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Abstract: Lumped components are used to represent the reflectarrays designed using
different commercially available materials. The loss performance and the effect of material
properties on the reflectarray antennas are discussed in terms of the lumped components which
are used in the equivalent circuit analysis. The bandwidth performance of reflectarrays
designed with different materials is discussed using reflection loss and reflection phase plots
obtained by equivalent circuit analysis. Furthermore the results obtained by equivalent circuit
modeling are compared with the results obtained using CST Microwave Studio simulations and
a close agreement between all the results has been demonstrated. The dielectric permittivity (g;)
of materials investigated in this work ranges between 2.08 to 13 and the loss tangent (tand)
values vary from 0.0003 to 0.025 while the reflection loss values obtained by equivalent circuit
analysis varied from 0.179 dB to 6.875 dB and a variation in 10% and 20 % bandwidth is
observed from 84 MHz to 360 MHZ and 126 MHZ to 540 MHz respectively based on the
respective material properties.
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1. Introduction

Reflectarray is a combination of a flat reflector and an array of microstrip patch elements
printed on a thin dielectric substrate. It is illuminated using a primary feed horn placed at a
particular distance from the periodic array of microstrip patch elements. The individual
elements of the array are designed to scatter the incident field with proper phase distribution to
form a planer phase surface in front of the array aperture [1]. The design techniques of the
array element include identical patches of variable length stubs [2], square patches of variable
sizes [3], and identical planar elements of variable rotation angle [4] have been widely used in
order to control the phase distribution of the reflectarray antenna. The use of the reflectarray is
preferred due to its significant advantages over conventional parabolic and phased array
antennas. Some of the advantages are easy deployability, lower manufacturing cost, scannable
beam and it is surface mountable with lower mass and volume [5]. Despite of the advantages,
the use of reflectarray is limited to only few applications because of its narrow bandwidth and
loss performance as compared to its conventional counterparts [6]. Many techniques have been
proposed for the optimization of bandwidth and loss performance and different methods have
been used to analyze the reflectarrays. This paper proposes the lumped components equivalent
circuit representation of reflectarrays, designed with different commercially available
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materials, which can be used for the analysis of bandwidth and loss performance. The effect of
variation in the value of each lumped component on the performance of reflectarray is
discussed in detail.

2. Lumped Component Representation

A. Theoretical Investiagation

Lumped components can be used for the equivalent circuit representation of the
reflectarrays. In a reflectarray the dielectric and conductor losses are the most significant
sources of losses especially at millimeter wave frequencies [1]. Dielectric losses occur due to
high electric field generated in the substrate region and conductor losses occur due to high
current distribution on the surface of the patch. A lossless reflectarray can be represented by a
parallel LC circuit (LC resonant tank) and when the losses are considered, an additional
resistor in series to the capacitor must be included in the circuit [7]. A lumped component
representation of the lossy reflectarray is shown in Figure 1 where a network analyzer is
connected with the equivalent circuit of reflectarray for scattering parameters measurements.

VNA

Figure 1. Equivalent circuit Model for a typical reflectarray

The capacitive losses in the reflectarray can be explained using a simple capacitor that
consists of two parallel conductive plates of area A, separated by a dielectric with height d and
permittivity € as shown in Figure 2. The plates are considered to extend uniformly over an area
A and a charge density +p = +Q/A exists on their surface. Assuming that the width of the plates
is much greater than their separation d, the electric field near the centre of the device will be
uniform with the magnitude E = p/e. This assumption is also valid for every single element of
a reflectarray where, the width of the patch element is kept much greater than the height of
substrate. The capacitance of an ideal capacitor can be given by the ratio of the charge Q on the
conducting plates to the voltage between them.

Conductive plates with area A

Dielectric with thickness “d” and permittivity &,

Figure 2. Structure of a simple parallel plate capacitor
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The voltage is defined as the line integral of the electric field between the plates
d d
V= Ed=][ La: @)
0 0 g

Solving above integral and substituting p = Q/A, equation (2) becomes,
d d
y_pd_9d
e ¢4

Solving this for C = Q/V reveals that capacitance increases with area and decreases with
separation between the plates.

c=4 ®
d

The capacitance is therefore highest in devices made from materials with a high
permittivity. It can also be observed that increasing the distance d between the plates, which is
equivalent to increasing substrate thickness in the reflectarray, has the same effect as
decreasing the permittivity €. This reduces the capacitive effect of the capacitor. Hence
reducing the dielectric absorption in the dielectric layer and causing a drop in the losses of
reflectarray. Therefore in order to improve the performance of the reflectarray antenna the
capacitance should be smallest for the reflectarray designed with a material having lowest
permittivity. As mentioned earlier the resistor in the series of the capacitor is added for the
introduction of losses in the reflectarray, the resistance of the lumped component
representation of the reflectarray designed with highest loss tangent (tand) value should be
highest. The capacitance given in equation (3) is for a theoretically ideal capacitor. But in real,
a capacitor consists of an ideal capacitor Cig,l, a parallel resistance R,(EPR), an equivalent
series resistance Ry (ESR) and an equivalent series inductance L, (ESL) [8] as shown in
Figure 3.

C.
LS Rs ideal
ESL ESR
RP
EPR

Figure 3. Equivalent circuit for a real capacitor (Lossy capacitor)

The circuit in Figure 3 indicates that every capacitor has a self-resonant frequency, above
which it becomes an inductor. ESR is readily measured by applying this frequency to a
capacitor, measuring the voltage and current, and calculating the ratio. The capacitive and
inductive reactances cancel at the resonant frequency, leaving only ESR to limit the current.
The resistance EPR will always be much larger than the capacitive reactance at the resonant
frequency, so this resistance can be neglected for this computation and the equivalent circuit of
a real capacitor can be given as in Figure 4. The ESR represents losses in the capacitor [8] and
can be given by:

ESR=—"— @)
cewC

Where, o is the conductivity of the material and ¢ is the real part of the dielectric

permittivity of the substrate. C represents the ideal or lossless capacitance. In a low-loss

capacitor the ESR is very small, and in a lossy capacitor the ESR can be large. When
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representing the electrical circuit parameters as vectors in a complex plane, known as phasors,
a capacitor's loss tangent is equal to the tangent of the angle between the capacitor's impedance
vector and the negative reactive axis [8], as shown in the Figure 4. The loss tangent can then be
given by:

ESR
tano = 5 = wC.ESR=-2— (5)
| c| c'w
|TTmTmmmoosmeees T ESR : >
| Cuea_ BSR | %c
¥

Figure 4. Real Capacitor and the loss tangent shown in impedance plane

From equation (4) and equation (5), it can be seen that the series resistance which
represents the losses in a reflectarray is dependent on the dielectric properties of the substrate
used for the design. Moreover it can also be observed that ESR decreases with the decrease in
the loss tangent value of the substrate. Therefore a reflectarray antenna designed with low loss
tangent material exhibits lower reflection loss.

Every inductor has a certain amount of resistance which causes a loss in the form of heat
and is represented by copper loss. Normally this resistance is small which can be neglected in
solving various types of circuit problems because the reactance of the inductor (the opposition
to alternating current) is much greater than the resistance. Therefore the resistance has a
negligible effect on the current and the loss due to inductance in a reflectarray is very low.
However the value of the inductance is important for the calculation of resonant frequency of
the reflectarrays. The resonant frequency of an equivalent LC circuit of a reflectarray antenna
is given by:

/ S (6)
" 2x\LC

Different combination values of inductance (L) and capacitance (C) for one resonant
frequency can be used to model the loss performance of a reflectarray antenna. High values of
inductance L with low capacitance C, result in an increase in the respective reactances X; and
Xc. This will cause a small amount of currents circulating in the LC tank. As a result, energy
lost in resistance R will be smaller and hence causing low loss performance of the circuit. In
order to optimize the loss performance of a reflectarray antenna, the value of L should be
maximum with a minimum value of C for the material.

B.  Equivalent circuit of reflectarrays:

For the validation of this theory, reflectarrays printed above different materials were
designed and simulated with lumped components using commercially available computer
model of MUTISIMY'’. The values of the lumped components can be calculated by the
following relationships [7].

c=-2

7
i, ©)
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L=
nf.o,

®)

Where, #,=377€Q is the characteristics impedance of vacuum and o, is the phase derivative
at /.. The value of the resistor can be approximately calculated by:

1-T" 16
R=~ s 77r2

14T, f. o,
Where, I, is the reflection coefficient at the resonant frequency f,. The above equations are

used for the calculation of the values of R, L and C for different materials used in the design of
reflectarrays as given in Table 1.

®

Table 1. Lumped Component Values For Reflectarrays Of Different Materials

Reflection

. [ R L C
Material & Tano los(sd lg)Rl) adGitn) (mQ) (nH) (pF)
Teflon 2.08 0.0004 0.179 3.647 46.7 0.65 0.38
Vaseline 2.16 0.001 0.261 3.752 64.4 0.64 0.396
Roger 5880 2.2 0.0004 0.180 3.805 432 0.63 0.401
Roger 5870 233 0.0012 0.313 3.979 68.6 0.60 0.42
CEM 4.5 0.025 6.875 6.7370 500.1 0.35 0.71
Beryllia 6.5 0.0004 0.395 9.976 21.6 0.30 0.84
Alumina 95% 9.75 0.0003 0.519 10.14 17.5 0.236 1.1
Silicon 11.9 0.004 2.857 12.47 63.1 0.19 1.3
Gallium Arsenide 13 0.006 4.326 13.24 83.9 0.18 1.4

It can be observed from Table 1 that reflectarray printed above dielectric material of Teflon
with the lowest value of C=0.38pF and highest value of L=0.65nH offers a reflection loss of
0.179 dB for the equivalent circuit representation. However it is shown that reflectarray
constructed above Gallium Arsenide with the highest value of C=1.4 pF and lowest value of
L=0.18nH contributes higher reflection loss of 4.326 dB compared to Teflon. This is in good
agreement with the effect explained above. However in order to measure effective reflection
loss performance, the value of the resistor must also be taken into consideration. As shown in
Tablel, it can also be observed that the loss tangent value (tand) of CEM is the highest among
the available materials causing the value of resistance R to be the highest for CEM. This is the
reason CEM is showing maximum value of reflection loss (Rl). If Teflon and Beryllia are
compared, it can be observed that both have the same value of loss tangent (tand = 0.0004), but
Beryllia has a reflection loss value of 0.395dB as compared to the Teflon which has a
reflection loss of 0.179dB. This is because of the difference in the material properties where
Teflon has a permittivity £=2.08 and Beryllia has a dielectric constant £=6.5. So for Teflon the
value of the capacitance is lower (C=0.38pF) as compared to Beryllia (C=0.84pF) and the
value of inductance for Teflon (L=0.65nH) is higher than Beryllia (L=0.30nH). Therefore the
reactance X and Xc¢ will be lower for Teflon as compared to Beryllia. Due to the lump
components effect, the reflectarray design with Beryllia shows more losses compared to
reflectarray antenna printed above Teflon.

117



Muhammad Yusof Ismail, et al.

C. Simulations and comparisons

The reflection loss curves and reflection phase curves for Teflon obtained by equivalent
circuit modeling using MULTISIMY' are compared with the results obtained by CST
Microwave Studio (CST MWS) as shown in Figure 5.
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Figure 5. Comparison of CST simulations with equivalent circuit analysis for Teflon

It can be observed from Figure 5 that the results produced by equivalent circuit modeling
are in good agreement with the CST Microwave Simulated results. Furthermore it can be
observed from Figure 5 that Teflon gives out a very low loss of 0.17dB. On the other hand the
slope of the reflection phase curve which, is a measure of reflectarray bandwidth [1], for
Teflon is very smooth which shows that Teflon shows a better bandwidth performance when
used for the design of a reflectarray.

Figure 6 shows a comparison of CST MWS and equivalent circuit modeling results. It can
be observed from Figure 6 that both the computer models produced almost identical results.
When a reflectarray is designed with Gallium Arsenide at 10 GHz, it gives a reflection loss of
4.3dB and a very steep slope of the reflection phase curve. This is because of the fact that
Gallium Arsenide has a ver high loss tangent value of 0.006 and a very high value of dielectric
constant (g=13).
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Figure 6. Comparison of CST simulations with equivalent circuit analysis
for Gallium Arsenide
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Figure 7. Comparison of CST simulations with equivalent circuit analysis for CEM

The comparison between the equivalent circuit modeling results and the results obtained
from CST MWS for the reflectarray designed with CEM as substrate is shown in Figure 7. A
close agreement between the two set of results can be observed from Figure 7. Furthermore a
high reflection loss of 6.8dB is observed for reflectarray designed with CEM. However the
slope of the phase is less steep as compared to Gallium Arsenide. This is because of the fact
that CEM has a very high loss tangent value of 0.025 which makes it a high loss material. On
the other hand the dielectric constant for CEM is 4.5 as compared to 13 for Gallium Arsenide
which causes smoother slope of reflection phase curve and hence more bandwidth. The
bandwidth performance of reflectarray design with different materials calculated at different
levels is shown in Table 2. The 10% and 20% bandwidths as shown in Table 2 are calculated
by moving 10% and 20% above the reflection loss value at resonant frequency for comparison.
Although the reflection loss value at resonant frequency of 10 GHz for CEM is much higher
than that of Gallium Arsenide, but the bandwidth performance of reflectarray designed with
CEM is still better than Gallium arsenide. This is because of the fact that as the bandwidth of
reflectarray is also inversely proportional to the dielectric permittivity of the material used for
design and it can be improved by using thicker substrate which has the same effect as the
reducing the values of dielectric permittivity. This fact can also be demonstrated by comparing
equation (3) and equation (6), which is used for the calculation of lumped component values.

Table 2. Bandwidths For Different Materials

Dielectric Material 10% Bandwidth 20% Bandwidth
(MHz) (MHz)
Teflon 360 MHz 540 MHz
Vaseline 358 MHz 534 MHz
Roger 5880 344 MHz 520 MHz
Roger 5870 322 MHz 490 MHz
CEM 218 MHz 285 MHz
Beryllia 155 MHz 239 MHz
Alumina (95%) 110 MHz 167 MHz
Silicon 89 MHz 131 MHz
Gallium Arsenide 84 MHz 126 MHz
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3. Conclusion

Analysis of lumped component representation for reflectarrays designed at 10 GHz
constructed above different materials is presented. The effect on the reflection loss and
bandwidth performance is discussed in terms of lumped components. The reflection loss and
reflection phase curves for reflectarrays with different materials have been obtained using
equivalent circuit analysis. It has been shown that Teflon which has the least value of €=2.08
and very low value of tand=0.0004 shows minimum reflection loss R1=0.179dB and maximum
10% and 20% bandwidths of 360MHz and 540MHz respectively. However CEM which has the
highest loss tangent value tand=0.025, demonstrates a reflection loss of R1=6.875dB offering
an improved bandwidth performance than Gallium Arsenide due to lower permittivity value.
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