS

Number of messages:
Number of test cases:
Number of repeats:
Total runtime:

Round trip time

Min: 0.2730 ms
Max: 0.4610 ms
Mean: 0.3283 ms

FHEfH AR R R R R R R R R
Summary of Round trip time test

FHEFHEF AR R R R

20

2

10
6.571001 ms

Listing 10: Full table output in evh2performance (cont’d)

7

"t "case", "test", "packet_size","rtt", "time", "timestamp"

1,1, "authd-aaa-request",251,0.
2,1,"authd-aaa-request",251,0.
3,1,"authd-aaa-request",251,0.
4,1,"authd-aaa-request",251,0.
5,1, "authd-aaa-request™",251,0.
6,1, "authd-aaa-request",251,0.
7,1,"authd-aaa-request",251,0.
8,1, "authd-aaa-request",251,0.
9,1,"authd-aaa-request", 251,0.
10,1, "authd-aaa-request",251,0.317000,3.607000,"2012-06-08 15:59:53"

11,2, "grouped", 426,0.
12,2, "grouped", 426, 0.
13,2, "grouped", 426,0.
14,2, "grouped", 426,0.
15,2, "grouped", 426,0.
16,2, "grouped", 426, 0.
17,2, "grouped", 426, 0.
18,2, "grouped", 426, 0.
19,2, "grouped", 426, 0.
20,2, "grouped", 426, 0.

335000,0.
363000,0.
281000,0.
286000, 1.
338000,1.
361000,1.
289000, 2.
261000, 2.
352000, 2.
273000, 3.

330000,0.330000,"2012-06-08
346000,0.676000,"2012-06-08
398000,1.074000,"2012-06-08
438000,1.512000,"2012-06-08
304000,1.816000,"2012-06-08
321000,2.137000,"2012-06-08
377000,2.514000,"2012-06-08
362000,2.876000,"2012-06-08
414000,3.290000,"2012-06-08

335000, "2012-06-08
698000, "2012-06-08
979000, "2012-06-08
265000,"2012-06-08
603000, "2012-06-08
964000, "2012-06-08
253000,"2012-06-08
514000, "2012-06-08
866000,"2012-06-08
139000, "2012-06-08

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

59:
59:
59:
59:
59:
59:
59:
59:
59:
59:

53"
53"
53"
53"
53"
53"
53"
53"
53"
53"

15:
15:
15:
15:
15:
15:
15:
15:
15:

59:
59:
59:
59:
59:
59:
59:
59:
59:

53"
53"
53"
53"
53"
53"
53"
53"
53"

Listing 11: CSV output form evh2performance

Appendix D

Interfaces

[root@1abl21-200 ~]# evh2sniff -i eth0 -f "port 1358"
Device: [ethO0]
PCAP filter: [port 1358]
1: 192.168.121.201:48665 -> 192.168.121.200:1358
Event-Type = Session-Purged
Mon Jun 11 11:07:17 2012; Seq = 0

Session-Time = 12312

2: 192.168.121.200:1358 -> 192.168.121.201:48665
Event-Type = Ack
Mon Jun 11 11:07:17 2012; Seq = 0

3: 192.168.121.201:48665 -> 192.168.121.200:1358
Event-Type = User—-Account-Closed
Mon Jun 11 11:07:17 2012; Seq = 0

User-Name = "Anna"

4: 192.168.121.200:1358 -> 192.168.121.201:48665
Event-Type = Ack
Mon Jun 11 11:07:17 2012; Seq = 0

5: 192.168.121.201:48665 -> 192.168.121.200:1358
Event-Type = Stop
Mon Jun 11 11:07:17 2012; Seq = 0

Listing 12: evh2sniff interface (displaying captured EVH2 data)

79

80

APPENDIX D. INTERFACES

[wiresniff.pcap [Wireshark 1.6.2]

[=]@] =]

Fle Edt \iew Go Capture Analyze Statistics Telephony Tools [rternals Help

SEeea &

X888 e FLEEE QQAl @WMER

Filter ;I Expression.. Clear Apply
Mo [Time | Seurcs | Destination | Pmtnm\l ngthl Info
10.000000 192.168.121.201 152.168.121.200 TCP 74 48665 > 1358 [SYN] S=cr0 Wire14600 Ler=0 MSS=1460 SACK_PERM=1 TSval=1723269306 TSecr=0 WS=128
2 0.000026 152.168.121.200 152.168.121.201 TCP 74 1358 > 48665 [SYN, ACK] Seqr0 Ack=1 Wir=14480 Lerm0 MSS=1460 SACK_PERM=1 TSwal=1722455793 TSecr=1723269306 WS=128
30000286 152.168.121.201 152.168.121.208 TCP 66 48665 > 1358 [ACK] Secrl Ack=1 Wirm14720 Ler=0 TSval=1723265306 TSacr=1722435793
40000353 192.168.121.201 152 168.121.200 EVH2 58 Session-Purgsd
5 0.000365 192.168.121.200 152.168.121.201 TCP 66 1358 > 48665 [ACK] Secrl Ack=33 Winm14552 Lere0 TSval=1722495793 TSecr=1723269306
60000626 152.168.121.200 152 168.121.201 EVH2 86 Ack
7 0001025 192.168.121.201 152.168.121.200 TCP 66 48665 > 1358 [ACK] Secr33 Ack=21 Wire14720 Ler=0 Tsval=1723269307 TSecr=1722435753
8 0001673 152168 121 152.168.121.200 EVH2 58 User-Account -Closed
5 0001196 192.168.121.200 152 168.121.201 EVH2 86 Ack
10 0.001612 152.162.121.201 152.168.121.200 EVH2 26 Stop
11 0.001624 152.168.121.201 152.166.121.200 TCP 66 48665 > 1358 [FIN, ACK] Seqr86 Ack=41 Wirm14720 Ler=0 TSval=1723269307 TSecr=1722435754
12 0.001661 152.168.121.200 152.166.121.201 TCP 66 1358 > 48665 [FIN, ACK] Seqr4l Ack=87 Wirm14552 Ler=0 TSval=1722495794 TSecr=1723269307
13 0.001969 192.168.121.201 152.166.121.200 TCP 66 48665 > 1358 [ACK] S=cr87 Ack=42 Wire14720 Ler=0 Tsval=1723269308 TSecr=1722495794

- EVH2 Protocol
Varsion: 3
¥ Flags: 0x00
o = Fi Mot set
0 = M Mot set
[= T Mot set
] = Reserved: Not set
0... = Reserved: Not set
= Reserved: Not set
0. = Reserved: Not set
... ...0 = Reserved: Not sst
Resarvad: 0x0000
Length: 33
Kay: 303 (User-Account-Closed)
Resarvad: 0x0000
Sequence: 0

= Attribute: User-Name(301) 1=13
Key: 301 (User-Hame)
Length: 13
Value: Anna

[cec0 ©oeooo0e Gole0RIl L1116l 11101008
0005 00000101 0L0000G1 11010010 Q0111000
8016 00000008 01610101 08O11111 10160611
0018 10100116 00011101 11000000 10101000
6026 ©1111001 11601606 16111110 80611661
0022 00011111 61000110 08111161 11610081
030 00000008 01110011 11111110 10000000
6032 00001006 00PO1610 01100110 16116111
00110011 00110001 [FITTFRRETETTIT]
ooooenoe 00100001 DOODOOEL QO101111
looo08008 00000000 01001111 11610161

80161101 0O00EEO0 000000
51160001 f

P Frame 8 55 bytes on wire (752 bits), 95 bytes captured (752 bits)

P Ethernet II, Src: 18:a3:05:41:d2:38 (18:a9:05:41:d2:38), Dst: 00:23:7d:=8:8c: 40 (00:23: 7d: =8:8c; 40)

P Intermet Protocol Version 4, Src: 152.168.121.201 (192.168.121.201), Dst: 192.168.121.200 (192.168, 121.200)
P Transmission Control Protocol, Src Port: 48665 (48665), Dst Port: 1358 (1358), Seq: 33, Ack: 21, Lem: 33

Timestamp: Jun 11, 2012 11:07:17.008008000 CEST

10061160 01908000 00011000 10101001 #
00001000 00000000 GLO0CLOL 0OOOO0OD . A. 8.
01060000 00008000 G1600008 0OB00110 .U
01111001 11001001 11000000 10101000 ..
00060101 01601116 10610801 16111680 y....N
10016160 11608016 10000008 06011000 . F=
00000000 0000R000 ©0000RCL 0OOO00OL
60060000 16111011 61106116 16161611 f
00060000 00908000 00OO0R00
00060000 0000A00 ©ODO00S 0EEO0OM
10110101 01008161 ©O60008 0GBGOHOM
09060000 00901101 01000801

(@ [EVHZ Pretocel (avha), 23 bytas

Packets: 13 Display=d: 12 Marked: 0 Load tirne: 0:00,001 [Profis: Default ﬂ

Figure D.1: Wireshark interface overview (displaying captured EVH2 data)

81

NER Tirme Source D estination | Pratocoll Lengthl Infe

1 8. 0003a0 152.188.121. 261 192 188, 121. 2608 TEP 74 48665 > 1358 [SYN] Sece0 !
2 0. 000028 152, 168, 121. 2608 152 188, 121. 201 TEP 74 1358 = 48665 [SYN, ACK] 5
3 0. 000288 132.188.121. 261 122.168. 121. 206 TCP 66 48665 > 1358 [ACK] Secel
4 @ 000353 152.188.121. 261 192 188, 121. 2608 EWH2 98 Session-Purged
5 0. 000365 152, 168, 121. 2608 152 188, 121. 201 TEP 66 1358 = 48665 [ACK] Secel
& 0. 000525 1%2.168.121. 200 192.188.121. 201 EWVH2 86 Ack
7 8. 001825 152.188.121. 261 192 188, 121. 2608 TEP 66 48665 > 1358 [ACK] Sece33
g 0. User-Account -Closed
9 0. 0011%& 1%2.168.121. 200 192.188.121. 201 EWVH2 86 Ack

16 . 93lsl3 152.188.121. 261 192 188, 121. 2608 EWH2 868 Stop

11 o, 90ls24 1%2.188.121. 201 152 188, 121. 2600 TEP 66 48665 = 1358 [FIN, ACK] 5

12 6. 89lesl 1%2.168.121. 200 192.188.121. 201 TCP g6 1358 = 48665 [FIN, ACK] S

13 9. 001969 1%2.168.121. 201 152,168, 121. 2600 TEP 66 48665 = 1358 [ACK] Sece87

Figure D.2: Wireshark packet list (displaying captured EVH2 data)

P Frame 8: 99 bytes on wire (792 bits), 99 bytes captured (792 bits)
I Ethernet II, Src: 18:29%: 05:41:d2:38 (12:a9:05: 41:d2:38), Dst:
P Internet Protecel VWersien 4, Src: 192 168 121 201 (192. 168 121.201), Dst:

00: 23: 7d: eB: 8c: 48 (00: 23: 7d: =8: 8c: 48)
152.168. 121. 208 (192. 168. 121. 280

P Tramsmission Contrel Pretecol, Src Port: 48665 (48665), Dst Port: 1358 (1358), Seq: 33, Ack: 21, Len: 33

~ EWH2 Protecel

Version: 2
V¥ Flags: 9x80

-
-
= 2
oo

F: Not set
M: Not set
T: Mot set
Reserved:
Reserved:
Reserved:
Ressrved:

Ressrved:

Reserved: Ox0000

Length: 33

Mot
Mot
Mot
Mot
Mot

sat
sat
sat
sat

sat

Key: 303 (User-Account-Closed)
Reserved: Ox0000

Sequence: @

Timestamp: Jun 11, 26812 11:67:17. 600000000 CEST

= Attribute: User-Name(381) 1=13
Key: 201 (User-Mame)

Length: 12
Value: Anna

Figure D.3: Wireshark detail view (displaying captured EVH2 data)

Appendix E
Graphs

Round trip time (2012-06-09 13:31:40)

0.305 -
0.300 -
)
£0295-
o
é Test(s)
g authd-aaa-request_rtt.csv
E
=
[}
¥ 0.290 -
0.285 -

0.280 -

i |
0 5000 10000 15000
Time (ms)

Figure E.1: The graph of authd-aaa-requeset_rtt.csv

83

84

APPENDIX E. GRAPHS

o
w
Q
S

Test(s)
. grouped_rtt.csv

Round trip time (ms)

°'2"5!——,—

5000 10000 15000
Time (ms)

o

Figure E.2: The graph of grouped_rtt.csv

@
£
;)
o
£
=
2
=
o
c
i
I}
[14

Test(s)
- grouped_rtt.csv

5000 10000 15000
Time (ms)

Figure E.3: The graph of grouped_rtt.csv with only dots

85

86

APPENDIX E. GRAPHS

Round trip time (2012-06-09 13:27:11)

0.6-

0.5-
@
E
o
_E 04- Test(s)
2 biginc_rtt.csv
°
<
5
<]
o
0.3~
0.2-

| i i i i i
0 500 1000 1500 2000 2500 3000
Packet size (bytes)

Figure E.4: RTT for events sent with increasing size

87

Round trip time (2012-06-09 13:33:38)

0.24-

0.22- N
,g Test(s)
;}/ int8-1bitt_rtt.csv
'g 0.20 - ~ inté4-1bit_rtt.csv
2 —— int32-1bit_rtt.csv
° ~— int16-1bit_rtt.csv
é boolean_rtt.csv

0.18-

0.16 -

o-

i i i i |
2000 4000 6000 8000 10000
Time (ms)

Figure E.5: RTT comparison of boolean versus integer with 1 bit set (boolean,
int8, int16, int32, int64)

88

APPENDIX E. GRAPHS

Message creation time (2012-06-11 11:54:04)

0.16 -

e (ms)

5 0.15-

Message creation tim
o
N
1

0.13-
I I I
0 2000 4000 6000
Time (ms)

Test(s) ungrouped_mct_v3.csv —— grouped_mct_v3.csv

Figure E.6: The graph of grouped vs. ungrouped attributes

Appendix F

R-Script table outputs

Test Min (ms) Max(ms) Mean (ms) Sum (ms)
1 ungrouped_mct_v3.csv 0.129 0.320 0.1319460 6597.300
2 grouped_mct_v3.csv 0.132 0.329 0.1336072 6680.361

Figure F.1: The summary of grouped vs. ungrouped attributes

89

90

F.1

APPENDIX F. R-SCRIPT TABLE OUTPUTS

Multiple independent runs

int8_v6_rtt.csv
int8_v5_rtt.csv
int8_v4_rtt.csv
int8_v3_rtt.csv
int8_v2_rtt.csv
int8_rtt.csv

All tests

Min (ms)
0.091
0.096
0.089
0.107
0.093
0.092

0.089

Max (ms)
0.503
1.048
0.736
1.606
1.136

2.46

2.46

Mean (ms)
0.17

0.171

0.19

0.163

0.189

0.213

0.183

Sum (ms)
8511.818
8553.229
9516.111
8165.13
9458.082
10657.945

54862.315

Figure F.2: The summary of independent runs of int8

int16_v6_rtt.csv
int16_v5_rtt.csv
int16_v4_rtt.csv
int16_v3_rtt.csv
int16_v2_rtt.csv
int16_rtt.csv

All tests

Min (ms)
0.089
0.093
0.097
0.094
0.086
0.103

0.086

Max (ms)
1.51

1.053
2.339
2.526
0.933
1.003

2.526

Mean (ms)
0.189

0.159

0.16

0.174

0.173

0.202

0.176

Sum (ms)
9474.041
7939.764
8020.979
8684.863
8646.585
10104.134

52870.366

Figure F.3: The summary of independent runs of int16

F.1. MULTIPLE INDEPENDENT RUNS

int32_v6_rtt.csv
int32_v5_rtt.csv
int32_v4_rtt.csv
int32_v3_rtt.csv
int32_v2_rtt.csv
int32_rtt.csv

All tests

Figure F.4:

int64_v6_rtt.csv
int64_v5_rtt.csv
int64_v4_rtt.csv
int64_v3_rtt.csv
int64_v2_rtt.csv
int64_rtt.csv

All tests

Figure F.5:

Min (ms)
0.094
0.088
0.092
0.093
0.092
0.084

0.084

Max (ms)
0.475
0.886
2.871

1.472

0.99

1.08

2.871

Mean (ms)
0.179
0.183
0.202
0.162
0.211
0.189

0.188

91

Sum (ms)
8954.298
9127.588
10119.961
8102.843
10529.958
9457.002

56291.65

The summary of independent runs of int32

Min (ms)
0.083
0.091
0.091
0.088
0.105
0.088

0.083

Max (ms)
0.606
0.462
0.474
0.868
1.165
0.476

1.165

Mean (ms)
0.185
0.214
0.202
0.184
0.201
0.186

0.195

Sum (ms)
9265.098
10677.987
10114.76
9218.64
10037.852
9305.143

58619.48

The summary of independent runs of int64

92 APPENDIX F. R-SCRIPT TABLE OUTPUTS

F.2 Multiple independent runs (1 bit)

Min (ms) Max (ms) Mean (ms) Sum (ms)

int8—1bitt_rtt.csv 0.081 0.786 0.213 10670.126
int8—1bit_v6_rtt.csv 0.116 0.486 0.204 10221.961
int8—1bit_v5_rtt.csv 0.091 1.207 0.207 10339.309
int8—1bit_v4_rtt.csv 0.091 1.288 0.204 10184.62
int8—1bit_v3_rtt.csv 0.083 2.553 0.192 9602.586
int8—1bit_v2_rtt.csv 0.089 0.847 0.2 10020.594

All tests 0.081 2.553 0.203 61039.196

Figure F.6: The summary of independent runs of int8 (1 bit)

Min (ms) Max (ms) Mean (ms) Sum (ms)

int16-1bit_v6_rit.csv 0.09 1.123 0.188 9385.316
int16—1bit_v5_rtt.csv 0.085 2.308 0.21 10485.294
int16-1bit_v4_rtt.csv 0.1 1.348 0.212 10581.169
int16—1bit_v3_rtt.csv 0.113 0.868 0.174 8676.06
int16—1bit_v2_rtt.csv 0.091 1.391 0.2 9999.141
int16—1bit_rtt.csv 0.09 0.648 0.199 9949.628
All tests 0.085 2.308 0.197 59076.608

Figure F.7: The summary of independent runs of int16 (1 bit)

F.2. MULTIPLE INDEPENDENT RUNS (1 BIT)

int32—-1bit_v6_rtt.csv
int32—-1bit_v5_rtt.csv
int32-1bit_v4_rtt.csv
int32—-1Dbit_v3_rtt.csv
int32—-1bit_v2_rtt.csv
int32—-1bit_rtt.csv

All tests

Min (ms)
0.109
0.092
0.097
0.088
0.091
0.114

0.088

Max (ms)
1.855
2.076
2.607
1.983
0.557
3.137

3.137

Mean (ms)
0.209
0.187
0.176
0.211
0.215
0.182

0.197

93

Sum (ms)
10465.294
9345.883
8782.475
10536.042
10764.54
9099.506

58993.74

Figure F.8: The summary of independent runs of int32 (1 bit)

int64—1bit_v6_rtt.csv
int64—1bit_v5_rtt.csv
int64—1bit_v4_rtt.csv
int64—1bit_v3_rtt.csv
int64—1bit_v2_rtt.csv
int64—1bit_rtt.csv

All tests

Min (ms)
0.112
0.084

0.09

0.092
0.087
0.091

0.084

Max (ms)
0.662
3.546
1.172
0.688
0.517
0.766

3.546

Mean (ms)
0.19

0.184

0.214

0.211

0.182

0.163

0.191

Sum (ms)
9477.984
9211.475
10686.512
10565.876
9080.607
8156.027

57178.481

Figure F.9: The summary of independent runs of int64 (1 bit)

Appendix G

A complete comparison output

Round trip time (2012-06-09 13:32:19)

0.310-
0.3C
0.300
@
E
GE) Test(s)
E-U 21 grouped_rtt.csv
_2; ~ authd-aaa-request_rit.csv
<
>
)
s
0.290
0.28
0.280

Time (ms)

Figure G.1: The graph of comparison between grouped_rtt.csv
and authd-aaa-requeset_rtt.csv

95

96 APPENDIX G. A COMPLETE COMPARISON OUTPUT

Case(s) Messages Min(ms) Max(ms) Mean(ms) Sum (ms)

grouped 50000 0.174 6.299 0.3012872 15064.36

Figure G.2: The summary of grouped_rtt.csv

Case(s) Messages Min(ms) Max(ms) Mean (ms) Sum (ms)

authd-aaa-request 50000 0.14 2.622 0.2939351 14696.75

Figure G.3: The summary of authd-aaa-requeset_rtt.csv

Min (ms) Max (ms) Mean (ms)

grouped_rtt.csv 0.174 6.299 0.301
authd-aaa-request_rtt.csv 0.14 2.622 0.294
All tests 0.14 6.299 0.298

Figure G.4: The summary of grouped_rtt.csv and
authd-aaa-requeset_rtt.csv

Sum (ms)
15064.361
14696.754

29761.115

97

TRITA-ICT-EX-2012:123

www.kth.se

	Introduction
	Background
	Goals
	Thesis purpose
	Limitations
	Thesis outline

	EVH2
	Protocols in general
	Protocol stack
	Application layer protocols

	What is EVH2?
	Message format
	EVH2 Header
	EVH2 Attribute

	Architecture
	Server/Client model
	Daemon model

	Evh2tools
	EVH2 dictionary

	Wireshark
	What is Wireshark?
	Usage of Wireshark
	Capturing packets
	Analysing packets

	Dissectors
	Protocol dissection
	Requirements
	Dictionaries
	Protocol detection
	Dissector types

	Performance evaluation
	Tools for data analysis
	Spreadsheet
	Matlab
	R

	Previous evaluations
	Performance questions

	Method
	Work method
	Scrum
	Roles
	Backlog
	Sprint
	Burndown

	Redmine
	Applying the scrum method
	Git
	Documentation

	Environments
	Performance test setup

	Implementation
	Dissector
	Development process
	Wireshark source
	Structure of the dissector
	Dissector type
	Dictionary
	Protocol detection

	Test suite
	Packet generator
	Evh2performance
	Accurate test data
	Round trip time
	Creation time of EVH2 messages
	Grouped attribute access
	Data output

	R analysis
	R Script development
	Data analysis
	Presentation

	Usage of the test suite

	Results
	EVH2 dissector
	Test suite measurements
	Integer types
	1 bit comparison
	Message creation
	Number of attributes
	Grouped attribute access

	Analysis
	Analysing the dissector
	Analysing the test suite
	Performance of EVH2

	Conclusion
	Goals
	What has been left undone?
	Next obvious things to be done
	Required reflections

	Surveys
	Tests
	Ungrouped tests
	Grouped tests

	Command-line outputs
	Interfaces
	Graphs
	R-Script table outputs
	Multiple independent runs
	Multiple independent runs (1 bit)

	A complete comparison output

