
A FULLY HOMOMORPHIC ENCRYPTION SCHEME

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Craig Gentry

September 2009

c© Copyright by Craig Gentry 2009

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Dan Boneh) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(John Mitchell)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Serge Plotkin)

Approved for the University Committee on Graduate Studies.

iii

Abstract

We propose the first fully homomorphic encryption scheme, solving a central open problem

in cryptography. Such a scheme allows one to compute arbitrary functions over encrypted

data without the decryption key – i.e., given encryptions E(m1), . . . , E(mt) of m1, . . . , mt,

one can efficiently compute a compact ciphertext that encrypts f(m1, . . . ,mt) for any effi-

ciently computable function f . This problem was posed by Rivest et al. in 1978.

Fully homomorphic encryption has numerous applications. For example, it enables

private queries to a search engine – the user submits an encrypted query and the search

engine computes a succinct encrypted answer without ever looking at the query in the

clear. It also enables searching on encrypted data – a user stores encrypted files on a

remote file server and can later have the server retrieve only files that (when decrypted)

satisfy some boolean constraint, even though the server cannot decrypt the files on its own.

More broadly, fully homomorphic encryption improves the efficiency of secure multiparty

computation.

Our construction begins with a somewhat homomorphic “boostrappable” encryption

scheme that works when the function f is the scheme’s own decryption function. We then

show how, through recursive self-embedding, bootstrappable encryption gives fully homo-

morphic encryption. The construction makes use of hard problems on ideal lattices.

iv

Acknowledgments

This thesis would have been impossible without the support and mentoring of my advisor,

Dan Boneh. Even after several years of working with him, I am constantly surprised by his

amazing intelligence, infinite energy, boundless optimism, and genuine friendliness. I wish

I could incorporate more of his qualities. I have limited optimism about my chances.

In a presentation to my fellow Ph.D. admits four years ago, Dan highlighted fully homo-

morphic encryption as an interesting open problem and guaranteed an immediate diploma

to anyone who solved it. Perhaps I took him too literally. He certainly neglected to mention

how much writing would be involved. But I have never gone wrong following his advice.

I have also received a lot of input and support from my friends in the IBM Crypto

Group, where I’ve interned for the past couple of summers, and where I will be working

permanently – namely, Ran Canetti (now at Tel Aviv University), Rosario Gennaro, Shai

Halevi, Charanjit Jutla, Hugo Krawczyk, Tal Rabin, and Vinod Vaikuntanathan (postdoc).

These discussions have led to significant performance optimizations. Also, Tal Rabin has

been particularly helpful in terms of optimizing my own performance, so that I could finally

finish the thesis.

I have had helpful discussions and received comments and suggestions from many other

people, including (non-exhaustively): Boaz Barak, Marten van Dijk, Shafi Goldwasser,

Iftach Haitner, Michael Hamburg, Susan Hohenberger, Yuval Ishai, Yael Tauman Kalai,

Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, Oded Regev, Alon Rosen, Amit

Sahai, Adam Smith, Salil Vadhan, and Brent Waters.

This work was supported by the NSF, a Stanford Graduate Fellowship and an IBM PhD

fellowship.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 A Very Brief and Informal Overview of Our Construction 2

1.2 What is Fully Homomorphic Encryption? 5

1.3 Bootstrapping a Scheme that Can Evaluate its Own Decryption Circuit . . 7

1.4 Ideal Lattices: Ideally Suited to Construct Bootstrappable Encryption . . . 10

1.5 Squashing the Decryption Circuit: The Encrypter Starts Decryption! 15

1.6 Security . 18

1.7 Performance . 20

1.8 Applications . 21

2 Definitions related to Homomorphic Encryption 27

2.1 Basic Definitions . 27

2.2 Computational Security Definitions . 31

3 Previous Homomorphic Encryption Schemes 34

4 Bootstrappable Encryption 43

4.1 Leveled Fully Homomorphic Encryption from Bootstrappable Encryption, Generically 43

4.2 Correctness, Computational Complexity and Security of the Generic Construction 48

4.3 Fully Homomorphic Encryption from KDM-Secure Bootstrappable Encryption 51

4.4 Fully Homomorphic Encryption from Bootstrappable Encryption in the Random Oracle Model 53

vi

5 An Abstract Scheme Based on the Ideal Coset Problem 57

5.1 The Ideal Coset Problem . 58

5.2 An Abstract Scheme . 59

5.3 Security of the Abstract Scheme . 62

6 Background on Ideal Lattices I: The Basics 63

6.1 Basic Background on Lattices . 63

6.2 Basic Background on Ideal Lattices . 65

6.3 Probability Background . 68

7 A Somewhat Homomorphic Encryption Scheme 69

7.1 Why Lattices? . 69

7.2 Why Ideal Lattices? . 70

7.3 A Geometric Approach to Maximizing the Circuit Depth that Can Be Evaluated 70

7.4 Instantiating the Ring: The Geometry of Polynomial Rings 72

7.5 Instantiating Encrypt and Minimizing rEnc 75

7.6 Instantiating Decrypt and Maximizing rDec 75

7.7 Security of the Concrete Scheme . 77

7.8 How Useful is the Somewhat Homomorphic Scheme By Itself? 79

8 Tweaks to the Somewhat Homomorphic Scheme 81

8.1 On the Relationship between the Dual and the Inverse of an Ideal Lattice . 82

8.2 Transference Lemmas for Ideal Lattices . 85

8.3 Tweaking the Decryption Equation . 86

8.4 A Tweak to Reduce the Circuit Complexity of the Rounding Step in Decryption 88

9 Decryption Complexity of the Tweaked Scheme 90

10 Squashing the Decryption Circuit 98

10.1 A Generic Description of the Transformation 98

10.2 How to Squash, Concretely . 100

10.3 Bootstrapping Achieved: The Decryption Circuit for the Transformed System 102

11 Security 104

11.1 Regarding the Hint Given in Our “Squashing” Transformation 104

vii

11.2 Counterbalancing Assumptions . 113

12 Performance and Optimizations 115

12.1 Simple Optimizations . 116

12.2 Basic Performance . 117

12.3 More Optimizations . 117

13 Background on Ideal Lattices II 125

13.1 Overview of Gaussian Distributions over Lattices 125

13.2 The Smoothing Parameter . 126

13.3 Sampling a Lattice According to a Gaussian Distribution 128

13.4 Ideal Factorization in Polynomial Rings . 129

14 The Somewhat Homomorphic Scheme Revisited 132

14.1 Using Gaussian Sampling in Encrypt . 132

14.2 Generating an Ideal with Very Small Norm 133

14.3 Proof of Security Based on the Inner Ideal Membership Problem (IIMP) . . 135

14.4 Success Amplification: Proof of Security Based on the Modified IIMP (MIIMP)136

14.5 Basing Security on a Search Problem: Bounded Distance Decoding Via Hensel Lifting138

14.6 Toward Reducing the SIVP to the BDDP: Regev’s Quantum Reduction . . 141

14.7 Summary of Security Results for this Construction So Far 143

14.8 Looking Forward . 143

15 Background on Ideal Lattices III 145

15.1 Lemmata Regarding Vectors Nearly Parallel to e1 145

15.2 Distribution of Prime Ideals . 148

16 Random Self-Reduction of Ideal Lattice Problems 151

16.1 A New Type of Worst-Case / Average-Case Connection for Lattices 151

16.2 Our Average-Case Distribution . 153

16.3 How to “Randomize” a Worst-Case Ideal 154

16.4 Why Does the Reduction Require a Factoring Oracle? 157

16.5 Application to our Fully Homomorphic Encryption Scheme 159

viii

17 How to Randomize a Worst-Case Ideal 161

17.1 The RandomizeIdeal Algorithm . 161

17.2 Is the Ideal Random? The Proof of Theorem 16.3.4 162

17.3 Reduction of WBDDP to HBDDP and Worst-case IVIP to Average-Case IVIP164

17.4 An Alternative Way to Randomize an Ideal 166

18 KeyGen per the Average Case Distribution 175

18.1 The Secret Key . 175

18.2 Adapting Kalai’s Algorithm to Generate a Random Factored Ideal 177

19 Basing Security on Worst-case SIVP in Ideal Lattices 181

19.1 Relationship Among Instances of IVIP . 182

19.2 Reduction of SIVP to IVIP . 183

20 Circuit Privacy 188

Bibliography 190

ix

List of Tables

x

Chapter 1

Introduction

We propose a solution to the old open problem of constructing a fully homomorphic en-

cryption scheme. This notion, originally called a privacy homomorphism, was introduced by

Rivest, Adleman and Dertouzous [120] shortly after the invention of RSA by Rivest, Shamir,

and Adleman [121]. Basic RSA is a multiplicatively homomorphic encryption scheme – i.e.,

given RSA public key pk = (N, e) and ciphertexts {ψi ← πe
i mod N}, one can efficiently

compute
∏

i ψi = (
∏

i πi)e mod N , a ciphertext that encrypts the product of the original

plaintexts. One imagines that it was RSA’s multiplicative homomorphism, an accidental

but useful property, that led Rivest et al. [120] to ask a natural question: What can one do

with an encryption scheme that is fully homomorphic: a scheme E with an efficient algo-

rithm EvaluateE that, for any valid public key pk, any circuit C (not just a circuit consisting

of multiplication gates as in RSA), and any ciphertexts ψi ← EncryptE(pk, πi), outputs

ψ ← EvaluateE(pk, C, ψ1, . . . , ψt) ,

a valid encryption of C(π1, . . . , πt) under pk? Their answer: one can arbitrarily compute on

encrypted data – i.e., one can process encrypted data (query it, write into it, do anything

to it that can be efficiently expressed as a circuit) without the decryption key. As an

application, they suggested private data banks. A user can store its data on an untrusted

server in encrypted form. Later, it can send a query on the data to the server, whereupon the

server can express this query as a circuit to be applied to the data, and use the EvaluateE
algorithm to construct an encrypted response to the user’s query, which the user then

decrypts. We obviously want the server’s response here to be more concise than the trivial

1

CHAPTER 1. INTRODUCTION 2

solution, in which the server just sends all of the encrypted data back to the user to process

on its own.

Cryptographers have accumulated a long assortment of “killer” applications for fully

homomorphic encryption since then. (See Section 1.8.) However, until now, we did not

have a viable construction.

1.1 A Very Brief and Informal Overview of Our Construction

Imagine you have an encryption scheme with a “noise parameter” attached to each ci-

phertext, where encryption outputs a ciphertext with small noise – say, less than n – but

decryption works as long as the noise is less than some threshold N À n. Furthermore,

imagine you have algorithms Add and Mult that can take ciphertexts E(a) and E(b) and

compute E(a + b) and E(a ∗ b), but at the cost of adding or multiplying the noise pa-

rameters. This immediately gives a “somewhat homomorphic” encryption scheme that can

handle circuits of depth roughly log log N − log log n.

Now suppose that you have an algorithm Recrypt that takes a ciphertext E(a) with

noise N ′ < N and outputs a “fresh” ciphertext E(a) that also encrypts a, but which has

noise parameter smaller than
√

N . This Recrypt algorithm is enough to construct a fully

homomorphic scheme out of the somewhat homomorphic one! In particular, before we Add

or Mult E(a) and E(b), we can apply Recrypt to E(a) and E(b) to ensure that their noise

parameters are small enough so that the noise parameter of E(a ∗ b) is less than N , and so

on recursively.

In our construction, we give a somewhat homomorphic encryption scheme. We then

show how to modify it so that its decryption circuit has multiplicative depth at most

log log N − log log n − 1 – i.e., less depth than what the scheme can handle. It turns out

that a somewhat homomorphic encryption scheme that has this self-referential property of

being able to handle circuits that are deeper than its own decryption circuit – in which case

we say the somewhat homomorphic encryption scheme is “bootstrappable” – is enough to

obtain the Recrypt algorithm, and thereby fully homomorphic encryption! In Chapter 1.3

and Chapter 4, we give more details on why bootstrappability is enough.

Our somewhat homomorphic encryption scheme, described in Chapters 5 and 7, uses

“ideal lattices”. In our exposition, we try to defer the need for technical details about

lattices for as long as possible. For now, we mention that we looked to ideal lattices as

CHAPTER 1. INTRODUCTION 3

a way to construct a bootstrappable encryption scheme for two reasons. First, the circuit

complexity of the decryption algorithms in typical lattice based encryption schemes is very

low, especially compared to schemes like RSA or ElGamal, which rely on exponentiation,

an operation that we do not know how to parallelize well. Second, since ideal lattices

correspond to ideals in polynomial rings, they inherit natural Add and Mult operations

from the ring. (Additionally, ideal lattices are also appealing since we can base security on

standard “hard” problems over ideal lattices, which, as far as we know, are typically just

as hard as problems over general lattices.)

However, it takes some work to make our somewhat homomorphic scheme bootstrap-

pable – i.e., to make the depth of decryption circuit shallower than what the scheme can

handle. In Chapters 8 and 10, we describe how to modify the scheme to make the decryption

circuit sufficiently shallow. Conceptually, our techniques here are similar to those used in

server-aided cryptography, where (for example) a user with a slow device wants to delegate

most of the decryption work to a server without allowing the server to completely decrypt

on its own. In our modification, we place a “hint” about the secret key inside the public

key. This hint is not enough to decrypt a ciphertext output by the original scheme, but it

can be used to “process” the ciphertext – i.e., construct a new ciphertext (that encrypts

the same thing) that can be decrypted by a very shallow circuit. To prove that this hint is

not too revealing, we require a second computational hardness assumption, similar to ones

that have been studied in the context of server-aided cryptography.

Just to leave you with a flavor of what our somewhat homomorphic encryption scheme

looks like, consider the following secret key encryption scheme which merely uses integers.

The key is an odd integer p > 2N . An encryption of a bit b is simply a random multiple

of p, plus a random integer B with the same parity as b – i.e., B is even if b = 0 and is

odd if b = 1. A bit more concretely, the ciphertext is c = b + 2x + kp, where x is a random

integer in (−n/2, n/2), and k is an integer chosen from some range. You decrypt by setting

b ← (c mod p) mod 2, where (c mod p) is the number in (−p/2, p/2) that equals c modulo

p. Actually, (c mod p), which is the “noise parameter” in this scheme, will be in [−n, n],

since b + 2x is in that range. However, decryption would have worked correctly as long as

b + 2x ∈ [−N, N] ⊂ (−p/2, p/2). (As an aside relevant to bootstrapping, we mention that

computing c mod p can be done by a very shallow circuit, with depth logarithmic in the

bit-lengths of c and p.)

Now consider what happens when you add two ciphertexts. You get a ciphertext that

CHAPTER 1. INTRODUCTION 4

has a similar format to the original ones. Specifically,

c ← c1 + c2 = b1 + b2 + 2(x1 + x2) + (k1 + k2)p = b1 ⊕ b2 + 2x + kp

for some integers x and k. Decryption recovers b1 ⊕ b2 as long as (b1 + 2x1) + (b2 + 2x2) ∈
[−N,N]. Multiplication also gives ciphertexts with a similar format.

c ← c1 ∗ c2 = b1 ∗ b2 + 2(b1x2 + b2x1 + 2x1x2) + kp = b1 ∗ b2 + 2x + kp

for some integers x and k. Decryption works whenever (b1 + 2x1) ∗ (b2 + 2x2) ∈ [−N, N].

A crucial advantage of replacing integers in the scheme above with ideal lattices is that

an ideal lattice has many representations or “bases”. Some bases are “good” and can be

used as the secret key, while some are “bad” and can be used as the public key – i.e., they

are good enough to be used for encryption, but not decryption. So, ideal lattices give us a

public key scheme. On the other hand, it is unclear whether the integer p in the toy scheme

above can be represented in a way that is useful for encryption but not decryption (nor is

security clear even for the secret key version of the scheme).

But, for a moment, imagine that there are good and bad representations of p, such the

bad representation can be used in encryption but cannot be used to distinguish whether an

integer is close to a multiple of p or is uniform modulo p. How would we prove security?

If there is an adversary A that can break semantic security, B uses A to decide which

distribution an integer m comes from as follows: give A the challenge ciphertext c =

b + 2m + kp for random k. If m is close to a multiple of p, then so is 2m, and the

closest p-multiple is an even distance away; in particular, b + 2m ∈ [−N, N] mod p and

b + 2m mod p = b, the challenge ciphertext decrypts correctly to b, and A should guess b

with non-negligible advantage. But if m is uniform modulo p, then so is 2m (since p is odd),

c is independent of b, and A has no advantage. Basically, B can distinguish the distribution

that m came from by observing whether A guesses correctly with non-negligible advantage.

In Chapter 5, we provide a conceptually similar proof of our ideal lattice scheme based on

the ideal coset problem (ICP).

Over the next few Sections, we provide more details about our construction, its security

and applications, but still somewhat informally.

CHAPTER 1. INTRODUCTION 5

1.2 What is Fully Homomorphic Encryption?

Our ultimate goal is to construct a fully homomorphic encryption scheme E . First, let us

discuss what it means to be fully homomorphic.

At a high-level, the essence of fully homomorphic encryption is simple: given ciphertexts

that encrypt π1, . . . , πt, fully homomorphic encryption should allow anyone (not just the

key-holder) to output a ciphertext that encrypts f(π1, . . . , πt) for any desired function f ,

as long as that function can be efficiently computed. No information about π1, . . . , πt or

f(π1, . . . , πt), or any intermediate plaintext values, should leak; the inputs, output and

intermediate values are always encrypted.

Formally, there are different ways of defining what it means for the final ciphertext to

“encrypt” f(π1, . . . , πt). The minimal requirement is correctness. A fully homomorphic

encryption scheme E should have an efficient algorithm EvaluateE that, for any valid E key

pair (sk, pk), any circuit C, and any ciphertexts ψi ← EncryptE(pk, πi), outputs

ψ ← EvaluateE(pk, C, ψ1, . . . , ψt) such that DecryptE(sk, ψ) = C(π1, . . . , πt)

This minimal requirement does not seem to be sufficient, however, since it permits the trivial

solution, where ψ simply consists of (C, ψ1, . . . , ψt) – i.e., where the EvaluateE algorithm

does not “process” the input ciphertexts at all.

There are a couple of different ways of excluding the trivial solution. One way is to

require circuit privacy – i.e., (roughly) that the output of EvaluateE reveals nothing (at

least computationally) about the circuit C that it took as input. If circuit privacy is the

only additional requirement, then fully homomorphic encryption (under this definition) can

easily be achieved by using a two-flow oblivious transfer (OT) protocol in combination

with Yao’s garbled circuit [129, 130]. Typically two-flow OT protocols use an additively

homomorphic encryption scheme, and the OT query consists of a ciphertext ψ in this

encryption scheme. In the fully homomorphic scheme, Evaluate(pk, C, ψ1, . . . , ψt) constructs

a Yao garbling C† of C, uses the OT queries ψ1, . . . , ψt to construct OT responses ψ∗1, . . . , ψ
∗
t

designed to obliviously transfer Yao keys associated to the t input wires in C†, and outputs

(C†, ψ∗1, . . . , ψ
∗
t). To decrypt this ciphertext, the key holder “decrypts” the OT responses

ψ∗1, . . . , ψ
∗
t to recover Yao keys for the input wires, and then evaluates the garbled circuit.

Sanders, Young and Yung [122] and Beaver [14] show how to achieve statistical circuit

privacy, but only for limited classes of circuits – namely, NC1 and NLOGSPACE.

CHAPTER 1. INTRODUCTION 6

The more interesting way of excluding the trivial solution is to require (roughly) that the

ciphertext encrypting C(π1, . . . , πt) should “look like” an “ordinary” ciphertext, as long as

C(π1, . . . , πt) is a single bit (or element of the same plaintext space that contains {πi}). For

example, the size of the ciphertext output by Evaluate(pk, C, ψ1, . . . , ψt) should not depend

on C. We focus on this definition. Actually, we use a stronger requirement: that DecryptE be

expressible by a circuit DE , which takes a (formatted) secret key and (formatted) ciphertext

as input, and whose size is (a fixed) polynomial in the security parameter. Of course, this

implies that there is an upper bound on the ciphertext size that depends only on the security

parameter, and is independent of C. After describing a scheme that meets this definition,

we will also describe how to achieve (statistical) circuit privacy (Chapter 20).

To some, it is surprising that such a thing as fully homomorphic encryption is possible

even in principle. To see that it is possible, it may be helpful to understand fully homomor-

phic encryption in terms of a physical analogy – e.g., a photograph developer’s darkroom.

The developer applies a particular function f to Alice’s film when he develops it – i.e., the

sequence of steps to develop the film. In principle, he does not need to see anything to

apply this procedure, though in practice darkrooms are typically not completely dark. Of

course, this analogy is inadequate in that one may ask: why can’t the developer walk out of

the darkroom and look at the finished product? Imagine that the developer is blind. Then,

one may ask: why can’t someone else look at the finished product? Imagine that everyone

in the world besides Alice is blind. “Sight” is Alice’s secret key, and (in this world) it is

impossible for anyone else to simulate vision. Although imagining physical analogies should

convince you that the notion of fully homomorphic encryption is not a logical fallacy, it

seems difficult to construct a perfect physical analogue of fully homomorphic encryption

that is not rather far-fetched.

To try another physical analogy, suppose that the owner of a jewelry store (Alice)

wants her employees to assemble raw precious materials (diamonds, gold, etc.) into finished

products, but she is worried about theft. She addresses the problem by constructing glove

boxes for which only she has the key, and she puts the raw materials inside. Using the

gloves, an employee can manipulate the items inside the box. Moreover, an employee can

put things inside the box – e.g., a soldering iron to use on the raw materials – even though

he cannot take anything out. Also, the box is transparent, so that an employee can see

what he is doing. (In this analogy, encryption means that the employee is unable to take

something out of the box, not that he is unable to see it.) After the employee is done,

CHAPTER 1. INTRODUCTION 7

Alice can recover the finished product at her leisure by using her key. This analogy is

inadequate in the sense that the glove box might become quite cluttered, whereas in the

fully homomorphic encryption scheme only the final product need remain. In other words,

to improve the analogy, imagine that the employee has some way to make any item in the

glove box (of his choosing) disappear (even though he still cannot extract the item).

1.3 Bootstrapping a Scheme that Can Evaluate its Own De-

cryption Circuit

Now that we have clarified our goal (fully homomorphic encryption), let us try to find a

steppingstone. Suppose that, a priori, we have a scheme E that is only guaranteed to be

correct for some subset CE of circuits – i.e.,

DecryptE(sk, EvaluateE(pk, C, ψ1, . . . , ψt)) = C(π1, . . . , πt)

is guaranteed to hold only if C ∈ CE (and, as before, ψi ← EncryptE(pk, πi)). Can we use E
to construct a scheme E∗ that is fully homomorphic?

In Chapter 4, we show that the answer is yes. Suppose that CE contains just two circuits:

DE and the augmentation of DE by NAND (i.e., a NAND gate connecting two copies of DE),

where DE is the circuit associated to the decryption algorithm.1 If E has this self-referential

property of being able to evaluate its own (augmented) decryption circuit, we say that E
bootstrappable. We show that bootstrappable encryption implies leveled fully homomorphic

encryption – i.e., that DE plus the NAND-augmentation of DE constitute a “complete” set

of circuits:

Theorem 1.3.1 (Informal). If E is bootstrappable, then, for any integer d, one can construct

a scheme E(d) that can evaluate any circuit (consisting of NAND gates) of depth d. The

decryption circuit for E(d) is the same as for E, and the complexity of encryption is also

the same. E(d)’s public key size is O(d) times that of E’s. The complexity of EvaluateE(d)

is polynomial in the security parameter and linear in the circuit size. If E is semantically

secure against chosen plaintext attacks, then so is EvaluateE(d).

One drawback of E(d) is that its public key is O(d) times that of E ’s public key. Since
1We use NAND because any circuit can be expressed in terms of NAND gates. We could instead augment

the decryption circuit by a different set of universal gates.

CHAPTER 1. INTRODUCTION 8

E(d) has this unwanted dependence on d, we say that it is merely leveled fully homomorphic.

Under certain assumptions, we can make the E(d) public key size be independent of d, in

which case we say the derived scheme is fully homomorphic.

Why should the fact that E can evaluate (augmentations of) DE be so powerful? Suppose

that the distributions of EvaluateE(pk, C, ψ1, . . . , ψt) and EncryptE(pk, C(π1, . . . , πt)) are

different. In particular, suppose that there is an “error” associated with each ciphertext,

that ciphertexts output by EncryptE have small error, that ciphertexts output by EvaluateE
have larger error that increases with the depth of the circuit being evaluated, and that

eventually (as the depth of the circuit being evaluated increases) the “error” becomes so

large that applying DecryptE to the ciphertext results in a decryption error. (In fact, this is

the case in our initial ideal lattice construction.) Intuitively, as we are evaluating a circuit

and the implicit “error” becomes large, we would like to “refresh” the ciphertext so that the

error becomes small again. Obviously, we could refresh a ciphertext if we could completely

decrypt it, simply by generating an entirely new and fresh ciphertext that encrypts the

same thing, but we want a way to refresh that does not require the secret key. This is the

idea behind bootstrapping: we do decrypt the ciphertext, but homomorphically!

Specifically, suppose E is bootstrappable, with plaintext space P = {0, 1}, and that

circuits are boolean. Suppose we have a ciphertext ψ1 that encrypts π under pk1, which we

want to refresh. So that we can decrypt it homomorphically, suppose we also have sk1, the

secret key for pk1, encrypted under a second public key pk2: let sk1j be the encryption of

the jth bit of sk1. Consider the following algorithm.

RecryptE(pk2, DE , 〈sk1j〉, ψ1).

Set ψ1j
R← EncryptE(pk2, ψ1j)

Output ψ2 ← EvaluateE(pk2, DE , 〈〈sk1j〉, 〈ψ1j〉〉)

Above, Evaluate takes in the bits of sk1 and ψ1, each encrypted under pk2. Then, E is used

to evaluate the decryption circuit homomorphically. The output ψ2 is thus an encryption

under pk2 of DecryptE(sk1, ψ1) = π.2 In other words, Recrypt decrypts homomorphically

using the encrypted secret key, thus obtaining a new ciphertext that encrypts the same

thing as the original one.
2Recrypt implies a one-way multi-use proxy re-encryption scheme [19]. We discuss this in more detail in

Section 1.8.

CHAPTER 1. INTRODUCTION 9

Notice how π is doubly encrypted at one point, and we use EvaluateE to remove the

inner encryption. Applying the decryption circuit DE removes the “error” associated to

the first ciphertext under pk1, but EvaluateE simultaneously introduces a new “error” while

evaluating the ciphertexts under pk2. Intuitively, we have made progress as long as the

second error is shorter. Note that revealing the encrypted secret key bits 〈sk1j〉 does not

compromise semantic security; these encrypted secret key bits are indistinguishable from

encryptions of 0 as long as E is semantically secure by a standard hybrid argument. This

hybrid argument breaks down if pk1 = pk2. However, if E securely encrypts key-dependent

messages (is KDM-secure) [18, 68, 22] – i.e., roughly, if providing a ciphertext that encrypts

a function of the secret key does not hurt security – then Recrypt can have a “self-loop” of

encrypted secret keys.

Of course, our goal is to perform nontrivial homomorphic operations on underlying

plaintexts, not merely to obtain refreshed encryptions of the same plaintext. If we can also

evaluate a NAND augmentation of the decryption circuit, then we can generate an encryp-

tion of (π1 NAND π2) under pk2 using the encrypted secret key (sk1 under pk2) together

with the two ciphertexts encrypting π1 and π2, respectively, under pk1. By recursively

performing this type of operation on all ciphertexts at a given level in the circuit, we can

evaluate a d-depth circuit of NANDs. If E is KDM-secure, the derived scheme is fully ho-

momorphic (rather than leveled fully homomorphic). In the random oracle model, we show

that a bootstrappable encryption scheme implies a scheme that is both bootstrappable and

KDM-secure, and thus implies a fully homomorphic encryption scheme.

Constructing an efficient (leveled) fully homomorphic encryption scheme without using

bootstrapping, or using some relaxation of it, remains an interesting open problem.

Again, it may be helpful to view bootstrapping in terms of a physical analogy, although

it will, of course, be even more far-fetched. Recall Alice, our jewelry store owner. Imagine

that Alice’s glove boxes are defective; after an employee uses the gloves for 1 minute, the

gloves stiffen and become unusable. Unfortunately for Alice, even her fastest employee

cannot assemble some of the more intricate designs in under a minute. But Alice is not

only paranoid, but also smart. To an employee that is assembling an intricate design, she

gives him (like before) a glove box containing the raw materials, but also several additional

glove boxes. Each of these additional glove boxes holds a copy of her master key. To

assemble the intricate design, the employee manipulates the materials in box #1 until the

gloves stiffen. Then, he places box #1 inside box #2, where the latter box already contains

CHAPTER 1. INTRODUCTION 10

a master key. Using the gloves for box #2, he opens box #1 with the master key, extracts

the partially assembled trinket, and continues the assembly within box #2 until its gloves

stiffen. He then places box #2 inside box #3, and so on. When the employee finally finishes

his assembly inside box #n, he hands the box to Alice. Of course, this trick will not work

unless the employee can open box #i within box #(i+1), and have time to make a little bit

of progress on the assembly, all before the gloves of box #(i + 1) stiffen. This is analogous

to the requirement for a bootstrappable encryption scheme E – that the complexity of E ’s

(augmented) decryption circuit is less than what E can homomorphically evaluate.

We assumed that it was safe to use a single master key that opens all boxes. But maybe

it is not safe; maybe an employee could use the gloves for box #2, together with master

key inside that box, to open the box from the inside, extract the key, and use it to open

box #1 and steal the jewels. However, Alice can avoid this circumstance by using distinct

keys for the boxes, and placing the key for box #1 inside box #2, the key for box #2 inside

box #3, and so on. This is analogous to the question of whether the encryption scheme is

KDM-secure.

As before, the physical analogy only goes so far. In the physical case, box #i would grow

as i increases, and consequently the extraction time would also grow, but our encryption

scheme does not have analogous deficiencies. And, again, in our physical analogy, encryption

corresponds to being unable to physically access the contents of the box. So, it is not a

valid attack for the employee to copy the master key based on what he can see through the

transparent box. Accordingly, it might be helpful to think of each key as having a certain

secret chemical composition which cannot be readily ascertained while the key is inside the

box, and that a key opens its associated box through a chemical reaction.

1.4 Ideal Lattices: Ideally Suited to Construct Bootstrap-

pable Encryption

The notion of bootstrappability gives us a new angle on constructing fully homomorphic

encryption: it suggests we should look at encryption schemes whose decryption algorithms

have low circuit complexity. Within the bootstrappability framework, it does not make

much sense to look at exponentiation-based schemes, since exponentiation (as used in RSA,

for example) is not even known to be in NC. On the other hand, encryption schemes using

lattices or linear codes have very simple decryption algorithms typically dominated by a

CHAPTER 1. INTRODUCTION 11

matrix-vector multiplication, an operation in NC1. In this paper, we focus on constructing

a lattice-based scheme (though we view, say, a code-based construction as an interesting

possibility).

Of course, it is not enough to minimize the circuit complexity of decryption; we also must

maximize the evaluative capacity of the scheme, so that the scheme can evaluate its own

(augmented) decryption circuit. While one can easily construct an additively homomorphic

scheme from ordinary lattices, we need a scheme with both additive and multiplicative

homomorphisms to evaluate general circuits. This consideration leads us to focus on ideal

lattices.

In Chapter 7, we describe our initial homomorphic encryption scheme based on ideal

lattices. However, one can understand the scheme reasonably well just in terms of rings

and ideals (no lattices). Rings and ideals are simple algebraic objects. Examples of rings

are Z (the integers) and the polynomial ring Z[x]/(f(x)), consisting of the residues of

integer polynomials modulo a monic polynomial f(x). Rings are closed under addition ‘+’,

multiplication ‘×,’ and additive inverse, and have an additive identity ‘0’ and multiplicative

identity ‘1.’ An ideal I of a ring R is a subset I ⊆ R such that
∑t

j=1 ij × rj ∈ I for any

i1, . . . , it ∈ I and r1, . . . , rt ∈ R. For example, (2) is an ideal of Z consisting of the set

of even numbers. An example ideal in Z[x]/(f(x)) is (a(x)), the set of multiples of a(x)

(reduced modulo f(x)). However, by these examples, we do not mean to imply that ideals

are necessarily principal; they may not be generated by a single element. If I is a proper

subset of R, we can talk about a coset of I within R; e.g., 1 + (2) is a coset consisting of

the odd numbers. The element x ∈ R is in the coset y + I if x − y ∈ I. Many of the

previous constructions of (partially) homomorphic encryption use rings and ideals, at least

implicitly; see Chapter 3.

As a first approximation, here is how a fully homomorphic encryption scheme based on

rings and ideals might work. The public key pk contains an ideal I and a plaintext space P,

where the latter basically consists of a set of “distinguished representatives” of the cosets

of I; the secret key sk consists of some “secret knowledge” concerning I. To encrypt π ∈ P,

the encrypter sends ψ
R← π + I, a “random” member of the coset π + I. The decrypter

uses its secret knowledge to recover the “distinguished representative” π (distinguished with

respect to P) of the coset π + I. To add and multiply ciphertexts, we simply use the ring

CHAPTER 1. INTRODUCTION 12

operations ‘+’ and ‘×’:

Add(pk, ψ1, ψ2) = ψ1 + ψ2 ∈ (π1 + π2) + I

Mult(pk, ψ1, ψ2) = ψ1 × ψ2 ∈ (π1 × π2) + I

Ring operations on ciphertexts induce mod-I operations on the underlying plaintexts. In

general, for an arithmetized mod-I circuit C, we would have

EvaluateE(pk, C, ψ1, . . . , ψt) ∈ C(π1, . . . , π1) + I

The semantic security of this scheme relies on the hardness of an ideal membership problem

– i.e., given π′ and ψ, is ψ − π′ ∈ I? This is the approach of the Polly Cracker scheme by

Fellows and Koblitz, described in Chapter 3.

The first approximation above does not work for ideal lattices, unfortunately, since the

ideal membership problem is not hard. An ideal lattice, as used in this paper, is simply

an ideal in Z[x]/(f(x)), f(x) of degree n; each such ideal I can be represented by a lattice

generated by the columns of a lattice basis BI , an n × n matrix. It so happens that, for

any basis BI of any lattice (not just an ideal lattice) I and any v ∈ Zn, there is a unique,

efficiently-computable distinguished representative v mod BI . In particular, it holds that

v mod BI = v−BI · bB−1
I ·ve, where B−1

I is the matrix inverse of BI and b·e rounds to the

nearest integer vector. To find the distinguished representative for r ∈ R modulo BI , one

computes r mod BI where r is the coefficient vector of r. To test whether r is a member of

I, one simply tests whether r mod BI = 0 mod BI . Thus, the ideal membership problem

is easy.

So, we use a different approach that involves two ideals. Everybody can use a common

ideal I, represented by basis BI . Then, each user generates their own ideal J , with secret

and public bases Bsk
J and Bpk

J , that is relatively prime to I (i.e., I +J = R). As before, the

plaintext space P consists of distinguished representatives of the cosets of I. The public

key pk also includes the description of a distribution D. To encrypt π ∈ P, the encrypter

sets π∗ D← π + I, and sends ψ ← π∗ mod Bpk
J . In other words, the ciphertext has the form

ψ = π + i+ j for i ∈ I and j ∈ J , where π + i comes from the specified distribution D. The

decrypter sets

π ← (ψ mod Bsk
J) mod BI

CHAPTER 1. INTRODUCTION 13

For decryption to work, the secret key Bsk
J should be chosen so as to be compatible with

the distribution D, so that π + i is always the distinguished representative of π + i + J

with respect to Bsk
J . In this case, the mod-Bsk

J operation returns π + i, after which π

is recovered easily. This decryption criterion becomes more complicated as we add and

multiply ciphertexts using the basic ring operations. For arithmetized circuit C that uses

addition and multiplication modulo I (w.r.t. basis BI), we have:

EvaluateE(pk, C, ψ1, . . . , ψt) = C(ψ1, . . . , ψt) ∈ C(π1 + i1, . . . , πt + it) + J

where i1, . . . , it ∈ I. (The above is an abuse of notation, since on the left C consists of gates

that add and multiply the underlying plaintexts modulo I, while in the middle and on the

right C uses the ring operations ‘+’ and ‘×’, but we will use this for now.) In this case, for

decryption to work, we need C(π1 + i1, . . . , πt + it) to be the distinguished representative

of C(π1 + i1, . . . , πt + it) + J w.r.t. Bsk
J . We can reverse this statement, and say that the

set CE of circuits that the scheme E evaluates correctly consists of those circuits for which

C(π1 + i1, . . . , πt + it) is always the distinguished representative of C(π1 + i1, . . . , πt + it)+J

w.r.t. Bsk
J when Bsk

J is generated according to KeyGenE and πk and ik are chosen according

to EncryptE . In this case, the mod-Bsk
J operation recovers C(π1 + i1, . . . , πt + it), after which

the decrypter easily recovers C(π1, . . . , πt) by reducing modulo BI .

This characterization of CE becomes less nebulous when, in the context of lattices, we

give a geometric interpretation to C(π1+i1, . . . , πt+it) as a vector indicating the ciphertext

vector’s “error” or “offset” from the lattice J . In this setting, the distinguished representa-

tives of the cosets of J w.r.t. the basis Bsk
J are precisely the points in Zn that are contained

inside the parallelepiped P(Bsk
J) = {x ∈ Rn : x =

∑
xi · bi, xi ∈ [−1/2, 1/2)} associ-

ated to the basis Bsk
J = {bi}. Decryption works as long as the “error vector” is never

so long that it falls outside of P(Bsk
J).3 Once we specify some radius rDec such that the

parallelepiped P(Bsk
J) always contains a ball of radius rDec inside it (for any J generated

according to KeyGen), and also specify a radius rEnc such that (in EncryptE) the vector

π∗ D← π + I always falls within a ball of radius rEnc, the bootstrappability question be-

comes: is C(x1, . . . ,xt) ∈ B(rDec) whenever xi ∈ B(rEnc) for all i and C is an (augmented)

3If the error vector does fall outside P(Bsk
J), the mod-Bsk

J operation in decryption returns C(π1 +
i1, . . . , πt + it) + j for some nonzero j ∈ J , and the subsequent reduction modulo I is unlikely to re-
turn C(π1, . . . , πt), since J is relatively prime to I. Interestingly, NTRU [69] uses relatively prime ideals in
a similar way.

CHAPTER 1. INTRODUCTION 14

decryption circuit?

We can upper-bound the length of C(x1, . . . ,xt) for arithmetic circuit C recursively

by upper-bounding the “expansion” caused by additions and multiplications. Roughly

speaking, we can say that Add operations do not increase the length of the error vector

much: if ψ1 ∈ x1 + J and ψ2 ∈ x2 + J , then Add(pk, ψ1, ψ2) ∈ (x1 + x2) + J , where

‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖ by the triangle inequality. Mult operations are more expensive;

we can show that, for any polynomial ring R, there is a parameter γMult(R) such that

‖x1 × x2‖ ≤ γMult(R) · ‖x1‖ · ‖x2‖; γMult(R) may be, e.g., polynomial in n. (For the Mult

operation, vector xi is interpreted as the polynomial in R whose coefficient vector is xi.)

Essentially, constant-fan-in Mult gates cause at least as much expansion as polynomial-fan-

in Add gates. In the worst case, Mult gates cause the length of the error vector essentially to

square with each additional level of the circuit, limiting the circuit depth that the scheme

can evaluate to (roughly) log log rDec.

Theorem 1.4.1 (Informal). Suppose X ⊆ B(rX) and Y ⊇ B(rY), rX ≥ 1. Then,

C(x1, . . . ,xt) ∈ Y for all x1, . . . ,xt ∈ X and all arithmetic (over R) circuits with mul-

tiplicative fan-in of 2, additive fan-in of up to γMult(R), and depth up to

log log rY − log log(γMult(R) · rX)

I.e., E correctly evaluates all such circuits of depth up to log log rDec−log log(γMult(R)·rEnc).

So, can we express the (augmented) decryption circuit with depth at most (roughly)

log log rDec? Unfortunately, the answer appears to be ‘no,’ though it is a close call. Specif-

ically, the dominant computation in decryption is b(Bsk
J)−1 · ψe, which occurs within the

computation of ψ mod Bsk
J . Roughly speaking, to ensure that the rounding is correct, one

must use a sufficient number of bits of precision. Then, the high precision of each number-

number multiplication that occurs within the matrix-vector multiplication forces us to use

a high-depth circuit. Specifically, two k-bit numbers can be multiplied together using a

O(log k)-depth circuit (with constant fan-in). The precision we seem to need is roughly

log det(J) > n · log rDec bits, and therefore we need about a O(log n + log log rDec)-depth

circuit.

Unfortunately, for this initial scheme, it seems that no matter how the parameters

are set, the decryption circuit is always slightly too complex for the scheme to evaluate.4

4However, we do not prove this. It remains possible that the decryption circuit of this initial scheme can

CHAPTER 1. INTRODUCTION 15

This problem is difficult to fix post hoc, in part due to the self-referential nature of the

bootstrapability property: intuitively, if one expands the set of circuits that E can “handle”

in an effort to include DE , one seemingly must increase the complexity of DecryptE to

accommodate, thereby making the circuit DE more complex, possibly such that DE always

elusively falls outside of the expanded set. To obtain a bootstrappable encryption scheme,

it seems necessary to change the decryption algorithm fundamentally.

1.5 Squashing the Decryption Circuit: The Encrypter Starts

Decryption!

To reduce the decryption complexity without affecting the “evaluative capacity” of the

scheme at all, our approach, given in Chapter 10, is to enable the encrypter to start de-

cryption, thereby easing the burden on the decrypter. Interestingly, the setting is similar

to server-aided cryptography, where a user offloads some portion of a computationally in-

tensive cryptographic task, such as decryption, onto an untrusted server; in our case, the

encrypter itself plays the server’s role.

Abstractly, if E∗ is our original homomorphic encryption scheme, with public and secret

keys (pk∗, sk∗), the modified scheme E uses an algorithm that we call SplitKey to generate

a “hint” τ about sk∗, which it puts in the E public key. Also, E uses a new algorithm

ExpandCT. The encrypter uses this algorithm, in combination with the hint τ , to transform a

preliminary ciphertext ψ∗ output by E∗ into an “expanded ciphertext” that can be decrypted

by a shallower circuit. Here is the abstract transformation in detail; since it is abstract, it

is obviously not explained at this point why the expanded ciphertext is easier to decrypt.

KeyGenE(λ). Runs (pk∗, sk∗) R← KeyGenE∗(λ) and (sk, τ) R← SplitKeyE(sk
∗, pk∗). The secret

key is sk. The public key pk is (pk∗, τ).

EncryptE(pk, π). Runs ψ∗ ← EncryptE∗(pk∗, π). It then sets ψ to include ψ∗ and the output

of ExpandCTE(pk, ψ∗). (ExpandCTE makes heavy use of τ .)

DecryptE(sk, ψ). Uses sk and expanded ciphertext to decrypt more efficiently. DecryptE(sk, ψ)

should work whenever DecryptE∗(sk
∗, ψ∗) works.

AddE(pk, ψ1, ψ2). Extracts (ψ∗1, ψ
∗
2) from (ψ1, ψ2), computes ψ∗ ← AddE∗(pk∗, ψ∗1, ψ

∗
2), and

sets ψ to include ψ∗ and the output of ExpandCTE(pk, ψ∗). MultE(pk, ψ1, ψ2) is analogous.

be expressed in a way that makes the scheme bootstrappable.

CHAPTER 1. INTRODUCTION 16

We (half facetiously) say that the “encrypter starts decryption” because it uses the secret-

key-related value τ to expand the ciphertext in a way that helps reduce the decrypter’s

circuit complexity. The introduction of τ into the public key provides a “hint” about the

secret key sk of the original scheme E∗. However, it is easy to see that E is semantically

secure as long as E∗ is, as long as the following SplitKey distinguishing problem is hard:

given (pk∗, sk∗, τ), distinguish whether τ was generated as the output of SplitKeyE(sk
∗, pk∗)

(as it should be), or as the output of SplitKeyE(⊥, pk∗), where ⊥ is some distinguished

symbol that is independent of sk∗. In the latter case, τ gives no additional information

about sk∗ that could weaken security.

Theorem 1.5.1 (Informal). If there is an algorithm A that breaks the squashed scheme

with non-negligible probability, then there is either an algorithm B1 that breaks the original

scheme or an algorithm B2 that solves the SplitKey distinguishing problem with non-negligible

advantage.

Concretely, we actually apply a couple of technical “tweaks” to our original ideal-lattice-

based construction before we apply the above transformation. In one tweak, we show how

to simplify the decryption equation in the original scheme from (ψ∗ mod Bsk
J) mod BI =

(ψ∗−Bsk
J ·b(Bsk

J)−1·ψ∗e) mod BI to (ψ∗−bvsk
J ×ψ∗e) mod BI where ‘×’ is ring multiplication

and vsk
J ∈ Qn. The new secret key vsk

J is slightly weaker than the original one, which forces

us to reduce rDec by a polynomial factor (which is insignificant if rDec is super-polynomial

anyway, as it is required to be to obtain our fully homomorphic scheme). Other than that,

the modification has no effect on the correctness or security of the scheme. The purpose of

the tweak is merely to reduce the size of the tag τ introduced by the above transformation.

(We will discuss what τ is in concrete terms momentarily.) The second tweak is to limit the

set of “permitted circuits” to those for which the length of the “error” vector never exceeds

rDec/2, rather than rDec. The purpose of this tweak is to ensure that the coefficients of

the vector vsk
J × ψ∗ are bounded away from half-integers when ψ∗ is a valid ciphertext. In

particular, all of the coefficients will be within 1/4 of an integer; this allows us to simplify

the decryption circuit while still ensuring that the rounding operation bvsk
J ×ψ∗e yields the

correct answer. Aside from very slightly reducing the evaluative capacity of the scheme,

this tweak also has no negative effect.

Now, in our concrete instantiation of SplitKeyE , τ is a random set S (with ω(n), but

poly(n), members) of vectors {ui} that has a sparse subset T (with ω(1), but o(n), members)

CHAPTER 1. INTRODUCTION 17

whose sum is vsk
J modulo I; the new secret key sk is the subset T , encoded as a 0/1-vector

in {0, 1}|S|. Distinguishing whether or not the vectors in S are completely uniform and

independent of sk∗ is a lattice-related problem, whose search version (actually finding the

subset) has been studied in the context of server-aided cryptography [91, 114, 106, 96, 105].

We discuss this problem a bit more in the next Section.

In the modified scheme, ExpandCTE outputs {ci ← ui × ψ∗ mod BI : ui ∈ S}. To

oversimplify, DecryptE sums up the values ci that correspond to elements of T , thereby

obtaining vsk
J ×ψ∗ mod BI , and then rounds to the nearest integer vector. This summation

can be performed in depth (roughly) log |T |, regardless of what n is. By choosing |T |
small enough, smaller than the depth of the circuits that the scheme can evaluate (which

is unaffected by this transformation), the scheme becomes bootstrappable.

The previous paragraph oversimplifies some details. First, the summation of the |T |
vectors and the rounding are performed together; the fact that the ultimate result is

rounded and taken modulo I allows us to maintain fewer bits of precision in the inter-

mediate computations. The fact that we are promised that the final result is close to an

integer vector (due to one of our tweaks), ensures that the rounded result is correct de-

spite the limited precision. Also, we actually still add |S| vectors together, but with the

promise that only |T | of them are nonzero. (We have this promise because, after when

we multiply in the secret key sk ∈ {0, 1}|S|, which has Hamming weight |T |, it zeroizes

all but |T | of the ciphertext components). Why can we add |T | vectors in only (roughly)

log |T | depth, regardless of the size of |S|, when we have the promise that only |T | of

the |S| vectors are nonzero (and the other promises, like the fact that we only need the

result rounded, and then modulo I)? Essentially, the reason is that summing |S| num-

bers basically reduces (in terms of circuit depth) to computing the Hamming weight of

a vector in x ∈ {0, 1}|S| and expressing the final result in binary – i.e., in {0, 1}s+1 for

s = blog |S|c. The binary expression of the Hamming weight of x turns out to be sim-

ply (e2s(x1, . . . , x|S|) mod 2, e2s−1(x1, . . . , x|S|) mod 2, . . . , e20(x1, . . . , x|S|) mod 2), where ei

is the ith elementary symmetric polynomial. If the Hamming weight is guaranteed to be

at most |T |, we need not bother computing the polynomials of degree higher than 2blog |T |c,

and consequently need less depth.

Theorem 1.5.2 (Informal). The decryption circuit of E with the tweaks followed by the

above transformation can be expressed as a circuit of depth c · (log |T |)1+o(1) for some con-

stant c. The scheme becomes bootstrappable when this value is less than log log(rDec/2) −

CHAPTER 1. INTRODUCTION 18

log log(γMult(R) · rEnc).

For example, suppose rDec = 2nc′
for some c′ < 1 and γMult(R) · rEnc = poly(n). In this

case, the scheme becomes bootstrappable when |T | ≤ n(c′/c)−o(1).

Devising a physical analogy for our technique for squashing the decryption circuit is

rather difficult, but suppose that, in Alice’s jewelry store, a key opens a glove box through

a chemical reaction. To unlock a box, the employee uses the gloves to rub the key against the

inner box until the box dissolves. However, the reaction is too slow; the gloves stiffen before

the box dissolves. To address this situation, Alice gives the employee some accelerants,

a different one for each box, that the employee can apply to the outside of box #i right

before placing it inside box #(i+1). The accelerants speed up the chemical reaction between

the key and the box, so that the reaction finishes before the gloves stiffen. The chemical

composition of the accelerant provides some information about the chemical composition

of her key, but not enough information for an employee to construct a key on his own.

Notice that the employee should apply the accelerant to box #i while it is still outside of

box #(i + 1); to apply it while box #i is inside box #(i + 1) would pointlessly waste the

usability of the gloves for box #(i + 1).

1.6 Security

The semantic security of our scheme against chosen plaintext attacks relies on the hardness

of two problems; the first underlies the original somewhat homomorphic scheme (before

the squashing), and the second arises from the addition of the secret key “hint” τ to the

public key. CCA1 security for fully homomorphic encryption remains an open problem,

while CCA2 security is impossible due to the extreme malleability of ciphertexts.

We prove the security of our somewhat homomorphic construction in two ways. The

first way is provided for simplicity. Specifically, in Chapter 5 (and more concretely in

Chapter 7), we provide a succinct reduction to a fairly natural problem that may be viewed

as a decisional version of the closest vector problem (CVP) or bounded distance decoding

problem (BDDP). Roughly, the problem is as follows: given an ideal lattice J and a vector

t, decide whether (1) t is unusually close to the lattice or (2) t is in a uniformly random

coset of the lattice, given the promise that one of these is the case. The idea is that if t is

in the first category, the simulator can use t to construct a valid ciphertext vector (which

is also quite close to the lattice, but a little bit further away than t), but if t is in the

CHAPTER 1. INTRODUCTION 19

second category, the ciphertext will be completely independent of the challenge plaintext;

the latter case makes use of the fact that I and J are relatively prime.

This reduction, while simple, is not entirely satisfying. First, the problem is not worst-

case, but rather average-case: in particular, J is generated using an algorithm IdealGen that

is part of the scheme’s KeyGen algorithm. Second, it would be preferable to base security

on a search problem rather than a decision problem. Finally, although the problem seems

natural, it is not as well-established as other problems over lattices.

So, beginning in Chapter 14, we describe a slightly different version of the scheme, along

with a chain of security reductions that bases security on a search version of BDDP. Given

access to a factoring oracle, we also base security on the worst-case shortest independent

vector problem (SIVP) over ideal lattices. Since a factoring oracle can be instantiated

efficiently using quantum computation, this result says that if there is an efficient algorithm

that breaks the semantic security of scheme with non-negligible advantage, then there is an

efficient quantum algorithm that solves ideal-lattice SIVP.

Theorem 1.6.1 (Informal). If there is an algorithm that breaks the somewhat homomorphic

scheme with probability ε, then there is a classical algorithm that solves average-case BDDP

over ideal lattices for an approximation factor (rDec/rEnc) · poly(n, γMult(R), 1/ε), where

the average-case distribution is the same as the distribution of ideals output by KeyGenE .

There is also a quantum algorithm (or a classical algorithm that uses a factoring oracle)

that solves worst-case SIVP over ideal lattices for an approximation factor (rDec/rEnc) ·
poly(n, γMult(R), 1/ε). In both cases, the ring R over which ideals are defined remains fixed.

The introduction of τ into the public key induces a second problem that we must assume

is hard, an instance of the SplitKey distinguishing problem: roughly, given vsk
J , distinguish

whether S is entirely random, or has a sparse |T |-member subset of vectors that sums

to vsk
J . We will refer to this as a sparse vector subset sum problem (SVSSP). If |T | is

too small, there are obvious brute force attacks on the SVSSP, along with some more

sophisticated time-space tradeoffs [114, 128, 33], that take time essentially exponential in

|T |. Also, if |S| is so small that the subset sum solution is unique, then one can apply

lattice reduction attacks similar to those used against low-density knapsacks [106, 105].

However, if |T | = ω(1) and |S| is sufficiently large (but still polynomial in n), the brute

force attacks take super-polynomial time; also, the lattice reduction attacks break down,

since there will be an exponential number of subset sum solutions, and lattice reduction has

trouble extracting the sparse solution from the non-sparse ones.

CHAPTER 1. INTRODUCTION 20

Interestingly, our two assumptions counterbalance each other: basically, if one adjusts

the scheme’s parameters to make one problem harder, the other problem becomes easier.

Using a crude analysis, the breaking time for the second problem using known attacks is

roughly 2|T |. (Here we ignore constants and logarithmic factors in the exponent.) Also,

to enable the somewhat homomorphic ideal lattice scheme to evaluate circuits of depth

O(log |T |) as needed to permit bootstrappability, we need the approximation factor for

the first problem to be roughly 2|T |. Using the rule of thumb that a lattice problem for

approximation factor 2k takes time about 2n/k, the breaking time for the first problem is

roughly 2n/|T |. Setting |T | ← √
n ensures that it takes time at least 2

√
n to break either

problem using known attacks. To make this breaking time truly exponential in the security

parameter λ, we need the lattice dimension to be n ≈ λ2. Of course, this analysis does not

apply to the somewhat homomorphic scheme, which does not use bootstrapping and relies

only on the first assumption, and therefore can use lattices of smaller dimension.

Even this counterbalancing of our assumptions can be viewed through the prism of our

physical analogy (Alice’s jewelry store) if one squints sufficiently hard. One way that Alice’s

employees might try to extract a key from a box is simply by cutting through the gloves.

To prevent this attack, one would like the gloves to be stiffer. On the other hand, making

the gloves stiffer reduces their usability, and so we need a faster chemical reaction between

keys and boxes. This forces Alice to give her employees a better accelerant, which provides

more precise information about the chemical composition of her keys, and therefore makes it

easier for her employees to duplicate a key chemically. By making one attack more difficult,

she is forced to make the other easier.

1.7 Performance

When we run Evaluate(pk, C,Ψ) over a circuit C and ciphertexts Ψ, the computational

complexity of this algorithm is exactly the complexity of computing C non-homomorphically

times a factor that is polynomial in the security parameter λ. The degree of this polynomial

is rather high. If one wants 2λ security against known attacks on the two problems that

underlie the security of our scheme, the required computation per gate is quasi-linear in λ6.

While high, this does not seem entirely unreasonable when one considers that, to get 2λ

security against the number field sieve, one should use an RSA modulus whose bit-length

is quasi-linear in λ3, in which case a full exponentiation takes time quasi-linear in λ6, even

CHAPTER 1. INTRODUCTION 21

when one uses fast FFT multiplication. See Chapter 12 for more details.

The story is very different if we only require super-polynomial security: in this case, n

can be quasi-linear in the security parameter λ, |T | can be polylogarithmic in n, S quasi-

linear in n, and ciphertexts can be represented by a quasi-linear (in n) number of bits. In this

case, the complexity of Recrypt (and hence the computation per gate) can be quasi-linear

in λ3.

Also, for relatively shallow circuits, where bootstrapping (and hence homomorphically

evaluating the decryption circuit is unnecessary), the scheme is very practical: one ob-

tains exponential security and, there is a constant c such that one can evaluate circuits of

multiplicative depth c · log λ with computation per gate that is quasi-linear in λ1+c. The

computation is quasi-linear in λ for constant depth circuits.

1.8 Applications

The most natural applications of fully homomorphic encryption are in the two-party setting.

A simple example is making encrypted queries to search engines. To perform an encrypted

search, Alice generates a public key pk for the fully homomorphic encryption scheme, and

generates ciphertexts ψ1, . . . , ψt that encrypt her query π1, . . . , πt under pk. (For example,

each πi could be a bit of her query.) Now, let the circuit C express the server’s search

function. The server sets ψ∗i ← Evaluate(pk, Ci, ψ1, . . . , ψt), where Ci is the sub-circuit of

C that computes the ith bit of the output. (We note that, in practice, the evaluation of C∗
i

and C∗
j may share intermediate results, in which case it would be needlessly inefficient to

run independent instances of the Evaluate algorithm.) The server sends these ciphertexts

to Alice. We know, by the correctness requirement, that Decrypt(sk, ψ∗i) = Ci(π1, . . . , πt).

These latter values constitute precisely the answer to Alice’s query, which she recovers

through decryption.

Another natural application is searching over encrypted data. In this scenario, Alice

stores her files on a server (e.g., on the Internet), so that she can conveniently access her

files without needing her own computer. However, she encrypts her files, because otherwise

the server could read or leak her private data. Let bits π1, . . . , πt represent the files, which

are encrypted in the ciphertexts ψ1, . . . , ψt. Suppose that later Alice wants to download

all of her encrypted files that satisfy a query – e.g., all files containing the ‘homomorphic’

within 5 words of ‘encryption’, but not the word ‘evoting’. She sends her query to the

CHAPTER 1. INTRODUCTION 22

server, which expresses it as a circuit C. The server sets ψ∗i ← Evaluate(pk, Ci, ψ1, . . . , ψt)

and sends these ciphertexts to Alice. Alice decrypts them to recover C(π1, . . . , πt), the

(bits of the) files that satisfy her query. (In this application, as in the encrypted search

application, Alice needs to provide an upper bound on the number of bits that the response

should have, and the server’s encrypted response will be padded or truncated to that upper

bound.)

Let us compare fully homomorphic encryption to a previous general solution for secure

two-party computation – namely, “Yao’s garbled circuit”. The problem with Yao’s protocol

is that the communication complexity is proportional to the size of the circuit C. This

makes the protocol rather unattractive in both of the scenarios discussed above (encrypted

search and searching encrypted data). In the encrypted search scenario, the search engine

would need to send Alice a huge garbled circuit whose size is proportional to the data being

searched. In the scenario of searching on encrypted data, Alice would need to send a circuit

whose size is proportional to the size of her data; if such communication complexity could

be tolerated, then the server might as well just transmit all of Alice’s encrypted files to her

without “processing” those files at all, and let Alice figure out which files she wants. With

fully homomorphic encryption, the communication complexity is much less. In particular,

the communication needed, other than pk, is simply the number of bits need to express

Alice’s (cleartext) query and the server’s (cleartext) response, each multiplied by the size

of the security parameter, since each cleartext bit becomes a ciphertext. Actually, for the

inputs to the circuit – e.g., Alice’s query – we can do even better; the scheme’s communi-

cation overhead here can be only additive, rather than multiplicative. Yao’s protocol has

the advantage of hiding the circuit, but it easy to tweak our fully homomorphic encryption

scheme so that it provides unconditional circuit privacy.

Despite nearly minimal communication efficiency, our fully homomorphic encryption

scheme does add a fair amount of computational overhead, so asynchronous application

scenarios may be more appropriate in practice. An asynchronous example is spam filtering

of encrypted emails: given an email encrypted using our scheme under Alice’s public key,

Alice’s email server can homomorphically apply its spam filter to the email to obtain an

encryption of ‘0’ (indicating the email is not spam) or ‘1’ (indicating that it is). Later, Alice

decrypts this single ciphertext to recover a bit b, and only decrypts the rest of the email if

b = 0.

Regarding multiparty computation, we already know that we can securely compute any

CHAPTER 1. INTRODUCTION 23

function. More specifically, one can construct efficient secure protocols for any multiparty

computation in which there is an honest majority [56], assuming only the existence of

trapdoor permutations. By “efficient,” we do not mean that these protocols are necessarily

practical. We mean only that the communication and computational complexity of the

secure protocol equals the computational complexity of the insecure protocol times some

factor that is polynomial in the security parameter and number of parties.

But why should the communication complexity of secure multiparty computation de-

pend at all on computational complexity of the function being computed? Naor and Nissim

[103] showed that, as one would expect, it is possible to construct a secure protocol whose

communication complexity is polynomial in the security parameter and the communication

complexity of the insecure protocol, but their method has a severe shortcoming: the compu-

tational complexity of their scheme is exponential (in the worst case) in the communication

complexity. In eliminating one type of unwanted dependence, it introduces another.

Previous work leaves a fundamental question unanswered: can we make a protocol secure

while leaving both the communication and the computational complexity unchanged, up to

a factor polynomial in the security parameter? With fully homomorphic encryption, the

answer is essentially ‘yes.’ More precisely, the answer is ‘yes’ if we relax the definition

of communication complexity to include the bit-lengths of the output functions (which

normally would not necessarily be included, since they are not communicated).

Extending our application of fully homomorphic encryption from the two-party setting

to the multiparty setting is not entirely trivial, since, in the two-party setting, Bob prevented

Alice from seeing any intermediate values encrypted under Alice’s key simply by finishing the

computation himself, and sending back the final encrypted value to Alice; in the multiparty

setting, it is less clear how one prevents Alice from seeing intermediate value encrypted

under her key. So, we use an approach initially proposed by Franklin and Haber [45], and

further developed by Cramer, Damgard and Nielsen [35] (see also [39]) – namely, basing

secure multiparty computation on threshold homomorphic encryption. The idea is simple.

The parties must use some (other) scheme for secure computation to set up a public key

for the fully homomorphic encryption scheme and distribute shares of the secret key; this

introduces additive communication and computational overhead that is independent of the

insecure protocol. After setup, they perform exactly the communications and computations

that they would in the insecure protocol, except on encrypted data; fully homomorphic

encryption ensures that, if a party was able to perform computations locally in the insecure

CHAPTER 1. INTRODUCTION 24

protocol, it is also able to in the secure protocol. Afterwards, they use some scheme for

secure computation to perform threshold decryption on the encrypted outputs; again, this

overhead is independent of the insecure protocol, except insofar as it depends on the bit-

lengths of the function outputs. Cramer et al.’s scheme is dependent on the number of

multiplication gates in the circuit because these could not be performed homomorphically.

With a fully homomorphic encryption scheme, we avoid this problem, and fully realize their

high-level concept of an “arithmetic black box.”

To handle malicious parties, we can use Naor and Nissim’s [103] transformation from a

protocol for multiparty SFE with semi-honest parties to a protocol for malicious ones via a

compiler that is communication-preserving – i.e., the transformation adds communication

polynomial in the security parameter and polylogarithmic in the inputs. (The security

parameter should be at least logarithmic in the size of the inputs anyway; otherwise, the

work needed to break the scheme would be less than the work needed to process the inputs.)

The essential ideas of this transformation come from Kilian’s construction of zero-knowledge

arguments [78, 79] and Arora et al.’s PCP theorem [8].

The literature mentions numerous other applications where fully homomorphic encryp-

tion would be useful. For example, Goldreich and Ostrovsky [57] consider software protec-

tion, show that any program can be converted to a pair consisting of an encrypted program

and a CPU with λ bits of “shielded” memory, where λ is the security parameter, which

defeats “experiments” by an adversary that might either attempt the determine the values

that are stored and retrieved from memory, or try to determine the program’s “access pat-

tern” – i.e., its attempts to change the values. In their scheme, there is only a logarithmic

blow-up in the computation time; however, the shielded CPU needs to be accessed for any

nontrivial computation. With a fully homomorphic encryption scheme, the program and

values can remain encrypted throughout the computation until the end. The shielded CPU

only needs to be accessed to perform the decryption of the final output.

Goldwasser, Kalai and Rothblum [59] introduce the concept of one-time programs, in

which they make minimal use of hardware to ensure that a program is used only once.

Their approach is essentially to encrypt the program using Yao’s garbled circuit, and have

a secure device perform the decryption (a toggle bit is used to ensure that this decryption

happens only once). One shortcoming of their approach is that the size of the encrypted

program is proportional to the maximal running time of the program. With a fully ho-

momorphic encryption scheme, one can construct an (encrypted) one-time program whose

CHAPTER 1. INTRODUCTION 25

size is proportional to the original program. Essentially, one simply encrypts the program

using the fully homomorphic encryption scheme, and runs it homomorphically, using the

device to perform the final decryption. The party running the program also needs to gen-

erate a NIZK, verifiable by the device, that proves that the final ciphertext was validly

constructed by running the encrypted program P on permitted inputs; again, we can use

Kilian’s communication-efficient zero-knowledge arguments here [78, 79].

Ostrovsky and Skeith [109] propose the notion of public-key obfuscation – i.e., where a

sort of obfuscation is achieved simply by encrypting the program; somehow, one then runs

the encrypted program, and afterwards decrypts the output. With a fully homomorphic

encryption scheme, running the encrypted program is straightforward. Currently, there is

a lot of excitement about applications such as web services and cloud computing, where

fully homomorphic encryption would permit remote computations on encrypted data with

complete privacy.

We have already mentioned the notion of proxy re-encryption in Chapter 1.3. In a proxy

re-encryption [19, 29, 71, 70], the idea is that Alice wants to publish a tag τ that will permit

anyone to convert a ciphertext encrypted under her public key pkA into an encryption of

the same message under Bob’s public key pkB. Previous proxy re-encryption schemes have

some shortcomings. They either are not unidirectional (i.e., Alice’s tag can also be used to

convert ciphertexts under pkB to ciphertexts under pkA, and Alice and Bob must cooperate

to produce τ), or they are not multi-use (i.e., it is impossible to construct a sequence of

tags τ1, τ2, . . . that allows anyone to convert ciphertexts under pkA to pkB, pkB to pkC ,

and so on indefinitely, without the ciphertexts growing in size). Recursive application of

our Recrypt algorithm gives the first unidirectional multi-use proxy re-encryption scheme.

With fully homomorphic encryption, one can construct non-interactive zero knowledge

proofs (NIZKs) of small size. For example, suppose that Alice wants to prove that π1, . . . , πt

is a satisfying assignment of a boolean circuit C. Alice generates a public key pk for the

fully homomorphic encryption scheme, the input ciphertexts {ψi ← Encrypt(pk, πi)}, and

the output ciphertext ψ∗ ← Evaluate(pk, C, ψ1, . . . , ψt). The NIZK that her assignment is

satisfying consists of NIZK proofs, under any NIZK scheme, that pk, {ψi} and ψ∗ are well-

formed, where well-formedness for the ciphertexts means that each ψi is a valid encryption

of ‘0’ or ‘1’, and ψ∗ is a valid encryption of ‘1’. The verifier checks the NIZKs for well-

formedness, and confirms that ψ∗ = Evaluate(pk, C, ψ1, . . . , ψt). Intuitively, the NIZK proof

works because, if the verifier believes that pk and the input ciphertexts are well-formed, then

CHAPTER 1. INTRODUCTION 26

the correctness of the encryption scheme implies that the output ciphertext can encrypt ‘1’

only if C(π1, . . . , πt) = 1. The size of this NIZK proof is proportional to the number of

inputs to the circuit, but is otherwise independent of the size of the circuit.

For many interesting applications, we do not need the full power of our scheme; rather,

a simpler, more efficient version of our scheme that evaluates circuits of logarithmic multi-

plicative depth suffices. For example, consider private information retrieval from an m-bit

database. The querier can simply encrypt the index that it wants using log m ciphertexts.

The database’s response corresponds to a (log m)-degree formula evaluated over these ci-

phertexts, which (essentially) can be computed using a (log log m)-depth circuit. We can

evaluate such shallow circuits using the somewhat homomorphic scheme that we sketched

in Chapter 1.4, without requiring either bootstrapping or “squashing the decryption cir-

cuit.” This basic scheme compares well with the pairing-based scheme of Boneh-Goh-Nissim,

which can essentially evaluate quadratic formulas; our basic scheme can also do essentially

an arbitrary number of additions, but with greater multiplicative depth. In general, when

the function to be evaluated is highly parallel, the bootstrapping step may be unnecessary,

permitting better efficiency.

Clearly, several of these applications relate to obfuscation, but the precise relationship

between fully homomorphic encryption and obfuscation is unclear. We know that general

obfuscation is impossible under a certain definition of obfuscation [12], but obfuscation may

be possible under a weaker, but still meaningful, definition. We also know that general

obfuscation (under essentially any reasonable definition) would imply fully homomorphic

encryption: it would suffice to obfuscate circuits that take ciphertexts encrypting π1 and

π2 and output appropriately distributed ciphertexts encrypting π1 + π2 and π1 × π2. Since

general obfuscation would imply fully homomorphic encryption, it seems reasonable to guess

that a general obfuscation technique (if one exists) would employ some of the techniques

(bootstrapping, etc.) that we use here to construct fully homomorphic encryption. Unlike

a fully homomorphic encryption scheme, however, an obfuscated circuit should allow one

to compute an unencrypted output. If one is to build a general obfuscation scheme from

fully homomorphic encryption, the question becomes: how can one provide, as part of the

obfuscated circuit, some sort of decryption key that allows recovery of the final output, in

such a way that this decryption key does not permit decryption of interior nodes of the

circuit, thereby unraveling the entire obfuscation.

Chapter 2

Definitions related to

Homomorphic Encryption

2.1 Basic Definitions

A conventional public-key encryption scheme E consists of three algorithms: KeyGenE ,

EncryptE , and DecryptE . KeyGenE is a randomized algorithm that takes a security parameter

λ as input, and outputs a secret key sk and public key pk; pk defines a plaintext space P
and ciphertext space C. EncryptE is a randomized algorithm that takes pk and a plaintext

π ∈ P as input, and outputs a ciphertext ψ ∈ C. DecryptE takes sk and ψ as input, and

outputs the plaintext π. The computational complexity of all of these algorithms must be

polynomial in λ. Correctness is defined as follows: if (sk, pk) R← KeyGenE , π ∈ P, and

ψ
R← EncryptE(pk, π), then DecryptE(sk, ψ) → π.

In addition to the three conventional algorithms, a homomorphic encryption scheme E
has a (possibly randomized) efficient algorithm EvaluateE , which takes as input the pub-

lic key pk, a circuit C from a permitted set CE of circuits, and a tuple of ciphertexts

Ψ = 〈ψ1, . . . , ψt〉 for the input wires of C; it outputs a ciphertext ψ ∈ C. Informally,

the functionality that we want from EvaluateE is that, if ψi “encrypts πi” under pk, then

ψ ← EvaluateE(pk, C,Ψ) “encrypts C(π1, . . . , πt)” under pk, where C(π1, . . . , πt) is the out-

put of C on inputs π1, . . . , πt.

There are different ways of formalizing the functionality “encrypts C(π1, . . . , πt).” A

minimal requirement is correctness.

27

CHAPTER 2. DEFINITIONS RELATED TO HOMOMORPHIC ENCRYPTION 28

Definition 2.1.1 (Correctness of Homomorphic Encryption). We say that a homomor-

phic encryption scheme E is correct for circuits in CE if, for any key-pair (sk, pk) out-

put by KeyGenE(λ), any circuit C ∈ CE , any plaintexts π1, . . . , πt, and any ciphertexts

Ψ = 〈ψ1, . . . , ψt〉 with ψi ← EncryptE(pk, πi), it is the case that:

if ψ ← EvaluateE(pk, C,Ψ) , then DecryptE(sk, ψ) → C(π1, . . . , πt)

except with negligible probability over the random coins in EvaluateE .

By itself, mere correctness fails to exclude trivial schemes. In particular, suppose we de-

fine EvaluateE(pk, C,Ψ) to just output (C, Ψ) without “processing” the circuit or ciphertexts

at all, and DecryptE to decrypt the component ciphertexts and apply C to results. This

scheme is correct, but uninteresting. We can address this shortcoming by upper-bounding

the length of ciphertexts output by EvaluateE . One way to do this is by placing an upper

bound on the size of the decryption circuit DE for the scheme E that depends only on the

security parameter, as in the following definition.

Definition 2.1.2 (Compact Homomorphic Encryption). We say that a homomorphic en-

cryption scheme E is compact if there is a polynomial f such that, for every value of the

security parameter λ, E ’s decryption algorithm can be expressed as a circuit DE of size at

most f(λ).

Definition 2.1.3 (“Compactly Evaluates”). We say that a homomorphic encryption scheme

E “compactly evaluates” circuits in CE if E is compact and also correct for circuits in CE .

We can consider various relaxations of compactness, since homomorphic encryption

schemes in which the ciphertext size grows sub-linearly with the size of the circuit are still

interesting for many applications. For example, we could permit the sizes of the secret key

and ciphertexts to grow polynomially with the depth of the circuit. We will informally call

such schemes “quasi-compact.”

Now, we define fully homomorphic encryption as follows.

Definition 2.1.4 (Fully Homomorphic Encryption). We say that a homomorphic encryp-

tion scheme E is fully homomorphic if it compactly evaluates all circuits.

One may consider this definition to be too strong, because, as mentioned above, quasi-

compactness could suffice; we avoid using quasi-compactness in our definition both because

CHAPTER 2. DEFINITIONS RELATED TO HOMOMORPHIC ENCRYPTION 29

it is tedious to formalize, and we will rarely use the notion anyway. A second reason that

it is too strong is because it excludes leveled schemes, which only evaluate circuits of depth

up to some d, and whose public key length may be poly(d); hence, the following relaxation.

Definition 2.1.5 (Leveled Fully Homomorphic Encryption). We say that a family of homo-

morphic encryption schemes {E(d) : d ∈ Z+} is leveled fully homomorphic if, for all d ∈ Z+,

they all use the same decryption circuit, E(d) compactly evaluates all circuits of depth at

most d (that use some specified set of gates), and the computational complexity of E(d)’s

algorithms is polynomial in λ, d, and (in the case of EvaluateE) the size of the circuit C.

(We assume the set of gates that compose the circuit is understood.)

While fully homomorphic encryption, as we have defined it, seems highly nontrivial to

achieve, one still might consider our definition to be too weak, since it does not require

circuit privacy.

Definition 2.1.6 ((Statistical) Circuit Private Homomorphic Encryption). We say that

a homomorphic encryption scheme E is circuit-private for circuits in CE if, for any key-

pair (sk, pk) output by KeyGenE(λ), any circuit C ∈ CE , and any fixed ciphertexts Ψ =

〈ψ1, . . . , ψt〉 that are in the image of EncryptE for plaintexts π1, . . . , πt, the following distri-

butions (over the random coins in EncryptE , EvaluateE) are (statistically) indistinguishable:

EncryptE(pk, C(π1, . . . , πt)) ≈ EvaluateE(pk, C, Ψ)

The obvious correctness condition must still hold.

We prefer to consider circuit privacy to be a property that is separate from, and com-

plementary to, full homomorphism. However, we will eventually show how to make our

lattice-based fully homomorphic encryption scheme circuit private. Our technique will be

to use a public (i.e., not using the secret key) algorithm RandomizeCTE that, applied post

hoc, induces the same distribution (statistically) to ciphertexts output by EncryptE and

EvaluateE , while preserving correctness. (See Chapter 20.)

The motivating setting for statistical circuit privacy is two-party computation in the

honest-but-curious setting, where Alice holds a circuit, and Bob holds sk. Alice may want

her output ciphertext to reveal nothing about her circuit, even though Bob chooses the

input ciphertexts. She can hide her circuit by applying RandomizeCTE to the ciphertext

output by EvaluateE before sending result to Bob. When sk is shared, one may also define

CHAPTER 2. DEFINITIONS RELATED TO HOMOMORPHIC ENCRYPTION 30

a computational version of circuit privacy, but this is covered by the semantic security of

encryption scheme, defined in the next Section.

For most applications, it is acceptable to reveal some limited information about the

circuit, such as an upper bound on the number of levels. (Since any circuit is a directed

acyclic graph, its gates can be topologically sorted and partitioned into levels, such that

each wire extends from one gate to a gate with a higher level number.) Accordingly, we

define the following slight relaxation of circuit privacy.

Definition 2.1.7 (Leveled Circuit Private Homomorphic Encryption). Like circuit private

homomorphic encryption, except that there can be a different distribution associated to

each level, and the distributions only need to be equivalent if they are associated to the

same level (in the circuit).

Unlike circuit privacy, leveled circuit privacy, by itself, does not imply compactness.

That is, in a leveled circuit private homomorphic encryption scheme, it is possible for the

ciphertext size to grow exponentially with the number of levels. In fact, this is precisely the

case in some previous circuit-private schemes, such as SYY [122].

An interesting open question is the extent to which fully homomorphic encryption, as we

have defined it, already implies circuit-private fully homomorphic encryption. Intuitively,

given a ciphertext ψ that encrypts π, we can “randomize” ψ using the homomorphism

– e.g., by repeatedly adding encryptions of ‘0’ – to obtain new encryptions of π. Since

the fully homomorphic encryption scheme is compact, this randomization occurs within a

non-expanding ciphertext space. One may hope that these randomizations induce a nice,

connected, expander-like graph, and that therefore a small number of randomizations results

in a statistically random encryption of π. However, the definition of fully homomorphic

encryption does not seem even to imply that this graph is connected. It would be nice

to state some natural minimal generic property, in addition to full homomorphism, that

would imply circuit privacy. (Certainly, the property that adding an encryption of ‘0,’

or multiplying in an encryption of ‘1,’ completely “randomizes” the ciphertext would be

sufficient, but in this case circuit privacy is an uninteresting tautology.)

In the definitions above, we have focused on circuits, but one may also consider programs

that use other representation models. For example, one may consider weaker models – e.g.,

formulas, branching programs, OBDDs, finite automata, decision trees, and truth tables –

and consider the efficiency of a homomorphic encryption scheme with respect to one of these

CHAPTER 2. DEFINITIONS RELATED TO HOMOMORPHIC ENCRYPTION 31

models. For example, although an encryption scheme that is additively homomorphic will

not be able to evaluate general circuits efficiently, such a scheme can be used to construct

a single-server private information retrieval (PIR) scheme with sub-linear communication;

such a PIR scheme, in turn, can be viewed as homomorphic encryption scheme that permits

the (efficient) evaluation of a truth table with an output ciphertext that is sub-linear in

the size of the table. Ishai and Paskin [73] describe a scheme in which Evaluate takes a

branching program (BP) P as input; finite automata, decision trees, and OBDDs can be

efficiently represented as BPs. The ciphertext output by their Evaluate algorithm depends

polynomially on the number of input ciphertexts and on the depth of the BP, but not on its

size. On the other hand, since a program may allow loops, it may permit a more compact

representation of the circuit.

2.2 Computational Security Definitions

For an ordinary public key encryption scheme, security against adaptive chosen-ciphertext

attacks (CCA2) is captured in the following game.

Setup. The challenger runs (sk,pk) R← KeyGenE(λ) and gives pk to the adversary A. It sets

ψ∗ ← ⊥.

Queries. A issues decryption queries on ciphertexts ψi 6= ψ∗. The challenger responds with

the output of DecryptE(sk, ψi). Queries can occur before or after the challenge.

Challenge. A generates two plaintexts π∗0, π
∗
1 ∈ P and sends these to the challenger. The

challenger sets b
R← {0, 1} and ψ∗ R← EncryptE(pk, π∗b). It sends ψ∗ to A.

Guess. A sends b′ ∈ {0, 1} to the challenger. A wins the game if b′ = b.

Security against “lunchtime attacks” – i.e., CCA1 security – is modeled by a game similar to

above, except that A may make queries only before the challenge. In the game for semantic

security, A is not permitted to make any queries.

In each case, we define A’s advantage in attacking the scheme E as

Adv(A, E , λ) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣

The probability is over the random bits used by the challenger and the adversary.

CHAPTER 2. DEFINITIONS RELATED TO HOMOMORPHIC ENCRYPTION 32

Definition 2.2.1 (Semantic Security against (CPA, CCA1, CCA2) attacks). We say E is se-

mantically secure against (CPA, CCA1, CCA2) attacks if no polynomial time (CPA, CCA1,

CCA2)-adversary A breaks E with advantage non-negligible in the security parameter λ.

When referring simply to “semantic security,” we mean semantic security against chosen

plaintext attacks.

We define the CCA2, CCA1, and semantic security games for a homomorphic encryp-

tion scheme as being identical to the original games, except that now the ciphertext space

is potentially larger – i.e., the support of EvaluateE rather the support of EncryptE ; A
can draw its queries from this larger space. Also, A has more freedom in requesting

its challenge. The natural way to define the Challenge phase is that A sends the chal-

lenger some circuit C ∈ CE with some number k = poly(λ) of inputs, and two sets of

plaintexts, (π01, . . . , π0k), (π11, . . . , π1k) ∈ Pk; the challenger sets b
R← {0, 1} and outputs

ψ∗ R← EvaluateE(pk, C, ψb1, . . . , ψbk) where ψbi
R← EncryptE(pk, πbi). However, since the ad-

versary can run EvaluateE itself, we can simplify the Challenge phase by having the adversary

just request the input ciphertexts ψb1, . . . , ψbk.

Clearly, the only difference between the semantic security games for ordinary public

key encryption and homomorphic encryption is that, in the latter, the adversary can re-

quest more ciphertexts in the Challenge phase. By a hybrid argument [16], an algorithm

A that that breaks the semantic security in the game above with advantage ε can be used

to construct an algorithm B that breaks the semantic security in the original game with

advantage ε/k; B’s is roughly k times that of A [52]. Thus, to prove semantic security of a

homomorphic encryption scheme, we can just use the semantic security game for ordinary

public key encryption.

The same is true for CCA1 and CCA2 security, as long as the scheme is circuit-private.

(Circuit privacy ensures that the ciphertext space is the same in both games, thus allowing

B to forward A’s decryption queries to the challenger, and forward the responses back to

A.)

Unfortunately, a scheme that has nontrivial homomorphisms cannot be CCA2 secure,

because it is malleable. Benign malleability [6] and replayable CCA [30], two relaxed no-

tions of CCA2 security, permit only transformations that preserve the underlying plaintext.

Prabhakaran and Rosulek [115] formalize a notion of “homomorphic-CCA security,” which

permits certain nontrivial operations on a plaintext while remaining nonmalleable with re-

spect to other operations; they present a construction based on pairings. However, their

CHAPTER 2. DEFINITIONS RELATED TO HOMOMORPHIC ENCRYPTION 33

approach does not extend (in fact, they provide some impossibility results) to schemes that

permit certain operations on multiple ciphertexts. Finding meaningful relaxations of CCA2

security in this domain, and particularly for fully homomorphic encryption, is an open area.

There do not seem to be inherent reasons why a homomorphic encryption scheme cannot

have semantic or CCA1 security. In particular, “Cramer-Shoup lite” [36] is CCA1 and

homomorphic (for one operation). However, we restrict our focus to semantic security, and

leave finding a CCA1-secure fully homomorphic encryption scheme as an interesting open

problem.

Chapter 3

Previous Homomorphic

Encryption Schemes

Basic RSA [121] was the first homomorphic encryption scheme: given ciphertexts ψ1 =

πe
1 mod N and ψ2 = πe

2 mod N , one can compute a ciphertext ψ ← ψ1·ψ2 = (π1·π2)e mod N

that encrypts the product of the original plaintexts. However, basic RSA is deterministic,

and therefore not even semantically secure. Despite the lack of semantic security, RSA’s

multiplicative homomorphism is still useful for many applications.

Rivest, Adleman, and Dertouzos [120] were the first to explore the possibilities of fully

homomorphic encryption, which they called a “privacy homomorphism”, and they proposed

several candidate schemes. However, these early candidates have been broken [25].

Homomorphic encryption schemes that are not semantically secure, like textbook RSA

and some proposals in [120], may also have stronger attacks on their one-wayness. In

particular, Boneh and Lipton [23] proved that any algebraic privacy homomorphism over

a ring Zn can be broken in sub-exponential time under a (reasonable) number theoretic

assumption, if the scheme is deterministic or offers an equality oracle. See also [92]. In the

quantum setting, the situation is even worse. van Dam, Hallgen and Ip [37] proved that,

with quantum computation, any deterministic algebraic privacy homomorphism with an

equality oracle can be broken in polynomial time.

The first scheme with a proof of semantic security based on a well-defined assumption

34

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 35

was proposed by Goldwasser-Micali [61] in the paper that introduced the notion of seman-

tic security. Some other additively homomorphic encryption schemes with proofs of se-

mantically security are Benaloh [17], Naccache-Stern [102], Okamoto-Uchiyama [108], Pail-

lier [110], and Damgard-Jurik [38]. ElGamal [42] is multiplicatively homomorphic. Some

semantically secure schemes that allow both addition and multiplication include Boneh-

Goh-Nissim [21], which permits computation of quadratic formulas (e.g., 2-DNFs) over

ciphertexts, and “Polly Cracker” by Fellows and Koblitz [44], which permits computation

of arbitrary circuits over ciphertexts, but where the ciphertext size blows up exponentially

with the depth of the circuit. For expository purposes, and since one can easily find other

surveys of homomorphic encryption, we characterize these “conventional” homomorphic en-

cryption schemes (although perhaps Polly Cracker is less conventional) as all falling within

a certain abstract framework, with security abstractly based on an ideal membership prob-

lem. We will review these schemes in more detail momentarily. This description will help

highlight how our construction is fundamentally different, abstractly relying on an ideal

coset problem that we define in Chapter 7.

It is also known that one can construct additively homomorphic encryption schemes

from lattices or linear codes [60, 113, 77, 94, 95, 7]. The lattice-based scheme [95] and the

Reed-Solomon-code-based scheme by Armknecht and Sadeghi [7] also allow multiplications,

though with exponential expansion in ciphertext size. Such schemes have a different flavor

from the more “conventional” schemes above, because ciphertexts implicitly contain an

“error” that grows as ciphertexts are added together. Thus, ciphertexts output by Evaluate

do not have the same distribution as ciphertexts output by Encrypt, and at some point

the error may become large enough to cause incorrect decryption. For this reason, the

homomorphism is sometimes referred to as a “pseudohomomorphism” [77, 94, 95] or a

“bounded homomorphism” [113]. (We use different terminology; see Chapter 2.) We will

not discuss these schemes in detail here, since the main technical complication – managing

the size of the “error” – is also central to our scheme, where it will require an even closer

analysis because our multiplicative homomorphism using ideal lattices expands the “error”

quite rapidly.

van Dijk [40] describes a technique that they call “interval obfuscation” which can be

viewed as a symmetric homomorphic encryption scheme. It uses a secret integer modulus

M and a secret integer s that is relatively prime to M . A ‘0’ is encrypted as s ·x mod M for

some x ∈ [1, a], where a is a “small” integer, while a ‘1’ is encrypted as s ·x mod M for some

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 36

x ∈ [b+1, b+ a], where b is a “large” integer (but still small in comparison to M). One can

cryptocompute a homogeneous polynomial of degree d logarithmic in the security parameter

by simply adding or multiplying the ciphertexts modulo M . The recipient decrypts c by

setting c′ ← c/sd mod M (to remove the blinding factor) and then outputting bc′/bde; the

idea is that each monomial which is a product of 1’s will be represented by some integer

that approximately equals bd after the blinding factor is removed, while the monomials for

which the product is 0 will be represented by much smaller integers that can be ignored. One

can view their scheme as using a one-dimensional ideal lattice – namely, the ideal (M) in

the integers – while our somewhat homomorphic construction in Chapter 7 is conceptually

somewhat similar but uses an n-dimensional ideal lattice. At a high level, the reason M

must be kept private in their scheme (while we can reveal a basis for the lattice in our

scheme) is that lattice problems over one-dimensional lattices are not hard. An initial

version of van Dijk’s scheme succumbed to attacks that used lattice reduction to recover

M . It is an open question as to whether the security of a variant of van Dijk’s scheme can

be based on a natural hard problem.

Finally, there are schemes that use a singly homomorphic encryption scheme to con-

struct a scheme that can perform more complicated homomorphic operations [122, 73].

Sanders, Young and Yung (SYY) [122] show that one can use a circuit-private additively

homomorphic encryption scheme to construct a circuit-private scheme that can handle ar-

bitrary circuits, where the ciphertext size increases exponentially with the depth of the

circuit. Their scheme can therefore feasibly evaluate NC1 circuits.

Ishai and Paskin [73] show how to evaluate branching programs, and with much smaller

ciphertexts than SYY. In their scheme Evaluate outputs a ciphertext whose length is pro-

portional to the length of the branching program. This remains true even if the size of

the branching program is very large – e.g., super-polynomial. However, the computational

complexity of their scheme is proportional to the size; Barrington [13] tells us that bounded-

width polynomial-size branching programs recognize exactly those languages in NC1.

In more detail, Ishai and Paskin use a “leveled” approach to evaluate a branching

program, like we will use a leveled approach to evaluate circuits (see Chapter 4), though

the details are very different. A (deterministic) branching program (BP) P is defined by a

DAG from a distinguished initial node in which each nonterminal node has two outgoing

edges labeled 0 and 1, and where the terminal nodes also have labels. To compute P (x)

where the binary representation of x is x1 · · ·x`, one starts at the distinguished node, and

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 37

traverses the DAG in the natural way dictated by x1 · · ·x` to reach a terminal node, and

outputs that node’s label as P (x). The size of the BP is the number of nodes; the length

is the length of the longest path. One can topologically arrange the nodes into levels, such

that the number of levels is at most one more than the length of the BP, and the edges

are all directed downward. BPs are relatively powerful; finite automata, decision trees, and

ordered binary decision diagrams all have polynomial-size BPs.

To evaluate a BP, Ishai and Paskin essentially use 1-out-of-2 string OT recursively.

Specifically, suppose Alice has a BP with ` levels, and Bob has an input x = x1 · · ·x` ∈
{0, 1}` for which he wants to obtain P (x). Bob constructs ` 1-out-of-2 string OT queries qi,

which respectively correspond to his bits xi. Using Bob’s queries, Alice evaluates her BP

from the bottom-up. In particular, suppose N is a node at level `− 1 with children N0 and

N1 with labels L0 and L1. Alice uses q`, L0 and L1 to construct a string-OT response R

that implicitly “encrypts” label Lx`
; she then sets R to be the label of N . In this fashion,

she gives labels to all of the nodes at level `− 1, and then (recursively) to nodes at higher

levels using Bob’s other OT queries. Alice’s ultimate response is the label associated to

the distinguished node. This final label looks something like a multiple encryption in onion

routing, and Bob “decrypts” it as such – using his secret knowledge to recover the label for

x1, then x1x2, and so on. The length of Alice’s response grows (at least) linearly with ` for

essentially the same reason that this happens in onion-routing: each layer of “encryption”

has additive communication overhead. Using a communication-efficient string-OT scheme –

e.g., one built from the length-flexible additively homomorphic Damgard-Jurik encryption

scheme [38, 84] – the ciphertext expansion per level is exactly linear. On the other hand,

Alice’s computation is proportional to the size of the BP, since she must construct OT

responses even for “irrelevant” nodes in the BP.

To summarize to current state of affairs as far we know, in terms of schemes that

offer more than a single homomorphism and offer a proof of semantic security, we have

the schemes by Fellow and Koblitz [44], Melchor et al. [95], Armknecht and Sadeghi [7],

and Sanders et al. [122], and related work [14, 83, 85, 86] where ciphertext size grows

exponentially with the multiplicative (and sometimes also additive) depth of the circuit.

In Boneh-Goh-Nissim [21] and Ishai-Paskin [73], Evaluate outputs small ciphertexts but

handles a limited class of circuits – quadratic formulas, or circuits which correspond to

branching programs of manageable size.

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 38

Now, we review the more “conventional” homomorphic encryption schemes whose se-

mantic security can be based on a natural problem, like Goldwasser-Micali and Paillier.

Since our scheme will rely heavily on properties of algebraic rings and ideals, we explain

how these previous schemes implicitly use these objects. By describing previous schemes

using these abstractions, we will see how the semantic security of most of these schemes

relies on the hardness of an ideal membership problem – i.e., determining whether a member

of the ring is also a member of the ideal.

Basically, a ring is a mathematical object like a field, except that not every element has a

multiplicative inverse. Examples include the integers Z, or the integers modulo a composite

integer N : Z/NZ. Rings have an additive identity ‘0’, a multiplicative identity ‘1’, allow

additive inverses, and are closed under addition and multiplication. An ideal I of a ring R

is a subset of R that is closed under addition, and is also closed under multiplication with

elements of R. An example is the ideal (2) of Z, the set of even numbers; multiplying an

element of (2) with an element of Z gives an element in (2). For ideal I ⊂ R, R/I is the

ring of cosets of I in R; e.g., if R = Z and I = (2), R/I consists of the cosets 0 + (2) (the

even integers, the additive identity of R/I) and 1+(2) (the odd integers, the multiplicative

identity of R/I).

With these abstractions, we can say that many previous homomorphic encryption schemes

fall within the following framework. (Essentially, this abstract framework is explicit in Fel-

lows’ and Koblitz’s description of Polly Cracker [44].)

KeyGen(λ). Generates some representation of a finite ring R with an efficient ‘+’ operation,

and possibly an efficient ‘×’ operation. It also fixes an ideal I of R. The plaintext space

P is a set of distinguished representatives of R/I. The secret key is a function f : R → P
such that f(r) is the distinguished representative of r + I. The public key pk includes the

encoding of R and an algorithm SampI to sample (efficiently) from I.

Encrypt(pk, π). Set i
R← SampI(R) and ψ ← π + i.

Decrypt(sk, ψ). Output f(ψ).

Add(ψ1, ψ2). Output ψ1 + ψ2.

Mult(ψ1, ψ2). Output ψ1 × ψ2.

For example, in Goldwasser-Micali, KeyGen generates a modulus N = pq for p = 2p′+1

and q = 2q′+1, and a number x ∈ (Z/NZ)∗ whose Legendre symbols are
(

x
p

)
=

(
x
q

)
= −1.

In terms of the abstract framework, the underlying ring R is Z/(2p′q′), which corresponds to

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 39

the powers of x modulo N . The underlying ideal I is (2), the set of quadratic residues, even

powers of x. The plaintext space is {0, 1}, represented as {x0, x1}. The function f : R → P
on input r ∈ R (i.e., xr) is given by outputting the distinguished representative of r + (2).

Sampling from I is efficient. Also, the ‘+’ operation is efficient, though the ‘×’ operation

is not; hence, the scheme is only additively homomorphic.

Remark 3.0.2. The abstract framework hides some issues regarding how plaintexts are

represented. For example, as applied to Goldwasser-Micali, the framework would say plain-

text space is {x0, x1}, versus the usual {0, 1}. For Goldwasser-Micali, this is fine since the

encrypter can easily map the latter representation to the former. This is the case with the

other schemes as well.

Remark 3.0.3. Of course, a lot of complexity is hidden in the function f . Goldwasser-

Micali uses Legendre symbols. Paillier uses a more elaborate approach. Some schemes, such

as Boneh-Goh-Nissim (described below) can use only a small (polynomial-sized) subset

of the potential plaintext space because the function f involves an otherwise infeasible

computation – e.g., discrete logarithm.

It is easy to see that the abstract scheme is semantically secure assuming the following

ideal membership problem is hard.

Definition 3.0.4 (Ideal Membership Problem (IMP)). According to a prescribed distribu-

tion, the challenger generates an encoding of R, an ideal I, and an algorithm SampI that

samples from I. It sets a bit b
R← {0, 1}. If b = 0, it sets x

R← SampI(R). If b = 1, it sets

x
R← R. The problem is to guess b given (x,R,SampI) – i.e., essentially to decide whether

or not x is a member of I.

Theorem 3.0.5. If there is an algorithm A that breaks the semantically security of the

abstract scheme with advantage ε, then there is an algorithm B that solves the IMP with

advantage ε/2.

Proof. Given instance (x,R,SampI) of IMP, B includes (R, SampI) in pk, which it sends to

A. A requests a challenge ciphertext on one of π0, π1 ∈ P. B sets β
R← {0, 1}, and sends

the challenge ψ ← πβ + x to A. A sends guess β′, and B sends guess b′ ← β ⊕ β′ to the

challenger.

If b = 0, then B’s simulation is perfect; in particular, the challenge is a valid encryption

of πβ. In this case, A should guess β with advantage ε, and thus b′ = b with advantage ε.

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 40

If b = 1, x is random in R, and thus the challenge ciphertext is a random element of R,

independent of β. In this case, β′ is independent of β, and so b′ is independent of b, so that

B’s advantage is 0. Overall, B’s advantage is ε/2.

Obviously, Goldwasser-Micali uses quadratic residuosity as its version of the IMP. Be-

naloh is similar to Goldwasser-Micali, but uses ideals of the form (m) for m 6= 2 where m

divides φ(N). In Paillier, the ring is Z/(p′q′N), the ideal is (N), and it is based on the N -th

residuosity problem. Damgard-Jurik extends Paillier to the ring is Z/(p′q′Nk) and uses the

ideal is (Nk). Okamoto-Uchiyama uses a modulus of the form N = p2q, and uses the ring

Z/(pp′q′) and the ideal Z/(p).

The above schemes can all be said to be based on a subgroup (or subset) membership

problem [?], since only one operation (namely addition, which is instantiated as group

multiplication) is actually being used. Two schemes that make more use of the ring structure

are Polly Cracker [44] and Boneh-Goh-Nissim (BGN) [21].

The Polly Cracker scheme was proposed by Fellows and Koblitz [44]. They state essen-

tially the abstract framework above and propose an instantiation of it using the polyno-

mial ring R = Fq[x1, . . . , xn]. The ideal I is presented as a set of generating polynomials

P = {pi(x1, . . . , xn)} having a common (secret) root (a1, . . . , an); the ideal I is the set of

all polynomials of the form
∑

pi(x) · ri(x) for ri(x) ∈ R. To sample from I, one uses the

generators, though there is plenty of freedom here in setting the sampling distribution since

R and I are infinite. The plaintext space is Fq. The abstract function f is instantiated

as evaluation of the ciphertext polynomial at (a1, . . . , an), a homomorphism whose kernel

contains I.

The security of Polly Cracker in practice still seems to be an open question. Various effi-

cient attacks have been proposed for various sets of parameters [43, 46] – roughly speaking,

parameters for which the underlying IMP is not hard because it is possible to recover the

common root using Groebner bases. Modified versions of Polly Cracker have been proposed

[83, 85, 86], also with attacks [126]. But there does not seem to be an efficient general

attack. See [82] for a survey of Polly Cracker cryptanalysis.

Ciphertext expansion in Polly Cracker is a serious problem. Add simply adds two ci-

phertext polynomials, and Mult multiplies them. In the worst-case, Mult operations are

extremely expensive: the ciphertext length grows doubly-exponentially in the multiplica-

tive depth of the circuit, since each Mult operation can square the number of monomials.

Even with respect to the additive depth, the ciphertext size can grow exponentially. It is

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 41

certainly conceivable that some incarnation of Polly Cracker could escape this deficiency

and still be secure, but so far no such scheme is known.

BGN is a practical scheme that permits homomorphic evaluation of quadratic formulas

– i.e., it allows one level of multiplication and an arbitrary number of additions. It is an

interesting case because it uses multiple different representations of its underlying ring R.

Specifically, KeyGen generates a modulus N = pq, two groups G,G1 of order N with an

efficiently computable non-degenerate bilinear map e : G × G → G1 (where typically G is

an elliptic curve group and G1 is a multiplicative subgroup of a finite field), a generator g

of G, and an element h = gp. In terms of the abstract framework, the underlying ring R

is Z/(N), which is represented in the public key both by (G, g) and implicitly (G1, e(g, g));

we will call these the G-representation and the G1-representation. The ideal I is (p), the

p-residues; it can be sampled efficiently using h. Essentially, the underlying IMP is, given

the representations of R, the map e, and the generator of I, to decide whether an element

x ∈ R, given in G-representation, is in I. (The BGN paper states its underlying hard

problem in a different way, without the generator of I, that is equivalent up to a factor of

2 in the adversary’s advantage.)

Adding two ciphertexts in BGN is done in the usual way, but the Mult operation is

more interesting. Mult uses the pairing operation, meaning that it can only be applied

to two ciphertexts in G-representation, and the output has a G1-representation: i.e., for

ψ1 ∈ π1 + (p) and ψ2 ∈ π2 + (p), Mult(ψ1, ψ2) = ψ1 × ψ2 ∈ π1 × π2 + (p), but the latter

ciphertext represents the ring element differently (in G1-representation); concretely, this

multiplication in the exponent occurs by computing e(gx, gx) → e(g, g)xy. Since there is no

known way to efficiently map from the G1-representation back to the G-representation, the

scheme is limited to one level of multiplication.

To decrypt a ciphertext gπ+tp in G in BGN, the decrypter computes (gπ+tp)q = gπq,

and then DLgq(gπq) = π; it decrypts ciphertexts in G1 similarly. For the discrete logarithm

computation to be feasible, π must be from a set of polynomial size – say, a polynomial-

sized interval centered at 0. However, subject this constraint on the input ciphertexts {ψi}
from G, the scheme can homomorphically compute arbitrary polynomial-sized quadratic

formulas on {ψi}, and still be able to decrypt the result in polynomial time.

In principle, one can also squeeze ElGamal into the above framework. One can view R

as GL(2,Fp), the general linear group of 2× 2 matrices over Fp, and an ideal Ib ⊂ R as the

subset of matrices whose second row is b times the first column. Basically, Ib corresponds

CHAPTER 3. PREVIOUS HOMOMORPHIC ENCRYPTION SCHEMES 42

to the set of valid DDH tuples (g, ga, gb, gab) involving b. We can define addition in R as

simply adding the matrices together entry-wise; Ib is closed under addition. This operation

is efficient even if matrix is represented “in the exponent,” as in ElGamal, permitting the

additive homomorphishm. Multiplication in R is right-multiplication; one can see that

right-multiplying a term in Ib with a term in R gives a term in Ib. However, obviously

right-multiplication cannot be efficient if the Diffie-Hellman problem is hard.

Strictly speaking, however, since none of these schemes aside from Polly Cracker actually

makes full use of the ring homomorphism, their dependence on an IMP may be more

coincidental than essential. For example, one can modify BGN in a way that preserves the

ability to evaluate quadratic formulas, while dispensing with the need to use a composite

modulus N , and without using an ideal membership problem; instead, it is based on a

“rank” problem similar to the linear assumption. On the other hand, this modification

would become exponentially inefficient if extended to handle n-degree polynomials over

ciphertexts with a hypothetical n-linear map; for this more robust homomorphism, it would

seem more efficient to use BGN’s original ideal-membership approach.

Chapter 4

Bootstrappable Encryption

4.1 Leveled Fully Homomorphic Encryption from Bootstrap-

pable Encryption, Generically

Assume we have an encryption scheme E that compactly evaluates some set of circuits

CE . We want to use E to construct a homomorphic encryption scheme that can handle

arbitrary circuits. In this Chapter we prove a fundamental result: that if CE contains

(slight augmentations of) E ’s own decryption circuit DE – i.e., if E “compactly evaluates”

its (augmented) decryption circuit – then we can use E to construct an efficient scheme that

handles circuits of arbitrary depth.

A bit more specifically, for any integer d, we use E to construct a scheme E(d) that can

compactly evaluate circuits of depth up to d. The decryption circuit for E(d) is still DE ; the

secret key and ciphertexts are the same size as in E . The public key in E(d) consists of d+1

public keys from E , together with a chain of encrypted E secret keys – the first E secret key

encrypted under the second E public key, and so on. In short, the family of schemes {E(d)}
is leveled fully homomorphic. We base the semantic security of E(d) on that of E using a

hybrid argument; as usual with hybrid arguments, the reduction loses a factor linear in d.

In Chapter 4.3, we describe how one can obtain a fully homomorphic encryption scheme

(where the public key size does not depend on the maximum number of levels we want to

evaluate) by assuming key-dependent-message (KDM) security, specifically circular-security

– i.e., that one can safely encrypt a E secret key under its associated public key.

43

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 44

Since this critical property of E – that it can compactly evaluate (slight augmenta-

tions of) its own decryption circuit – is self-referential and universal, we give it the obvious

name: bootstrappability. Why should bootstrappability be such a powerful feature? At a

high level, the reason is that bootstrappability allows us periodically to “refresh” ciphertexts

associated to interior nodes in a circuit; we can refresh for an arbitrary number of levels

in the circuit, and thus can evaluate circuits of arbitrary depth. To “refresh” a ciphertext

that encrypts a plaintext π under E public key pki, we re-encrypt it under pki+1 and then

homomorphically apply the decryption circuit to the result, using the secret key ski that is

encrypted under pki+1, thereby obtaining an encryption of π under pki+1. Homomorphi-

cally evaluating the decryption circuit decrypts the inner ciphertext under pki, but within

homomorphic encryption under pki+1. The implicit decryption “refreshes” the ciphertext,

but the plaintext is never revealed; the plaintext is always covered by at least one layer of

encryption. Now that the ciphertext is refreshed, we can “continue” correctly evaluating

the circuit.

To see how this works mathematically, begin by considering the following algorithm,

called Recrypt. For simplicity, suppose the plaintext space P is {0, 1} and DE is a boolean

circuit in CE . Let (sk1, pk1) and (sk2, pk2) be two E key-pairs. Let ψ1 be an encryption of

π ∈ P under pk1. Let sk1j be an encryption of the j-th bit of the first secret key sk1 under

the second public key pk2. Recrypt takes as these things as input, and outputs an encryption

of π under pk2.

Recrypt(pk2, DE , 〈sk1j〉, ψ1).

Set ψ1j
R← EncryptE(pk2, ψ1j) where ψ1j is the j-th bit of ψ1

Set ψ2 ← EvaluateE(pk2, DE , 〈〈sk1j〉, 〈ψ1j〉〉)
Output ψ2

Above, the Evaluate algorithm takes in all of the bits of sk1 and all of the bits of ψ1, each

encrypted under pk2. Then, E is used to evaluate the decryption circuit homomorphically.

The output ψ2 is thus an encryption under pk2 of DecryptE(sk1, ψ1) → π.

Remark 4.1.1. The Recrypt algorithm implies a proxy one-way re-encryption scheme [19].

Roughly speaking, a one-way proxy re-encryption scheme allows the owner of sk1 to generate

a tag that enables an untrusted proxy to convert an encryption of π under pk1 to an

encryption of π under pk2, but not the reverse. In our case, the tag is 〈sk1j〉, the encrypted

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 45

secret key. Strictly speaking, the security model for proxy re-encryption typically requires

the security of the delegator’s secret key, even against a collusion of delegatee’s who also get

to see the delegating tags. However, this requirement seems unnecessary, since a delegatee

will be able to decrypt ciphertexts directed to the delegator anyway.

In the Recrypt algorithm above, the plaintext π is doubly encrypted at one point –

under both pk1 and pk2. Depending on the encryption scheme E , however, this double

encryption might be overkill. Suppose WeakEncryptE is an algorithm such that the image

of WeakEncryptE(pk, π) is always a subset of the image of EncryptE(pk, π). Then we can

replace the first step of RecryptE with:

Set ψ1j
R← WeakEncryptE(pk2, ψ1j) where ψ1j is the j-th bit of ψ1

Let us call this relaxation Recrypt′E . The main point of this relaxation is that WeakEncrypt

does not need to be semantically secure for Recrypt′E to be a secure one-way proxy re-

encryption scheme, or for Recrypt′E to be useful toward bootstrapping (as we will see below).

Thus, depending on E , WeakEncryptE can be very simple – e.g., for some schemes, and in

particular for the ideal-lattice-based scheme that we describe later, WeakEncryptE might

leave the input “bits” entirely unmodified. This will unfortunately not help us much in

terms of making the encryption scheme bootstrappable; essentially, it will add one circuit

level to what E can evaluate. However, it will affect the eventual computational complexity

of our scheme, since it will require less computation to apply the decryption circuit homo-

morphically to ciphertexts in which the outer encryption is weak. Another way of viewing

this relaxation is that we only need to be able to evaluate non-uniform decryption circuits,

where the ciphertext is “hard-wired” into the circuit (making this circuit simpler than the

“normal” decryption circuit that takes the ciphertext (and secret key) as input.

To be bootstrappable, E needs to be able to compactly evaluate not only its decryption

circuit, which merely allows recryptions of the same plaintext, but also slightly augmented

versions of it, so that we can perform binary operations on plaintexts and make actual

progress through a circuit.

Definition 4.1.2 (Augmented Decryption Circuit). Let DE be E ’s decryption circuit, which

takes a secret key and ciphertext as input, each formatted as an element of P`(λ), where P is

the plaintext space. Let Γ be a set of gates with inputs and output in P, which includes the

trivial gate (input and output are the same). We call a circuit composed of multiple copies

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 46

of DE connected by a single g gate (the number of copies equals the number of inputs to g)

a “g-augmented decryption circuit.” We denote the set of g-augmented decryption circuits,

g ∈ Γ, by DE(Γ).

Definition 4.1.3 (Bootstrappable Encryption Scheme). As before, let CE denote the set of

circuits that E can compactly evaluate. We say that E is bootstrappable with respect to Γ if

DE(Γ) ⊆ CE .

For example, if Γ includes the trivial gate and NAND, E is bootstrappable with respect

to Γ if CE contains DE and the circuit formed by joining two copies of DE with a NAND

gate. Remarkably, as we will show, if there is a scheme E that can compactly evaluate only

these two circuits, then there is a scheme that is leveled fully homomorphic.

Remark 4.1.4. We could relax the bootstrappability definition slightly to say that E only

needs to be able to homomorphically evaluate its (augmented) decryption circuit when

the input ciphertext is weakly encrypted, similar to the relaxation Recrypt′E above. But,

this makes the definition of bootstrappable more cumbersome; we will continue with the

definition above, and remind the reader occasionally that the relaxation can be used.

From the informal description above, it should already be somewhat clear how to use

a bootstrappable encryption scheme to construct a leveled fully homomorphic one; below,

we give a more formal description. Let E be bootstrappable with respect to a set of gates

Γ. For any integer d ≥ 1, we use E to construct a scheme E(d) = (KeyGenE(d) , EncryptE(d) ,

EvaluateE(d) , DecryptE(d)) that can handle all circuits of depth d with gates in Γ. Note that

in the description below we encrypt the secret keys in reverse order; the only reason is that

this ordering simplifies our description of the recursion in Evaluate. When we refer to the

level of a wire in C, we mean the level of the gate for which the wire is an input. We use

the notation DE(Γ, δ) to refer to the set of circuits that equal a δ-depth circuit with gates

in Γ augmented by DE (copies of DE become inputs to the δ-depth circuit).

KeyGenE(d)(λ, d). Takes as input a security parameter λ and a positive integer d. For

` = `(λ) as in Definition 4.1.2, it sets

(ski,pki)
R← KeyGenE(λ) for i ∈ [0, d]

skij
R← EncryptE(pki−1, skij) for i ∈ [1, d], j ∈ [1, `]

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 47

where ski1, . . . , ski` is the representation of ski as elements of P. It outputs the secret key

sk(d) ← sk0 and the public key pk(d) ← (〈pki〉, 〈skij〉). Let E(δ) refer to the sub-system that

uses sk(δ) ← sk0 and pk(δ) ← (〈pki〉i∈[0,δ], 〈skij〉i∈[1,δ]) for δ ≤ d.

EncryptE(d)(pk(d), π). Takes as input a public key pk(d) and a plaintext π ∈ P. It outputs a

ciphertext ψ
R← EncryptE(pkd, π).

DecryptE(d)(sk(d), ψ). Takes as input a secret key sk(d) and a ciphertext ψ (which should be

an encryption under pk0). It outputs DecryptE(sk0, ψ).

EvaluateE(δ)(pk(δ), Cδ, Ψδ). Takes as input a public key pk(δ), a circuit Cδ of depth at most

δ with gates in Γ, and a tuple of input ciphertexts Ψδ (where each input ciphertext should

be under pkδ). We assume that each wire in Cδ connects gates at consecutive levels; if not,

add trivial gates to make it so. If δ = 0, it outputs Ψ0 and terminates. Otherwise, it does

the following:

• Sets (C†
δ−1, Ψ

†
δ−1) ← AugmentE(δ)(pk(δ), Cδ,Ψδ).

• Sets (Cδ−1, Ψδ−1) ← ReduceE(δ−1)(pk(δ−1), C†
δ−1, Ψ

†
δ−1).

• Runs EvaluateE(δ−1)(pk(δ−1), Cδ−1, Ψδ−1).

AugmentE(δ)(pk(δ), Cδ,Ψδ). Takes as input a public key pk(δ), a circuit Cδ of depth at most

δ with gates in Γ, and a tuple of input ciphertexts Ψδ (where each input ciphertext should

be under pkδ). It augments Cδ with DE ; call the resulting circuit C†
δ−1. Let Ψ†

δ−1 be

the tuple of ciphertexts formed by replacing each input ciphertext ψ ∈ Ψδ by the tuple

〈〈skδj〉, 〈ψj〉〉, where ψj ← WeakEncryptE(δ−1)(pk(δ−1), ψj) and the ψj ’s form the properly-

formatted representation of ψ as elements of P. It outputs (C†
δ−1, Ψ

†
δ−1).

ReduceE(δ)(pk(δ), C†
δ , Ψ

†
δ). Takes as input a public key pk(δ), a tuple of input ciphertexts

Ψ†
δ (where each input ciphertext should be in the image of EncryptE(δ)), and a circuit C†

δ ∈
DE(Γ, δ + 1). It sets Cδ to be the sub-circuit of C†

δ consisting of the first δ levels. It sets

Ψδ to be the induced input ciphertexts of Cδ, where the ciphertext ψ
(w)
δ associated to wire

w at level δ is set to EvaluateE(pkδ, C
(w)
δ , Ψ(w)

δ), where C
(w)
δ is the sub-circuit of C†

δ with

output wire w, and Ψ(w)
δ are the input ciphertexts for C

(w)
δ . It outputs (Cδ, Ψδ).

High-level review of the Evaluate algorithm. We are given a circuit Cd of, say, d levels

with gates in Γ. For each input wire w of Cd, there is an associated input ciphertext ψw

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 48

encrypted under pkd. We are also given an encryption scheme E that compactly evaluates

circuits in DE(Γ).

Note that we have not assumed that E can evaluate gates in Γ; we have only assumed

it can evaluate gates in Γ that are augmented by the decryption circuit. So, our first step

is to augment Cd by placing copies of DE at the leaves of Cd (as in Augment), thereby

constructing C†
d−1. Now, what are the input ciphertexts for our new circuit C†

d−1?

Reconsider the algorithm Recrypt′E . In Recrypt′E , we begin with a ciphertext ψ1 encrypt-

ing π under pk1 for the single wire w, and an “empty” circuit C1 (since Recrypt′E doesn’t

actually evaluate any gates, it just generates a new encryption of the same plaintext). Our

next step was to augment C1 with the decryption circuit DE to obtain C2 ← DE . The input

ciphertexts Ψ2 to C2 included the encrypted secret key bits, and the weakly encrypted bits

of ψ1. We then showed that the ciphertext generated by ψ2 ← EvaluateE(pk2, C2,Ψ2), which

is also associated to wire w, also encrypts π, but now under pk2.

In the full scheme above, the ciphertexts that we associate to the decryption circuit

that was attached to wire w are analogous to the ones we used in Recrypt′E : the encrypted

secret key (skd under pkd−1), and the re-encryption ciphertexts of ψw under pkd−1. By

the correctness of Recrypt, the ciphertext now associated to w (after performing EvaluateE)

should encrypt the same plaintext as ψw, but now under pkd−1.

The Reduce step simply performs this Evaluate up to the wire w, and one level beyond.

We know that Evaluate can correctly continue one level beyond the wire w, because (by

assumption) E can evaluate not just the decryption circuit attached to w, but can evaluate

a circuit containing one Γ-gate above w. Reduce outputs Cd−1 and ciphertexts associated

to Cd−1’s input wires. We have made progress, since Cd−1 is one level shallower than Cd.

We perform this entire process d− 1 more times to obtain the final output ciphertexts.

Remark 4.1.5. Previously, we said that Evaluate takes as input ciphertexts that are “fresh”

outputs of Encrypt. However, we note EvaluateE(δ) also operates correctly on ciphertexts

output by Evaluate. (For δ < d above, this is precisely what EvaluateE(δ) does.)

4.2 Correctness, Computational Complexity and Security of

the Generic Construction

Here we state and prove some theorems regarding the generic construction. Regarding

correctness, we have the following theorem.

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 49

Theorem 4.2.1. Let E be bootstrappable with respect to a set of gates Γ. Then E(d) com-

pactly evaluates all circuits of depth d with gates in Γ – i.e., if Γ is a universal set of gates,

the family E(d) is leveled fully homomorphic.

Proof. (Theorem 4.2.1) First, we define a convenient notation: let D(δ, w,C,Ψ) denote

the plaintext value for wire w in circuit C induced by the decryptions (under skδ) of the

ciphertexts Ψ associated to C’s input wires. If C is empty (has no gates), then the input

wires are the same as the output wires, and D(δ, w,C,Ψ) just denotes the decryption of the

single ciphertext ψ ∈ Ψ associated to w. To prove correctness, it suffices to show that

D(d,wout, Cd, Ψd) = D(0, wout, C0, Ψ0) (4.1)

for every output wire wout of C0 (at level 0).

First, when (C†
δ−1, Ψ

†
δ−1) ← AugmentE(δ)(pk(δ), Cδ, Ψδ), we claim that D(δ, w,Cδ, Ψδ) =

D(δ−1, w, C†
δ−1, Ψ

†
δ−1) for any wire w at level at most δ−1. This follows from the correctness

of Recrypt (generalized beyond a boolean plaintext space and boolean circuits), and the fact

that circuits Cδ and C†
δ−1 are identical up to level δ − 1.

Next, when (Cδ, Ψδ) ← ReduceE(δ)(pk(δ), C†
δ , Ψ

†
δ), we have D(δ, w, C†

δ , Ψ
†
δ) = D(δ, w,Cδ, Ψδ)

for any wire at level at most δ. This follows from the correctness of EvaluateE over circuits

in DE(Γ), and the fact that circuits C†
δ and Cδ are identical up to level δ.

From these two claims, Equation 4.1 follows.

Note that Γ is arbitrary. For example, each gate in Γ could be a circuit of (ANDs, ORs,

NOTs) of depth m and fan-in 2; for this value of Γ, Theorem 4.2.1 implies the scheme

correctly evaluates boolean circuits up to depth d ·m.

We need to check that the computational complexity of EvaluateE(d) is reasonable – e.g.,

that recursive applications of Augment do not increase the effective circuit size exponentially.

Theorem 4.2.2. For a circuit C of depth at most d and size s (defined here as the number

of wires), the computational complexity of applying EvaluateE(d) to C is dominated by at

most s · ` · d applications of WeakEncryptE and at most s · d applications of EvaluateE to

circuits in DE(Γ), where ` is as in Definition 4.1.2.

Proof. (Theorem 4.2.2) There is a pre-processing step to ensure that all wires in the circuit

connect gates at consecutive levels; clearly, this step increases the number of wires in the

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 50

circuit by at most a multiplicative factor of d. It remains to prove that, for the pre-processed

circuit, the computational complexity is dominated by at most s′ · ` applications of Encrypt

and at most s′ applications of EvaluateE to circuits in DE(Γ), where s′ is the size of the

pre-processed circuit.

The complexity of AugmentE(δ)(pk(δ), Cδ, Ψδ) is dominated by replacing each ciphertext

ψ ∈ Ψδ by the ciphertexts 〈〈skδj〉, 〈ψj〉〉; generating the 〈ψj〉’s involves |Wδ| · ` applications

of WeakEncryptE , where Wδ is the set of wires at level δ. Summing over all δ, there are at

most s′ · ` applications of WeakEncryptE .

The complexity of ReduceE(δ)(pk(δ), C†
δ , Ψ

†
δ) is dominated by the evaluation of C

(w)
δ for

each w ∈ Wδ, which involves |Wδ| applications of EvaluateE to circuits in DE(Γ). Summing

over all δ, there are at most s′ such applications. The theorem follows.

Finally, assuming the semantic security of E , we prove the semantic security of E(d).

Theorem 4.2.3. Let A be an algorithm that (t, ε)-breaks the semantic security of E(d).

Then, there is an algorithm B that (t′, ε′)-breaks the semantic security of E for t′ ≈ t · ` and

ε′ ≥ ε/`(d + 1), for ` as in Definition 4.1.2.

Proof. (Theorem 4.2.3) Let (E)` be equivalent to E , but with plaintext space P≤`, where

Encrypt(E)` involves up to ` invocations of E and a concatenation of the results. We use a

hybrid argument to show that B (t′′, ε′′)-breaks the semantic security of (E)` for t′′ ≈ t and

ε′′ ≥ ε/(d + 1), from which the result follows.

For k ∈ [0, d], let Game k denote a game against E(d) in which everything is exactly as

in the real-world game, except that for all i ∈ [1, k] the challenger sets

(sk′i, pk′i)
R← KeyGenE(λ) and skij

R← EncryptE(pki−1, sk
′
ij)

In other words, for i ∈ [1, k], skij is the encryption (under pki−1) of the j-th bit of a

random secret key sk′i unrelated to ski. Game d + 1 is identical to Game d, except that

the challenger ignores b and (π0, π1), generates a random plaintext π of the appropriate

length, and encrypts π to construct the challenge ciphertext. Let εk denote the adversary’s

advantage in Game k.

Since Game 0 is identical to the real world attack, the adversary’s advantage is ε by

assumption. Also, εd+1 = 0, since the challenge is independent of b. Consequently, for some

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 51

k ∈ [0, d], it must hold that |εk − εk+1| ≥ ε/(d + 1); fix this value of k.

B uses A to break (E)` as follows. B receives from the challenger a public key pk.

B generates the secret and public values exactly as in Game k, except that it replaces its

original value of pkk with pk. Also, if k < d, it generates a dummy key pair (sk′k+1, pk′k+1)
R←

KeyGenE(λ), sets π0 ← skk+1 and π1 ← sk′k+1, and requests a challenge ciphertext (under

pk) encrypting either π0, π1 ∈ P`. The challenger generates β
R← {0, 1} and sends a tuple of

ciphertexts 〈ψj〉 encrypting the bits 〈πβj〉. B replaces its original tuple 〈sk(k+1)j〉 with the

tuple 〈ψj〉. One can verify that the public values are generated exactly as in Game k + β.

B sends the public values to A.

Eventually, A requests a challenge ciphertext on π0 or π1. B sets b
R← {0, 1}. If k < d,

B sends the values ψj
R← EncryptE(pkd, πbj). If k = d, B generates random π

R← P and asks

the challenger for a challenge ciphertext on πb or π. The challenger generates β
R← {0, 1}

and encrypts πb or π accordingly, and B forwards the challenge to A. A sends a bit b′. B
sends bit β′ ← b⊕ b′ to the challenger. One can verify that the challenge is generated as in

Game k + β.

Since B’s simulation has the same distribution as Game k + β, and the probability that

B outputs 0 is εk+β. The result follows.

4.3 Fully Homomorphic Encryption from KDM-Secure Boot-

strappable Encryption

The length of the public key in E(d) is proportional to d (the depth of the circuits that can

be evaluated). It would be preferable to have a construction E∗ where the public key size

is completely independent of the circuit depth, a construction that is fully homomorphic

rather than merely leveled fully homomorphic. Here is the obvious way to make the public

key pk∗ of E∗ short: for E key pair (sk, pk), pk∗ includes only pk and (the “bits” of) sk

encrypted under pk. In other words, we have a cycle (in fact, a self-loop in this example)

of encrypted secret keys rather than an acyclic chain. It is clear that E∗ is correct: the

recursive algorithm EvaluateE∗ works as before, except that the implicit recryptions generate

“refreshed” ciphertexts under the same public key.

Why didn’t we present this construction in the first place? Using an acyclic chain of

encrypted secret keys allowed us to base the security of E(d) on E using a hybrid argument;

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 52

this hybrid argument breaks down when there is a cycle. In general, a semantically secure

encryption scheme is not guaranteed to be KDM-secure – i.e., secure when the adversary

can request the encryptions of key-dependent messages, such as the secret key itself. Typ-

ically, when we prove an encryption scheme semantically secure, there is not an obvious

attack when the adversary is given the encryption of a key-dependent message. However,

KDM-security is highly nontrivial to prove. The problem is precisely that the usual hybrid

argument breaks down.

Remark 4.3.1. Canetti [27] proposed the acyclic, leveled approach as a way to remove

the need for KDM-security. Our initial approach had actually been to use E∗ (with the

self-loop), and assume, or try to prove, KDM-security.

Let us review (a restriction of) the definition of KDM-security. We will say a scheme E is

KDM-secure if all polynomial-time adversaries A have negligible advantage in the following

KDM-security game.

KDM-Security Game.

Setup(λ, n). The challenger sets (ski, pki)
R← KeyGen(λ) for i ∈ [0, n − 1] for integer n =

poly(λ). It chooses a random bit b
R← {0, 1}. If b = 0, then for i ∈ [0, n− 1] and j ∈ [1, `],

it sets skij
R← EncryptE(pk(i−1) mod n, skij), where skij is the jth “bit” of ski. If b = 1, it

generates the skij values as encryptions of random secret keys, unrelated to pk0, . . . , pkn−1.

It sends the public keys and encrypted secret keys to A.

Challenge and Guess. Basically as in the semantic security game.

This definition of KDM-security is a restriction of the general setting [18, 68, 22], where

A can select multiple functions f , and request the encryption of f(sk0, . . . , skn−1). However,

when E is a bootstrappable encryption scheme, A can use the cycle of encrypted secret keys

in our game to generate the encryption of f(sk0, . . . , skn−1) under any pki, as long as f can

be computed in polynomial time. Hence, we only need to consider our restricted setting

[65]. We have the following theorem.

Theorem 4.3.2. Suppose E is KDM-secure and also bootstrappable with respect to a uni-

versal set of gates Γ. Then, E∗, obtained from E as described above (with the self-loop), is

semantically secure (and fully homomorphic).

The theorem is a straightforward consequence of the fact that, from any loop of public

keys and encrypted secret keys that includes (pk0, sk0), one can compute an encryption of

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 53

sk0 under pk0. There does not seem to be any advantage in having pk∗ contain any cycle

of encrypted secret keys other than a self-loop.

Absent proof of KDM-security in the plain model, one way to obtain fully homomorphic

encryption from bootstrappable encryption is simply to assume that the underlying boot-

strappable encryption scheme is also KDM-secure. This assumption, though unsatisfying,

does not seem completely outlandish. While an encrypted secret key is very useful in a

bootstrappable encryption scheme – indeed, one may view this as the essence of bootstrap-

pability – we do not see any actual attack on a bootstrappable encryption scheme that

provides a self-encrypted key.

4.4 Fully Homomorphic Encryption from Bootstrappable En-

cryption in the Random Oracle Model

Above, we constructed a fully homomorphic encryption E∗ from a bootstrappable encryp-

tion scheme E basically by adding a “self-loop” – a E secret key sk encrypted under its

corresponding public key pk – to the E∗ public key pk∗. We showed that E∗ should inherit

the semantic security of E , under the assumption that E is KDM-secure – in particular,

under the assumption that it is “safe” to reveal a direct encryption of a secret key un-

der its own public key (as opposed to some possibly-less-revealing non-identity function of

the secret key). Can we provide any evidence that E∗ is semantically secure without this

assumption?

Here we provide some evidence in the random oracle model. First, given a leveled fully

homomorphic scheme E(d) and a hash function, we define an intermediate scheme E(d)†.

E(d)† is the same as E(d), except for the following. The public key includes a hash function

H : P`′ → P`. Also, in KeyGen, one generates r
R← P`′ , sets rj

R← EncryptE(d)(pk(d), rj)

for j ∈ [1, `′], sets σ ← H(r) ? sk0, and includes (〈rj〉, σ) in the public key. (Assume ? is

some invertible operation such that a ? b would completely hide b ∈ P` if a ∈ P` were a

one-time pad.) In other words, the E(d)† public key includes some additional information:

an encryption of the the secret key sk0, where the encryption uses a hash function that will

be treated as a random oracle in the security analysis.

Next, we prove the following theorems.

Theorem 4.4.1. If E(d) is semantically secure, then E(d)† is semantically secure in the

random oracle model.

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 54

Theorem 4.4.2. Suppose E is leveled circuit-private (in addition to being bootstrappable)

and let E(d)† and E∗ be constructed from E as described above. Then, if E(d)† is semantically

secure (in the plain model), and the circuit required to compute the hash function H and

invert the ? operation is at most d levels, then E∗ is semantically secure.

The result here should be quite surprising. The scheme E∗ does not even contain a hash

function, and yet we are basically claiming that it is secure in the random oracle model!

This is the first instance that we are aware of where one scheme is proven secure in the

random oracle model, and then a second scheme’s security is based on the first scheme, even

though the second scheme does not use a hash function.

How is this possible? First, let us consider Theorem 4.4.1. This theorem basically

just states the previously known result [18] that it is easy to construct a KDM-secure

encryption scheme in the random oracle model. This is because the random oracle allows

the reduction to construct a “fake” ciphertext purportedly encrypting the secret key, such

that the adversary finds out that it was fake only after it has queried the random oracle;

this query gives the reduction all of the information that it needs to solve the underlying

problem. In our particular case, E(d)† has a loop among (sk0, pk0), . . . , (skd, pkd), because

E(d) reveals direct encryptions of ski under pki−1 for i ∈ [1, d], and E(d)† also reveals an

indirect encryption (〈rj〉, σ) of sk0 under pkd (“indirect,” because encryption in E does not

normally use a hash function). However, the reduction algorithm in the proof of Theorem

4.4.1 will construct σ simply as a random string – i.e., it does not actually need to know

anything about sk0.

Theorem 4.4.2 is perhaps the more surprising result. But the result is actually a simple

consequence of the fact that: given a correctly constructed E(d)† public key, the reduction

algorithm can generate an E-encryption of sk0 under pk0, as needed for the E∗ public

key. How do we generate the latter ciphertext? The reduction algorithm is given 〈rj〉,
an encryption of r under pkd. It simply uses the leveled homomorphism and the circuit

corresponding to the hash function H to compute a ciphertext that encrypts H(r) from the

ciphertext that encrypts r. Then, given that ciphertext and the value of σ = H(r) ? sk0,

it computes a ciphertext that encrypts sk0 in the natural way – i.e., directly, rather than

with the hash function. We assumed that the hash function H and the ? operation can be

computed with a circuit of depth at most d; therefore, our leveled homomorphic scheme E(d)

has enough levels to evaluate this circuit. Consequently, we obtain a “natural” encryption

of sk0 (i.e., under E) under some public key pki for i ≥ 0, and we can use Recrypt operations

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 55

to obtain a natural encryption of sk0 under pk0. This ciphertext is an output of EvaluateE ,

but circuit privacy guarantees that the ciphertext is distributed as if it were output directly

by EncryptE .

Remark 4.4.3. Although one can view (〈rj〉, σ) as an “encryption” of sk0, this “encryption”

function is not the usual encryption function and it might have a very complex decryption

circuit, much more complex than DE . In particular, we cannot assume that its decryption

circuit is in CE . This why we needed many (d) levels in the leveled scheme to recover sk0,

and could not immediately use a self-loop from the outset.

So, if E∗ is secure in the random oracle model despite not using a hash function, does that

imply that it is secure in the plain model? Certainly not. The obstacle to this conclusion is

obviously that random oracles cannot be instantiated in general [28]. A bit more specifically,

however, the obstacle is that the proof of Theorem 4.4.2 depends crucially on the correctness

of the ciphertext (〈rj〉, σ) in E(d)† to construct (homomorphically) an encryption of sk0 under

pk0 as needed for the E∗ public key; however, in the proof of Theorem 4.4.1 the ciphertext

is not correct (except with negligible probability): the adversary finds out that it was fake

only after it has queried r to the random oracle, giving the reduction all the information it

needs.

Proof. (Theorem 4.4.1) Let A be an algorithm that attacks the semantic security of E(d)†;

from A, we construct an algorithm B that attacks the semantic security of E(d). B will

actually request `′ + 1 challenge ciphertexts; thus, the reduction loses a factor of `′ + 1

under the usual hybrid argument.

The challenger gives B a E(d) public key. It also sets a bit b
R← {0, 1}. B selects

two messages r(0), r(1) ∈ P`′ and sends them to the challenger. The challenger sets Ψ R←
{Encrypt(pkd, r

(b)
j) : j ∈ [1, `′]} and sends back Ψ. The following is included in the public

key that B sends to A: the public key for E(d) sent by the challenger, the set of ciphertexts

Ψ, and σ
R← P`.

A requests a challenge ciphertext on one π0, π1 ∈ P. B forwards the query to the

challenger, who responds with a ciphertext encrypting πb, which B forwards to A.

Eventually, either A queries some r′ ∈ {r(0), r(1)} to the random oracle, or A finishes

with a guess b′. In the former case, B sets b′ so that r′ = r(b′). In either case, B sends b′ as

its guess to the challenger.

CHAPTER 4. BOOTSTRAPPABLE ENCRYPTION 56

Let p be the probability that A queries some r′ ∈ {r(0), r(1)} to the random oracle. B’s

simulation appears perfect to A if it does not query some r′ ∈ {r(0), r(1)}; in this case, which

occurs with probability 1 − p, A’s advantage is at least ε. Since A’s view is independent

of r(1−b), the probability that it queries r(b) to the random oracle is at least p − qH/|P|`′ ,
where qH is the number of random oracle queries make by A. Overall B’s advantage in

guessing b′ is at least (1− p)ε + p− qH/|P|`′ ≥ ε− qH/|P|`′ .

Proof. (Theorem 4.4.2) The proof is essentially a simple consequence of the fact that, given

a public key for E(d)†, it is easy to generate the public key for E∗ homomorphically.

Let A be an algorithm that breaks the semantic security of E∗. We use A to construct

an algorithm B that breaks the semantic security of E(d)†.

B receives a E(d)† public key from the challenger. This public key consists of 〈pki〉i∈[0,δ],

〈skij〉i∈[1,δ], 〈rj〉j∈[1,`′], and σ = H(r) ? sk0. From 〈rj〉, B uses the homomorphism of E(d) to

compute ciphertexts Ψ that encrypt H(r). It encrypts σ, and then uses the homomorphism

to recover to obtain an encryption of sk0 from the encryptions of H(r) and σ (inverting

the ? operation). By assumption, these homomorphic operations take at most d levels. If

it takes only δ < d levels, and we obtain an encryption of sk0 under pkd−δ, then we can

perform Recrypt operations until we have the desired encryption of sk0 under pk0. By circuit

privacy, this ciphertext is distributed properly. B includes the encryption of sk0 under pk0

as the encrypted secret key contained in the public key for E∗ that it provides to A.

A requests a challenge ciphertext on one π0, π1 ∈ P. B forwards the query to the

challenger, who responds with a ciphertext encrypting πb. B uses Recrypt operations to

obtain an encryption of πb under pk0 and forwards the result to A. A sends a guess b′,

which B forwards to the challenger.

Clearly, B’s advantage is the same as A’s.

Chapter 5

An Abstract Scheme Based on the

Ideal Coset Problem

Our goal now is to construct a bootstrappable encryption scheme, a scheme that can ho-

momorphically evaluate a rich set of circuits that includes its own decryption circuit, “plus

some.” In the past, attempts to construct fully homomorphic encryption have focused solely

on maximizing the complexity of the circuits that the scheme can evaluate. Our notion of

bootstrapability gives us a different way of attacking the problem – by minimizing the

complexity of the scheme’s decryption circuit.

Our strategy for minimizing the circuit complexity of decryption is to construct our

scheme using ideal lattices, since decryption in lattice-based cryptosystems is typically dom-

inated by a simple operation, such as an easily parallelizable matrix-vector multiplication

(in contrast to, say, RSA, where decryption involves exponentiation, an operation not even

known to be in NC). We begin describing the ideal-lattice-based scheme in Chapter 7, after

providing some basic background on ideal lattices in Chapter 6.

In this Chapter, we describe our strategy for maximizing the “evaluative capacity” of

the scheme abstractly, without reference to lattices. Generally speaking, our exposition

strategy throughout the paper is to defer technical lattice details for as long as possible.

One reason is to make the presentation more modular, and therefore easier to understand.

Another reason is that some of our techniques – e.g., bootstrapping, and using techniques

from server-aided cryptography to “squash the decryption circuit” – maybe applicable to

schemes that use different underlying mathematics – e.g., linear codes, or something less

similar to lattices.

57

CHAPTER 5. AN ABSTRACT SCHEME BASED ON THE IDEAL COSET PROBLEM58

5.1 The Ideal Coset Problem

We saw in Chapter 3 that many previous homomorphic encryption schemes base security

on some ideal membership problem (IMP). For example, in the “Polly Cracker” scheme by

Fellows and Koblitz [44], the public key consists of some multivariate polynomials that gen-

erate the ideal I of polynomials having a common root x, and π is encrypted by outputting

a sample ψ
R← π + I. One can easily see that this is semantically secure if it is hard to

distinguish membership in I – in particular, deciding whether ψ−π ∈ I. Unfortunately, one

can also see that homomorphic operations, especially multiplication, expand the ciphertext

size potentially exponentially in the depth.

Since we will ultimately use lattices, we apparently need a different abstract approach,

since it is easy to distinguish membership in a lattice L: given a basis B of L and t ∈ Rn,

one simply determines whether t mod B = 0 mod B. Instead, we base security on an ideal

coset problem (ICP), which we will state abstractly in terms of rings and ideals. Recall that

a ring R is an algebraic object that is closed under addition ‘+’ and multiplication ‘×’ and

additive inverse, with an additive identity ‘0’ and multiplicative identity ‘1’. An ideal I of

a ring R is a subset satisfying a + b ∈ I and r × a ∈ I for all a, b ∈ I and r ∈ R. The sum

and product of two ideals I and J are, respectively, {i + j : i ∈ I, j ∈ J} and the additive

closure of {i× j : i ∈ I, j ∈ J}. Two ideals I and J are relatively prime if I + J = R. For

example, if R = Z, the ideals (2) (the even integers) and (5) (the integers divisible by 5)

are relatively prime: (2) + (5) = (1).

Now, the ideal coset problem (ICP) is as follows.

Definition 5.1.1 (Ideal Coset Problem (ICP)). Fix R, BI , algorithm IdealGen, and an al-

gorithm Samp1 that efficiently samples R. The challenger sets b
R← {0, 1} and (Bsk

J ,Bpk
J) R←

IdealGen(R,BI). If b = 0, it sets r R← Samp1(R) and t ← r mod Bpk
J . If b = 1, it samples t

uniformly from R mod Bpk
J . The problem: guess b given (t,Bpk

J).

Basically the ICP asks one to decide whether t is uniform modulo J , or whether it was

chosen according to a known “clumpier” distribution induced by Samp1. Of course, the

ICP will be impossible if Samp1 also samples uniformly modulo J , but the security of our

encryption scheme will rely on the ICP being hard for a “clumpier” instantiation of Samp1;

the hardness of the problem depends on the particular instantiation of Samp1. Note that it

is possible for the ICP to be hard even when the IMP is easy.

CHAPTER 5. AN ABSTRACT SCHEME BASED ON THE IDEAL COSET PROBLEM59

5.2 An Abstract Scheme

We start by describing our initial attempt simply in terms of rings and ideals; we bring in

ideal lattices later. In our initial scheme E , we use a fixed ring R that is set appropriately

according to a security parameter λ. We also use a fixed basis BI of a ideal I ⊂ R, and

an algorithm IdealGen(R,BI) that outputs public and secret bases Bpk
J and Bsk

J of some

(variable) ideal J , such that I + J = R – i.e., I and J are relatively prime. We assume

that if t ∈ R and BM is a basis for ideal M ⊂ R, then the value t mod BM is unique

and can be computed efficiently – i.e., the coset t+ M has a unique, efficiently-computable

“distinguished representative” with respect to the basis BM . We use the notation R mod

BM to denote the set of distinguished representatives of r + M over r ∈ R, with respect to

the particular basis BM of M . We also use an algorithm Samp(BI ,x) that samples from

the coset x + I.

In the scheme, Evaluate takes as input a circuit C whose gates perform operations

modulo BI . For example, an AddBI
gate in C takes two terms in R mod BI , and outputs

a third term in R mod BI , which equals the sum of the first two terms modulo I.

KeyGen(R,BI). Takes as input a ring R and basis BI of I. It sets (Bsk
J ,Bpk

J) R← IdealGen(R,BI).

The plaintext space P is (a subset of) R mod BI . The public key pk includes R, BI , Bpk
J ,

and Samp. The secret key sk also includes Bsk
J .

Encrypt(pk, π). Takes as input the public key pk and plaintext π ∈ P. It sets ψ′ ←
Samp(BI , π) and outputs ψ ← ψ′ mod Bpk

J .

Decrypt(sk, ψ). Takes as input the secret key sk and a ciphertext ψ. It outputs

π ← (ψ mod Bsk
J) mod BI

Evaluate(pk, C,Ψ). Takes as input the public key pk, a circuit C in some permitted set CE
of circuits composed of AddBI

and MultBI
gates and a set of input ciphertexts Ψ. It invokes

Add and Mult, given below, in the proper sequence to compute the output ciphertext ψ.

(We will describe CE when we consider correctness below. If desired, one could use different

arithmetic gates.)

Add(pk, ψ1, ψ2). Outputs ψ1 + ψ2 mod Bpk
J .

Mult(pk, ψ1, ψ2). Outputs ψ1 × ψ2 mod Bpk
J .

CHAPTER 5. AN ABSTRACT SCHEME BASED ON THE IDEAL COSET PROBLEM60

Remark 5.2.1. Concerning IdealGen, it is fine if the secret basis Bsk
J defines a lattice L(Bsk

J)

for a (possibly fractional) ideal that contains J , rather than being exactly J .

Now, let us consider correctness, which is a highly nontrivial issue in this paper. The

following definitions provide structure for our analysis.

To begin, we observe that the scheme is actually using two different circuits. First,

Evaluate takes a mod-BI circuit C as input. This circuit is implicitly applied to plaintexts.

Second, Evaluate applies a circuit related to C, which we call the generalized circuit, to the

ciphertexts; this circuit uses the ring operations (not modulo I).

Definition 5.2.2 (Generalized Circuit). Let C be a mod-BI circuit. We say generalized

circuit g(C) of C is the circuit formed by replacing C’s AddBI
and MultBI

operations with

addition ‘+’ and multiplication ‘×’ in the ring R.

Here are a few more definitions relevant to Theorem 5.2.6 below, which concerns cor-

rectness.

Definition 5.2.3 (XEnc and XDec). Let XEnc be the image of Samp. Notice that all cipher-

texts output by Encrypt are in XEnc+J . Let XDec equal R mod Bsk
J , the set of distinguished

representatives of cosets of J wrt the secret basis Bsk
J .

Definition 5.2.4 (Permitted Circuits). Let

CE ′ = {C : ∀(x1, . . . , xt) ∈ XEnc
t, g(C)(x1, . . . , xt) ∈ XDec}

In other words, CE ′ is the set of mod-BI circuits that, when generalized, the output is always

in XDec if the inputs are in XEnc. (The value t will of course depend on C.) If CE ⊆ CE ′, we

say that CE is a set of permitted circuits.

Definition 5.2.5 (Valid Ciphertext). ψ is a valid ciphertext wrt E public key pk and

permitted circuits CE if it equals Evaluate(pk, C,Ψ) for some C ∈ CE , where each ψ ∈ Ψ is

in the image of Encrypt. The circuit C may be the identity circuit, in which case the output

of Evaluate is simply an output of Encrypt.

Finally, we prove correctness with respect to CE .

Theorem 5.2.6. Assume CE is a set of permitted circuits containing the identity circuit.

E is correct for CE – i.e., Decrypt correctly decrypts valid ciphertexts.

CHAPTER 5. AN ABSTRACT SCHEME BASED ON THE IDEAL COSET PROBLEM61

Proof. For ciphertexts Ψ = {ψ1, . . . , ψt}, ψk = πk + ik + jk, where πk ∈ P, ik ∈ I, jk ∈ J ,

and πk + ik ∈ XEnc, we have

Evaluate(pk, C,Ψ) = g(C)(Ψ) mod Bpk
J ∈ g(C)(π1 + i1, . . . , πt + it) + J

If C ∈ CE , we have g(C)(XEnc, . . . , XEnc) ∈ XDec and therefore

Decrypt(sk, Evaluate(pk, C,Ψ)) = g(C)(π1 + i1, . . . , πt + it) mod BI

= g(C)(π1, . . . , πt) mod BI

= C(π1, . . . , πt)

as required.

The bottom line is that we have proven that E is correct for permitted circuits, and our

goal now is to maximize this set. The permitted circuits are defined somewhat indirectly;

they are the circuits for which the “error” g(C)(x1, . . . , xt) of the output ciphertext is small

(i.e., lies inside XDec) when the input ciphertexts are in the image of EncryptE . When we

begin to instantiate the abstract scheme with lattices and give geometric interpretations of

XEnc and XDec, the problem of maximizing CE will have a geometric flavor.

Again, we note the rather confusing fact that C “automatically” reduces the result

modulo BI , since it uses mod-BI gates. It does not particularly matter how these mod-BI

gates are implemented; in particular, it is more confusing than helpful to imagine a boolean

implementation of these gates. Instead, one should just observe that the generalized circuit

manages to lazily emulate these gates, reducing its output modulo BI at the end of the

computation. C’s mod-BI operations are never actually “implemented;” they only occur

implicitly. Later, when we consider whether our scheme is bootstrappable, and analyze

the depth of the decryption circuit in terms of mod-BI gates, it will again be tempting

to consider how these gates are “implemented.” But in fact these gates are “given” in the

sense that they are emulated (without any intermediate reduction steps) by the usual ring

operations.

CHAPTER 5. AN ABSTRACT SCHEME BASED ON THE IDEAL COSET PROBLEM62

5.3 Security of the Abstract Scheme

For the following abstract “instantiation” of Samp, and where I is a principle ideal generated

by some s ∈ R (and s is encoded in BI), we provide a simple proof of semantic security

based on the ICP.

Samp(BI ,x). Run r R← Samp1(R). Output x + r× s.

Obviously, the output is in x + I since s ∈ I.

Theorem 5.3.1. Suppose that there is an algorithm A that breaks the semantic security of

E with advantage ε when it uses Samp. Then, there is an algorithm B, running in about the

same time as A, that solves the ICP with advantage ε/2.

Proof. The challenger sends B a ICP instance (t,Bpk
J). B sets s, and sets the other compo-

nents of pk in the obvious way using the ICP instance. When A requests a challenge cipher-

text on one of π0, π1 ∈ P, B sets a bit β
R← {0, 1} and sends back ψ ← πβ + t× s mod Bpk

J .

A sends back a guess β′, and B guesses b′ ← β ⊕ β′.

If b = 0, we claim that B’s simulation is perfect; in particular, the challenge ciphertext

has the correct distribution. When b = 0, we have that t = r + j, where r was chosen

according to Samp1 and j ∈ J . So, ψ ← πβ + t× s = πβ + r× s mod Bpk
J ; the ciphertext is

thus well-formed. In this caseA should have advantage ε, which translates into an advantage

of ε for B.

If b = 1, then t is uniformly random modulo J . Since the ideal I = (s) is relatively

prime to J , t×s is uniformly random modulo J , and consequently ψ is a uniformly random

element of R mod Bpk
J that is independent of β. In this case A’s advantage is 0. Overall,

B’s advantage is ε/2.

Chapter 6

Background on Ideal Lattices I:

The Basics

From the abstract construction in Chapter 5, among the objects that we need to make

concrete are: the ring R, the ideals I and J , how to compute t mod BM , the algorithms

Samp and IdealGen, and a concrete version of the ICP. In this Chapter, we provide some

basic background material needed to instantiate these things while using ideal lattices.

Later, we will provide more background on ideal lattices as needed.

6.1 Basic Background on Lattices

Let R denote the real numbers, and Z the integers. We write vectors in column form using

bold lower-case letters, e.g. v; We write matrices as bold capital letters, e.g., B; bi is the

ith column. We use ‖v‖ to denote the Euclidean length of a vector v. For matrix B, we

use ‖B‖ to denote the length of the longest column vector in B.

An n-dimensional lattice of rank k ≤ n is

L = L(B) =
{
Bc : c ∈ Zk

}
,B ∈ Rn×k

where the k columns b1, . . . ,bk ∈ Rn of the basis are linearly independent. All lattices in

this paper are full rank – i.e., k = n. Usually lattices in this paper are sub-lattices of Zn –

i.e., the lattice vectors have integer coefficients.

Every lattice has an infinite number of lattice bases. If B1 and B2 are two lattice

63

CHAPTER 6. BACKGROUND ON IDEAL LATTICES I: THE BASICS 64

bases of L, then there is some matrix U that is unimodular (i.e., U has integer entries and

det(U) = ±1) satisfying B1 · U = B2. Since U is unimodular, | det(Bi)| is invariant for

different bases of L. Since it is invariant, we may refer to det(L). This value is precisely

the size of the quotient group Zn/L if L is an integer lattice.

To basis B of lattice L we associate the half-open parallelepiped P(B) ← {∑n
i=1 xibi :

xi ∈ [−1/2, 1/2)}. The volume of P(B) is precisely det(L).

Informally, we say that some bases of L are “good” and some are “bad;” a basis B of L

is “good,” roughly speaking, if the vectors of B are reasonably short and nearly orthogonal.

Of course, for any basis B = {b1, . . . ,bn}, it must hold that
∏n

i=1 ‖bi‖ ≥ det(L); roughly

speaking, good bases come closer to reaching equality than bad ones.

For t ∈ Rn, we use t mod B to denote the unique vector t′ ∈ P(B) such that t− t′ ∈ L.

Given t and B, t mod B can be computed efficiently as t−B · bB−1 · te, where b·e rounds

the coefficients of a vector to the nearest integer. Let dist(L, t) denote minv∈L{‖t − v‖}.
Clearly, for any basis B, ‖t mod B‖ ≥ dist(L, t), though again (roughly speaking) “good”

bases come closer to equality.

In some sense, the worst basis of a lattice L is its unique upper-triangular Hermite

normal form HNF(L). Given any basis B of L, one can compute HNF(L) efficiently – i.e.,

in time poly(n, log ‖B‖). Thus, HNF(L) does not “reveal” more about L’s structure than

any other basis, making HNF(L) a good choice for the public lattice basis to be included

in a public key [97].

The dual lattice of L, denoted L∗, is defined as L∗ = {x ∈ span(L) : ∀v ∈ L, 〈x,v〉 ∈ Z}.
It holds that det(L) · det(L∗) = 1. If B is a basis for the full-rank lattice L, then (B−1)T

(the inverse transpose of B) is a basis of L∗.

The ith successive minimum λi(L) is the smallest radius r such that L contains at least

i linearly independent vectors of norm at most r. In particular λ1(L) is the length of the

shortest nonzero vector in L. A very good basis may have some of these very short vectors.

The two most well-known lattices problems are the shortest vector problem (SVP) and

closest vector problem (CVP). Here are their approximate versions.

Definition 6.1.1 (γ(n)-Shortest Vector Problem (SVP)). Given a basis for a lattice L of

dimension n, output a nonzero vector v ∈ L of length at most γ(n) · λ1(L).

Definition 6.1.2 (γ(n)-Closest Vector Problem (CVP)). Given a basis for a lattice L of

dimension n and a vector t ∈ Rn, output a nonzero vector v ∈ L such that ‖t − v‖ ≤
γ(n) · dist(L, t).

CHAPTER 6. BACKGROUND ON IDEAL LATTICES I: THE BASICS 65

A close variant of the SVP is the shortest independent vector problem (SIVP), defined

as follows.

Definition 6.1.3 (γ(n)-Shortest Independent Vector Problem (SIVP)). Like the SVP, ex-

cept one outputs linearly independent v1, . . . ,vn ∈ L, all of length at most γ(n) · λn(L).

In a variant of the CVP, one is given the promise that the closest L-vector to t is much

closer than any other – e.g., by a factor of γ(n).

Definition 6.1.4 (γ(n)-Bounded Distance Decoding Problem (BDDP)). Same as γ(n)-

CVP, but with the promise that there is a unique solution – i.e., (γ(n)+1)·dist(L, t) < λ1(L).

In other words, the BDDP is the CVP under the promise that t is very close to the

lattice L, and that in fact the solution v is unique. The solution is unique, since if ‖t−v‖ <

λ1(L)/(γ(n)+1), then ‖t−w‖ ≥ ‖v−w‖−‖t−v‖ > λ1(L)·γ(n)/(γ(n)+1) > γ(n)·dist(L, t)

for all w ∈ L\{v}. This definition of the BDDP is non-standard, in the sense that in γ(n)-

BDDP, γ(n) is typically defined to be an upper bound on the ratio dist(L, t)/λ1(L), whereas

we prefer (essentially) to define it to be a lower-bound on λ1(L)/dist(L, t), since (in our

formulation) the problem becomes easier as γ(n) becomes larger (as in γ(n)-SVP, γ(n)-CVP,

and γ(n)-SIVP).

Aside from BDDP, the above problems are known to be NP-hard for very small ap-

proximation factors. For all of these problems, the best polynomial-time approximation

algorithms are variants of the lattice reduction algorithm LLL by Lenstra et al. [81] or

Babai’s nearest plane algorithm [13]; these algorithms only work for essentially-exponential

(e.g., 2O(n(log log n)/ log n) [5]) approximation factors. As a rough rule of thumb, approxi-

mating these lattice problems to within a factor of 2k takes time about 2n/k, using known

algorithms [123].

6.2 Basic Background on Ideal Lattices

To our knowledge, the first use of ideal lattices in cryptography was the NTRU cryptosystem

by Hoffstein et al. [69],1 though the connection to lattices was made explicit later in

cryptanalysis [34, 93, 47]. None of this cryptanalysis has broken the core average-case

problem underlying the scheme. NTRU’s main selling point is efficiency; encryption and
1Strictly speaking, NTRU’s lattice has a 2n × 2n basis, where each n × n quadrant generates an ideal

lattice.

CHAPTER 6. BACKGROUND ON IDEAL LATTICES I: THE BASICS 66

decryption very fast – much faster than RSA, for example – since the operations involved

are simple (multiplications in the ring Zq[x]/(xn − 1) for small integer q), and since n can

be reasonably small (several hundreds) since the best known lattice attacks on NTRU take

time essentially exponential in n.

Recent cryptography involving ideal lattices [98, 111, 112, 88, 99] is typically framed

immediately with reference to Ajtai’s worst-case / average-case connection. In these works,

they have been used to construct, for example, hash functions and signature schemes.

Our construction will use the polynomial ring R = Z[x]/(f(x)), where f(x) is a monic

polynomial of degree n. We view an element v ∈ R both as a ring element and as a vector –

specifically, the coefficient vector v ∈ Zn. The ideal (v) generated by v directly corresponds

to the lattice generated by the column vectors {vi ← v × xi mod f(x) : i ∈ [0, n − 1]}; we

call this the rotation basis of the ideal lattice (v). Specifically, any w ∈ (v) is in the lattice

generated by the rotation basis {vi}, since there must be some a for which w = v× a, and

then w =
∑

i aivi. Conversely, if w is in the lattice generated by {vi}, then w =
∑

i aivi

for some integers {ai}, which implies that w = v×a in the ring R, where a =
∑

i ai ·xi. In

general, the rotation basis for the product of two elements a,b ∈ Q[x]/(f(x)) is the rotation

basis of a×b. Also the matrix-vector product of a rotation basis a with the vector b is the

vector a× b.

Generally speaking, an ideal I ⊂ R need not be principal – i.e., have a single gen-

erator – and a basis BI of I need not be a rotation basis. Suppose it is generated by

v and w. In this case, the ideal is represented by the lattice generated by the columns

{v0, . . . ,vn−1,w0, . . . ,wn−1}, where wi is the vector associated to w × xi. Of course, the

vectors in this set will be linearly dependent. A lattice reduction algorithm, such as LLL,

will find these dependencies and output a basis for the lattice associated to I that contains

only linearly independent vectors.

Sometimes we will use inverses in the ring Q[x]/(f(x)). In this case, to avoid complica-

tions, we assume f(x) is irreducible and therefore all nonzero terms have inverses. If I is

an ideal in R, I−1 is a fractional ideal. I−1 is defined in a somewhat similar way as a dual

lattice; it is the set {x ∈ Q[x]/(f(x)) : ∀y ∈ I,x × y ∈ R}. Aside from the fact that I−1

is not necessarily a subset of R, it is exactly like a normal ideal – in particular, it is closed

under addition and under multiplication with R-elements. We say that (possibly fractional)

ideals I and J are relatively prime if I + J ⊇ R. For example, ideal (2/5) and (3/7) are

relatively prime (contain (1)), but (3/5) and (3/7) are not, since (1) is not in (3/35).

CHAPTER 6. BACKGROUND ON IDEAL LATTICES I: THE BASICS 67

For principal ideal (v), the fractional ideal (v)−1 is generated by 1/v, where the inverse is

in Q[x]/(f(x)). The determinant associated to the ideal lattice for (v) (we may occasionally

refer to this determinant as the norm of the ideal, denoted Nm(I)) is the inverse of the

determinant of (1/v). For an ideal I that has multiple generators v1,v2, . . ., the fractional

ideal I−1 is the intersection of (1/v1), (1/v2),

In our constructions, we will use a polynomial ring as defined above. Such rings are

called monogenic number rings, or simple algebraic extensions, because they are isomorphic

to Z[α] where α is a root of f(x). Algorithmically, such rings are easy to work with, which

will be important later for minimizing the complexity of our decryption circuit.

Algebraically, however, a more natural ring would be the ring of integers associated to a

number field. A number field is a finite extension K = Q(α) of the rationals Q, isomorphic

to Q[x]/(f(x)) for some polynomial f(x) irreducible over Q for which f(α) = 0. The ring

of integers of a number field K is:

OK = {x ∈ K : fx
Q ∈ Z[x]} , where fx

Q is the (monic) minimal polynomial of x in Q[x]

While it may not be immediately obvious that OK is even a ring, OQ(α) generally has better

algebraic properties than Z[α], most notably that every ideal I of the ring of integers factors

uniquely as a product of prime ideals in the ring. Also, all ideals I of OK are “invertible”

– i.e., I−1 · I = OK when the inverse I−1 is taken in OK ; this is not necessary true in

Z[α], where I−1 · I may be a subset of R if Nm(I) is divisible by one of a small number

of singular primes whose squares divide the discriminant ∆(f) of f(x) [127]. Peikert and

Rosen [112] show that ideal lattices associated to the ring of integers in fields with very

small root discriminant have very small worst-case / average-case connection factors, only

logarithmic (versus polynomial) in n. While their approach is appealing, and most likely

can be used in connection with our scheme, we choose instead to use Z[α] because using

integer vectors permits us to push complicated details away from the decryption circuit,

which is already quite complicated. Also, it is straightforward, though tedious, to simply

avoid the singular primes when working with Z[α].

Since all of the hardness assumptions are with respect to a fixed ring R, one must choose

it wisely. For example, a seemingly attractive choice for R is the ring Z[x]/(xn − 1). Aside

from efficiency, this choice in some sense maximizes the multiplicative depth of circuits that

our scheme can evaluate, since one can bound the Euclidean length ‖u×v‖ by γMult(R)·‖u‖·

CHAPTER 6. BACKGROUND ON IDEAL LATTICES I: THE BASICS 68

‖v‖ for γMult(R) =
√

n; other rings have larger values of γMult(R). We note that the NTRU

encryption scheme, whose core hard problem has never been broken, uses this ring (though

it uses a lattice basis that consists of 4 quadrants, where each quadrant is a basis of an ideal

lattice in R). On the other hand, although there is no known attack against ideal lattice

problems in this ring that is completely fatal, there are some attacks that suggest that this

ring may be weaker than others. One fairly obvious attack by Gentry [47] works when n

is composite; essentially, it reduces a lattice problem over Z[x]/(xcm − 1) to a much more

tractable m-dimensional lattice problem over Z[x]/(xm−1) for small constant c. Generally,

one would prefer f(x) to be irreducible. Even when n is prime, Gentry and Szydlo [50] gave

an algorithm that can be adapted to take an n-dimensional basis of a principal ideal lattice

I of R = Z[x]/(xn − 1), and construct a (n + 1)/2-dimensional lattice basis that contains

at least one nonzero I-vector of length at most
√

2 · λ1(I); if I has an orthonormal basis,

their algorithm can find it in polynomial time. But again we mention that these attacks

are not fatal for Z[x]/(xn − 1). If one simply takes n prime and (easily) avoids ideals with

orthonormal bases, the Gentry-Szydlo attack only gives an attack whose running time is

at best square root of the original time of attack, which is fine (in principle) if the original

time of attack is super-polynomial.

6.3 Probability Background

A family H of hash functions from X to Y , both finite sets, is said to be 2-universal if

Pr
h

R←H[h(x) = h(x′)] = 1/|Y | for all distinct x, x′ ∈ X. A distribution D is ε-uniform

if its statistical distance from the uniform distribution is at most ε, where the statistical

difference between two distributions D1, D2 is 1
2

∑
x∈X |D1(x)−D2(x)|.

Lemma 6.3.1 (Leftover Hash Lemma [72]). Let H be a family of 2-universal hash functions

from X to Y . Suppose that h
R← H and x

R← X are chosen uniformly and independently.

Then, (h, h(x)) is 1
2

√
|Y |/|X|-uniform over H× Y .

Chapter 7

A Somewhat Homomorphic

Encryption Scheme

7.1 Why Lattices?

To bootstrap our new notion of bootstrappability, we ask a natural question: where do we

find encryption schemes that have decryption algorithms with low circuit complexity?

We note that this is not an essential question. Conceivably, E could be tailored so that

it evaluates only its (augmented) decryption circuits DE(Γ), or very few gates outside of

this small set, even though its decryption circuit is “complex” [58]. However, our approach

will be to look for a scheme that evaluates circuits at least as complex as (e.g., in terms of

depth) its (augmented) decryption circuit.

Under this approach, it does not make much sense to look at schemes based on factoring

or variants of Diffie-Hellman, even though there are several homomorphic schemes here –

RSA [121], Goldwasser-Micali [61], ElGamal [42], Paillier [110], Boneh-Goh-Nissim [21], etc.

In all of these schemes, decryption uses some operation – exponentiation, Legendre symbol

computation, pairing – that is not even known to have circuit complexity in NC. For these

schemes, we can reduce the depth of the decryption circuit somewhat by using techniques

like those described in Section 10, where we offload some decryption work onto the encrypter,

who outputs a longer ciphertext that can be decrypted by a shallower circuit, but we do

not see how to reduce the decryption depth enough to make these schemes bootstrappable.

On the other hand, for encryption schemes based on lattices or linear codes, the dominant

decryption operation is typically an inner product or matrix-vector multiplication, which is

69

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 70

in NC1 (assuming the bit-length of the coefficients are polynomial in the vector dimension).

7.2 Why Ideal Lattices?

To be bootstrappable, it is not enough that the scheme has a decryption circuit of low

complexity; the scheme needs to be able to evaluate that circuit. We already have schemes

that can evaluate circuits in NC1. In fact, unless one wants circuit privacy (as in Sanders-

Young-Yung [122]), “evaluating” circuits of logarithmic depth is completely trivial: one

simply outputs the circuit and the “unprocessed” input ciphertexts. So, why is it not

trivial to construct a bootstrappable encryption scheme from a lattice-based scheme that

has a decryption circuit in NC1?

The problem with the trivial construction, and with SYY, is that they achieve logarith-

mic depth by permitting the ciphertext size to grow exponentially with the circuit depth.

As the ciphertext grows, the decryption circuit must also grow to handle the larger cipher-

texts. In short, as one allows larger and larger ciphertexts, the evaluation depth will never

“catch up” to the depth of the decryption circuit. To obtain a bootstrappable encryption

scheme, it seems necessary to consider encryption schemes that have more complex inherent

homomorphisms.

As we will see, while general lattices offer an additive structure, ideal lattices also have

a multiplicative structure that will enable us to evaluate deep arithmetic circuits (though

we will need more tricks before we ultimately obtain a bootstrappable scheme).

7.3 A Geometric Approach to Maximizing the Circuit Depth

that Can Be Evaluated

In Section 5, where we described the abstract scheme, we saw that E correctly evaluates

circuit C if the generalized circuit g(C) satisfies g(C)(x1, . . . , xt) ∈ XDec for all (x1, . . . , xt) ∈
XEnc

t. For example, it correctly evaluates the gate AddBI
if XEnc + XEnc ⊆ XDec, and the

gate MultBI
if XEnc ×XEnc ⊆ XDec. Our hope is that applying these gates – indeed, even

applying high-depth circuits – does not cause to much “expansion,” so that the output of

the generalized circuit remains within XDec.

An important reason that we use ideal lattices, versus ideals over general rings, is that

lattices permit a clean analysis of XEnc and XDec in terms of Euclidean length. When we

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 71

implement the abstract scheme using a polynomial ring Z[x]/(f(x)) and ideal lattices as

summarized above, the sets XEnc and XDec become subsets of Zn. We re-characterize these

sets geometrically as follows.

Definition 7.3.1 (rEnc and rDec). Let rEnc be the smallest value such that XEnc ⊆ B(rEnc),

where B(r) is the ball of radius r. Let rDec be the largest such that XDec ⊇ B(rDec).

Now, let us define a set of permitted circuits CE as follows:

CE = {C : ∀(x1, . . . , xt) ∈ B(rEnc)t, g(C)(x1, . . . , xt) ∈ B(rDec)}

CE is defined like the maximal set CE ′ of permitted circuits in Definition 5.2.4, but we have

replaced XEnc and XDec with B(rEnc) and B(rDec). Clearly, CE ⊆ CE ′. (At several points

later in the paper, we narrow our set of permitted circuits again so as to enable a less

complex decryption algorithm.)

For fixed values of rEnc and rDec, what is CE? This is a geometric problem, and we

can bound the Euclidean length ‖g(C)(x1, . . . ,xt)‖ by bounding the lengths of ‖u + v‖
and ‖u × v‖ in terms of ‖u‖ and ‖v‖. For addition, this is easy: using the triangle

inequality, we have ‖u + v‖ ≤ ‖u‖ + ‖v‖ for u,v ∈ R. For multiplication, we can prove

that ‖u × v‖ ≤ γMult(R) · ‖u‖ · ‖v‖, where γMult(R) is some factor that is dependent only

on the ring R. (See [89] for a different definition of the expansion factor for multiplication.)

The following theorem characterizes the “error expansion” that a circuit can cause based

on the circuit’s depth.

Theorem 7.3.2. Suppose rE ≥ 1 and that circuit C’s additive fan-in is γMult(R), multi-

plicative fan-in is 2, and depth is at most

log log rD − log log(γMult(R) · rE)

Then, C(x1, . . . ,xt) ∈ B(rD) for all x1, . . . ,xt ∈ B(rE).

In particular, E correctly evaluates circuits of depth up to log log rDec−log log(γMult(R)·rEnc).

Proof. For a d-depth circuit, let ri be an upper-bound on the Euclidean norm of the values

at level i, given that rd = rE. By the triangle inequality, an addition (or subtraction) gate

at level i outputs some v ∈ R such that ‖v‖ ≤ γMult(R) · ri. A multiplication gate at level i

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 72

outputs some v ∈ R such that ‖v‖ ≤ γMult(R) · r2
i . In either case, ri−1 ≤ γMult(R) · r2

i , and

thus r0 ≤ (γMult(R) · rE)2
d
. The result follows.

An (oversimplified) bottom line from Theorem 7.3.2 is that, to maximize the depth of

circuits that E can correctly evaluate (see Theorem 5.2.6), we should minimize γMult(R) and

rEnc, and maximize rDec. Most of the remainder of this section consists of proposals toward

this goal.

7.4 Instantiating the Ring: The Geometry of Polynomial

Rings

From Theorem 7.3.2, it seems important to set f(x) so that R = Z[x]/(f(x)) has a rea-

sonably small value of γMult(R). (Recall that γMult(R) is a value such that ‖u × v‖ ≤
γMult(R) · ‖u‖ × ‖v‖.) The following results show that there are many f(x) for which the

associated γMult(R) is only polynomial in n. Lyubashevsky and Micciancio [89] actually

already have results of a similar flavor to those in this Section in a full version of a paper

using ideal lattices for hash functions [89], for a definition of “expansion factor” (analogous

to our γMult(R)) that is a bit more cumbersome to generalize to high-degree products.

Theorem 7.4.1. Let f(x) be a monic polynomial of degree n. Let F (x) = xn · f(1/x) and

g(x) = F (x)−1 mod xn−1. Then, ‖u× v‖ ≤ γMult(R) · ‖u‖ · ‖v‖ for some

γMult(R) ≤
√

2n · (1 + 2n · ‖f‖ · ‖g‖)

Proof. (Theorem 7.4.1) Let t(x) ← u(x) ·v(x) be the (unreduced) degree 2n− 2 product of

u and v. Let t(x) = q(x)f(x) + r(x), where r(x) = t(x) mod f(x) is a polynomial of degree

n − 1, and q(x) is a polynomial of degree n − 2. We have ‖u × v‖ = ‖r‖, the latter term

denoting the Euclidean norm of the vector formed by the coefficients of r(x).

Note that each coefficient of t(x), being an inner product of some subset of coefficients

of u and v, must have norm less than ‖u‖ · ‖v‖; overall, ‖t‖ ≤ √
2n · ‖u‖ · ‖v‖.

Let T (x) = x2n−2t(1/x), Q(x) = xn−2q(1/x), and R(x) = x2n−2r(1/x). Then, T (x) =

Q(x)F (x) + R(x), where T, Q, F are all integer polynomials with the same degrees and

norms as t, q, f . R, which has the same norm as r, is divisible by xn−1, implying that

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 73

Q(x) = T (x)g(x) mod xn−1. Since Q(x) has degree n − 2, this equation implies ‖Q‖ ≤√
2n · ‖T‖ · ‖g‖. We have

‖u× v‖ = ‖r‖ = ‖R‖ ≤ ‖T‖+ ‖Q · F‖
≤ ‖T‖+

√
2n · ‖Q‖ · ‖F‖

≤ ‖T‖+ 2n · ‖T‖ · ‖g‖ · ‖F‖
= ‖t‖ · (1 + 2n · ‖f‖ · ‖g‖)
≤ ‖u‖ · ‖v‖ ·

√
2n · (1 + 2n · ‖f‖ · ‖g‖)

as required.

To find a suitable ring R = Z[x]/(f(x)) for which γMult(R) is small, it suffices to find an

f(x) for which both F (x) and F (x)−1 mod xn−1 have small norms, where F (x) = xn·f(1/x).

This gives us a lot of freedom in choosing f(x).

For example, we can sample f(x) from the large class of polynomials such that f(x) has

small norm and f(x) = xn − h(x) where h(x) is a polynomial of degree at most (n + 1)/2.

In this case, for R = Z[x]/(f(x)), one can prove that γMult(R) ≤ √
2n · (1 + 2n · ‖f‖2). One

can generalize this to the case that h(x) has degree at most n− (n− 1)/k for k > 2.

Theorem 7.4.2. Suppose f(x) = xn−h(x) where h(x) has degree at most n−(n−1)/k for

k ≥ 2. Then, for R = Z[x]/(f(x)), it holds that γMult(R) ≤ √
2n ·(1+2n ·(

√
(k − 1)n‖f‖)k).

Proof. Let F (x) = xn · f(1/x) = 1− xn · h(1/x). Let H(x) = xn · h(1/x). Note that H(x)

is divisible by xm for integer m ≥ (n− 1)/k, since h(x) has degree at most n− (n− 1)/k.

This fact implies that 1 − H(x)k = 1 mod xn−1. So, g(x) ← F (x)−1 = 1/(1 − H(x)) =

(1− (H(x))k)/(1−H(x)) mod xn−1, and we have:

‖g(x)‖ ≤ 1 + ‖H‖+ · · ·+ ‖Hk−1‖
≤ 1 + ‖H‖+ · · ·+ ((k − 1)n)(k−1)/2‖H‖k−1

≤ 1 + ‖f‖+ · · ·+ ((k − 1)n)(k−1)/2‖f‖k−1

≤
(
(
√

(k − 1)n‖f‖)k − 1
)

/
(
(
√

(k − 1)n‖f‖)− 1
)

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 74

Since ‖f‖ < (
√

(k − 1)n‖f‖)− 1, we have γMult(R) ≤ √
2n · (1 + 2n · (

√
(k − 1)n‖f‖)k).

Undoubtedly there are suitable f(x) that do not fall into the class of polynomials above.

For example, let a1, . . . , ak, b1, . . . , bk be polynomials, such that for each i, ai = xri − 1 and

bi = (1−xrisi)/(1−xri) for some {ri}, {si} where ri·si ≥ n−1 and ri < n−1. Then, for each i,

aibi = 1 mod xn−1 (nontrivially) and ‖ai‖ and ‖bi‖ are both quite small. We could set F (x)

and g(x) by picking a random subset S ⊆ {1, . . . , k} and setting F (x) ← ∏
i∈S ai mod xn−1

and g(x) ← ∏
i∈S bi mod xn−1. The Euclidean norms of F and g would be rather small,

since the Euclidean norms of the ai’s and bi’s were very small. This technique seems messier

than the approach above; the point here is that the approach above is not the only approach.

A simple case is to set f(x) ← xn−1. For the ring R = Z[x]/(xn−1), it is easy to show

that γMult(R) ≤ √
n.

Lemma 7.4.3. Suppose x,y ∈ R = Z[x]/(xn − 1), and let z ← x × y. Then ‖z‖ ≤
√

n · ‖x‖ · ‖y‖.

Proof. Consider the i-th coefficient zi of z; we have

zi =
∑

j

xj · yi−j mod n

In particular, since zi is an inner product of (rotated versions of) x and y, we have that

|zi| ≤ ‖x‖ · ‖y‖ (for all i). The result follows.

However, such circulant ideal lattices come with the disclaimer, mentioned in Section

6.2, that there are non-fatal but somewhat disconcerting attacks on hard problems over this

particular ring.

We also prefer f(x) to be irreducible, so that K = Q(x)/(f(x)) is a field. In this case,

Z[x]/(f(x)) inherits the nice properties of its overlying ring of integers OK , with some

qualifications. (See Section 6.) Using irreducible f(x) also seems to make R less vulnerable

to cryptanalytic attacks, such as that in [47]. If desired, we can get many of the benefits

of using Z[x]/(xn − 1) by instead using Z[x]/(f(x)) for f(x) = (xn − 1)/(x − 1), which is

irreducible when n is prime.

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 75

7.5 Instantiating Encrypt and Minimizing rEnc

From Theorem 7.3.2, we would like to set rEnc to be as small as possible, consistent with

security. Recall that XEnc ⊆ B(rEnc) is the image of the Samp algorithm used in Encrypt,

where our security proof (Theorem 5.3.1) holds when Samp(BI ,x) runs r ← Samp1(R) and

outputs x + r× s, where s is a generator of the ideal I. Let `Samp1
be an upper bound on

the length of r, drawn according to Samp1. We have

rEnc = max{‖x + r× s‖} ≤ n · ‖BI‖+
√

n · `Samp1
· ‖BI‖

Toward minimizing rEnc, we can choose s to be short – e.g., use s = 2 · e1.

The size of `Samp1
is a security issue. We need it to be large enough so that the min-

entropy of t mod Bpk
J in the ICP is large. As a concrete example, one could set `Samp1

= n,

and have Samp1 sample a uniformly random integer vector in B(`Samp1
).

Overall, we can take rEnc to be polynomial in n. We note that, even in this case, the

plaintext space may be as large as [R : I] = det(I), which can be exponential in n.

There are certainly alternative ways of generating I and instantiating Samp. For ex-

ample, one may set s in such a way that the Hermite normal form of (s) has all 1’s along

the diagonal, except for the upper-left corner, which equals det(I). (This property of the

Hermite normal form will always hold when det(I) is prime.) This gives a plaintext space

isomorphic to Zdet(I), which may be more useful than the space Zn
2 for some application.

Also, the image of Samp is not necessarily very “nice” – e.g., it may not be “spherical,” but

may rather be distorted in a way that depends on the ring R. In Section 14.1, we discuss

a different way to instantiate Samp is using Gaussian distributions over lattices.

7.6 Instantiating Decrypt and Maximizing rDec

From Theorem 7.3.2, we would like to set rDec to be as large as possible, consistent with se-

curity. Recall that rDec is the radius of the largest sphere centered at 0 that is circumscribed

by Bsk
J . Also, recall our decryption equation.

π = ψ −Bsk
J · b(Bsk

J)−1 · ψe mod BI

To maximize rDec, one strategy is simply to scale up the parallelepiped Bsk
J . But this does

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 76

not really buy us anything. For a fixed ratio rDec/rEnc, one can verify that our maximum

depth (per Theorem 7.3.2) of log log rDec − log log(γMult(R) · rEnc) decreases as we scale up

rDec and rEnc simultaneously. (If we scale up rDec without scaling up rEnc, this increases the

approximation factor of the associated bounded distance decoding lattice problem, which

hurts security. See Section 7.7.) The important property of Bsk
J is its shape – i.e., we want

the parallelepiped P(Bsk
J) to be “fat” enough to contain a large sphere. This property is

easier to formalize in terms of the inverse matrix (Bsk
J)−1, whose transpose is a basis (or

independent set) of the dual lattice L(Bsk
J).

Lemma 7.6.1. Let B be a lattice basis and B∗ = (B−1)T . Let r be the radius of the

largest sphere, centered at 0, circumscribed by P(B) (permitting tangential overlap). Then,

r = 1/(2 · ‖B∗‖). In particular,

rDec = 1/(2 · ‖((Bsk
J)−1)T ‖)

Suppose ‖t‖ < rDec; then each coefficient of B−1 · t has magnitude at most 1/2.

Proof. Suppose ‖x‖ < 1/(2 · ‖B∗‖). Each coefficient of B−1 · x is an inner product of

x with a column vector of B∗, and therefore has magnitude at most ‖x‖ · ‖B∗‖ < 1/2.

This implies that bB−1 · xe = 0, that x = (x mod B), and that x ∈ P(B). Now, suppose

‖x‖ > 1/(2 · ‖B∗‖) and is parallel to the longest vector bi in B∗. Then, |〈bi,x〉| > 1/2,

implying that bB−1 · xe 6= 0, and that x 6= (x mod B), and that x /∈ P(B).

The relevance of Lemma 7.6.1 is that the decryption equation above is correct when ψ

is at most rDec = 1/(2 · ‖((Bsk
J)−1)T ‖) away from a lattice point in J .

It is easy to imagine ad hoc ways of instantiating IdealGen so that the parallelepiped

P(Bsk
J) is “fat” – i.e., contains a sphere whose radius is only polynomially shorter than the

parallelepiped’s diameter. For example, one could generate a random vector v and simply

set Bsk
J to be the rotation basis of v, and set Bpk

J to be the HNF of (v). Very roughly

speaking, if v is generated as a vector that is very “nearly parallel” to e1 (i.e., the vector

(1, 0, . . . , 0)), then the rotational basis will have rDec within a small (polynomial) factor of

λ1(J). More formally, we have the following lemma.

Lemma 7.6.2. Let t ≥ 4 · n · γMult(R) · s. Suppose v ∈ t · e1 + B(s) – i.e., v is in the ball

of radius s centered at t · e1. Let B be the rotation basis of v. Then, P(B) circumscribes a

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 77

ball of radius at least t/4.

Proof. For i ∈ [0, n−1], let vi = v×xi, and zi = vi−t ·ei. We have that ‖zi‖ = ‖z0×xi‖ ≤
γMult(R) · ‖z0‖ ≤ γMult(R) · s. (In other words, we have that vi = t ·e1 +zi is nearly parallel

to ei when γMult(R) · s is much smaller than t.)

For every point a on the surface of P(B), there is an i such that

a = (±1/2) · vi +
∑

j 6=i

xj · vj

for xj ∈ [−1/2, 1/2]. So,

|〈a, ei〉| ≥ t/2− n · γMult(R) · s

In particular, ‖a‖ ≥ t/2− n · γMult(R) · s and the lemma follows.

Perhaps lattice problems over principal ideal lattices generated in the above ad hoc

fashion are easy, though currently no efficient attacks are known. A “better” instantiation

of IdealGen, which permits a security reduction from worst-case SIVP, is given in Section

18.

7.7 Security of the Concrete Scheme

When instantiated with ideal lattices, the ideal coset problem (ICP) becomes the following

problem.

Definition 7.7.1 ((Decision) Bounded Distance Decoding Problem (Decision BDDP) for

Ideal Lattices). Fix a polynomial ring R = Z[x]/(f(x)), algorithm IdealGen that samples a

basis of an ideal in R, and an algorithm Samp1 that efficiently samples Zn. The challenger

sets b
R← {0, 1} and (Bsk

J ,Bpk
J) R← IdealGen(R,BI). If b = 0, it sets r R← Samp1(R) and

t ← r mod Bpk
J . If b = 1, it samples t uniformly from R mod Bpk

J . The problem: guess b

given (t,Bpk
J).

In short, the problem is to decide whether t is uniform modulo the ideal lattice J , or

whether t was sampled according to a known “clumpier” distribution induced by Samp1.

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 78

Obviously, the hardness of decision BDDP depends crucially on Samp1 – i.e., decision

BDDP is an average-case problem whose hardness depends on the (average-case) distri-

bution of Samp1. For example, if Samp1(R) always output the zero vector 0, or sampled

according to some other distribution with very low min-entropy, the problem would be easy.

However, based on current knowledge, it seems reasonable to believe the problem can be

hard when Samp1’s min-entropy is high – e.g., when r is sampled from a sphere of radius

n, or when r is sampled according to a discrete n-dimensional Gaussian distribution with

a standard deviation parameter s = ω(
√

log n). We defer details regarding discrete Gaus-

sian distributions until Section 13; for now, as a concrete example, let’s suppose that r is

sampled uniformly from a sphere of radius `Samp1
= n.

The hardness of decision BDDP also depends on how J is generated – in particu-

lar, on the value λ1(J), and whether λ1(J) is much larger than `Samp1
. In particular, if

λ1(J)/`Samp1
≥ 2n (and we could replace the rhs with a slightly sub-exponential value),

then Babai’s nearest plane algorithm [13] or variants of the lattice reduction algorithm LLL

[81] can be used to recover the closest J-vector to t in polynomial time. This attack breaks

decision BDDP for these parameters, since it is a very safe bet that t was generated using

Samp1 when dist(J, t) < `Samp1
; if dist(J, t) > `Samp1

, it is a certain bet that t was generated

uniformly. However, there are no known attacks when, for example, λ1(J) = 2O(
√

n) (and

`Samp1
is as before).

Above, we suggested ways of instantiating the ring R, the algorithm Samp used in

Encrypt, and the algorithm IdealGen used in KeyGen. Let’s reconsider these suggestions,

and revisit the sizes of rEnc and rDec, with a view to how they impact the hardness of the

induced decision BDDP.

In Section 7.5, we observed that rEnc is at most n · ‖BI‖ +
√

n · `Samp1
· ‖BI‖, where

BI can be chosen so that ‖BI‖ is polynomial in n (or even constant). In short, we can

have rEnc only polynomially larger than `Samp1
. In Section 7.6, we observed that one can

instantiate IdealGen so that it outputs a secret basis Bsk
J for J such that, if rDec is the

radius of the largest ball circumscribed by P(Bsk
J), then rDec is only polynomially smaller

than λ1(J). Overall, we can make rDec/rEnc be within a polynomial factor of λ1(J)/`Samp1
,

where the latter is essentially the approximation factor of our decision BDDP problem.

As a rule of thumb, solving 2k-approximate decision BDDP takes time roughly 2n/k using

known attacks; so, rDec = 2O(
√

n) and rEnc = poly(n) seems to be a reasonable setting of

parameters. When rDec = 2nc1 and γMult(R) · rEnc = 2nc2 , then Theorems 5.2.6 and 7.3.2

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 79

imply that the scheme can correctly evaluate circuits of depth (c1 − c2) log n.

Remark 7.7.2. Setting rDec to be small permits a weaker assumption, but leads to a

scheme that can evaluate only very shallow circuits. Let us suppose that rDec = nα(n) and

γMult(R) · rEnc = nβ(n), for some functions α(n), β(n). As far as we know, for irreducible

f(x), γMult(R) must be at least polynomial in n, so β(n) must be at least constant. In

this case, the scheme can evaluate depth log α(n)− log β(n). This implies that we can only

evaluate constant depth circuits, unless rDec/rEnc is super-polynomial. Though we omit

details here, constant depth will be insufficient to make our eventual scheme bootstrappable;

bootstrappability will require the BDDP approximation factor to be super-polynomial.

Again, one may question how hard the decision BDDP actually is for our ad hoc in-

stantiation of IdealGen. In Section 6, we mentioned that Gentry and Szydlo [50] have a

polynomial-time attack on circulant ideal lattices that have orthonormal bases. This attack

suggests that we may want to avoid principal ideal lattices with “nearly orthonormal” bases

even in non-cyclotomic polynomial rings. We provide an alternative IdealGen algorithm in

Section 18, and provide a worst-case / average-case connection for IdealGen’s distribution

in Section 17.

We stress that our analysis below regarding the decryption circuit does not rely on the

ad hoc concrete suggestions in this section – e.g., the analysis does not require I or J to be

principal ideals.

7.8 How Useful is the Somewhat Homomorphic Scheme By

Itself?

The momentum of our paper is directed toward obtaining a bootstrappable, and hence a

(leveled) fully homomorphic, encryption scheme. However, we pause briefly to consider how

we can use our somewhat homomorphic scheme even if we do not try to bootstrap.

Theorem 7.3.2 tells us that we can evaluate circuits of depth

log log rDec − log log(γMult(R) · rEnc)

even if the AddBI
gates have high fan-in (i.e., γMult(R) fan-in). We have seen above that

we can take rDec to be of the form 2nc
for some constant c < 1, and γMult(R) and rEnc to

be polynomial in n. In this case, we can evaluate logarithmic depth.

CHAPTER 7. A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME 80

Already this is a significant improvement on prior work. For example, the Boneh-Goh-

Nissim (BGN) pairing-based cryptosystem [21] was the first to permit efficient evaluation

of 2-DNF formulas, quadratic formulas that may have a polynomial number of monomials.

Being able to compute quadratic formulas is extremely useful – e.g., Groth, Ostrovsky,

and Sahai [63] used their system to construct a perfectly NIZK system for general circuits

(with length proportion to the size of the circuit). However, one shortcoming of the BGN

system is its small plaintext space – log λ bits for security parameter λ. Our somewhat

homomorphic scheme, without the bootstrapping, already improves upon this, allowing

both greater multiplicative depth in the circuit and a larger plaintext space.

As an example, we obtain the first single-database private information retrieval scheme

with communication complexity O(λ·log m), where λ is the security parameter and m is bit-

length of the database s1, . . . , sm. The querier encrypts the binary representation π1, . . . , πM

of the index that it wants, constructing the ciphertexts ψ1, . . . , ψM , where M = blog mc+1.

Homomorphically, the server homomorphically evaluates the formula

f(π1, . . . , πM , s1, . . . , sm) =
∑

t∈{0,1}M

st ·
M∏

j=1

(ti − πi + 1) mod 2

where, in st, t is interpreted as a number in [1, m]. Notice that this formula encrypts

the correct entry in the database. Also, observe that if the ciphertexts ψ1, . . . , ψM have

offsets in B(rEnc), then the offset of the output is in B(r) for r = O(m · (γMult(R) ·
rEnc)M) = O((2 · γMult(R) · rEnc)M). If one permits rDec = 2θ(

√
n), then one can permit

M = θ(
√

n/ log(γMult(R) · rEnc)), which is polynomial in n. In other words, our scheme

correctly evaluates the PIR formula even when the database is sub-exponential (super-

polynomial) in size, though of course the computation would be very high in that case.

In general, when the function to be evaluated is highly parallel, the bootstrapping step

may be unnecessary, permitting better efficiency.

Chapter 8

Tweaks to the Somewhat

Homomorphic Scheme

At this point, we have described our somewhat homomorphic scheme in enough detail to

begin considering whether the scheme is bootstrappable. First, however, we describe two

“tweaks” to the scheme. The purpose of these tweaks is to lower the eventual circuit

complexity of decryption without substantially reducing the depth that the scheme can

evaluate.

As the first tweak, we modify the secret key of our scheme so that the decryption

equation simplifies from

π = ψ −Bsk
J · b(Bsk

J)−1 · ψe mod BI

to

π = ψ − bvsk
J × ψe mod BI

where vsk
J ∈ J−1.

Before describing the tweak, it is helpful to understand the relationship between the

dual of a lattice (a good basis for which was originally used as the decryption key) and the

inverse of an ideal lattice (a vector from which is used as the decryption key in our revised

decryption equation).

81

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 82

8.1 On the Relationship between the Dual and the Inverse

of an Ideal Lattice

Recall the definition of the dual of an ideal lattice J : J∗ = {x ∈ Rn : ∀v ∈ J, 〈x,v〉 ∈ Z}.
The inverse in R = Z[x]/(f(x)) of an ideal has a superficially similar definition: J−1 = {x ∈
Q[x]/(f(x)) : ∀v ∈ J, x× v ∈ R}.

If BJ happens to be a rotation basis of J = (v), then the inverse J−1 = (1/v) is

generated by the rotation basis of 1/v, the columns of B−1
J . However, the dual of J is

generated by the inverse transpose of BJ . So it is certainly not true in general that the

ideal lattice associated to J−1 is generated by the dual of the ideal lattice associated to J .1

However, for rotation bases, since the bases of the dual and the inverse are just transposes

of each other, we have the following easy lemma, which is analogous to Lemma 7.6.1.

Lemma 8.1.1. Let B be a rotation basis and B∗ be its inverse transpose. Then, ‖B∗‖·√n ≥
‖B−1‖ ≥ ‖B∗‖/√n. In particular, if Bsk

J is a rotation basis, we have 1/(2
√

n ·‖(Bsk
J)−1‖) ≤

rDec ≤
√

n/(2 · ‖(Bsk
J)−1‖).

Proof. Let bij be the highest-magnitude coefficient in the matrix B−1. Then,

‖B−1‖ ≥ bij ≥ ‖B∗‖/√n and ‖B∗‖ ≥ bij ≥ ‖B−1‖/√n

Using Lemma 7.6.1, we have

1/(2
√

n · ‖(Bsk
J)−1‖) ≤ rDec ≤

√
n/(2 · ‖(Bsk

J)−1‖)

Can we provide a more precise characterization of this relationship between the dual

and the inverse for general (non-principal) ideal lattices? For example, given a short vector

in J−1, can we find a short basis of J∗? Or, given a short vector in J∗, can we output a

short basis of J−1. The answer to both of these questions is yes.

Lemma 8.1.1 already answers the first question. Let BJ be a basis of J , with column

vectors u0, . . . ,un−1. If v is a short vector in J−1 and Bv is its rotation basis, then v×ui ∈ R

for all i, and therefore Bv ·BJ is an integer matrix. This implies that the rows of Bv form
1Contrary to what we stated in [48]. Lyubashevsky [87] indicated this error.

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 83

an independent set in J∗. The longest row of Bv cannot be much longer than the longest

column, as in the proof of Lemma 7.6.1.

The second question – i.e., whether one can generate a short basis of J−1 from a short

vector in J∗ is more challenging, but we have the following lemma.

Lemma 8.1.2. Let w ∈ J∗, where J∗ is the dual of the ideal lattice J . Let

v =
n−1∑

i=0

xi
n∑

j=i+1

fj · wj−i−1

Then, v ∈ J−1. Let Bv be the rotation basis of v. Then, ‖Bv‖ ≤
√

n · ‖f‖ · ‖w‖. This

applies even when J is a fractional ideal.

The idea of the proof is to take w ∈ J∗, place it as the bottom row in an n× n matrix,

and then to try to fill out the rest of the matrix so that we end up with the rotation basis

of a vector in J−1. Together, the vector w and the polynomial f(x) dictate what the rest

of the matrix must be.

Proof. We claim that the bottom row of Bv is (w0, w1, . . . , wn−1). In other words, in some

sense, one can view Bv as an “extension” of the single row (w0, w1, . . . , wn−1) into an entire

matrix that happens to be a rotation basis.

Denote the columns of Bv by v(k) = v · xi mod f(x). We claim that

v(k) =
n−1∑

i=k

xi
n∑

j=i+1

fj · wj−i−1+k −
k−1∑

i=0

xi
i∑

j=0

fj · wj−i−1+k

from which it follows that the coefficient of xn−1 in v(k) is indeed wk. This is clearly true

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 84

for k = 0; assume it is true for k′ − 1. We have that

v(k′) = x




n−1∑

i=k′−1

xi
n∑

j=i+1

fj · wj−i−1+k′−1 −
k′−2∑

i=0

xi
i∑

j=0

fj · wj−i−1+k′−1


 mod f(x)

=
n∑

i=k′
xi

n∑

j=i

fj · wj−i−1+k′ −
k′−1∑

i=1

xi
i−1∑

j=0

fj · wj−i−1+k′ mod f(x)

=
n∑

i=k′
xi

n∑

j=i

fj · wj−i−1+k′ −
k′−1∑

i=1

xi
i−1∑

j=0

fj · wj−i−1+k′ − (fn · wk′−1) · f(x)

=
n∑

i=k′
xi

n∑

j=i

fj · wj−i−1+k′ −
k′−1∑

i=1

xi
i−1∑

j=0

fj · wj−i−1+k′ −
n∑

i=0

xi · wk′−1 · fi

=
n∑

i=k′
xi


−fi · wk′−1 +

n∑

j=i

fj · wj−i−1+k′




−
k′−1∑

i=1

xi


fi · wk′−1 +

i−1∑

j=0

fj · wj−i−1+k′


− wk′−1 · fi

=
n∑

i=k′
xi

n∑

j=i+1

fj · wj−i−1+k′ −
k′−1∑

i=1

xi
i∑

j=0

fj · wj−i−1+k′ − wk′−1 · fi

as required.

To show that v ∈ J−1, it suffices to prove that z ← v × x ∈ R for any x ∈ J . Let Bx

and Bz be the rotation bases of x and z. We know that Bz = Bv ·Bx. We also know that

the bottom row of Bz is an integer vector, since this row is w · Bx and w has an integer

inner product with all vectors in J (which includes the column vectors of Bx).

Assume, toward a contradiction that z is not an integer vector – in particular, that i∗

is the largest such that the coefficient zi∗ is not an integer. Consider z(n−i∗−1) ← xn−i∗−1 ·
z mod f(x), which is a column vector in Bz. In xn−i∗−1 · z, the coefficients of xn through

x2n−i∗−2 – all of the highest coefficients – are integers. Therefore, since f(x) is monic,

z(n−i∗−1) = xn−i∗−1 · z − a(x) · f(x), where a(x) is an integer polynomial. On the other

hand, the coefficient of xn−1 in xn−i∗−1 · z is not an integer, since zi∗ is not an integer.

Consequently, since z(n−i∗−1) differs from xn−i∗−1 ·z by an integer polynomial, the coefficient

of xn−1 in z(n−i∗−1) is also not an integer. But we have established that the bottom row of

Bz is integral, a contradiction. Therefore, z is in R and v ∈ J−1.

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 85

Regarding ‖Bv‖, we have established that each entry of this matrix is an inner product

of two vectors – one vector with coefficients in {f0, . . . , fn}, the other with coefficients in

{w0, . . . , wn−1} (up to sign). The magnitude of each coefficient in Bv is therefore at most

‖f‖ · ‖w‖, implying that ‖Bv‖ ≤
√

n · ‖f‖ · ‖w‖.

8.2 Transference Lemmas for Ideal Lattices

As an easily corollary, we can obtain a bound on the determinant of J−1 in terms of det(J),

and also place a bound on λn(J−1) in terms of λn(J). Not all ideals are “invertible” in the

sense that it is not always the case that J−1 · J = R. (See Section 13.4 for more details on

this.) But we bound the discrepancy in the following lemma.

Lemma 8.2.1. Let J be a (possibly fractional) ideal of R = Z[x]/(f(x)). Then, λn(J−1) ≤
√

n · ‖f‖ · λ1(J∗) ≤ n · ‖f‖/λn(J). Also, det(J−1) < nn · ‖f‖n/det(J).

Proof. Let w be a vector in J∗ of length λ1(J∗). Generate v ∈ J−1 from w ∈ J∗ as

in Lemma 8.1.2, and let Bv be its rotation basis. By Lemma 8.1.2, ‖Bv‖ ≤
√

n · ‖f‖ ·
‖w‖. By the transference theorem λ1(L) · λn(L∗) ≤ √

n for general lattices, we have

that ‖w‖ ≤ √
n/λn(J), which implies the first statement. Since det(J∗) = 1/det(J),

‖w‖ ≤ √
n/ det(J)1/n by Minkowski, we have det(Bv) ≤ nn · ‖f‖n/det(J).

Using Lemma 8.2.1, we can upper bound λn(J) in terms of n, |f | and det(J).

Lemma 8.2.2. Let J be an ideal of R = Z[x]/(f(x)). Then, λn(J) < n · ‖f‖ · det(J)1/n.

Proof. We have

λn(J) ≤ n · ‖f‖/λn(J−1) (by Lemma 8.2.1)

≤ n · ‖f‖/det(J−1)1/n

≤ n · ‖f‖ · det(J)1/n

We have a similar result regarding the product of two general ideals (not necessarily

inverses of each other).

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 86

Lemma 8.2.3. Let J and K be two (possibly fractional) ideals of R. Then, λn(JK) <

n · ‖f‖(det(J) · det(K))1/n. Also, det(JK) ≤ nn · ‖f‖n · det(J) · det(K).

Proof. This would follow trivially from Lemma 8.2.2, except that it is possible that det(J ·
K) > det(J) · det(K) when J and K are divisible by singular primes (see Chapter 13.4).

By Lemma 8.2.1, we have that

λn(JK) ≤ √
n · ‖f‖ · λ1(((JK)−1)∗)

The determinant of the latter ideal is at most det(J) · det(K), since, in general, det(I1 ·
I2) ≥ det(I1) · det(I2) and det(I) · det(I−1) ≥ 1 (see Chapter 13.4). So, by Minkowski,

λn(JK) < n · ‖f‖(det(J) · det(K))1/n.

By Lemma 8.2.1, we have that det(JK) · det((JK)−1) < nn · ‖f‖n. So, we have

nn · ‖f‖n ≥ det(JK) · det((JK)−1)

≥ det(JK) · det(J−1) · det(K−1)

≥ det(JK) · det(J∗) · det(K∗)

from which the result follows.

8.3 Tweaking the Decryption Equation

Having characterized the relationship between the inverse and the dual, we return to our

first tweak.

Tweak 1: From BI and secret key Bsk
J , compute a certain short vsk

J ∈ J−1 and redefine

decryption to output π = ψ − bvsk
J × ψe mod BI . Also, redefine CE , so that it instead uses

B(rDec/(n2.5 · ‖f‖ · ‖BI‖) instead of B(rDec).

Purpose: To simplify the decryption equation and improve computational efficiency.

This tweak is not actually essential, since matrix-vector multiplication is just as paral-

lelizable as ring multiplication – i.e., the circuits have essentially the same depth. However,

the tweak reduces the size of our secret key. This will help reduce the computational

complexity of decryption (and, thus, the computational complexity of the homomorphic

decryption step in bootstrapping). Essentially, it makes the already shallow decryption

circuit less wide.

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 87

Tweak 1 requires us to reduce the permitted distance of ciphertexts from the J-lattice.

But it does not affect our maximum evaluation depth very much when |f | and ‖BI‖ are

only polynomial in n, and rDec/rEnc is super-polynomial (as it will need to be to make our

scheme bootstrappable).

Toward understanding how this simplification works, suppose that it is the case that Bsk
J

is the rotation basis for some vector wsk
J ∈ Z[x]/(f(x)). Let xsk

J = 1/wsk
J ∈ Q[x]/(f(x)).

Then, since the rotation basis of xsk
J is precisely (Bsk

J)−1, and by properties of rotation bases

(see Chapter 6.2) we have that

π = ψ −Bsk
J · b(Bsk

J)−1 · ψe mod BI = ψ −wsk
J × bxsk

J × ψe mod BI

As for generating the initial Bsk
J as a rotation basis, for now we just mention that the ad

hoc instantiation of IdealGen given in Chapter 7.6 suffices. However, as the lemmas below

establish, Tweak 1 works even when Bsk
J is not a rotation basis.

Lemma 8.3.1. Let Bsk
J be an initial secret basis that decrypts correctly for parameter rDec.

From Bsk
J and BI , we can compute in polynomial time a vector vsk

J ∈ J−1 such that the

rotation basis of 1/vsk
J circumscribes a ball of radius at least rDec/(n2.5 · ‖f‖ · ‖BI‖). In

particular, if ψ is a valid ciphertext according to Tweak 1, in the sense that it equals π+i+j

for plaintext π, i ∈ I, j ∈ J , and π + i ∈ B(rDec/(n2.5 · ‖f‖ · ‖BI‖), then π = ψ −
(vsk

J)−1 × bvsk
J × ψe mod BI . For our particular value of vsk

J ∈ J−1, it will also hold that

π = ψ − bvsk
J × ψe mod BI .

Proof. Since Bsk
J be an initial secret basis that decrypts correctly for parameter rDec, Lemma

7.6.1 tells us that ‖((Bsk
J)−1)T ‖ ≤ 1/2rDec. Let w ∈ J∗ be a vector in this basis. By Lemma

8.1.2, we can use w to generate a vector x ∈ J−1 whose rotation basis Bx has length at

most
√

n · ‖f‖ · ‖w‖ ≤ √
n · ‖f‖/2rDec. From Bx and a vector in I of length at most

‖BI‖, we can generate an independent set BJ−1I of (x) · I ⊂ J−1I of length at most
√

n · ‖Bx‖ · ‖BI‖ ≤ n · ‖f‖ · ‖BI‖/2rDec. We set vsk
J ← e1 mod BJ−1I . It has length at most

n2 · ‖f‖ · ‖BI‖/2rDec.

Let B†
J be the rotation basis of (vsk

J)−1; we want to prove that this basis can be used as

the secret key for ciphertexts that are valid according to Tweak 1. Certainly B†
J fulfills the

requirement of generating a super-lattice of J , since vsk
J generates a sub-lattice of J−1. It

remains to show that a large enough sphere is circumscribed by B†
J . Let r′Dec be the radius

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 88

of the largest such sphere. We have

r′Dec ≥ 1/(2
√

n · ‖(B†
J)−1‖) ≥ rDec/(n2.5 · ‖f‖ · ‖BI‖)

where the first inequality follows from Lemma 8.1.1, and the second substitutes in the upper

bound on the length of the rotation basis for vsk
J . The correctness of decryption with the

new key follows.

However, now we need to establish that we can simply drop the (vsk
J)−1 term in the

decryption equation. Since I and J are relatively prime, there is a vector j ∈ J ∩ (1 + I).

Such a j can be found efficiently using the Chinese remainder theorem and bases for I and

J . Let r = j× vsk
J . Since vsk

J ∈ J−1, we have r ∈ R. In fact, since vsk
J ∈ 1 + J−1I, we have

r ∈ 1 + I. Since, by the correctness of decryption, we know that (vsk
J)−1 × bvsk

J · ψe ∈ R

(even though vsk
J)−1 may not be in R, we have the following congruences modulo I:

(vsk
J)−1 × bvsk

J · ψe = r× (vsk
J)−1 × bvsk

J · ψe
= j× bvsk

J · ψe
= bvsk

J · ψe

8.4 A Tweak to Reduce the Circuit Complexity of the Round-

ing Step in Decryption

Tweak 2 will actually be more critical than Tweak 1 for reducing the depth of our decryption

circuit and enabling bootstrapping.

Tweak 2: Redefine the set of permitted circuits CE , replacing B(rDec) with B(rDec/2).

Purpose: To ensure that ciphertext vectors are closer to the lattice J than they strictly

need to be, so that we will need less “precision” to ensure the correctness of decryption.

Remark 8.4.1. If using Tweak 1 and Tweak 2, then use B(rDec/(2n2.5 · ‖f‖ · ‖BI‖) in the

redefinition of permitted circuits – i.e., a radius half as small as the one used in Tweak 1.

For simplicity, in this Section, we will abuse notation and use rDec to refer to the value of

the permitted radius before Tweak 2.

CHAPTER 8. TWEAKS TO THE SOMEWHAT HOMOMORPHIC SCHEME 89

The purpose of the tweak will become clearer as we delve into the details of the decryption

circuit. But, briefly, recall that Decrypt computes Bsk1
J · b(Bsk2

J)−1 · ψe. (If Tweak 1 is

used, then Bsk1
J is just the identity matrix and (Bsk2

J)−1 is the rotation basis of vsk
J .) If we

permitted the coefficients of (Bsk2
J)−1 · ψ to be very close to half-integers, we would need

high precision to ensure correct rounding. However, after Tweak 2, we have the following

lemma:

Lemma 8.4.2. If ψ is a valid ciphertext after Tweak 2, then each coefficient of (Bsk2
J)−1 ·ψ

is within 1/4 of an integer.

Proof. Observe that ψ ∈ B(rDec/2)+J . Let ψ = x+j for x ∈ B(rDec/2) and j ∈ J . We have

(Bsk
J)−1 ·ψ = (Bsk

J)−1 · x + (Bsk
J)−1 · j, where the former term has coefficients of magnitude

at most 1/4 by Lemma 7.6.1 and the latter is an integer vector.

This fact will help us simplify our decryption circuit, and does not substantially impair

the evaluative capacity of our scheme. The new maximum evaluation depth, per Theorem

7.3.2, is log log(rDec/2)− log log(γMult(R) · rEnc), which is less than the original amount by

only a sub-constant additive factor.

Again, to use Tweaks 1 and 2 simultaneously, use B(rDec/(2n2.5 · ‖f‖ · ‖BI‖).

Chapter 9

Decryption Complexity of the

Tweaked Scheme

To decrypt, we compute

(ψ −Bsk1
J · bBsk2

J · ψe) mod BI

where ψ ∈ Zn, Bsk1
J ∈ Zn×n, Bsk2

J ∈ Qn×n, and BI is a basis of an ideal I of R = Z[x]/(f(x)).

From Tweak 2, we have the promise that the coefficients of Bsk2
J ·ψ are all within 1/4 of an

integer. Optionally, Tweak 1 ensures that Bsk1
J is the identity matrix and Bsk2

J is a rotation

matrix. How do we optimally express this computation as a circuit?

Let us split the computation into pieces – in particular, the following steps:

Step 1: Generate n vectors x1, . . . ,xn with sum Bsk2
J · ψ.

Step 2: From the n vectors x1, . . . ,xn, generate integer vectors y1, . . . ,yn+1 with sum

b∑xie.
Step 3: Compute π ← ψ −Bsk1

J · (∑yi) mod BI

We do not claim that this way of splitting up the computation leads to an optimal decryption

circuit. But, we will eventually see that, thanks to Tweak 2, Step 3 can be done in constant

depth using a circuit with polynomial fan-in addition gates. (In Theorem 7.3.2, we saw

that constant fan-in multiplication gates were as bad as, or worse than, polynomial fan-

in addition gates.) We will see that Step 2 requires a deep circuit, but that there is a

way to squash this aspect of the computation. (See Chapter 10.) Step 1 could be done

by multiplying the n columns of Bsk2
J by the n coefficients of ψ. But our method for

90

CHAPTER 9. DECRYPTION COMPLEXITY OF THE TWEAKED SCHEME 91

squashing the decryption circuit will eliminate Step 1. So, we will concentrate on analyzing

the complexity of Steps 2 and 3 in this Chapter.

To better understand the circuit complexity issues here, consider the problem of adding

n numbers in [0, 1), each one a fraction in [0, 1) represented in binary with k bits of precision.

As far as we know, this requires a constant fan-in boolean circuit of depth Ω(log n + log k).

Here is a concrete example of such a circuit. First, we use the “3-for-2” trick (see Karp’s [76]

survey of parallel algorithms): given 3 numbers in binary representation, there is a constant-

depth (say, depth c) boolean circuit that replaces these 3 numbers with 2 numbers having

the same sum. (Essentially, one of the two numbers receives the XOR of the 3 addends,

and the other number receives the carry bits.) Using this trick recursively, one can replace

n numbers with 2 numbers having the same sum in depth approximately c · log3/2 n. As for

adding the final two numbers, there is certainly no general guarantee that this can be done

in constant depth. The problem is that the least significant bit of the addends could affect

the most significant bit of the sum. One needs Ω(log k) depth to ensure the final sum is

computed correctly.

But suppose one is given the promise that the sum of the numbers is very close to an

integer, and that one is only interested in computing this integer. In this case, we can

eliminate all but O(log n) bits of precision in each of the n addends, and still obtain the

correct result. This integer can be computed in c log3/2 n + O(log log n) depth; there is no

longer any dependence on k. Indeed, this was the purpose of Tweak 2 – to obtain exactly

this promise.

However, the c log3/2 n term is still problematic for us. We have seen that our somewhat

homomorphic scheme can evaluate O(log n) depth, but where the hidden constant is less

than 1, whereas the c induced by the 3-for-2 trick (combined with the constant log3/2 2) is

certainly greater than 1, and thus prevents bootstrapping. Also, even after we apply our

“squashing the decryption circuit” technique to make our scheme bootstrappable, a constant

factor in the depth of the decryption circuit makes a huge difference in the performance

and security of the scheme. Can we make this constant smaller?

Toward this goal, we compute the rounded sum using elementary symmetric polynomi-

als. Roughly speaking, using symmetric polynomials eliminates some of the inefficiencies

of the 3-for-2 technique. Also, although we have been saying (as shorthand) that we want

to minimize the “depth” of the decryption circuit DE , this is an oversimplification; we are

actually trying to minimize ‖DE(x1, . . . ,xt)‖ where the inputs xi are in B(rEnc). The value

CHAPTER 9. DECRYPTION COMPLEXITY OF THE TWEAKED SCHEME 92

‖DE(x1, . . . ,xt)‖ is actually more tightly related to the degree of the multivariate polynomial

DE(x1, . . . ,xt) than to the depth of the circuit that computes this polynomial. Elementary

symmetric polynomials are the lowest-degree multivariate polynomials (that we know of)

that compute certain Hamming weights that arise when computing the sum of numbers.

What do elementary symmetric polynomials have to do with adding up n numbers,

represented in binary? Let {ai} be the n numbers, where ai has bits (ai,−1, . . . , ai,−T).

We can add up these numbers by separately adding up the least significant bits of the

numbers, the penultimate bits, etc., and thereafter combining the partial results. That is, for

j ∈ [−1,−T], we compute the Hamming weight bj , represented in binary, of (a1,j , . . . , an,j),

and then we add up the T numbers bj . (We established above that the precision T only needs

to be logarithmic in n, so this final step should take up much less depth than computing the

binary representations bj of the Hamming weights.) Now, it turns out, through the magic of

binomial coefficients, that the binary representation of the Hamming weight of (x1, . . . , xn)

is given by

(e2blog nc(x1, . . . , xn) mod 2, . . . , e20(x1, . . . , xn) mod 2)

where ei(x1, . . . , xn) is the ith elementary symmetric polynomial over x1, . . . , xn. (See

Lemma 4 of [24].) The highest degree among these polynomials is at most n, versus the

multivariate polynomial we would obtain from the 3-for-2 trick, which has degree nc for some

c > 1. Also, we know how to efficiently evaluate the elementary symmetric polynomials.

They are simply coefficients of the polynomial p(z) =
∏n

i=1(z − xi).

We have been talking about the decryption circuit as if it is boolean. However, for

bootstrapping to work – i.e., to be able to perform decryption homomorphically – we know

that we need to express decryption as a mod-BI circuit. Of course, one option is simply to

take I = (2). This is fine, except that our stronger security results, beginning in Chapter

14, require det(I) to be only polynomial in n, whereas the ideal (2) has 2n cosets. (We

hasten to add that the reduction given in Chapter 5 applies even for I = (2).) In any

case, it is easy to emulate boolean circuits using mod-BI circuits for any I. In particular,

for x,y ∈ {0, 1}, the value 1 − x × y equals NAND(x,y) ∈ {0, 1}, regardless of the ring

of cosets in which the computation is performed. We restrict the plaintext space P to be

{0, 1} mod BI , and represent the inputs and output as elements of this restricted plaintext

space, regardless of the underlying ideal I. Of course, this plaintext space restriction is

CHAPTER 9. DECRYPTION COMPLEXITY OF THE TWEAKED SCHEME 93

unnecessary if we use the somewhat homomorphic scheme without bootstrapping.

Restricting the plaintext space to {0, 1} rather than using all det(I) cosets of I, just so

that we can emulate boolean circuits, seems rather wasteful and inefficient. Is this waste

necessary? We leave this as an open problem to which we have not found a satisfactory

solution. As far as we can tell, adding terms represented in general “base-I”, where det(I)

is large, results in “carries” that are represented by multivariate polynomials of degree too

high for our purposes.

Now, we have the following lemma regarding Step 2.

Lemma 9.0.3. For i ∈ [1, t], let ai = (. . . , ai,1, ai,0, ai,−1, . . .) be a real number given in

binary representation mod BI with the promise that
∑

i ai mod 1 ∈ [−1/4, 1/4]. There is

a mod-BI circuit C for generating t + 1 integers z1, . . . , zt+1 (also represented in binary)

whose sum is b∑i aie, such that if the generalized circuit g(C)’s inputs are in B(rin), then

its outputs are in B(rout) for:

rout ≤ (γMult(R) · n · ‖BI‖ · (1 + γMult(R) · rin)t · t)polylog(t)

For ‖BI‖ ≤ rin, t ≤ n, and γMult(R) = nΩ(1), we have:

rout ≤ (γMult(R) · rin)t·polylog(t)

Proof. Let a∗i be the integer part of ai and let a†i = (ai,−1, ai,−2, . . .) be the fractional part.

Let T = dlog te+ 2. Let bi = (a†i,−1, . . . , a
†
i,−T). First, we claim that b∑ a†ie = b∑ bie – i.e.,

that truncating the least significant bits of the a†i ’s does not affect the rounded sum. This

claim follows from the promise that
∑

i a
†
i is within 1/4 of an integer, and that

∣∣∣∣∣
∑

i

a†i −
∑

i

bi

∣∣∣∣∣ =

∣∣∣∣∣∣

j∈[T+1,∞]∑

i

2−j · ai,−j

∣∣∣∣∣∣
< 1/4

The t + 1 integers that we will eventually output will be a∗1, . . . , a
∗
t , b

∑
bie.

Our strategy for computing b∑ bie is first to compute, for each j ∈ [1, T], the binary

representation cj of the Hamming weight of (b1,−j , . . . , bt,−j). Then, we finish by computing

the sum b∑T
j=1 2−j · cje; this latter term is much easier to compute than the original term,

since it only consists of T numbers, rather than t.

This strategy is straightforward when I = (2·e1) and the plaintext space is {0, 1} mod I.

CHAPTER 9. DECRYPTION COMPLEXITY OF THE TWEAKED SCHEME 94

The binary representation of the Hamming weight of (x1, . . . , xt) is given by

(e2blog tc(x1, . . . , xt) mod 2, . . . , e20(x1, . . . , xt) mod 2)

where ei(x1, . . . , xt) is the ith elementary symmetric polynomial over x1, . . . , xt. (See

Lemma 4 of [24].) These elementary symmetric polynomials can obviously be computed

efficiently. Specifically, one obtains them as the coefficients of the polynomial p(z) =
∏t

i=1(z − xi). The next step would be to bound ‖e2k(x1, . . . ,xt)‖ for xi ∈ B(rin), for

k ∈ {0, . . . , blog tc}.
However, for I 6= (2 · e1) the situation is complicated by the fact that reduction modulo

2 does not occur automatically in the mod-BI circuit. Here we use a slightly different

approach (which also works when I = (2 · e1)). Let M ∈ Z(t+1)×(t+1) be given by Mij =
(

i
j

)

for i, j ∈ [0, t]. Let M−1 be a matrix with elements in R mod I such that M−1 · M is

the identity matrix modulo I; M is invertible modulo I, since det(M) = 1. First, our

circuit will compute v ← (e0(b1, . . . , bt), . . . , et(b1, . . . , bt))T . Note that M−1 · v = eh,

which is essentially the Hamming weight h of (b1, . . . , bt) in unary. From the unary, we

obtain the binary expression by computing the inner product of eh with the multi-vector

(c0, . . . , ch, . . . , ct), where ci is the binary representation of i.

Let C be the mod-BI sub-circuit above for computing any bit of the binary representa-

tion of the Hamming weight. Using n · ‖BI‖ as an upper bound on the length of elements

in R mod BI , we have

‖g(C)(x1, . . . ,xt)‖
≤ γMult(R) · n · ‖BI‖ · (

∑

i∈[0,t]

‖ei(x1, . . . ,xt)‖) · t

≤ γMult(R) · n · ‖BI‖ · (
∑

i∈[0,t]

(
t

i

)
γMult(R)i−1 · ri

in) · t

= n · ‖BI‖ · (1 + γMult(R) · rin)t · t

At this point, we have generated T numbers, each with O(T) bits, with the same sum

as
∑

bi. There is a O(log T)-depth constant fan-in boolean circuit for computing this

sum, which can be emulated by a O(log T)-depth mod-BI circuit. (We omit the details.)

Combining the above with results in the proof Theorem 7.3.2, the result follows.

CHAPTER 9. DECRYPTION COMPLEXITY OF THE TWEAKED SCHEME 95

Unfortunately, Step 2 uses t = n, implying rDec/rEnc ≥ rout/rin ≥ 2n, and therefore the

above analysis cannot show that the scheme is both bootstrappable and secure. However,

Lemma 9.0.3 will be relevant to our final scheme, as will the following lemma regarding

Step 3:

Lemma 9.0.4. Using a constant depth circuit having polynomial fan-in AddBI
gates and

constant fan-in MultBI
gates, we can compute ψ − Bsk1

J · (∑yi) mod BI from a binary

representation (using the bits {0, 1} mod BI) of the terms of the expression.

The proof of Lemma 9.0.4 involves converting the binary representation of the terms

to a more “natural” mod-BI representation, at which point the computation is trivially

constant depth. As a toy example for intuition, suppose we have mod-13 gates, where the

numbers 0, . . . , 12 are represented by 13 different “frequencies” (not in terms of a binary

representation), and Add13 and Mult13 perform addition and multiplication modulo 13 “au-

tomatically.” Also suppose that we are given a number b = ...b1b0 in binary representation,

where each of the bi is separately represented by the frequency for ‘0’ or ‘1’ (not by any

of the other 11 frequencies). For example, suppose 9 is represented as 1001 rather than

by the natural frequency for ‘9’. From the initial representation of b, how do we com-

pute the “natural” representation of b mod 13 as a single frequency (from among the 13

different frequencies)? First, we precompute the frequencies aj ← 2j mod 13. Next, we

output Add13(..., Mult13(a1, b1), Mult13(a0, b0)). Using polynomial-fan-in Add13 gates, this

takes constant depth even if b has a polynomial number of bits. Essentially the same con-

siderations apply in the proof of Lemma 9.0.4. The simplest case is where I = (2) and the

conversion is unnecessary.

Proof. For a slightly simpler case, let us first assume that Bsk1
J is a rotation basis, so that

the remaining decryption computation is to compute ψ−vsk1
J ×(

∑
yi) mod BI for vsk1

J ∈ R.

Consider one of the vectors – say, y ← y1. How do we compute the “natural” representation

of y mod BI?

Currently, the ith coefficient yi of y is represented by the elements yix×e1, . . . , yi0×e1 ∈
{0, 1} mod BI where yi =

∑x
j=0 2j · yij . So, we have

y =
∑

i∈[1,n],j∈[0,x]

2j × (yij × e1)× ei mod BI

CHAPTER 9. DECRYPTION COMPLEXITY OF THE TWEAKED SCHEME 96

After pre-computing values aj ← 2j mod BI for j ∈ [0, x], we can compute this represen-

tation of y mod BI by using two levels of MultBI
gates (since each term in the sum is the

product of three terms) and then logf(n)(nx) levels of f(n)-fan-in AddBI
gates. Overall,

this is constant depth assuming y was initially represented by a polynomial number of bits.

We obtain the natural mod-BI representations of the other vectors in a similar fashion.

Thereafter, we compute the result in constant depth, using one level to compute vsk1
J ×

yi mod BI for each i and a constant number of polynomial fan-in mod-BI gates for addition.

The case of a general matrix Bsk1
J is only slightly more complicated. Basically, since

the matrix inhibits our use of ring multiplication, we first compute the “natural” mod-

BI representation of each individual coefficient (rather than the full vector), multiply the

coefficients together in the proper fashion to obtain the natural representations of coefficients

in the vectors Bsk1
J · yi, and then multiply the representations by the appropriate ei’s, and

add the results modulo BI .

At this point, it may be tempting to ask: how is a mod-BI gate implemented, and

doesn’t this implementation add to the decryption complexity? But we have shown that

ring addition and multiplication applied to ciphertexts induces mod-BI operations over

plaintexts: e.g., adding two ciphertexts that encrypt π1 and π2 mod BI gives a third

ciphertext that encrypts π3 = π1 + π2 mod BI – i.e., already reduced modulo BI . The

mod-BI operations, implicitly applied to plaintexts, come for free with the ring operations

applied to ciphertexts (up to a point defined by the permitted circuits CE).
From Lemmas 9.0.3 and 9.0.4, we conclude that, aside from the coefficient multiplication

operations in the computation of Bsk2
J ·ψ that we have ignored, the depth of our decryption

circuit is O(log n), where the hidden constant is greater than 1. By Theorem 7.3.2, the

maximum depth that we can evaluate is d = log log rDec − log log γMult(R) · rEnc. Can we

take d to be greater than log n?

Unfortunately, the answer appears to be ‘no.’ Specifically, the dominant computation

in decryption is b(Bsk
J)−1 ·ψe, which occurs within the computation of ψ mod Bsk

J . Roughly

speaking, to ensure that the rounding is correct, one must use a sufficient number of bits

of precision. Then, the high precision of each number-number multiplication that occurs

within the matrix-vector multiplication forces us to use a high-depth circuit. Specifically,

two k-bit numbers can be multiplied together using a O(log k)-depth circuit (with constant

fan-in). The precision we seem to need is roughly log det(J) > n · log rDec bits, and therefore

CHAPTER 9. DECRYPTION COMPLEXITY OF THE TWEAKED SCHEME 97

we need about a O(log n + log log rDec)-depth circuit.

Unfortunately, for this initial scheme, it seems that no matter how the parameters

are set, the decryption circuit is always slightly too complex for the scheme to evaluate.1

This problem is difficult to fix post hoc, in part due to the self-referential nature of the

bootstrapability property: intuitively, if one expands the set of circuits that E can “handle”

in an effort to include DE , one seemingly must increase the complexity of DecryptE to

accommodate, thereby making the circuit DE more complex, possibly such that DE always

elusively falls outside of the expanded set. To obtain a bootstrappable encryption scheme,

it seems necessary to change the decryption algorithm fundamentally.

1However, we do not prove this. It remains possible that the decryption circuit of this initial scheme can
be expressed in a way that makes the scheme bootstrappable.

Chapter 10

Squashing the Decryption Circuit

Let E∗ be the encryption scheme described in Chapter 7, modified by Tweak 2 and preferably

also Tweak 1 as described in Chapter 8. In this Chapter, we describe how to transform E∗
so as to lower the complexity of the decryption circuit and achieve a bootstrapable scheme.

A crucial point is that this transformation does not reduce the evaluative capacity at all

– i.e., the set of permitted circuits remains fixed. Of course, there is a price: in our new

scheme E , we potentially weaken security by including information about the E∗ secret key

inside the E public key. We first describe our transformation generically. We prove security

of E (generically) based on E∗ and the assumed hardness of a certain abstract distinguishing

problem, where the latter arises from the new information included in the E public key. We

then instantiate the transformation, where the distinguishing problem becomes a lattice

problem that we discuss in Chapter 11.

10.1 A Generic Description of the Transformation

At a high level, our transformation works by splitting the original decryption algorithm into

two phases – an initial computationally intensive preprocessing phase performed without

the secret key (by the encrypter), followed by a computationally lightweight phase using the

secret key (by the decrypter). In short, the encrypter preprocesses its own initial ciphertext,

leaving less work for the decrypter to do.

Interestingly, this two-phase approach to decryption is precisely what one finds in server

aided cryptography. In that setting, a user wants to minimize its cryptographic computation

– e.g., because it is using a constrained device, such as a smartcard or handheld. So, it

98

CHAPTER 10. SQUASHING THE DECRYPTION CIRCUIT 99

outsources expensive computations to a server. To set up this arrangement, the user (in

some schemes) must give the server a tag τ that is statistically dependent on its secret key

sk, but which is not sufficient to permit the server to decrypt efficiently on its own. The

processing that the server performs may expand the size of the ciphertext substantially,

but nonetheless the processed ciphertext requires less computation for the user to decrypt.

In our setting, the encrypter plays the role of the server. We will also use a secret-key-

dependent tag τ and suffer from ciphertext expansion.

Now, we describe the transformation in detail. Let E∗ be the initial encryption scheme.

We construct a modified scheme E that uses two new algorithms, SplitKeyE and ExpandCTE ,

that will remain abstract for now.

KeyGenE(λ). Runs (pk∗, sk∗) R← KeyGenE∗(λ) and (sk, τ) R← SplitKeyE(sk
∗, pk∗). The secret

key is sk. The public key pk is (pk∗, τ).

EncryptE(pk, π). Runs ψ∗ ← EncryptE∗(pk∗, π). It then sets ψ to include ψ∗ and the output

of ExpandCTE(pk, ψ∗). (ExpandCTE makes heavy use of τ .)

DecryptE(sk, ψ). Uses sk and expanded ciphertext to decrypt more efficiently. DecryptE(sk, ψ)

should work whenever DecryptE∗(sk
∗, ψ∗) works.

AddE(pk, ψ1, ψ2). Extracts (ψ∗1, ψ
∗
2) from (ψ1, ψ2), computes ψ∗ ← AddE∗(pk∗, ψ∗1, ψ

∗
2), and

sets ψ to include ψ∗ and the output of ExpandCTE(pk, ψ∗). MultE(pk, ψ1, ψ2) is analogous.

The security of the transformation relies on the following problem, which is completely

abstract at this point.

Definition 10.1.1 (SplitKey Distinguishing Problem). The challenger sets (sk∗, pk∗) R←
KeyGenE∗ and b

R← {0, 1}. If b = 0, it sets (sk, τ) R← SplitKey(sk∗, pk∗). If b = 1, it

sets (sk, τ) R← SplitKey(⊥,pk∗), where ⊥ is a special symbol. The problem: guess b given

(τ, sk∗, pk∗).

Theorem 10.1.2. Suppose that there is an algorithm A that breaks the semantic security

of E above with advantage ε. Then, there exist algorithms B0 and B1, running in about

the same time as A, such that either B0’s advantage against the SplitKey Distinguishing

Problem or B1’s advantage against the semantic security of E∗ is at least ε/3.

Proof. Let Game 0 be the real-world semantic security game. Game 1 is like Game 0, except

the challenger generates pk differently. Specifically, instead of inputting sk∗ into SplitKey, it

CHAPTER 10. SQUASHING THE DECRYPTION CIRCUIT 100

inputs ⊥ to obtain τ , and adds τ to the pk it sends to A. By assumption, ε is A’s advantage

in Game 0. Let ε′ be A’s advantage in Game 1.

B0 runs as follows. The challenger sets bit b
R← {0, 1} and sends a SplitKey Distinguishing

Problem instance (τ, sk∗, pk∗) to B0. B0 sends pk ← (pk∗, τ) to A. When A asks for a

challenge ciphertext on one of (π0, π1), B0 sets β
R← {0, 1} and sends ψ ← EncryptE(pk, πβ).

Eventually, A sends a bit β′. B0 sends b′ ← β ⊕ β′ to the challenger. Note that the public

key pk (and the other aspects of the simulation) is distributed exactly as in Game b. We

compute that B0’s advantage is at least |ε− ε′|/2.

B1 runs as follows. It obtains an E∗ public key pk∗ from the challenger. It runs (sk, τ) R←
SplitKey(⊥, pk∗) and sends pk ← (pk∗, τ) to A. When A asks for a challenge ciphertext

on one of (π0, π1), B1 asks the challenger for a challenge ciphertext on one of (π0, π1). The

challenger sends back ψ∗. B1 sets ψ to include ψ∗ and the output of ExpandCTE(pk, ψ∗)

and sends ψ to A. A sends a bit b′, which B1 forwards to the challenger. We see that the

distribution is the same as in Game 1. Also, B1’s bit is correct if A’s bit is correct; so B1

has advantage ε′.

In the next Section, we specify how to instantiate SplitKey, ExpandCT, and the new

Decrypt algorithm. After that, we will analyze the new decryption circuit, and prove that

we finally have a bootstrappable encryption scheme. We will consider the hardness of our

concrete version of the SplitKey Distinguishing Problem in Chapter 11.

10.2 How to Squash, Concretely

Let vsk∗
J be the secret key vector of our somewhat homomorphic encryption scheme E∗

after Tweak 1. (Our concrete transformation below can be adapted to handle the scheme

without Tweak 1, but handling a secret matrix rather than a secret vector is less efficient.)

Recall that this vector is an element of the fractional ideal J−1. Also, recall our decryption

equation:

π = ψ − bvsk∗
J × ψe mod BI

The idea of our abstract transformation was to place a “hint” about the E∗ secret key inside

the E public key; what hint do we give about vsk∗
J ?

CHAPTER 10. SQUASHING THE DECRYPTION CIRCUIT 101

Our hint will consist of a set of vectors that has a (secret) sparse subset of vectors whose

sum is essentially vsk∗
J . More specifically, the set of vectors τ is t1, . . . , tγsetsize(n) ∈ J−1,

where γsetsize(n) is a parameter that is polynomial in n. S ⊂ {1, . . . , γsetsize(n)} will be a

subset of indices having cardinality γsubsetsize(n). And it will hold that
∑

i∈S ti = vsk∗
J mod

I. The new secret key sk is a 0/1-matrix encoding the subset S. The SplitKey distinguishing

problem becomes essentially: given vsk∗
J and τ decide whether there is actually a sparse

subset whose sum if vsk∗
J mod I, or whether there is a sparse subset whose sum is 0 mod I.

In the ExpandCT operation, the “encrypter” processes a ciphertext ψ∗ output by the

original scheme E∗ by computing all of the products ci ← ti × ψ∗ mod BI and including

them in the new ciphertext ψ. To decrypt ψ, the user basically extracts the γsubsetsize(n)

ci’s that are “relevant” – the ci’s for which i ∈ S. It then uses the decryption equation

π = ψ∗ − b
∑

i∈S

cie mod BI

which can easily be verified to be correct.

This transformation will actually end up increasing the computational complexity of

decryption. However, the important point is that the ExpandCT operation, which does not

need to be performed homomorphically, prepares a ciphertext that can be decrypted by

a shallower circuit. The essential reason is that summing up γsubsetsize(n) values (in the

new decryption equation) requires much less depth – less than log n, as we will see – when

γsubsetsize(n) is much less than n. We now describe the transformation more formally.

Let (sk∗, pk∗) be an E∗ key pair. Let γsetsize(n) and γsubsetsize(n) be functions, where

the former is ω(n) and poly(n) and the latter is ω(1) and o(n). Here are the concrete

instantiations of SplitKeyE , ExpandCTE , and DecryptE used to construct E .

SplitKeyE(sk
†, pk∗). Takes as input sk†, which may be either sk∗ or ⊥. If the former, it

extracts the vector vsk∗
J from sk∗; if the latter, it sets vsk∗

J ← 0. It outputs (sk, τ), where:

• τ is a set of γsetsize(n) vectors t1, . . . , tγsetsize(n) that are uniformly random in J−1 mod

BI , except there exists a subset S ⊆ {1, . . . , γsetsize(n)} of cardinality γsubsetsize(n)

such that
∑

i∈S ti ∈ vsk∗
J + I.

• sk is a matrix γsubsetsize(n)× γsetsize(n) matrix M of 0’s and 1’s, where Mij = 1 iff j

is the ith member of S.

ExpandCTE(pk, ψ∗). Outputs ci ← ti × ψ∗ mod BI for i ∈ [1, γsetsize(n)].

CHAPTER 10. SQUASHING THE DECRYPTION CIRCUIT 102

DecryptE(sk, ψ). Takes as input the secret key sk and a ciphertext ψ. It performs the

following steps:

Step 0: Set the vectors wij ← Mij · cj

Step 1: Set the vectors xi ←
∑γsetsize(n)

j=1 wij

Step 2: From x1, . . . ,xγsubsetsize(n), generate integer vectors y1, . . . ,yγsubsetsize(n)+1 with

sum b∑xie.
Step 3: Compute π ← ψ∗ − (

∑
yi) mod BI

Remark 10.2.1. To generate τ , one may, for example, just set t1, . . . , tγsetsize(n)−1 to be uni-

formly random vectors in J−1∩P(BI). Then, one sets tγsetsize(n) ← vsk∗
J −∑γsubsetsize(n)−1

i=1 ti mod

BI . Then one permutes the vectors.

Remark 10.2.2. Without Tweak 2, we could have instead used a γsetsize(n)-sized set of

matrices with a hidden γsubsetsize(n)-sized subset whose sum is related to (Bsk
J)−1. This

would have resulted in a larger public key.

10.3 Bootstrapping Achieved: The Decryption Circuit for

the Transformed System

We analyzed Steps 2 and 3 in Chapter 9. It is obvious that Step 0 requires only con-

stant depth. We claim that Step 1 requires only constant depth, but why? Computing
∑γsetsize(n)

j=1 wij is very cheap because, in the set {wij : j ∈ [1, γsetsize(n)}, there is only

one nonzero vector. Therefore, when we add the vectors, no expensive carry operations are

required; we simply “XOR” the vectors together using polynomial-fan-in AddBI
operations,

using constant depth. At last, we have the following theorem.

Theorem 10.3.1. The scheme E is bootstrappable when

γsubsetsize(n) · logc1 γsubsetsize(n) ≤
(

log(rDec/m)
2c2 · log(γMult(R) · rEnc)

)

where logc1 γsubsetsize(n) is the polylog term arising in Lemma 9.0.3, m arises from the re-

definition of CE in the Tweaks (m = 2 when just Tweak 2 is used), and c2 is a constant

representing the depth needed in a circuit having AddBI
gates with γMult(R) = nΩ(1) fan-in

and MultBI
gates with constant fan-in to sequentially perform DecryptE Steps 0, 1, and 3,

and a NAND gate.

CHAPTER 10. SQUASHING THE DECRYPTION CIRCUIT 103

Proof. As in the proof of Theorem 7.3.2, for a c-level circuit, if the inputs to the generalized

circuit are in B(r), the outputs are in B((γMult(R) · r)2c
). Combining with Lemma 9.0.3,

we have that if the inputs to our generalized NAND-augmented decryption circuit are in

B(rEnc), the output is in

(γMult(R) · rEnc)2
c2 ·(γsubsetsize(n)·polylog(γsubsetsize(n)))

The result follows when this value is at most rDec/m.

For example, suppose γMult(R) · rEnc is polynomial in n, and rDec = 2nC
for C < 1. In

this case, γsubsetsize(n) can be polynomial in n (but sub-linear). The constants c1 and c2

are not very large, though in practice one would want to optimize them beyond what we

have done.

Chapter 11

Security

From Theorem 10.1.2, we know that the bootstrappable encryption scheme described in

Chapter 10.2 is semantically secure as long as the SplitKey distinguishing problem (instan-

tiated as described as in Chapter 10.2) is hard and the somewhat homomorphic encryption

scheme of Chapter 7 (possibly with the tweaks of Chapter 8) is semantically secure. In

other words, the bootstrappable encryption scheme’s security is based on two assumptions.

We already addressed the security of the somewhat homomorphic encrypion scheme in

Chapter 7.7, basing it on the decision BDDP. Later, we will revisit this scheme, modifying it

to obtain a quantum reduction from the shortest independent vector problem (SIVP) over

ideal lattices. In the remainder of this Chapter, we will consider the hardness of our concrete

version of the SplitKey distinguishing problem. Concretely, the SplitKey distinguishing prob-

lem will become the (decision) sparse subset sum problem (SSSP). (See Definition 11.1.4.)

We then show how to reduce search SSSP to decision SSSP using Goldreich-Levin [55, 51].

11.1 Regarding the Hint Given in Our “Squashing” Trans-

formation

For the concrete instantiation of SplitKey given in Chapter 10.2, the SplitKey distinguishing

problem becomes the following.

Definition 11.1.1 (SplitKey Distinguishing Problem, Concrete Version). Let γsetsize(n)

and γsubsetsize(n) be functions as above, and BI a basis of an ideal I. The challenger sets

(sk∗,pk∗) R← KeyGenE∗ and b
R← {0, 1}, where sk∗ includes the secret vector vsk∗

J ∈ J−1. If

104

CHAPTER 11. SECURITY 105

b = 1, it sets vsk∗
J ← 0. It sets τ to be a set of γsetsize(n) vectors t1, . . . , tγsetsize(n) that

are uniformly random in J−1 mod BI subject to the constraint that there exists a subset

S ⊆ {1, . . . , γsetsize(n)} of cardinality γsubsetsize(n) such that
∑

i∈S ti ∈ vsk∗
J + I. The

problem is to guess b given (τ, sk∗, pk∗).

Here we discuss the hardness of our concrete version of the SplitKey Distinguishing

Problem given in Definition 11.1.1. The problem is somewhat unnatural, in the sense

that it depends on our key generation algorithm. Below, we base the hardness of our

SplitKey Distinguishing Problem on a sparse subset sum problem modulo an integer that is

essentially independent of our encryption scheme. We do this in two steps. First, we relate

the SplitKey Distinguishing Problem to a sparse subset vector sum problem modulo the

lattice IJ , where the problem is independent of the secret key output by our key generation

algorithm (but not the public key). Next, as long as I and J satisfy certain criteria, we

remove the dependence on I and J .

Here is the intermediate problem that we use.

Definition 11.1.2 (Sparse Vector Subset Sum Problem (SVSSP)). Let γsetsize(n) and

γsubsetsize(n) be functions as above, and BI a basis of an ideal I. The challenger sets

(sk∗,pk∗) R← KeyGenE∗ and b
R← {0, 1}, where the key pair includes bases of an ideal J .

It sets BIJ to be the Hermite normal form of IJ . If b = 0 it generates τ as a set of

γsetsize(n) vectors u1, . . . ,uγsetsize(n) that are uniformly random in Zn ∩P(BIJ), subject to

the constraint that there exists a subset S ⊆ {1, . . . , γsetsize(n)} of cardinality γsubsetsize(n)

such that
∑

i∈S ui ∈ IJ . If b = 1, it sets the vectors without the constraint. The problem

is to guess b given (τ, sk∗,pk∗).

Theorem 11.1.3. Let A be an algorithm that decides the concrete version of the SplitKey

Distinguishing Problem with advantage ε. Then, there is an algorithm B, running in about

the same time as A, that solves the SVSSP with advantage (γsubsetsize(n)/2γsetsize(n)) · ε.

Proof. The challenger generates a bit b
R← {0, 1} and gives B an appropriate instance

(τ, sk∗, pk∗) of SVSSP, where pk∗ includes a basis for ideal J , and sk∗ contains vsk∗
J ∈ J−1.

To generate a tag τ ′ for the SplitKey Distinguishing Problem, B does the following. Let

BJ−1 be a basis of J−1 and let U be the n× γsetsize(n) matrix formed by the vectors {ui}.
B sets T ′ ← BJ−1 ·U , reducing the columns modulo BI . It sets a bit β

R← {0, 1}; if β = 0 it

sets v ← vsk∗
J , otherwise it sets v ← 0. It adds v to a random column (say the kth column)

CHAPTER 11. SECURITY 106

of T ′, reducing the column modulo BI , to obtain matrix T . It outputs τ ′ as the column

vectors of T . A responds with a bit β′. B outputs b′ ← β ⊕ β′.

We have that

Pr[b′ = b] = (1/2) · Pr[b′ = 0|b = 0] + (1/2) · Pr[b′ = 1|b = 1] = (1/2) · Pr[b′ = 0|b = 0] + 1/4

The last equality follows from the fact that, when b = 1, the column vectors of T ′ are

random and independent in J−1 ∩P(BI) and thus T is independent of β, β′ is independent

of β, and b′ is uniformly random. We know that the column vectors of T ′ are random and

independent, since multiplication by BJ−1 induces a bijection between Zn ∩ P(BIJ) and

J−1 ∩ P(BI) that preserves rank: for c ∈ Zγsetsize(n), we have

T ′ · c = 0 ⇔ BJ−1 · U · c = 0 ⇔ U · c = 0

In short, the uniformity of U when b = 1 implies the uniformity of T ′.

Now, assume b = 0. For i ∈ {0, 1}, let εi be the probability that A outputs 1 when

b† = i in the SplitKey Distinguishing Problem. (We used ‘b†’ to avoid a notation conflict.)

We have

Pr[b′ = 0] = (1/2) · (Pr[β′ = 0|β = 0] + Pr[β′ = 1|β = 1]
)

If β = 1, then indeed T has the same distribution as in the b† = 1 case in the SplitKey

Distinguishing Problem (i.e., a sparse subset sums to 0 modulo I), so Pr[β′ = 1|β = 1] = ε1.

However, if β = 0, then T has the same distribution as in the b† = 0 case in the SplitKey

Distinguishing Problem (i.e., a sparse subset sums to vsk∗
J) when k ∈ S, but when k /∈ S,

the distribution is the same as in the b† = 1 case (since vsk∗
J is added to a vector that is not

a part of the sparse subset and thus is lost in the randomness of the other vectors, while

the sparse subset sum is unaffected and is thus still 0). Therefore, assuming β = 0, we have

Pr[β′ = 0] = Pr[β′ = 0|k ∈ S] · Pr[k ∈ S] + Pr[β′ = 0|k /∈ S] · Pr[k /∈ S]

= (1− ε0)(γsubsetsize(n)/γsetsize(n)) + (1− ε1) · (1− γsubsetsize(n)/γsetsize(n))

CHAPTER 11. SECURITY 107

Overall, we have

Pr[b′ = 0|b = 0] = 1/2 + (ε1 − ε0)(γsubsetsize(n)/2γsetsize(n))

and thus Pr[b′ = b] = 1/2 + (ε1− ε0)(γsubsetsize(n)/4γsetsize(n)). In other words, B’s advan-

tage is less thanA’s advantage by at most a multiplicative advantage of 2γsetsize(n)/γsubsetsize(n).

Now, we provide a problem that is independent of the particular ideal J output by

KeyGen.

Definition 11.1.4 (Sparse Subset Sum Problem (SSSP)). Let γsetsize(n) and γsubsetsize(n)

be functions as above, and let q be a prime positive integer. The challenger sets b
R← {0, 1}.

If b = 0 it generates τ as a set of γsetsize(n) integers {a1, . . . , aγsetsize(n)} in [−q/2, q/2]

that are uniformly random, subject to the constraint that there exists a subset S ⊆
{1, . . . , γsetsize(n)} of cardinality γsubsetsize(n) such that

∑
i∈S ai = 0 mod q. If b = 1,

it sets the elements without the constraint. The problem is to guess b given τ .

The SSSP is a type of knapsack problem; it asks whether there is a sparse knapsack that

sums to 0 modulo q. However, the SSSP should not be confused with the low-density knap-

sack problem. In the latter, γsetsize(n)/ log q is small (less than 1). Consequently (though we

omit details), one can construct a lattice corresponding to the set of possible knapsack so-

lutions in which the target solution vector corresponding to the subset sum is exponentially

shorter than the rest of the solution vectors; this solution vector can then be recovered by

a polynomial-time lattice reduction algorithm. In our case, γsetsize(n)/ log q will be greater

than 1. The consequence of this is that there will be (exponentially) many subsets whose

sum is zero modulo q, and known polynomial-time lattice reduction algorithms will fail to

extract the sparse solution from the many non-sparse ones.

Theorem 11.1.5. Assume BI and IdealGen are such that det(I) and det(J) are distinct

primes and q/det(IJ) is super-polynomial. Suppose A decides SVSSP with advantage

ε in this setting. Then, there is an algorithm B that decides the SSSP with advantage

ε/2γsubsetsize(n), up to negligible factors.

The intuition of the proof is that, if there is a sparse subset S such that
∑

i∈S ai =

0 mod q, then this set sums to zero over the integers with non-negligible probability, since

CHAPTER 11. SECURITY 108

the only possible sums are k ·q for k ∈ (−γsubsetsize(n)/2, γsubsetsize(n)/2). If this holds, then

q is irrelevant;
∑

i∈S ai = 0 mod p holds for any p. In particular,
∑

i∈S ai = 0 mod det(IJ).

Accordingly, B’s initial strategy is to set ai ← ai · ei mod BIJ for all i, and ask A
whether these ai are statistically uniform or there is a sparse subset of them that sum to 0

modulo IJ . There surely is such a sparse subset (namely, S) when
∑

i∈S ai = 0. If the ai’s

are completely random and independent, then the ai’s will be statistically random modulo

BIJ , since q/det(IJ) is super-polynomial random and thus the ai’s are statistically random

modulo det(IJ), and because (for technical reasons) multiples of ei run over all of the cosets

Zn/IJ .

The difficult case is when
∑

i∈S ai is a nonzero multiple of q. For this case, we would

like to map the ai’s to ai’s so that the ai’s are statistically uniform, but the initial strategy

above does not quite work, since the resulting ai’s would have a sparse subset that adds

up to k · q · e1 mod BIJ where k ∈ (−γsubsetsize(n)/2, γsubsetsize(n)/2) \ {0}, whereas the

ai’s would be unlikely to have such a sparse subset if they were uniform. So, we revise B’s

initial strategy slightly: it chooses a random integer m that is invertible modulo det(IJ)

and sets ai ← m · ai · e1. This new strategy still works for the cases when the ai’s are

random or have a sparse subset that sums to 0 over the integers; for the case that
∑

i∈S ai

is a nonzero multiple of q, the new strategy randomizes the sum of the sparse subset so

that it equals x · e1 for some random x that is invertible modulo det(IJ). If det(I) and

det(J) are both super-polynomial, then an overwhelming fraction of numbers are invertible

modulo det(IJ), and the distribution of the ai’s is thus statistically uniform. If det(I) is not

super-polynomial (det(J) of course must be), then we can use the Leftover Hash Lemma to

prove that the distribution is still statistically uniform.

Overall, if A has a non-negligible advantage in the SVSSP, then B can use A to distin-

guish when an SSSP instance has a sparse subset that sums to 0 over the integers, which is

enough to give B a non-negligible advantage in the SSSP.

Proof. The challenger generates a bit b
R← {0, 1} and gives B an appropriate instance τ

of SSSP. To generate a tag τ ′ for the SVSSP, B does the following. B sets (sk∗,pk∗) R←
KeyGenE∗ and sets BIJ to be the Hermite normal form of IJ . It sets m to be random

integer that is invertible modulo det(IJ) and sets τ ′ to be ui ← m · ai · ei mod BIJ .

There are three cases to consider. If b = 1, the ai’s are random and independent in

[−q/2, q/2]. Since q/det(IJ) is super-polynomial, the ai’s are also (statistically) random

and independent modulo det(IJ). Since ei generates all of the cosets Zn/IJ (we will show

CHAPTER 11. SECURITY 109

this momentarily), and m is invertible modulo det(IJ), the ai’s are random and independent

among the cosets Zn/IJ .

As to why ei generates all of the det(IJ) cosets of Zn/IJ , let d be the smallest positive

integer such that d ·e1 ∈ IJ . If d = det(IJ), then clearly e1 must traverse all of the det(IJ)

cosets. Otherwise, d is a proper divisor of det(IJ), either det(I) or det(J). But det(I) · e1

cannot be in J , since det(J) · e1 ∈ J , which would imply e1 ∈ J , since det(I) and det(J)

are relatively prime. This is impossible, since e1 generates the entire ring R.

Suppose that b = 0 and that
∑

i∈S ai = 0 (over the integers). Let S be the set of indices

corresponding to the subset whose sum is 0. In this case,
∑

i∈S ai = 0 mod det(IJ), and

so
∑

i∈S ai = 0 mod BIJ . If we consider any subset of γsetsize(n)− 1 indices that excludes

an index in S, the vectors associated to those indices are random and independent modulo

BIJ for the same reasons as in the first case. Thus, in this case, τ ′ leads to a (statistically)

properly distributed instance of the SVSSP for the b† = 0 case.

Suppose that b = 0 and that
∑

i∈S ai is a nonzero multiple of q. Consider the distri-

bution of
∑

i∈S m · ai mod det(IJ); we claim that it is statistically uniform. If this sum is

statistically uniform, then the distribution of {ai} is uniform modulo IJ , since we already

know that the distribution is uniform apart from the possibility that there is a sparse subset

S with an improbable sum.

First, consider
∑

i∈S mJ · ai mod det(J), where mJ is the residues of m modulo det(J).

We claim that it is statistical uniform and independent of
∑

i∈S mI · ai mod det(I), where

mI is the residues of m modulo det(I). Toward this claim, first we note that
∑

i∈S ai

is nonzero modulo det(J), since it equals k · q for some small k, since det(J) and q are

distinct primes, and since k is too small to be divisible by det(J). We also note that,

via CRT, mJ is sampled from (Z/det(J))∗ randomly and independently of mI , and, since

J is necessarily super-polynomial (for basic security reasons), sampling uniformly from

(Z/det(J))∗ is statistically indistinguishable from sampling uniformly from (Z/det(J)).

The claim follows.

Now, it suffices to show that
∑

i∈S mI ·ai mod det(I) is statistically uniform. If det(I) is

also super-polynomial, then uniformity follows for the same reason it was true wrt det(J).

Otherwise, we apply the Leftover Hash Lemma. Specifically, let H be a family of hash

functions, each hash function h in the family associated a distinct (h1, . . . , hγsetsize(n)−1) ∈
(Z/det(I))γsetsize(n)−1. The function maps from the set X of (γsubsetsize(n)− 1)-sized sub-

sets of {1, . . . , γsetsize(n) − 1} to the set Y = Z/ det(I) via h(x) = −∑
i∈x hi mod det(I).

CHAPTER 11. SECURITY 110

This family is clearly 2-universal. By the Leftover Hash Lemma (Lemma 6.3.1), if h

and x are selected uniformly and independently, then (h, h(X)) is 1
2

√
|Y|/|X |-uniform.

The statistical difference from uniform is negligible when det(I) =
(γsetsize(n)−1
γsubsetsize(n)−1

)
/nω(1),

which will certainly be true when det(I) is not super-polynomial. The distribution of
∑

i∈S mI · ai mod det(I) is even closer to uniform than the distribution induced by the

above family of hash functions, since this distribution is equivalent to picking a random

hash function from the family above, computing (h, h(x)), replacing h(x) with h(x) + z for

a uniformly random z ∈ (Z/det(I))∗, and then permuting the resulting γsetsize(n) elements

of (Z/det(I))∗.

Overall, given that
∑

i∈S ai = 0 mod q, the most likely multiple of q, out of less than

γsubsetsize(n) possibilities, is 0 (since the expected mean is 0 when q is odd). Thus, the

middle case occurs with probability at least 1/γsubsetsize(n), and B’s advantage is therefore

at least ε/2γsubsetsize(n), up to negligible factors.

Finally, we reduce search SSSP to decision SSSP.

Definition 11.1.6 (Search SSSP). Let γsetsize(n) and γsubsetsize(n) be functions as above,

and let q be a prime positive integer. The challenger generates τ as a set of γsetsize(n)

integers {a1, . . . , aγsetsize(n)} in [−q/2, q/2] that are uniformly random, subject to the con-

straint that there exists a subset S ⊆ {1, . . . , γsetsize(n)} of cardinality γsubsetsize(n) such

that
∑

i∈S ai = 0 mod q. The problem is to output the set S given τ .

Theorem 11.1.7. Suppose A decides SSSP with non-negligible advantage in polynomial

time. Then, there is an algorithm B that solves search SSSP with probability 1/2 in polyno-

mial time.

Here is the intuition of the proof. Suppose that we have a flawless oracle O that decides

whether τ ′ is uniformly random or has a sparse subset that sums to 0. Suppose that we are

also given a set τ = (a1, . . . , aγsetsize(n)) that sums to 0 over a sparse subset S. To decide

whether an index i ∈ [1, γsetsize(n)] is in S, we set r
R← Z/(q), set a′i ← ai + r mod q, and

give τ ′ = (a1, . . . , ai−1, a
′
i, ai+1, . . . , aγsetsize(n)) to O. If i /∈ S, then τ ′ still sums to 0 over

S. O will tell us that there is a sparse subset, and we conclude that i /∈ S. But if i ∈ S,

then τ ′ is distributed like a random member of [−q/2, q/2]γsetsize(n) and we conclude from

O’s response that i ∈ S.

Instead of a flawless oracle, we are given algorithm A, which by assumption solves

decision SSSP with non-negligible advantage. However, the Goldreich-Levin Theorem [55]

CHAPTER 11. SECURITY 111

shows us how to use a decision oracle to invert certain functions, even when that oracle is

faulty.

Theorem 11.1.8. (Goldreich-Levin Theorem, restated as in [51]) Suppose we have oracle

access to a random process bx : {0, 1}n → {0, 1} such that, for some unknown x ∈ {0, 1}n,

we have

Pr
r∈{0,1}n

[bx(r) = b(x, r)] ≥ 1
2

+ ε

where the probability is taken uniformly over the internal coin tosses of bx and all possible

choices of r ∈ {0, 1}n, and b(x, r) denotes the inner product mod 2 of the binary vectors x

and r. Then, we can in time polynomial in n/ε output a list of strings that with probability

at least 1/2 contains x.

Proof. (Theorem 11.1.7) B receives a search SSSP instance τ = (a1, . . . , aγsetsize(n)) from

the challenger. Let x ∈ {0, 1}γsetsize(n) be the (unknown) incidence vector associated to

the sparse subset S ⊂ {1, . . . , γsetsize(n)} over which τ sums to 0 modulo q. We will use

Goldreich-Levin to recover x.

For r ∈ {0, 1}n, define the random process bx(r) as follows. Sample c
R← [−q/2, q/2] and

s
R← {−1, 1}γsetsize(n), set

τ ′ ← (a1 + c · s1 · r1 mod q, . . . , aγsetsize(n) + c · sγsetsize(n) · rγsetsize(n) mod q) ,

give τ ′ to A as its SSSP instance, and output A’s response bit b′. We claim that b′ =

〈x, r〉 mod 2 with probability non-negligibly bounded away from 1/2, from which the the

result follows by Goldreich-Levin.

For i ∈ {0, 1}, let ε0 be the probability that A outputs 1 when a decision SSSP instance

has a sparse subset that sums to 0, and let ε1 be the probability that A outputs 1 otherwise.

By assumption, ε1− ε0 is non-negligible. Let E1 and E2 be the events that 〈x, r〉 = 0 mod 2

and
∑

i∈S si · ri = 0, respectively. Note that E2 implies E1. We have

Pr[b′ = 〈x, r〉]
= Pr[b′ = 0|E2] · Pr[E2] + Pr[b′ = 0|E1 ∧ ¬E2] · Pr[E1 ∧ ¬E2] + Pr[b′ = 1|¬E1] · Pr[¬E1]

= (1− ε0) · Pr[E2] + (1− ε1) · ((1/2)− Pr[E2]) + ε1 · (1/2)

= 1/2 + (ε1 − ε0) · Pr[E2]

CHAPTER 11. SECURITY 112

The first equality follows from the fact that, if E2 occurs, then τ ′ sums to 0 over S (and is

otherwise randomly distributed). However, if E2 does not occur, then τ ′ is just a uniformly

random member of [−q/2, q/2]γsetsize(n), since the sum over S is uniformly random.

We have that Pr[E2] is non-negligible – in particular, it is at least 1/(2γsubsetsize(n)+1) –

since there are only 2γsubsetsize(n)+1 possibilities for
∑

i∈S si ·ri and 0 is the most likely.

As mentioned in Chapter 10, our approach to reducing the complexity of the decryption

circuit is abstractly similar to approaches used in server-aided cryptography to outsource

some of the decryption work to an untrusted server. In fact, the similarity is more than

just abstract; there are concrete server-aided schemes whose security relies on the SSSP. In

particular, in the Matsumoto, Kato and Imai [91] server-aided RSA scheme – called, RSA-S1

– the private exponent d is decomposed into γsetsize(n) integers {ai} such that there is a set

{xi ∈ [0, 2`−1]}, only γsubsetsize(n) of which are nonzero, such that
∑

i xi ·ai = d mod φ(N),

where N is the RSA modulus. (In our version of SSSP, we restrict the xi’s to {0, 1}, but

this is just for simplicity; like RSA-S1, we could permit the xi’s to have a slightly larger

range.) The SSSP is also similar the “full rank avoidance” problem initially proposed by

Mulmuley and Sohoni [101] as part of their program to separate P from NP [117]. The full

rank avoidance problem asks: given a matrix X with n rows and kn columns grouped as n

blocks of k, is it possible to choose one column from each block so that the resulting n× n

matrix M has det(M) = 0? In our setting, we need k to be at least γsetsize(n)/n. Gurvitz

[64] showed the problem to be NP-hard for k = 2.

If the SSSP is hard, what are we to make of all of the published attacks against RSA-S1

and its variants [114, 106, 96, 105]? These attacks are feasible only for limited choices of

RSA-S1 parameters; they are not polynomial-time in general. Some of these [114] (and pre-

vious related results [128, 33]) are essentially time-space tradeoffs, meet-in-the-middle type

attacks, whose complexity is exponential in γsubsetsize(n); these attacks are not polynomial-

time when γsubsetsize(n) = ω(1).

Nguyen and Shparlinski [105] present a lattice-based cryptanalysis of RSA-S1 that suc-

ceeds with advantage at least

1− (γsubsetsize(n)γsetsize(n)+2 · α)/q

where α is a term that is greater than 1, and where q = φ(N) and N is the RSA modulus.

We can easily avoid the attack by choosing γsetsize(n) to be larger than log q. Note that

CHAPTER 11. SECURITY 113

Theorem 11.1.5 only requires log q to be larger than log(det(IJ)) by an additive factor that

super-logarithmic in n. So, for example, we could take γsetsize(n) to be about 2·log(det(IJ)).

The intuition is that, once γsetsize(n) is sufficiently large, there will be exponentially many

subsets in τ (not necessarily sparse) whose vector sum is congruent to vsk∗
J ; lattice reduction

techniques have trouble extracting the sparse subset from among the many subset solutions.

For Theorem 11.1.5 to apply to our scheme, we need to use BI and instantiate IdealGen

such that I and J satisfy the given requirements on det(IJ). In Chapter 14, we begin

describing a modified version of the somewhat homomorphic scheme that uses an I for

which det(I) is prime. Also, we provide an instantiation of IdealGen in Chapter 18, which

outputs J as a uniformly random invertible prime ideal with norm in a given interval; its

norm will most likely be a prime integer.

11.2 Counterbalancing Assumptions

As discussed above, the best known attack on the SSSP is exponential in γsubsetsize(n), as

long as γsetsize(n) is chosen to be large enough to avoid a lattice attack by Nguyen and

Shparlinski [105]. I.e., the best attack takes time (roughly) 2γsubsetsize(n).

On the other hand, by Theorem 10.3.1, our scheme becomes bootstrappable when

γsubsetsize(n) · logc1 γsubsetsize(n) ≤
(

log(rDec/m)
2c2 · log(γMult(R) · rEnc)

)

To allow γsubsetsize(n) to be as large as possible for a fixed value of rDec/rEnc, we let γMult(R),

rEnc and m be as small as possible (polynomial in n), and rDec is then approximately

2γsubsetsize(n). We saw in Chapter 7.7 that the approximation factor of the decision BDDP

on which we base security is at least as large as rDec/rEnc – i.e., about 2γsubsetsize(n). We

use the rule of thumb that solving 2γsubsetsize(n)-decision BDDP takes time approximately

2n/γsubsetsize(n) using known attacks [123].

We can set γsubsetsize(n) ≈ √
n to make known attacks on the two problems “equally”

expensive (up to the crudeness of our approximations). Or, to put it another way, we can set

γsubsetsize(n) ≈ λ, where λ is the security parameter of our scheme, and obtain exponential

2λ security against known attacks. Note that this requires our lattice dimension to be quite

large: n ≈ λ2.

Note that in the somewhat homomorphic scheme without bootstrapping, we do not put

CHAPTER 11. SECURITY 114

any “hint” about the original secret key in the public key, and do not need the second

computational assumption. In this case, if we (say) only want to evaluate constant depth,

then (as far as we know) it suffices to take n quasi-linear in λ to achieve 2λ security against

known attacks. On the other hand, if we want to evaluate θ(log n) depth, this forces us to

use a sub-exponential approximation factor in decision BDDP, permitting sub-exponential

attacks, and forcing us to take n to be a higher-degree polynomial in λ.

Chapter 12

Performance and Optimizations

In this Chapter, we analyze the performance of our (leveled) fully homomorphic encryption

scheme, and describe a few ways to improve the scheme’s computational efficiency.

Even after some simple optimizations described in Section 12.1, we find in Section 12.2

that if we want to obtain 2λ security against known attacks (on each of the two problems

on which the security of our scheme is based), the computation per gate in our unoptimized

scheme is quasi-linear in λ9. The computational expense has several sources:

• Homomorphic Decryption: The fact that we perform decryption homomorphically,

rather than just conventionally, essentially “squares” the computational complexity

• Squashing the Decryption Circuit: This procedure minimized the depth of our de-

cryption circuit, but at the expense of substantially increasing the circuit’s size, and

increasing the size of the secret key and ciphertexts

• Counterbalancing assumptions: Make both of our problems hard requires a large

lattice dimension

These problems all go away if we only use the somewhat homomorphic encryption scheme

(without bootstrapping); this basic scheme is quite efficient.

In Section 12.3, we provide two optimizations, neither substantially decreasing security,

that reduce the computation per gate to quasi-linear in λ6. While still high, this does

not seem so unreasonable when one considers that, to get 2λ security against the number

field sieve, one should use an RSA modulus whose bit-length is quasi-linear in λ3, in which

case a full exponentiation takes time quasi-linear in λ6, even when one uses fast FFT

115

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 116

multiplication. We also provide a third optimization, but where security only holds under

the assumption that a different SplitKey Distinguishing Problem is hard. For this different

version of the problem, we have no reduction from the SSSP.

12.1 Simple Optimizations

First, we note some very simple optimizations, before getting to the more technical ones

described in Section 12.3.

As a preliminary matter, before we begin discussing the scheme’s computation per gate,

we note that there is some flexibility in how one defines a gate. (See Chapter 4, where we

defined what it means for an encryption scheme to be bootstrappable with respect to a set

of gates Γ.) In particular, a “gate” could be a “normal” boolean circuit of depth greater

than 1. If we use “bigger” gates, then we perform expensive Recrypt operations less often,

which may improve efficiency. However, for simplicity of exposition, we will assume in the

discussion below that we use NAND gates.

For each NAND gate in C, we evaluate two decryption circuits DE homomorphically,

and then compute NAND homomorphically. In our transformation above from E∗ (the

somewhat homomorphic scheme) to E (with the squashed decryption circuit), we said that

a homomorphic Add consisted of extracting (ψ∗1, ψ
∗
2) (the ciphertexts from the somewhat

homomorphic scheme) from (ψ1, ψ2) (the ciphertexts from the transformed scheme), adding

ψ∗1 and ψ∗2 within the somewhat homomorphic scheme (using simple ring addition) to obtain

ψ∗, and then setting the output ψ to include ψ∗ and the output of ExpandCTE(pk, ψ∗). How-

ever, it is actually overkill to use ExpandCT for the interior gates of the NAND-augmented

decryption circuit that we are computing; really we only need apply ExpandCT at the end,

and can use simple ring addition and multiplication for the interior gate homomorphisms.

Another optimization is that, when applying Recrypt to ψ (the encryption of π under

pk1), we do not really need to first encrypt the bits of ψ under pk2. Instead, we can

view the bits themselves as ciphertexts under pk2, since there is no requirement that these

“ciphertexts” be hiding. In other words, we do not actually need to evaluate the general

decryption circuit, but rather merely a non-uniform decryption circuit that takes only the

secret key as input and has the ciphertext hard-wired. So, overall, the complexity (per gate

in C) is approximately twice the complexity of this simplified version of Recrypt, plus the

complexity of ExpandCT.

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 117

12.2 Basic Performance

As discussed in Chapter 11.2, the SplitKey Distinguishing Problem becomes harder as

γsubsetsize(n) increases, while the decision BDDP becomes easier, since increasing γsubsetsize(n)

increases the approximation factor of the problem. To make both of the problems hard, such

that the breaking time of both problems is 2λ, requires us to use a large lattice dimension:

n ≈ γsubsetsize(n)2 ≈ λ2.

Now, let us consider the size of an encrypted secret key in our scheme. The secret

key (unencrypted) is a γsubsetsize(n) × γsetsize(n) matrix of bits. We need γsetsize(n) to be

rather large – larger than log det(IJ) – for our reduction from the SSSP to work. Since J

contains a ball of radius rDec, where the latter is exponential in γsubsetsize(n), we have that

log det(IJ) > n log rDec > n·γsubsetsize(n) ≈ λ3. (And the upper bound log det(IJ) = O(λ3)

works as well.) So, the secret key (unencrypted) key is approximately λ4 bits. Encryption

multiplies the bit-length by another factor of λ3, since each ciphertext is a coset of J , where

log det(IJ) = O(λ3) as described above. Overall, the encrypted secret key is approximately

λ7 bits.

Circumstances become even worse when this encrypted secret key is applied to the

ciphertext components output by ExpandCT. Consider a single ciphertext component ci. It

has n coefficients, though each coefficient only needs to have a very small (poly-logarithmic)

number of bits, the minimal number needed to ensure that the rounded sum is computed

correctly. Each encrypted secret key bit is multiplied with one ciphertext component.

Overall, this computation is quasi-linear in λ7 × n ≈ λ9, and in fact the result of this

intermediate computation also has length quasi-linear in λ9. The remaining computation

is quasi-linear in λ9, assuming FFT multiplication is used.

12.3 More Optimizations

As our first optimization, we observe that a simplified version of the secret key still works,

due to properties of symmetric polynomials.

Optimization 1: Encode the secret key sk as a vector in {0, 1}γsetsize(n), rather than a 0/1

incidence matrix of dimension γsubsetsize(n)× γsetsize(n).

Gain: Computational complexity is reduced by a factor of approximately γsubsetsize(n) ≈ λ.

In Optimization 1, τ and ExpandCTE are as before; the changes are in the format of sk

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 118

and in the decryption algorithm, which is as follows.

DecryptE(sk, ψ). Takes as input the secret key sk and a ciphertext ψ. It performs the

following steps:

Step 1: Set the vectors xi ← ski · ci

Step 2: From x1, . . . ,xγsetsize(n), generate integer vectors y1, . . . ,yγsetsize(n)+1 with sum

b∑xie.
Step 3: Compute π ← ψ − (

∑
yi) mod BI

The key observation here is that all but γsubsetsize(n) of the xi’s are 0, and that, if we have

the promise that most of the numbers that we are summing up are 0, then we can compute

the output above using a shallower circuit. Why? Recall that, in Lemma 9.0.3, we basically

reduced computing the sum of t numbers to computing the Hamming weight of a vector

b ∈ {0, 1}t. Then, we used the fact that the binary representation of this Hamming weight

is precisely

(e2blog tc(b1, . . . , bt) mod 2, . . . , e20(b1, . . . , bt) mod 2)

where ei is the ith symmetric polynomial. In Optimization 1, we use symmetric polynomials

in the same way, but now with the observation that if we have the promise that b has

Hamming weight at most k, then there is no need to compute evaluate the polynomials

e2i(b1, . . . , bt) for i > blog kc, since they will all be 0 anyway. So, in optimization 1, despite

the more concise encoding of sk, we get by with computing the same low-degree elementary

symmetric polynomials that we did originally, albeit now with γsetsize(n) inputs rather than

γsubsetsize(n) inputs.

In particular, we have the following lemma, which is analogous to Lemma 9.0.3.

Lemma 12.3.1. For i ∈ [1, t], let ai = (. . . , ai,1, ai,0, ai,−1, . . .) be a real number given

in binary representation mod BI with the promises that
∑

i ai mod 1 ∈ [−1/4, 1/4] and at

most k of the ai’s are nonzero. There is a mod-BI circuit C for generating t + 1 integers

z1, . . . , zt+1 (also represented in binary) whose sum is b∑i aie, such that if the generalized

circuit g(C)’s inputs are in B(rin), then its outputs are in B(rout) for:

rout ≤ k · t · n · ‖BI‖ · (t · γMult(R) · rin)k·polylog(k)

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 119

For ‖BI‖ ≤ rin, t ≤ n, and γMult(R) = nΩ(1), we have:

rout ≤ (γMult(R) · rin)k·polylog(k)

Proof. The proof is essentially identical to the proof of Lemma 9.0.3 – i.e., we compute the

elementary symmetric polynomials up to degree k and use the matrix M−1, now of rank

k + 1. The only real difference is in the value of rout, which is affected by the fact that the

polynomials now take more input variables.

Let C be the mod-BI sub-circuit for computing any bit of the binary representation

of the Hamming weight. Using n · ‖BI‖ as an upper bound on the length of elements in

R mod BI , we have

‖g(C)(x1, . . . ,xt)‖
≤ γMult(R) · n · ‖BI‖ · (

∑

i∈[0,k]

‖ei(x1, . . . ,xt)‖) · t

≤ γMult(R) · n · ‖BI‖ · (
∑

i∈[0,k]

(
t

i

)
γMult(R)i−1 · ri

in) · t

= t · n · ‖BI‖ · (
∑

i∈[0,k]

(
t

i

)
(γMult(R) · rin)i)

≤ t · n · ‖BI‖ · (
∑

i∈[0,k]

(t · γMult(R) · rin)i)

≤ k · t · n · ‖BI‖ · (t · γMult(R) · rin)k

At this point, we have generated about log k numbers, each with O(log k) bits, with the

same sum as
∑

bi. There is a O(log log k)-depth constant fan-in boolean circuit for comput-

ing this sum, which can be emulated by a O(log log k)-depth mod-BI circuit. Combining

the above with results in the proof Theorem 7.3.2, the result follows.

Since rout is similar to before – i.e., exponential in γsubsetsize(n) (up to polylogarithmic

factors) – one obtains a bootstrappable scheme with Optimization 1 with parameters similar

to those required by Theorem 10.3.1.

Now, let us analyze the computation needed after Optimization 1. The more concise

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 120

representation of the secret key has size quasi-linear in λ6 – i.e., γsetsize(n) ≈ λ3 bits,

each encrypted in a ciphertext of size approximately n · γsubsetsize(n) ≈ λ3. Multiplying

the encrypted secret key balloons the result up to size quasilinear in λ8. The dominant

remaining computation is computing the elementary symmetric polynomials up to degree

γsubsetsize(n). We need to do one such computation for the least significant bits of the least

significant coefficients of the ci’s, etc.; the total number of such computations is the number

of bits in ci, which is quasi-linear in n ≈ λ2.

The symmetric polynomials are the coefficients of zi, i ∈ [γsetsize(n)−γsubsetsize(n), γsetsize(n)],

in the polynomial p(z) =
∏γsetsize(n)

i=1 (z−bi). Let f(t) be the computation needed to compute

the product of t of the (z−bi)’s. Using the recursion that f(t) = 2·f(t/2)+polylog(t/2), the

total computation needed to compute the symmetric polynomials (non-homomorphically)

is γsetsize(n) · polylog(γsetsize(n)). Since the operations are performed homomorphically –

i.e., with ciphertexts of size quasi-linear in λ3 instead of with bits – the computation needed

is quasilinear in λ6. Since the number of Hamming weight computations is quasi-linear in

n ≈ λ2, the total computation in quasi-linear in λ8.

Remark 12.3.2. Though it does not affect the asympotics very much, we can optimize

Optimization 1 as follows. When a polynomial associated to an interior node has degree

d > γsubsetsize(n), we can discard its coefficients for zi for i < d−γsubsetsize(n), since they will

not affect the end result; thus, at any node, we never maintain more than γsubsetsize(n) + 1

coefficients.

Optimization 2: Preprocess the initial ciphertext ψ∗ even more, collapsing each n-

coefficient ciphertext component ci into a single coefficient.

Gain: Computational complexity is reduced by a factor of approximately n ≈ λ2. Com-

bining with Optimization 1, the computational complexity per gate is reduced to λ6.

Suppose the plaintext space is {0, 1} and that I = (2).1 A ciphertext ψ∗ from the

somewhat homomorphic scheme has the form m + j, where m ∈ π · e1 + 2 · Zn is “short”

and j ∈ J . Addition and multiplication of ciphertexts does not change the essential form of

the ciphertext. In particular, the plaintext π always hides in the least significant coefficient

of ψ∗; for all of the other coefficients, the offset from the closest J-vector is even. This
1Shai Halevi observed the optimization for this case [67].

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 121

suggests that, our decryption equation

π = ψ∗ − bvsk∗
J × ψ∗e mod 2

we only really care about the least significant coefficient – i.e., π can be recovered from the

least significant coefficient of ψ∗ and the least significant coefficient of

vsk∗
J × ψ∗ =

∑

i∈S

ti × ψ∗

In Optimization 2, we modify ExpandCT to output only the least significant coefficients of

the ciphertext components ci = ti × ψ∗, and simplify decryption so that it only sums up

these coefficients, reducing decryption computation by a factor of n ≈ λ2.

In certain cases, we can perform this optimization even when I 6= (2). For example,

the optimization works when det(I) is a small prime p, though the optimization is more

complicated in this setting. First, compute a basis B′
I of I, where the first column vector

b0 = (p, 0, . . . , 0), and bi = (ai, 0, . . . , 0, 1, 0, . . . , 0) for i ∈ [1, n− 1], where the ‘1’ is in the

ith row and ai ∈ (−p/2, p/2). (This can easily be done using elementary column operations.)

Consider a vector m ∈ Zn. Let

m′ ← m−
n−1∑

i=1

mi · bi = m mod BI ,

Then all of the coefficients of m′ are 0, except possibly the least significant coefficient.

The idea is that if we could apply this transformation to the value of m hiding inside the

ciphertext (i.e., where ψ∗ = m+ j for m ∈ π ·e1 + I and j ∈ J), then it seems that we could

ignore all but the least significant coefficient, as when I = (2). But how do we apply this

transformation to ciphertexts, when the value m is not accessible?

Before we get to how ExpandCT and Decrypt are modified, let us define a convenient

notation. For B′
I and p as above and x ∈ Qn, let

x red B′
I = x−

n−1∑

i=1

xi · bi

Notice that all of the coefficients of x red B′
I are 0, except possibly the least significant one.

Also, notice that x + y red B′
I = (x red B′

I) + (y red B′
I). Finally, notice that x red B′

I

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 122

seems to have a close relationship with x mod B′
I , which equals

x−
n−1∑

i=1

bxie · bi mod p

The following lemma characterizes this relationship.

Lemma 12.3.3. Let B′
I and p be as described above. Let δ and η be positive reals such that

(np/2) · δ < η < 1/2. Suppose the coefficients of x are within δ of integers. Then,

bx mod B′
Ie = bx red B′

Ie mod p

Also, the least significant coefficient of x red B′
I has size at most p ·∑i |xi| and is within η

of an integer.

Proof. The upper bound on the magnitude of the least significant coefficient of x red B′
I is

obvious.

Since the vectors in B′
I are integer vectors, the coefficients of (x mod B′

I) are within δ

of integers. Also, for some integer k, we have

(x mod B′
I)− (x red B′

I) = (x− k · p · e1 −
n−1∑

i=1

bxie · bi)− (x−
n−1∑

i=1

xi · bi)

= −k · p · e1 +
n−1∑

i=1

(xi − bxie) · bi

Aside from the −k ·p ·e1 term, all the coefficients of this difference have magnitude at most

(n− 1) · (p/2) · δ. Since δ + (n− 1) · (p/2) · δ ≤ (np/2) · δ < η, the coefficients of (x red B′
I)

are close (within η) to the same integers that the coefficients of (x mod B′
I) are close to (up

to a multiple of p for the least significant coefficient).

With that technical lemma in hand, we modify ExpandCTE and DecryptE as follows.

ExpandCTE(pk, ψ∗). Computes c′i ← ti × ψ∗ mod BI for i ∈ [1, γsetsize(n)], and outputs

ci ← c′i red B′
I . (All but the first coefficient of these vectors is 0, so these coefficients do

not actually need to be output.)

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 123

DecryptE(sk, ψ). Takes as input the secret key sk and a ciphertext ψ. It performs the

following steps, which are the same as after Optimization 1, but only the least significant

coefficients need to be operated on:

Step 1: Set the vectors xi ← ski · ci

Step 2: From x1, . . . ,xγsetsize(n), generate integer vectors y1, . . . ,yγsetsize(n)+1 with sum

b∑xie.
Step 3: Compute π ← ψ − (

∑
yi) mod B′

I

To show that decryption is correct, it suffices to show that

ψ − b
∑

i∈S

cie = ψ − b
∑

i∈S

c′ie mod I

where the first expression is what is computed in the new decryption algorithm, and the

second expression is what was computed prior to Optimization 2. But this follows from

Lemma 12.3.3 as long as
∑

i∈S c′i has coefficients that are sufficiently close to integers.

Modulo I,
∑

i∈S c′i equals vsk∗
J · ψ∗. To ensure that this quantity is sufficiently close to

an integer vector, we tweak the set of permitted circuits once again, in much the same way

as we did in Tweak 2 (see Chapter 8.4). (Recall that in Tweak 2, we changed the set of

permitted circuits to require a ciphertext ψ∗ to be within rDec/2 of the J-lattice, so that

the coefficients of vsk∗
J ·ψ∗ would be within 1/4 of integers, thereby simplifying the rounding

step.)

Optimization 3: Use the ring R = Z[x]/(f(x)) for f(x) = xn + 1, where n is a power

of 2. (Alternatively, one could use some other irreducible f(x) that equals xn + h(x)

for some constant-degree polynomial h(x) with ‖h‖ = poly(n).) To set τ , generate 2 ·
γsubsetsize(n) random vectors xj

R← J−1 subject to the constraint that there exists a vector

s ∈ {0, 1}2·γsubsetsize(n) of Hamming weight γsubsetsize(n), and a vector r ∈ {0, . . . , n −
1}2·γsubsetsize(n) such that

vsk∗
J =

2·γsubsetsize(n)∑

i=1

(si · xri
i mod f(x)) mod I

Gain: Computational complexity is reduced by a factor of approximately n ≈ λ2. With

the previous optimizations, the computation per gate is quasilinear in λ4.

To describe the optimization another way, τ does not consist of γsetsize(n) vectors that

CHAPTER 12. PERFORMANCE AND OPTIMIZATIONS 124

are random and independent (aside from the subset sum constraint). Instead, it consists of

only 2 ·γsubsetsize(n) vectors that we “unpack” into 2·n ·γsubsetsize(n) vectors by using all the

“rotations” of the original 2 ·γsubsetsize(n) vectors; the vectors are random and independent

aside from a subset sum constraint on the 2 · n · γsubsetsize(n) vectors. The secret key sk

consists of 2 · γsubsetsize(n) ciphertexts encrypting the bits of s, as well as 2 · γsubsetsize(n)

ciphertexts that encrypt the rotations; the value ri ∈ [0, n− 1] is encrypted in a ciphertext

having the form xri + i + j for i ∈ I and j ∈ J . Notice that this secret key is much more

concise, by a factor of approximately γsetsize(n)/γsubsetsize(n).

In ExpandCT, we output {xi×ψ∗}, much fewer values than before. Combining the secret

key with these ciphertext components (in the obvious way) also takes much less computation

than before, by a multiplicative factor of approximately λ2.

The drawback of this optimization is that its security is questionable. In particular, the

less random choice of τ prevents the reduction from the SSSP.

The optimizations above are directed toward minimizing the total computational com-

plexity of our scheme. But we note that the parallel computational complexity of scheme

is already inherently low, precisely because we require the circuit depth of our decryption

to be very low. Even with bootstrapping, our scheme could be extremely efficient in a

massively parallel implementation.

Chapter 13

Background on Ideal Lattices II

Over the next few Chapters, we revisit the somewhat homomorphic scheme in an effort

to base its security on a weaker computational assumption. Recall that, to make the

somewhat homomorphic scheme bootstrappable, we needed to squash the decryption circuit

and make an additional computational assumption; our efforts below will only weaken the

first assumption.

As our first refinement to the somewhat homomorphic scheme, we modify the Samp

algorithm (used in Encrypt) so that it samples from the coset π + I according to a discrete

Gaussian distribution centered at the origin and with a deviation parameter not much larger

than ‖BI‖. When Encrypt uses this distribution and det(I) = poly(n), we show in the next

Chapter that security can be based (classically) on the (search) BDDP over ideal lattices

generated according to the distribution induced by the IdealGen algorithm used in KeyGen.

To generate I, we need some results on ideal factorization in polynomial rings, given here.

Beginning in Chapter 16, we show how to obtain a worst-case / average-case connection for

ideal lattices and show how to instantiate IdealGen so that it generates ideals according to

the average-case distribution.

13.1 Overview of Gaussian Distributions over Lattices

For any real s > 0, define the Gaussian function on Rn centered at c with parameter s as

ρs,c(x) = exp(−π‖x−c‖2/s2) for all x ∈ Rn. The associated discrete Gaussian distribution

125

CHAPTER 13. BACKGROUND ON IDEAL LATTICES II 126

over L is

∀ x ∈ L,DL,s,c(x) =
ρs,c(x)
ρs,c(L)

,

where ρs,c(A) for set A denotes
∑

x∈A ρs,c(x). In other words, the probability DL,s,c(x) is

simply proportional to ρs,c(x), the denominator being a normalization factor.

We use the smoothing parameter [100] associated to a lattice. The gist for our purposes

is that if I1 ⊂ I2 are two ideals and s exceeds the smoothing parameter of I1 – in particular,

s = λn(I1) · ω(
√

log n) – then the distribution DI2,s,c samples uniformly from the cosets of

I1; intuitively, the Gaussian is so “fat” that it smears uniformly across the cosets. Relatedly,

ρs,c(I2)/ρs,c(I1) = det(I1)/det(I2), up to negligible factors.

We will repeatedly invoke a technical lemma by Gentry, Peikert and Vaikuntanathan

(GPV) [49], which basically states that, given a basis B of L, one can sample vectors in L

according to an arbitrarily precise discrete Gaussian distribution, as long as the deviation

of the Gaussian is slightly bigger than ‖B‖.

Lemma 13.1.1 (Theorem 3.1 of [49]). For any lattice basis B ∈ Zn×n, any real s ≥
‖B‖ · ω(

√
log n), and any c ∈ Rn, GPV’s efficient sampling algorithm Samp, on input

(B, s, c), has an output distribution that is within negligible statistical distance of DL(B),s,c.

13.2 The Smoothing Parameter

As in [100], for lattice L and real ε > 0, we define the smoothing parameter ηε(L) to be the

smallest s such that ρ1/s(L∗ \ {0}) ≤ ε. We also use a couple of lemmata from [100].

Lemma 13.2.1 (Lemma 3.3 from [100]). For any n-dimensional lattice L and positive real

ε > 0,

ηε(L) ≤
√

ln(2n(1 + 1/ε))
π

· λn(L)

In particular, for any superlogarithmic function ω(log n), there exists a negligible function

ε(n) such that ηε(L) ≤ λn(L) ·
√

ω(log n).

Another fact we need says that a sample from a discrete Gaussian with parameter s is

at most s · √n away from its center with overwhelming probability.

CHAPTER 13. BACKGROUND ON IDEAL LATTICES II 127

Lemma 13.2.2 (Lemma A.6 of [49], derived from [100]). For any full-rank n-dimensional

lattice L, c ∈ Rn, real ε ∈ (0, 1), and s ≥ ηε(L), we have

Pr
x←DL,s,c

[‖x− c‖ > s · √n
] ≤ 1 + ε

1− ε
· 2−n

The above is a stronger form of Banaszyzck’s Lemma [11].

Lemma 13.2.3 (Lemma 1.5 of [11]). For any c > 1/
√

2π, n-dimensional lattice L, and

vector v ∈ Rn,

ρ(L \ c
√

nB) < Cn · ρ(L)

ρ((v + L) \ c
√

nB) < 2Cn · ρ(L)

where C = c
√

2πe · e−πc2 < 1.

When the smoothing parameter exceeds the smoothing parameter (by which we mean

s ≥ ηε(M) for negligible ε) of lattices M ⊆ L, we obtain the following nice properties.

Lemma 13.2.4 (Lemma A.4 of [49], implicit in [100]). Let L be any full-rank n-dimensional

lattice. Then for any s ≥ ηε(L), real ε ∈ (0, 1) and c ∈ Rn, we have ρs,c(L) ∈ [1−ε
1+ε , 1] ·

ρs,0(L).

Lemma 13.2.5 (Lemma A.5 of [49]). Let L, M be full-rank n-dimensional lattices with

M ⊆ L. Then for any ε ∈ (0, 1/2), and s ≥ ηε(M), and any c ∈ Rn, the distribution of

(DL,s,c mod M) is within statistical distance at most 2ε of uniform over (M mod L).

Lemma 13.2.6. Let L,M be full-rank n-dimensional lattices with M ⊆ L. Then for any

ε ∈ (0, 1/2), and s ≥ ηε(M), and any c ∈ Rn, ρs,c(L)/ρs,c(M) equals det(M)/det(L), up

to a multiplicative factor at most 2ε away from 1.

Approximately, the sum of two discrete Gaussian distributions is another discrete Gaus-

sian distribution, as is the case when the distributions are continuous. The problem is that

this is not entirely true; the discreteness of the original distributions introduces some error.

Here, we bound the error.

Lemma 13.2.7. Let L be a lattice, c ∈ Rn be a vector, s, t > 0 be two reals, and r =√
s2 + t2. Assume that ε ← ρr/st(L∗/{0}) satisfies ε < 1/2. Then, the statistical difference

between DL,s,c1 + DL,t,c2 and DL,r,c1+c2 is at most 9ε.

CHAPTER 13. BACKGROUND ON IDEAL LATTICES II 128

Proof. Consider the continuous distribution Y on Rn obtained by sampling from DL,s,c1

and then adding a noise vector from ρt,c2 . We use Lemma 13.2.8 below to conclude that

|Y (x)− ρr,c1+c2(x)/rn| ≤ ρr,c1+c2(x)/rn · 4ε

But we know that, by definition, DL,r,c1+c2(x) simply equals ρr,c1+c2(x)/rn, up to the

normalization factor n1 ←
∑

x∈L ρr,c1+c2(x). Similarly, (DL,s,c1 + DL,t,c2)(x) equals Y (x),

up to the normalization factor n2 ←
∑

x∈L Y (x). Since Y (x) ∈ [(1 − 4ε)ρr,c1+c2(x), (1 +

4ε)ρr,c1+c2(x)] for all x, we have that n2 ∈ [(1− 4ε)n1, (1 + 4ε)n1]. Therefore,

(DL,s,c1 + DL,t,c2)(x) ∈ [(1− 4ε)2 ·DL,r,c1+c2(x), (1 + 4ε)2 ·DL,r,c1+c2(x)]

for all x. After replacing the implicit ε2 by ε in the equation above, the result follows by

integration.

Lemma 13.2.8 (Strengthening of Lemma 3.9 of [119]). Let L be a lattice, c ∈ Rn be a

vector, s, t > 0 be two reals, and r =
√

s2 + t2. Assume that ε ← ρr/st(L∗/{0}) satisfies

ε < 1/2. Consider the continuous distribution Y on Rn obtained by sampling from DL+c,s,0

and then adding a noise vector from ρt. Then, for all x ∈ Rn,

|Y (x)− ρr(x)/rn| ≤ ρr(x)/rn · 4ε

The lemma above follows from the Regev’s proof of Lemma 3.9 [119].

13.3 Sampling a Lattice According to a Gaussian Distribu-

tion

Gentry, Peikert and Vaikuntanathan [49] provide a fast algorithm that is able to sample a

lattice L according to (a distribution that is statistically indistinguishable from) a discrete

Gaussian distribution for parameter s. The algorithm only requires as input a basis B of L

such that ‖B‖ is a little bit less than s.

Theorem 13.3.1 (Theorem 3.1 from [49]). For any lattice basis B ∈ Zn×k, any real s ≥
‖B‖ · ω(

√
log n), there is an algorithm (called SampleD in [49]) whose output distribution

CHAPTER 13. BACKGROUND ON IDEAL LATTICES II 129

is within negligible distance of DL(B),s,c. The running time of SampleD is polynomial in n

and the size of its input (B, s, c).

The algorithm works by iteratively reducing the problem of sampling from L according

to a Gaussian distribution centered at c to the problem of sampling from subspaces of L of

smaller and smaller dimension. Specifically, the sampling algorithm SampleD is as follows.

On input (B, s, c), if k = 0 (i.e., B is empty), return 0. Otherwise:

1. Compute bk, the (nonzero) component of bk orthogonal to span(b1, . . . ,bk−1). Com-

pute t, the projection of c onto span(B), and the scalar value t = 〈t,bk〉
〈bk,bk〉 ∈ R.

2. Choose an integer z ← DZ,s/‖bk‖,t.

3. Output z · bk + SampleD(B′, s, t− z · bk) via recursion, where B′ = {b1, . . . ,bk−1}.

Informally, SampleD samples from a k-dimensional lattice by: (1) sampling a (k − 1)-

dimensional hyperplane containing a (k − 1)-dimensional sublattice of L according to a

1-dimensional Gaussian distribution, and then (2) sampling a lattice point from this hyper-

plane. In terms of proving that this algorithm outputs according to the desired distribution,

one relevant fact is that an n-dimensional Gaussian distribution is equivalent to the direct

product of n 1-dimensional Gaussian distributions, each along orthogonal axes parallel to

the respective vectors bk. Another relevant fact is that the weight allotted to each hyper-

plane in the discrete Gaussian distribution is indeed proportional (up to a negligible factor)

to the weight that the hyperplane would receive in a continuous Gaussian distribution. Gen-

try et al. prove this fact using the smoothing parameter – i.e., s is large enough to make

the “discreteness” of the points on the hyperplane irrelevant. See [49] for more details.

13.4 Ideal Factorization in Polynomial Rings

Unique factorization of ideals does not necessarily hold for R = Z[x]/(f(x)). Rather, unique

factorization of ideals holds for the ring of integers OK = {x ∈ K : fx
Q ∈ Z[x]}, where K is

the field Q(x)/(f(x)), and fx
Q is the monic irreducible minimal polynomial of x over Q. The

ring R is sometimes called an order or a number ring. The ring of integers is the maximal

order; it is a ring that contains R. However, the nice algebraic properties of OK , such as

unique factorization, carry over to R modulo some badness that arises from primes that

divide the index [OK : R].

CHAPTER 13. BACKGROUND ON IDEAL LATTICES II 130

For general number rings R, a prime ideal p is an ideal that is proper (i.e., does not

contain all of R) and such that for any ideals I and J with I · J ⊆ p, it holds that I ⊂ p

or J ⊂ p. Every prime ideal is maximal – i.e., there is no ideal I for which p ⊂ I ⊂ R,

where the inclusions are proper. The norm of an ideal I, Nm(I), is the index [R : I]. When

R = Z[x]/(f(x)) and the lattice associated to R is simply Zn, we have that Nm(I) = det(I).

For any prime ideal, the norm is a prime integer power.

For R = Z[x]/(f(x)) and any prime integer p, there is an efficient algorithm to find all

of the prime ideals in R with norms that are a power of p. It uses the following theorem.

Theorem 13.4.1 (Kummer-Dedekind, as given in [127]). Consider the factorization f(x) =
∏

i gi(x)ei mod p for prime integer p. The prime ideals pi ∈ Z[x]/(f(x)) whose norms are

powers of p are precisely

pi = (p, gi(x))

The inclusion
∏

i p
ei
i ⊂ (p) is an equality iff all pi are invertible.

There are polynomial time algorithms for factoring polynomials in Zp[x] – e.g., by

Kaltofen and Shoup [75].

For ideal I ⊂ R, the fractional ideal I−1 is {x ∈ K = Q(x)/(f(x)) : ∀y ∈ I, x×y ∈ R}.
I is said to be invertible if I · I−1 = R. Not all ideals are invertible; a non-invertible

ideal is said to be singular. As an example (from [127]), consider the ring Z[x]/(x2 + 3)

and the ideal I = (1 + x, 1 − x). I2 is generated by (1 + x)2 = 2x − 2 mod x2 + 3,

(1 + x)(1 − x) = 4 mod (x2 + 3), and (1 − x)(1 − x) = −2x − 2 mod x2 + 3, and therefore

I2 = 2 · I. Since I 6= (2), it is clear that I is not invertible. The norm of an ideal, defined as

its index in the ring, is a multiplicative map over invertible ideals. However, for a singular

ideal one can have a situation where [R : I]2 6= [R : I2] – e.g., for I = (1 + x, 1 − x) in

Z[x]/(x2 + 3), we have [R : I] = 2 and [R : I2] = 8. In general, the norm of a product of

ideals is at least the product of the norms. All principal ideals are invertible.

However, only a small number of prime ideals are singular. All such prime ideals have

norm pe for some prime integer p that divides [OK : R], and it is straightforward to place

an upper bound on this index. Specifically, let ∆(f) be the discriminant of f(x), and ∆K

be the discriminant of the number field K = Q(x)/(f(x)), and Res(f, f ′) be the resultant

CHAPTER 13. BACKGROUND ON IDEAL LATTICES II 131

of f(x) and its derivative. All of these terms are integers, and we have

∆(f) = [OK : R]2 ·∆K

= (−1)n(n−1)/2 ·Res(f, f ′)

Viewing Res(f, f ′) as the determinant of the Sylvester matrix associated to f and f ′, it is

easy to see that |Res(f, f ′)| is bounded by nn‖f‖2n, where ‖f‖ is the Euclidean length of

the coefficient vector associated to f . (Note that our suggested method of selecting f(x)

in Chapter 7.4 already places a polynomial bound on ‖f‖.) We can bound the number

of primes that divide |Res(f, f ′)|, and hence [OK : R], by O(n(log n + log ‖f‖)). Singular

primes are “rare,” and we can easily detect and discard them using Dedekind-Kummer.

(See [127] for a survey on general number rings and more details on these issues.)

While ideals I that are divisible by singular primes may not have unique factorization,

at least there is no “bad interaction” between ideals that are relatively prime (i.e., have no

common prime ideal divisors). In particular, one has the isomorphism R/I ∼= ∏
p⊃I R/I(p),

where I(p) is the p-part associated to I. For example, if I has norm 15, it can always be

uniquely decomposed as the product of two ideals I3 and I5 such that Nm(I(3)) = 3 and

Nm(I(5)) = 5. In particular, I3 = I + (3) – the sum of the ideals I and (3); similarly for

I5. In general, if I’s norm is divisible by pei
i , then I’s “pi-part” is simply I + (pei

i) and has

norm pei
i . The following equation of ideals holds: I =

∏
i(I + (pei

i)). Also, if Nm(I) and

Nm(J) are relatively prime, then Nm(I · J) = Nm(I) ·Nm(J).

Chapter 14

The Somewhat Homomorphic

Scheme Revisited

In this Chapter, we revisit the somewhat homomorphic ideal lattice based scheme described

in Chapters 5 and 7. Our objective is to obtain a security proof based on a weaker assump-

tion. Toward that goal, we use this Chapter to describe some different methods to generate

the ideal I and to instantiate the algorithm Samp, which is used in Encrypt to sample from

π + I. We also provide some security reductions for this revised scheme.

14.1 Using Gaussian Sampling in Encrypt

Briefly, we recall the suggestions for instantiating I and Samp in the initial construction.

Recall that IdealGen ensures that I and J are relatively prime. The suggestion was to pick

a short generator s ∈ I. Then, Samp outputs π+s×t, where t ∈ R is a short vector output

by algorithm Samp1.

The image of our original version of Samp is not necessarily very “nice” – e.g., it may

not be “spherical,” but may rather be distorted in a way that depends on the ring R. Our

new instantiation of Samp uses the GPV SampleD algorithm, described in Chapter 13.3, to

obtain a distribution that is “nicer” and simpler to analyze.

Samp(BI , π} outputs π+SampleD(BI , s,−π) (where s is a global parameter of the system).

As we learned in Chapter 7, it is straightforward to generate BI such that ‖BI‖ =

poly(n). Since the GPV algorithm only requires that s = ‖BI‖ · ω(
√

log n) (see Lemma

132

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 133

13.1.1), we can also take s = poly(n), and by Lemma 13.2.2, the sampled vector (and hence

rEnc) is longer than s · √n with only negligible probability.

14.2 Generating an Ideal with Very Small Norm

For one of our reductions – namely, the Hensel lifting one described in Chapter 14.5 – we

need a stronger requirement on I – namely, that det(I) be polynomial in n; otherwise,

the reduction is inefficient. Restricting I’s determinant to be small will allow us to based

security on search BDDP, essentially by using a “brute-force” search over the det(I) cosets

of I (in R); for this reduction to be efficient, det(I) must be polynomial in n. One downside

of this approach is that it restricts the plaintext space rather severely. Also, it makes the

generation of I conceptually more complex; we cannot simply set I to be (m) for small

integer m, because (given that R = Z[x]/(f(x)) for f(x) of degree n) the ideal (m) has mn

cosets. The bottom line here is that, to get our Hensel lifting reduction to work, we need

to demonstrate two things: 1) if R has an ideal I of norm poly(n), then there is an efficient

algorithm that outputs a basis BI of I such that ‖BI‖ = poly(n); and 2) R = Z[x]/(f(x))

does indeed have an ideal of norm poly(n) as long as f(x) satisfies certain conditions (which

it will already satisfy if f(x) was selected as suggested in Chapter 7.4). We address the first

issue first.

Suppose R has an ideal I with m ← det(I) = poly(n); how do we generate a basis of

an ideal that has norm m (either I or some other ideal with norm m)? First, we factor m:

suppose m =
∏

i p
ei
i . Next, for each i, we find bases BIi of ideals Ii that have norm pei

i . We

set I =
∏

i Ii, and we can compute a preliminary basis B′
I of I from the bases BIi . Finally,

we set BI to the the Hermite normal form of L(B′
I). It remains to explain why this gives

the desired output.

Recall the basic algebraic fact (see Chapter 13.4) that I =
∏

i(I + (pei
i)), and the fact

that, if Nm(I) and Nm(J) are relatively prime, then Nm(I ·J) = Nm(I) ·Nm(J). From this,

we know that if there is an ideal I in R with norm
∏

i p
ei
i , then the ideal I +(pei

i) has norm

pei
i . To find such an ideal, we use Kummer-Dedekind in connection with a polynomial time

algorithm for factoring polynomials in Fpi [x] to obtain all prime ideals whose norms are

powers of pi, and find a product of them whose norm is pei
i ; let this be Ii. Given bases BI

and BJ for ideals I and J , one can efficiently compute a basis for the product I · J simply

by computing the set of vectors {u× v : u ∈ BI ,v ∈ BJ}, and then reducing this set to n

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 134

vectors (eliminating the linear dependencies) by applying a lattice reduction algorithm such

as LLL [81]. Given the initial basis B′
I of I, computing I’s Hermite normal form (HNF) BI

is efficient. In BI , which has positive diagonal entries m1, . . . , mn with
∏

i mi = m, the ith

basis vector has length at most mi +
∑

j>ibmj/2c, which is at most m = poly(n).

Now, we need to explain why R = Z[x]/(f(x)) does indeed have an ideal of norm

poly(n) as long as f(x) satisfies certain conditions. When f(x) is such that Q(x)/(f(x))

is an abelian extension of Q – e.g., when f(x) is a cyclotomic polynomial – then we can

invoke the following theorem.

Theorem 14.2.1 (Theorem 8.7.7 of [10]). Assume GRH. Let K/E be a proper abelian

extension of number fields with a conductor f. Let ∆ denote the discriminant of E. Then

there is a degree 1 prime ideal p of E that does not split in K, relatively prime to ∆ and f,

satisfying Nm(p) = O((log |∆|+ log |Nm(f|)2). The constant implied by “O” is absolute.

∆ and the norm of the conductor f each divide ∆(f), the discriminant of f(x), so we

have Nm(p) = O((log |∆(f)|)2). As discussed in Chapter 13.4, ∆(f) is bounded by nn‖f‖2n,

where ‖f‖ is the Euclidean length of the coefficient vector of f(x), and therefore Nm(p)

is polynomial in n as long as ‖f‖ is polynomial in n. In Chapter 7.4, we suggested a

method for choosing f(x) so as to minimize γMult(R); polynomials f(x) chosen according

to this method already satisfy ‖f‖ = poly(n). Note that the relative primeness property in

Theorem 14.2.1 implies that I will be an invertible ideal in R (see Chapter 13.4).

Rather than fixing f(x) and afterwards finding an ideal in R = Z[x]/(f(x)) with small

norm, one can instead choose f(x) and I together. For example, we can select f(x) as

follows. Select a prime p, a linear polynomial (x − b), and a monic polynomial g(x) of

degree n− 1 such that (x− b)g(x) has only lower-order terms – e.g., the coefficient of xi in

(x − b)g(x) is 0 for i ∈ (n/2, n − 1], like the values of f(x) that we suggested in Chapter

7.4. Set f(x) ← (x − b) · g(x) mod p – i.e., reduce the nonzero coefficients of (x− b) · g(x)

so that they have magnitude at most p/2. Then, f(x) factors modulo p into factors that

include the linear polynomial x− b, and therefore R = Z[x]/(f(x)) (by Theorem 13.4.1) has

an ideal of norm p. If p happens to divide [OK : R], one samples again. The probability

that p divides [OK : R] is not overwhelming. If p divides [OK : R], then it divides ∆(f)

and also Res(f, f ′), where f ′ is the derivative of f(x). This only happens when f(x) and

f ′(x) have a common root modulo p.

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 135

14.3 Proof of Security Based on the Inner Ideal Membership

Problem (IIMP)

We base the security of our encryption scheme, when using GPV sampling in Encrypt as

described above, directly on the following problem.

Definition 14.3.1 (Inner Ideal Membership Problem (IIMP)). Fix ring R, basis BI of

an ideal I ⊂ R, and algorithm IdealGen as in the scheme. Fix a positive real sIIMP. The

challenger sets (Bsk
J ,Bpk

J) R← IdealGen(R,BI). The challenger flips a bit b
R← {0, 1}. If b = 0,

it sets x R← DI,sIIMP,0. If b = 1, it sets x R← DR,sIIMP,0. It sets t ← x mod Bpk
J . The problem

is: given (Bpk
J , t) (and the fixed values), output b.

Basically, the IIMP is like the IMP (discussed in Chapter 3) – i.e., does x belong to the

“inner” ideal I? – but the instance is perturbed by the “outer” ideal J .

Theorem 14.3.2. Let sIIMP = s/
√

2, where s is the Gaussian deviation parameter in the

encryption scheme E described in Chapter 14.1, and suppose that sIIMP/
√

2 exceeds the

smoothing parameter of I – i.e. ρ√2/sIIMP
(I−1/{0}) is negligible. Suppose that there is an

algorithm A that breaks the semantic security of E with advantage ε. Then, there is an

algorithm B, running in about the same time as A, that solves the IIMP with advantage ε/2

(up to negligible factors).

Proof. The proof is almost a tautology, the only wrinkles being technical issues relating to

Gaussian distributions. The basis Bpk
J was generated by the challenger using the actual

KeyGen algorithm, so B can use it as a properly distributed public key pk to give to A.

When A requests a challenge ciphertext on one of π0, π1 in the plaintext space R mod BI ,

B sets β
R← {0, 1}, and v R← DI,sIIMP,−πβ

. It sends ψ ← πβ + t + v mod Bpk
J to A. A sends

back a guess β′. B sends b′ ← β ⊕ β′ to the challenger.

When b = 0, B’s simulation is almost perfect. In the real world, ψ is chosen according

to the distribution πβ + DI,s,−πβ
(and then reducing modulo Bpk

J). In the simulation, ψ

equals πβ + t + v = πβ + x + v mod Bpk
J . In other words, the simulated distribution

is πβ + DI,sIIMP,−πβ
+ DI,sIIMP,0 (and then reducing modulo Bpk

J). By Lemma 13.2.7, the

statistical difference between DI,s,−πβ
and DI,sIIMP,−πβ

+DI,sIIMP,0 is negligible. (Essentially,

this is because the sum of two Gaussians is another Gaussian, even in the discrete setting,

up to small error.) Therefore, when b = 0, A’s advantage is ε by assumption, up to a

negligible additive factor.

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 136

When b = 1, the challenger chose x according to DZn,s,0. From Lemma 13.2.4, it

follows that this distribution is statistically equivalent to setting y R← R mod BI and then

generating x according to y + DI,s,−y. Thus the challenge ciphertext comes from the

distribution πβ + DI,t,−πβ
+ y + DI,s,−y, where y is uniformly random modulo I. But,

by Lemma 13.2.7, this distribution is statistically equivalent to z + DI,r,−z for z uniformly

random modulo I. This implies that B’s challenge ciphertext is (essentially) independent

of the bit β, and that A therefore has negligible advantage in this case.

Overall, B’s advantage is ε/2, up to negligible factors.

14.4 Success Amplification: Proof of Security Based on the

Modified IIMP (MIIMP)

The IIMP is “very average-case” in that it depends on Gaussian distributions and the

distribution induced by IdealGen. Since the problem looks almost like the semantic security

game, the proof of Theorem 14.3.2 is almost a tautology.

In the following problem, we permit more freedom in how x, and hence the target vector

t, is chosen. We also amplify the success probability (over values of x) to be overwhelming

for a certain fraction of keys output by IdealGen.

Definition 14.4.1 (Modified Inner Ideal Membership Problem (MIIMP)). Fix ring R, basis

BI of an ideal I ⊂ R, and algorithm IdealGen as in the scheme. Fix a positive real sMIIMP.

The challenger sets (Bsk
J ,Bpk

J) R← IdealGen(R,BI). The challenger flips a bit b
R← {0, 1}. If

b = 0, it sets x however it likes, except x ∈ I and ‖x‖ < sMIIMP. If b = 1, it does the same

thing, except x /∈ I. It sets t ← x mod Bpk
J . The problem is: given (Bpk

J , t) (and the fixed

values), output b.

Theorem 14.4.2. Suppose that sMIIMP < sIIMP · ε/(n · max{‖BI‖}). Suppose also that

[R : I] is prime. Suppose that there is an algorithm A that solves the IIMP with advantage

ε. Then, there is an algorithm B that, for a ε/2 (weighted) fraction of bases Bpk
J output by

IdealGen, solves the MIIMP with overwhelming probability. B’s running time is proportional

to 1/ε times the running time of A.

Notice that the success amplification in MIIMP came at a cost: sMIIMP is less than ε·sIIMP

– i.e., the MIIMP-solver requires t to be much closer to the ideal lattice J . Similarly, the

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 137

running time is much higher. However, the reduction is polynomial when the IIMP solver

has non-negligible advantage.

Proof. Let εBJ
be A’s advantage given that Bpk

J is chosen. Let S be the set of bases for

which εBJ
exceeds ε/2. By a standard averaging argument, the probability that an ideal in

S is chosen is at least ε/2. From now on, suppose Bpk
J ∈ S.

B receives a MIIMP instance t (along with the fixed values). It sets u R← R mod BI . It

sets x′ R← u× t+ DI,sIIMP,0 and t′ ← x′ mod Bpk
J . It sends (Bpk

J , t′) as the instance of IIMP

to A. A sends back a bit b′, which A forwards to the challenger.

Recall that in the IIMP problem, when b = 0, the challenger sets x′ R← DI,sIIMP,0, sets

t′ ← x′ mod Bpk
J , and sends (Bpk

J , t′). We claim that, up to the reduction modulo Bpk
J , B

generates x′ according to a nearly identical distribution. In particular,

x′ R← u× t + DI,sIIMP,0
∼= u× x + DI,sIIMP,0

∼= DI,sIIMP,u×x mod Bpk
J

where u and x are very short, and the product is in I. Since the reduction modulo Bpk
J

cannot increase the statistical difference between the distributions (real and simulated)

according to which x′ is generated, it suffices to upper bound the statistical difference

introduced by translating the distribution DI,sIIMP,0 by u× x. Note that sIIMP exceeds the

smoothing parameter of I. Also, since an n-dimensional Gaussian is a product of n 1-

dimensional Gaussians, and the translation occurs only in the direction of u× x, it suffices

to consider the statistical difference by translating a 1-dimensional Gaussian. One can show

that the statistical difference is at most ε/4 when ‖u× t‖ is less than sIIMP · ε/4. .

When the challenger’s bit is 1, the situation is analogous, except that B simulates

sampling from DR,sIIMP,0 by choosing u randomly modulo I and sampling from u × t +

DI,sIIMP,0
∼= u × x + DI,sIIMP,0 mod bpk

J , where x /∈ I. Since [R : I] is prime, implying the

ideal (x) is relatively prime to I, and since u is uniform modulo I, the simulated distribution

is statistically equivalent.

So, A’s advantage for B’s IIMP instance is at least ε/2 − ε/4 = ε/4. With θ(1/ε) calls

to A, B can solve its MIIMP instance with constant probability, and can make its success

probability arbitrarily close to 1 with more calls.

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 138

14.5 Basing Security on a Search Problem: Bounded Dis-

tance Decoding Via Hensel Lifting

Here, we reduce a search problem (BDDP) to a decision problem (MIIMP). To be efficient,

this is reduction requires [R : I] = poly(n).

Definition 14.5.1 (I-Hybrid Bounded Distance Decoding Problem (HBDDP)). Fix ring

R, basis BI of an ideal I ⊂ R, and algorithm IdealGen as in the scheme. Fix a positive real

sHBDDP. The challenger sets (Bsk
J ,Bpk

J) R← IdealGen(R,BI). The challenger sets x subject

to the constraint that ‖x‖ < sHBDDP and sets t ← x mod Bpk
J . The problem is: given

(Bpk
J , t) (and the fixed values), output x.

Theorem 14.5.2. Suppose sHBDDP ≤ (sMIIMP−2n·‖BI‖)/(γMult(R)·(√n/2)). Suppose that

there is an algorithm A that, for a ε (weighted) fraction of bases Bpk
J output by IdealGen,

solves the MIIMP with overwhelming probability. Then, there is an algorithm B that, for

a ε (weighted) fraction of bases Bpk
J output by IdealGen, solves HBDDP with overwhelming

probability. B’s running time is only polynomially larger than that of A, as long as [R :

I] = poly(n).

Essentially, the reduction B works by invoking A repeatedly to recover x mod Ik for

increasingly large k – in effect, a Hensel lift, but with geometric aspects, since B must

construct valid MIIMP instances. Specifically, in the kth iteration, the MIIMP target

vector tk must actually be close to the lattice J . Once the method recovers the value of x

modulo Ik for sufficiently large k, we can use LLL (more properly, Babai’s algorithm for

CVP) to recover x from x mod Ik.

More specifically, in the first iteration of the Hensel lift, algorithm B has t = x mod Bpk
J

and wants to find x mod BI . For this, B we can use a MIIMP-solver A as follows. It gives t

to A; if A responds ‘0’ – i.e., that the underlying value of x is in I – then B has its answer.

Otherwise, it picks some nonzero u ∈ R mod BI , and give t′ ← t− u to A. Assuming that

this is a valid MIIMP instance, A returns ‘0’ precisely when x = u mod BI . In this fashion,

B searches through the cosets of I until A indicates that it has found the coset containing

x. For this part to be efficient, we require det(I) to be polynomial in n. Let r0 ∈ R mod BI

be such that x ∈ r0 + I. The value r0 is certainly useful information in our search for x,

but obviously it is not enough information to allow us to recover x completely. We would

like to recover the value of x modulo a much higher power of I.

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 139

How do we perform the next iteration in the Hensel lift? Conceptually, we would like

to give our MIIMP-solver A an instance that is somehow related to (x − r0)/I, but what

does this mean in practice? Of course, B has t, not x, and t − r0 is not necessarily in I.

However, J is relatively prime to I; thus, we can find v0 ∈ J such that t − r0 − v0 ∈ I.

This vector will have the form v + (x− r0), where v ∈ IJ and x− r0 ∈ I. We then “divide

by I” by multiplying by some vector a ∈ I−1 \ R; our next MIIMP instance is essentially

t1 ← a × (t − r0 − v0). This equals a × (v + (x − r0)) = (a × v) + a · (x − r0), where

a×v ∈ J (since v ∈ IJ), and the new “error” vector a ·(x−r0) is in R, and is also still very

short if a is a suitably short vector. In other words, t1 becomes a new, potentially valid

MIIMP instance. To perform the Hensel lift, we will recursively generate MIIMP instances

tk that will allow us to recover x modulo higher powers Ik. However, how do we ensure

that a is a very short vector in I−1 \R? We know that R is a sub-lattice of I−1; therefore,

given any single vector in I−1 \R, we can reduce it modulo the ideal (1) to obtain a vector

whose length is no more than
√

n/2. Extending this approach to later iterations in the

most obvious way would involve using powers a, which would be quite long even though a

is short; addressing this problem involves additional subtleties. The detailed proof is below.

Proof. B is given a HBDDP instance t. B’s goal is to return x, where t − x is the closest

J-vector to t.

For i = 0 to m (for m to be determined), B does the following. At the beginning of

iteration i, B has values ti and ri. It initializes t0 ← t and r0 ← 0. We will let xi denote

the implicit unknown vector such that ti − xi is the closest J-vector to ti.

B also uses some values that can be set independently of the ti’s and ri’s:

• ai is a short vector in I−i \ I−i+1

• bi ∈ R \ I is a vector such that bi × a−1
i ∈ Ii \ Ii+1

• ci = b−1
i mod Ii+1 ∈ R

It uses a0 = 1. Note that, since R is a sub-lattice of I−i, it is easy to compute a vector

ai ∈ I−i\I−i+1 of length at most
√

n/2 from any vector in I−i\I−i+1 by reducing it modulo

the cube generated by the vector 1.

For all i, we claim that the following invariants will hold:

1. ri = x mod Ii

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 140

2. ti ∈ R with xi = ai × x− (ai × ri mod BI)

The parenthesized term (ai× ri mod BI) means that it is reduced modulo BI before inter-

acting with other terms. The invariants clearly hold for i = 0.

For u ∈ R mod BI , B sets t′i ← ti−u mod Bpk
J and gives t′i to A as its MIIMP instance.

Assuming t′i is a valid instance of MIIMP, A responds by telling B whether or not xi−u ∈ I

with probability arbitrarily close to 1. B thereby discovers the value of ui ← xi mod BI in

time linear in [R : I].

B then sets

ri+1 ← ri + ci × bi × a−1
i × ui

ti+1 ← ai+1 × (t0 − vi+1)− (ai+1 × ri+1 mod BI)

where vi+1 ∈ J ∩ (t0 − ri+1 + Ii+1). (Such a vi+1 exists because I and J are relatively

prime.)

Assume that the invariants hold for i; we show that they hold for i + 1.

From the second invariant for i, we conclude that the values t′i used by B are indeed valid

MIIMP instances, since max{‖xi‖+‖u‖} ≤ γMult(R) · (√n/2) · ‖x‖+2n · ‖BI‖, as required.

Then, assuming A’s response ui is correct (as it should be with probability arbitrarily close

to 1), and using our assumption above that xi = ai × x− (ai × ri mod BI), we have that

ui = ai × (x− ri) mod I

Multiplying by a−1
i , then bi, then, ci, we obtain

x = ri + a−1
i × ui mod I · (a−1

i)

bi × x = bi × ri + bi × a−1
i × ui mod Ii+1

x = ri + ci × bi × a−1
i × ui mod Ii+1

implying that ri+1 is correct.

As for ti+1, consider the vector

t†i+1 ← ai+1 × (t0 − vi+1 − ri+1) = ai+1 × ((t0 − vi+1 − x) + (x− ri+1))

This vector is in R, since both t0 − vi+1 − x and x − ri+1 are in Ii+1; canceling the

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 141

“denominator” of ai+1. We have that ti+1 − t†i+1 = ai+1 × ri+1 − (ai+1 × ri+1 mod BI) ∈
I ⊂ R. Since t†i+1−ai+1×(x−ri+1) ∈ J , the vector ti+1−ai+1×x+(ai+1×ri+1 mod BI) ∈ J ,

as required.

Finally, we describe how to recover x from x mod Im for large-enough m. Babai’s

algorithm can recover x from x+ Im when x is exponentially (in n) shorter than any other

vector in x + Im; so, it suffices to show that the λ1(Im) grows exponentially with m. Let

vm ∈ Im be such that ‖vm‖ = λ1(Im). Also, assume that the ring R has no zero-divisors,

implying that for any v ∈ R, the vectors {v × xi : i ∈ [0, n − 1]} are linearly independent.

We have

det(Im) ≤
n−1∏

i=0

‖vm × xi‖ ≤ γMult(R)n−1‖vm‖n

which implies that

λ1(Im) ≥ (det(I))m/n/γMult(R)

14.6 Toward Reducing the SIVP to the BDDP: Regev’s Quan-

tum Reduction

Here we base the security of our scheme on the following problem.

Definition 14.6.1 (Ideal Independent Vector Improvement Problem (IVIP)). Fix ring R

and a positive real sIVIP. Let BJ be a basis for an ideal lattice J of R. The problem is:

given BJ (and the fixed values), output an independent set BJ−1 of the fractional ideal J−1

such that ‖BJ−1‖ ≤ 1/sIVIP.

Since J is an integer (non-fractional) ideal of R, we know that R (i.e., Zn) is a sub-lattice

of J−1. Therefore, we “trivially” know the independent set {ei} of J−1. When sIVIP > 1,

the IVIP asks one to “improve” upon this trivial independent set. We have the following

theorem.

Theorem 14.6.2. Let J be an ideal lattice in R. Suppose sIVIP ≤ sHBDDP/(n1.5 · ‖f‖) and

sHBDDP ≤ λ1(J)/2. Suppose that there is a classical algorithm A that solves sHBDDP-HBDDP

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 142

for J (with probability 1). Then, there is a quantum algorithm B that solves sIVIP-IVIP for

J .

Actually, “hybridness” of the hybrid BDDP does not manifest itself in Theorem 14.6.2,

since the ideal J is fixed. For every algorithm IdealGen that generates J according to

some distribution, we can say that IVIP for that distribution reduces to HBDDP for that

distribution. So, this reduction will also be useful for reducing worst-case IVIP to worst-case

BDDP.

The proof of Theorem 14.6.2 invokes the following lemma by Regev [119].

Lemma 14.6.3 (Lemma 3.13 in [119]). Let L be an n-dimensional lattice and assume that

there exists an oracle that answers CVPL,d (the target vector’s distance from L is bounded

by d) queries for some d < λ1(L)/2. Then, there exists a quantum algorithm for sampling

from the distribution DL∗,
√

n/d.

Notice that Regev’s reduction is not exactly from the SIVP, since the vectors output

by the sampling algorithm, which by Lemma 13.2.2 will be of length less than n/d with

overwhelming probability, are not necessarily short relative to the shortest vectors in L∗.

We prefer to think of Regev’s reduction as being more analogous to the IVIP, since when L

is an integer lattice, it outputs an independent set of L∗ that is better than the trivial set

{ei} when n/d < 1.

Proof. (Theorem 14.6.2) Algorithm A solves CVPJ,sHBDDP
by assumption. So, by Lemma

14.6.3, there is a quantum algorithm that samples from the distribution DJ∗,
√

n/sHBDDP
.

We have
√

n/sHBDDP ≥ 2
√

n/λ1(J) ≥ 2λn(J∗) (the latter inequality by transference

theorems for general lattices). Let v be the shortest nonzero vector in J∗. There is a non-

negligible probability that a vector drawn according to the distribution above is a nonzero

vector. By Lemma 13.2.3, the probability that a vector longer than n/sHBDDP is drawn is

negligible.

Let w ∈ J∗ be a vector of length at most n/sHBDDP drawn by Regev’s algorithm. By

Lemma 8.1.2, we can use w to generate an independent set BJ−1 of J−1 with ‖BJ−1‖ ≤
√

n · ‖f‖ · ‖w‖ ≤ n1.5 · ‖f‖/sHBDDP.

Interestingly, we do not need to use Regev’s algorithm to generate an independent set

of J∗. We only need the algorithm to generate a single vector of J∗, which we can use to

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 143

generate an independent set of J−1.

14.7 Summary of Security Results for this Construction So

Far

Collecting Theorems 14.3.2, 14.4.2, 14.5.2 and 14.6.2, we have the following corollary.

Corollary 14.7.1. Suppose that

sIVIP ≤ sHBDDP/(n1.5 · ‖f‖)
sHBDDP ≤ (sMIIMP − 2n · ‖BI‖)/(γMult(R) · (√n/2))

sMIIMP < sIIMP · ε/(n ·max{‖BI‖})
sIIMP = s/

√
2

where s is the Gaussian deviation parameter in the encryption scheme E described in Chap-

ter 14.1. Also suppose that s/2 exceeds the smoothing parameter of I, that IdealGen always

outputs an ideal J with s·√n < λ1(J), and that [R : I] is prime. Finally, suppose that there

is an algorithm A that breaks the semantic security of E with advantage ε. Then, there is a

classical algorithm B1 that solves sHBDDP-HBDDP for an ε/4 (up to negligible factors) weight

fraction of bases output by IdealGen. The running time of B1 is O([R : I] · (1/ε) · time(A)).

Also, there is a quantum algorithm that solves sIVIP-IVIP for an ε/4 (up to negligible factors)

weight fraction of bases output by IdealGen.

14.8 Looking Forward

So far, we have managed to base the security of our revised initial construction on average-

case IVIP – average-case in the sense that the IVIP instance depends on the average-case

distribution induced by the algorithm IdealGen. This is quite nice; IVIP is closely related

to SIVP (a natural hard problem over lattices), and it is certainly not uncommon for a

cryptosystem to be based on the average-case hardness of the underlying hard problems –

i.e., the assumption is that the problem is hard over a sampleable distribution of instances.

All other things being equal, however, it would be preferable to base the security on the

hardness of solving worst-case instances of the problem. Ajtai [2] established that, for certain

lattice problems (e.g., SVP), one can reduce worst-case instances to average-case instances,

CHAPTER 14. THE SOMEWHAT HOMOMORPHIC SCHEME REVISITED 144

though the approximation factor in the worst-case instance is larger by a factor polynomial

in n. The possibility of using such a worst-case / average-case connection, thereby basing

security on worst-case hardness, is part of the appeal of lattice-based cryptography.

Over the next few Chapters, we will describe an IdealGen algorithm that generates

a “nice” average-case distribution of “random” ideal lattices. We will also describe how

to “randomize” a worst-case BDDP instance over ideal lattices to obtain an average-case

instance according to the same average-case distribution generated by IdealGen – i.e., we

describe a worst-case / average-case reduction. Our worst-case / average-case reduction is

qualitatively different from previous ones, including such reductions involving ideal lattices

[98, 111, 112, 88, 99]. Most notably, unlike previous examples, our worst-case and average-

case lattice problems are over lattices of the same dimension. This average-case / worst-case

connection is rather technical, and requires us to closely consider the distribution of ideals

in number rings. We provide some background on these issues in the next Chapter.

Chapter 15

Background on Ideal Lattices III

15.1 Lemmata Regarding Vectors Nearly Parallel to e1

In some of our reductions, and also in our instantiation of IdealGen, we will generate a vector

v ∈ t · e1 + B(s) where s is much smaller than t – i.e., v is “nearly parallel” to e1.

Since such a v is very close to being simply the scalar t, we would expect v to behave

almost like a real number, and the lattice (v) to behave almost like a scaling of Zn. The

following lemmata characterize this intuition more formally. These lemmata apply to v ∈
Q[x]/(f(x)).

The first lemma basically says that if v is nearly parallel to e1, then it is within a small

factor of being the shortest nonzero vector in the lattice (v).

Lemma 15.1.1. Let v = e1 + u. Then, λ1((v)) ≥ 1− γMult(R) · ‖u‖.

Proof. Let a ∈ (v) \ 0. Then, there is some vector b ∈ R \ 0 such that a = b× v. We have

‖a‖ = ‖b + b× u‖
≥ ‖b‖ − γMult(R) · ‖b‖ · ‖u‖
≥ ‖b‖ · (1− γMult(R) · ‖u‖)
≥ 1− γMult(R) · ‖u‖

We have a similar statement regarding λn((v)).

145

CHAPTER 15. BACKGROUND ON IDEAL LATTICES III 146

Lemma 15.1.2. Let v = e1 + u. If the ring R has no zero divisors, then λn((v)) ≤
1+ γMult(R) · ‖u‖. In particular, this upper bound holds for the linearly independent vectors

{v × xi : i ∈ [0, n− 1]}.

Proof. For the rotation basis {v×xi : i ∈ [0, n−1]} of (v), we have ‖v×xi‖ = ‖ei+u×xi‖ ≤
1 + γMult(R) · ‖u‖.

When we sample a vector v according to the Gaussian distribution DZn,s,t·e1 , we would

like to say that, for well-chosen s and t, v is the only vector (v) that is contained in the

ball t · e1 + s
√

nB, and that actually the weight of the Gaussian distribution is negligible

over (v) \ {v}.

Lemma 15.1.3. Let v = e1 + u with ‖u‖ = 1/(δ · γMult(R)) for δ > 3 and γMult(R) > 1.

Then, v is the only vector in (v) that is within a distance of ((δ − 2)/δ) of e1.

Proof. By Lemma 15.1.1,

λ1((v)) ≥ 1− γMult(R) · ‖u‖ = 1− 1/δ

Therefore, any vector in (v) other than v is at least

(1− 1/δ)− 1/(δ · γMult(R)) > (δ − 2)/δ

away from e1.

The next two lemmas say that if v is close to 1, then so is its inverse, and, in fact,

inversion nearly preserves distance from 1 in a way that also preserves certain Gaussian

quantities.

Lemma 15.1.4. If ‖u‖ < 1/γMult(R), then

e1/(e1 − u) = e1 + u + x for ‖x‖ ≤ γMult(R) · ‖u‖2

1− γMult(R) · ‖u‖

Proof. Since ‖u‖ < 1/γMult(R), we have that

lim
k→∞

‖uk‖ ≤ lim
k→∞

γMult(R)k−1‖u‖k = 0

CHAPTER 15. BACKGROUND ON IDEAL LATTICES III 147

Thus, e1/(e1−u) = e1 + u + u2 + · · · . The length of this vector’s difference from e1 + u is

at most:

γMult(R) · ‖u‖2 + γMult(R)2 · ‖u‖3 + · · · = γMult(R) · ‖u‖2

1− γMult(R) · ‖u‖

Lemma 15.1.5. Let v = e1 + u and w = 1/v (the inverse in Q(x)/((f(x))). Suppose

‖u‖ ≤ 1/2γMult(R) and ‖u‖3 ≤ β · σ2/γMult(R). Then

ρσ,e1(w)/ρσ,e1(v) ∈ [e−6β·π, e6β·π]

Proof. Let x be such that w = e1 − u + x. By Lemma 15.1.4,

‖x‖ ≤ γMult(R) · ‖u‖2

1− γMult(R) · ‖u‖

We have

ρσ,e1(w)
ρσ,e1(v)

=
e−π‖(−u+x)‖2/σ2

e−π‖u‖2/σ2

This latter quantity is clearly in the interval

[
e−π‖x‖(2‖u‖+‖x‖)/σ)2 , e−π‖x‖(−2‖u‖+‖x‖)/σ2

]

We claim that the magnitude of the exponents in the left and right terms is small. In

particular, we have

π‖x‖(2‖u‖+ ‖x‖)/σ2 ≤ π · σ−2 ·
(

2γMult(R) · ‖u‖3

1− γMult(R) · ‖u‖ +
γMult(R)2 · ‖u‖4

(1− γMult(R) · ‖u‖)2
)

≤ π · σ−2 ·
(
4γMult(R) · ‖u‖3 + 4γMult(R)2 · ‖u‖4

)

≤ 4β · π + 4β · π · γMult(R) · ‖u‖
≤ 6β · π

The next lemma states that if v is very close to t · e1, then the determinant (or norm)

CHAPTER 15. BACKGROUND ON IDEAL LATTICES III 148

of (v) is close to tn.

Lemma 15.1.6. Let v = e1 + u. Then, det(v) ≤ en·γMult(R)·‖u‖. If ‖u‖ ≤ 1/n · γMult(R),

we obtain 1/3 ≤ det(v) ≤ e.

Proof. We know that det((v)) is the volume of the rotation basis of v. So,

det((v)) ≤
n−1∏

i=0

‖v × xi‖ ≤ (1 + γMult(R) · ‖u‖)n ≤ en·γMult(R)·‖u‖.

Now suppose ‖u‖ ≤ 1/n · γMult(R); then, the term on the right is simply e. Also, from

Lemma 15.1.4, we know that

w ← e1/v = e1 − u + x for ‖x‖ ≤ γMult(R) · ‖u‖2

1− γMult(R) · ‖u‖ ≤
1

(1− 1/n) · n2 · γMult(R)

Since ‖ − u + x‖ ≤ (1 + 1/(n− 1))/n · γMult(R),

det((1/v)) ≤ e1+1/(n−1) =⇒ det((v)) ≥ e−1−1/(n−1) ≥ 1/3 ,

the latter inequality for reasonable values of n.

15.2 Distribution of Prime Ideals

Recall that the ring of integers of a number field K is:

OK = {x ∈ K : fx
Q ∈ Z[x]} , where fx

Q is the (monic) minimal polynomial of x in Q[x]

OQ[α] contains Z[α], and the former’s nice properties carry over to Z[α], modulo some

detectable and fixable “badness” due to prime ideals that divide the conductor of OQ[α].

These prime ideals are “rare” in the sense that they all have norms that are powers of some

prime integer that divides the discriminant of f(x), which (for suitable f(x)), is only nO(n).

(See Chapter 13.4 for more details, and see [127] for a nice survey of algorithmic aspects of

general number rings.)

The distribution of prime ideals in number fields is quite analogous to the distribution

of primes in the integers. Just as the prime number theorem states that the number of

CHAPTER 15. BACKGROUND ON IDEAL LATTICES III 149

primes less than x is approximately x/ lnx, we have Landau’s prime ideal theorem.

Theorem 15.2.1 (Theorem 8.7.2 from [10]). Let K be an algebraic number field of de-

gree n. Let πK(x) denote the number of prime ideals whose norm is ≤ x. Let λ(x) =

(lnx)3/5(ln lnx)−1/5. There is a c > 0 (depending on K) such that

πK(x) = x/ ln x + O(xe−cλ(x))

With the Generalized Riemann Hypothesis, one can make a stronger statement.

Theorem 15.2.2 (Theorem 8.7.4 from [10]). Assume GRH. Let K be an algebraic number

field of degree n and discriminant ∆. For x ≥ 2, we have

|πK(x)− x/ ln x| = O(
√

x(n ln x + ln |∆|))

The constant implied by the “O” symbol is absolute.

In later Chapters, we will require some results on the distribution of prime ideals, but

nothing as strong as Theorem 15.2.2. Rather, we will require only that, for certain intervals

[a, b] (e.g., where a = b/2), the number of prime ideals with norms in [a, b] is a non-negligible

fraction of b. In particular, we use the following lemma.

Lemma 15.2.3. Let M be an ideal with norm in [N, 2N], with log N polynomial in n. Let

Ia,b be the set of invertible prime ideals with norms in [a, b]. Let s = n · ‖f‖ · (b/N)1/n ·
ω(
√

log n) and t ≥ γMult(R) · s · n1.5. Suppose v is chosen according to the distribution

DM−1,s,t·e1
. If |Ia,b|/b is non-negligible, then the probability that the ideal M · (v) has a

divisor in Ia,b is non-negligible.

Remark 15.2.4. Above, notice that M · (v) is an integer (non-fractional) ideal, since

v ∈ M−1.

Proof. As a preliminary matter, we have that s exceeds the smoothing parameter of all ideals

I with norm at most b/N , since by Lemma 8.2.2, λn(I) < n · ‖f‖ ·det(I)1/n = s/ω(
√

log n).

Now, we want to prove that the quantity

∑
v∈pM−1 for some p∈Ia,b

ρs,t·e1(v)
∑

v∈M−1 ρs,t·e1(v)

is non-negligible.

CHAPTER 15. BACKGROUND ON IDEAL LATTICES III 150

Consider the numerator of the expression above. Let us restrict the summation to v’s

in the ball t · e1 + B(s · √n). For convenience, let p(n) = log(2N · etn). We have

∑

v∈pM−1 for some p∈Ia,b

ρs,t·e1(v) ≥
∑

p∈Ia,b

(log Nm(p)) ·
∑

v∈pM−1

ρs,t·e1(v)/(log Nm(M · (v)))

≥ (1/p(n)) ·
∑

p∈Ia,b

(log Nm(p)) ·
∑

v∈pM−1

ρs,t·e1(v)

≥ (1/p(n)) ·
∑

p∈Ia,b

∑

v∈pM−1

ρs,t·e1(v)

≈ (1/p(n)) ·
∑

p∈Ia,b

ρs,t·e1(pM−1)

' (1/p(n)) · ρs,t·e1(M
−1) ·

∑

p∈Ia,b

1/Nm(p)

≥ (1/p(n)) · ρs,t·e1(M
−1) ·

∑

p∈Ia,b

1/b

The first inequality follows from the fact that log Nm(M · (v)) ≥ ∑
i log Nm(pi), where {pi}

consists of distinct invertible prime ideal divisors of M · (v). The second inequality follows

from the fact that the invertibility of (v) implies that Nm(M · (v)) = det(M) · det((v)),

and from Lemma 15.1.6, which implies that det((v)) ≤ e · tn when v is in the ball above,

where e is Euler’s constant. The “≈” equation holds up to a multiplicative factor that is

negligibly close to 1, because on the rhs we go back to including vectors that are outside of

the ball, which carry only a negligible fraction of the weight since s exceeds the smoothing

parameter of all ideals with norm at most b/N . By Lemma 13.2.6, since (again) s exceeds

the smoothing parameter of all ideals with norm at most b/N , the ‘'” inequality is true

up to a multiplicative factor that is negligibly close to 1. Overall, since
∑

p∈Ia,b
1/b is

non-negligible by assumption, the result follows.

Chapter 16

Random Self-Reduction of Ideal

Lattice Problems

In this Chapter, we provide an overview of our worst-case / average-case connection for ideal

lattices, and its relevance to our scheme. We provide the formal details in later Chapters.

16.1 A New Type of Worst-Case / Average-Case Connection

for Lattices

Inherently, public-key cryptography is based on average-case hardness. For example, in the

Rabin encryption scheme, the KeyGen algorithm induces an (average-case) distribution of

public keys. In the random oracle model, one can prove that Rabin encryption is secure if it

is infeasible to factor moduli generated according to the average-case distribution. As far as

we know, any efficient instantiation of Rabin encryption could be insecure even if factoring

is hard in the worst-case – i.e., for some (possibly negligible fraction of) moduli.

Sometimes, however, one can prove an worst-case / average-case connection – i.e., if one

can solve an average-case instance of problem A (generated according to some distribution

D), then one can solve any instance of problem B. If D is efficiently samplable and has

enough min-entropy to be used in KeyGen, then the worst-case / average-case connection

may allow one to base the scheme’s security on the worst-case hardness of problem B. This

gives more assurance that the scheme is secure.

151

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 152

For example, one can establish something similar to a worst-case / average-case con-

nection for schemes based on Diffie-Hellman. The Diffie-Hellman problem is random self-

reducible – i.e., given any instance I1 of Diffie-Hellman over a fixed group G, one can use

I1 to generate a random instance I2 of Diffie-Hellman over G, such that an algorithm that

solves I2 can be used as a sub-routine in an algorithm to solve I1. Thus, a scheme whose

security is based on Diffie-Hellman in G is based on the problem’s worst-case hardness in

G. However, since G is fixed – i.e., we use the same G in the worst-case and average-case

instances – the random self-reducibility of Diffie-Hellman in G is typically not considered

to be a full-fledged worst-case / average-case connection.

In 1996, Ajtai [2] found a surprising reduction of worst-case lattice problems to an

average-case ones, and Ajtai and Dwork [4] proposed an encryption scheme based on this

worst-case hardness. The good news is that, unlike in the Diffie-Hellman case, the worst-

case problem is a completely general problem (over lattices) that is unconstrained by any

parameters in the average-case problem – a full-fledged worst-case / average-case connection.

The bad news is that Ajtai’s reduction has a price. In the Diffie-Hellman case, the worst-

case and average-case problems are of the same type – i.e., Diffie-Hellman over G. In Ajtai’s

reduction, however, the lattice in the worst-case instance has smaller dimension than the

average-case instance – i.e., his reduction allows one to base security on worst-case hardness,

but over a seemingly easier set of lattices.

Another problem with Ajtai’s approach is that it seems difficult to adapt it to output

average-case ideal lattices. Obviously, our KeyGen algorithm generates a key according to

an average-case distribution, and we need KeyGen to generate an ideal lattice since our

scheme depends crucially on the multiplicative structure of ideal lattices. Prior work [98,

111, 112, 88, 99] adapts Ajtai’s approach to establish a worst-case / average-case connection

where only the worst-case problem is directly over ideal lattices; the average-case lattice is

generated as a sort of “knapsack” of vectors from the worst-case lattice, a process which

ruins the ideal lattice structure. To obtain an average-case instance that is directly over

ideal lattices, we apparently need an approach fundamentally different from Ajtai’s and

other prior work.

Our worst-case / average-case connection is conceptually similar to a random self-

reduction, where both the worst-case and average-case instances are directly over ideal

lattices in the same polynomial ring R. One difference is that the ideal lattices in the

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 153

average-case instance correspond to invertible prime ideals (see Chapter 13.4 for defini-

tions), whereas this is not necessarily the case of the ideal in the worst-case instance. Also,

the approximation factor in the worst-case instance is larger by a multiplicative factor that

depends on the ring R. For an exponential-sized family of rings R – in particular, when R

is selected as suggested in Chapter 7.4 – this factor is only polynomial in n.

16.2 Our Average-Case Distribution

As mentioned above, we want our average-case problem to be “directly over” ideal lattices.

We use a natural lattice problem – the bounded distance decoding problem (BDDP) – which

(informally) asks: given a lattice L and a vector t with the promise that dist(L, t) ≤ s,

output some v ∈ L with ‖t−v‖ ≤ s. (The notation dist(L, t) denotes min{‖v−t‖ : v ∈ L};
equivalently, the problem could ask for t− v.) Usually s is chosen to be less than λ1(L)/2,

where λ1(L) is the shortest nonzero vector in L, so that there is a unique solution.

The average-case problem that we consider in the main reduction is actually a “hybrid”

of worst-case and average-case. The ideal lattice is generated according to an average-case

distribution induced by an algorithm IdealGen. However, the vector t is “worst-case.” The

only requirement on t is that it be within a certain distance of the lattice; it need not be

chosen according to any known (or even samplable) distribution. Here is formal statement

of the problem.

Definition 16.2.1 (Hybrid Bounded Distance Decoding Problem (HBDDP)). Fix ring R

and algorithm IdealGen that samples bases of ideals in R. Fix a positive real sHBDDP. The

challenger sets Bpk
J

R← IdealGen(R). The challenger sets x subject to the constraint that

‖x‖ < sHBDDP and sets t ← x mod Bpk
J . The problem is: given (Bpk

J , t) (and the fixed

values), output x.

This problem is the same as I-HBDDP (see Chapter 14.5), except that in I-HBDDP,

the algorithm IdealGen took the basis of an ideal I as input and was required to generate

bases for an ideal J relatively prime to I.

Our average-case distribution is uniform over invertible prime ideals in R that have

norms in some specified interval [a, b]. In practice, the fact that J is prime will mean that

J is automatically relatively prime to I.

One reason behind our choice of average-case distribution is that, crudely speaking, there

is almost a “bijection” between integers and norms of ideals in R; so, sampling a random

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 154

prime ideal amounts to sampling a random prime integer, and outputting an ideal whose

norm is (a power of) that integer. This crude intuition is inaccurate, but “close enough” to

be useful. Another reason that this average-case distribution is attractive is that we are also

able to take worst-case ideal lattices, and “randomize into” this average-case distribution,

though there are considerable technical difficulties.

We remark that while there are some difficulties in using our average-case distribution,

defining a random ideal lattice seems simpler than defining a “random lattice” in the general

setting [2, 3]. To see how different the settings are, notice that for any integer d, there are at

least dn−1 distinct lattices of determinant d and dimension n (since there are at dn−1 distinct

Hermite normal form bases with (1, . . . , 1, d) along the diagonal), whereas the number of

ideal lattices with determinant in [d, 2d] is θ(d).

16.3 How to “Randomize” a Worst-Case Ideal

Our worst-case problem is also BDDP over ideal lattices in R:

Definition 16.3.1 (Worst-Case Bounded Distance Decoding Problem (WBDDP)). Fix

ring R and positive real sWBDDP. The problem is: given (BM , t), where BM is a basis for

an ideal lattice M of R and t satisfies dist(M, t) ≤ sWBDDP, output y ∈ t + M such that

‖y‖ ≤ sWBDDP.

How do we “randomize” a worst-case lattice into our distribution on HBDDP lattices,

in such a way that an algorithm that solves HBDDP can be used as a subroutine in an

algorithm that solves WBDDP? Let us start with some high-level intuition. One intuition

is that if we start from an arbitrary ideal lattice M and look at coarse enough sub-lattices

of it, we will find sub-lattices of every “geometric shape”. That is, if we choose a “random”

ideal K, then the “geometric shape” of MK will be essentially independent of the “geometric

shape” of M . Roughly speaking, one may view the “geometric shape” as the shape of the

parallelepiped formed by a basis of very short vectors in the lattice, which is unchanged by

rigid transformations.

But clearly MK is not independent of MK, since this lattice will actually have some

“algebraic properties” that depend on M . In particular, the ideal MK is divisible by the

ideal M . Of course, this is unacceptable in terms of obtaining a worst-case / average-

case connection; perhaps our average-case instance-solver fails precisely when its instance

is divisible by M .

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 155

To destroy these algebraic properties, consider the following approach. Choose an el-

ement v ∈ (MK)−1 and output J ← MK(v) as the average-case ideal. (The fractional

ideal (MK)−1 is simply the inverse of the ideal lattice MK.) More specifically, choose v

according to the discrete Gaussian distribution D(MK)−1,s,t·e1
, where t À s so that v is

“nearly” parallel to the scaled unit vector t · e1, and the lattice (v) is “close” to the lattice

t · Zn in that it has nearly the same “shape”. The idea is that, when v is chosen in this

way, the “shape” of J is essentially the same as that of MK since multiplication by (v)

is close to being a rigid transformation, but the M−1 factor in (v) removes the “algebraic

properties” that come from M . Intuitively, J = MK · (v) has a “shape” independent of M

and does not inherit the “algebraic” properties of M , so it should be “random”.

The outline of the approach above, of course, is merely intuition; it only serves to

explain why we may hope to find a randomization procedure. However, we are able to

formalize the approach. In Chapter 17.4, we define an algorithm RandomizeIdeal′ that takes

as input an ideal M and a bound b > det(M). RandomizeIdeal′ invokes a sub-routine

RandomIdealGen(R, i, j) that outputs an ideal K that is uniformly random among invertible

ideals with determinant in [i, j], together with a short vector wK ∈ K satisfying ‖wK‖ < X

for some X. The particular value of [i, j] that it uses is [bt2n/det(M), 4bt2n/det(M)], where

t is a factor depending only on R and that may be polynomial in n, and the value X is

preferably only polynomial in n. We prove the following theorems.

Theorem 16.3.2. For any α ≥ 1, assuming RandomIdealGen is efficient, RandomizeIdeal′

efficiently outputs an invertible ideal J that is statistically uniform subject to the constraint

that det(J) ∈ [2bt3n · αn, 3bt3n · αn].

Assuming that invertible prime ideals are not too sparse among invertible ideals in the

interval, RandomizeIdeal′ can easily be adapted to output ideals according to our average-

case distribution.

Theorem 16.3.3. Assume RandomIdealGen is efficient. Also assume that there is an

algorithm A that, for some α ≥ 1, solves the HBDDP with overwhelming probability

(over the random coins chosen by A) for a ε fraction of ideals J output by IdealGen,

where IdealGen outputs an invertible ideal J that is uniformly random with determinant

in [2bt3n · αn, 3bt3n · αn]. Then, there is an algorithm B, with running time approxi-

mately O(1/ε) that of A, that solves the WBDDP over any ideal M with det(M) < b

and sWBDDP ≤ sHBDDP/(t2 · α ·X).

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 156

RandomizeIdeal′ is fairly similar to what we outlined above, but includes some rejection

sampling to fine tune the sampling distribution. The distribution analysis relies heavy on

properties of Gaussian distributions over lattices, and on the relation between v and its

inverse in the field Q(x)/(f(x)) overlying R – e.g., that the fractional ideal (1/v) is “close”

to being a scaling of Zn when (v) is.

Though we defer the formal details of the proof of Theorem 16.3.3 until Chapter 17,

the high-level idea is simple. From its WBDDP instance (M,u), B uses RandomizeIdeal′ to

generate an average-case ideal lattice J = MK(v) for A, and generates the target vector

t for the average-case instance as u × v × wK mod BJ . Once A finally succeeds, B can

easily convert A’s solution into a WBDDP solution. The reduction requires wK to be

short, so that the smallness of dist(M,u) implies the smallness of dist(J, t) – i.e., that the

average-case instance is well-formed.

However, an unfortunate wrinkle in this approach is that we do not know how to

instantiate RandomIdealGen efficiently. In the next Section, we outline how to instan-

tiate RandomIdealGen efficiently given access to a factoring oracle, which could be in-

stantiated with quantum computation. We also outline our difficulties in instantiating

it with an efficient classical algorithm. We stress that we still use RandomizeIdeal′. Specif-

ically, as sketched in Chapter 16.5 and detailed in Chapter 18, we use a weak version of

RandomizeIdeal′ in our (classical, efficient) instantiation of IdealGen in KeyGen. This weak

version of RandomizeIdeal′ uses a weak version of RandomIdealGen that does not generate a

short vector wK ∈ K, which is sufficient for KeyGen. (The short vector wK is need only in

the worst-case / average-case reduction to translate a solution to the average-case problem

into a solution to the worst-case one.)

Since we need a factoring oracle anyway, we use a different reduction (given in Chapter

17.1-17.3) that requires weaker statements about the distribution of prime ideals in number

fields than we require to instantiate RandomIdealGen efficiently. Specifically, we provide

an algorithm RandomizeIdeal, which invokes a factoring oracle, and prove the following

theorems.

Theorem 16.3.4. Let Ia,b be the set of invertible prime ideals with norm in [a, b]. Suppose

that |Ia,b|/b is non-negligible, log b is polynomial in n, and a2 > 2N · tn0 where t0 = t+s ·√n

for s = ω(
√

log n), s = n3 · ‖f‖3 · (b/N)1/n · ω(
√

log n), and t ≥ γMult(R) · n1.5 · s. Then,

given an ideal M with norm in [N, 2N] as input, and with access to a factoring oracle,

RandomizeIdeal efficiently outputs the basis of an invertible prime ideal J that is statistically

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 157

uniform, and independent of M , subject to the constraint that Nm(J) ∈ [a, b].

Theorem 16.3.5. Let a, b, Ia,b, N , and t be as in Theorem 16.3.4. Suppose that there is

an algorithm A that solves sHBDDP-HBDDP with overwhelming probability (over the random

coins chosen by A) for a ε (weighted) fraction of invertible prime ideals J ∈ Ia,b. (Assume

sHBDDP < λ1(J)/2.) Then, there is an algorithm B, with running time approximately O(1/ε)

that of A, that solves the sWBDDP-WBDDP for any (worst-case) ideal M with det(M) ∈
[N, 2N] when 2t · sWBDDP +

√
n ≤ sHBDDP. When N ≥ b, for any g(n) that is ω(

√
log n),

we can set t = γMult(R) · n4.5 · ‖f‖3 · g(n).

16.4 Why Does the Reduction Require a Factoring Oracle?

The algorithm RandomizeIdeal′, and hence the worst-case / average-case reduction, is effi-

cient and classical (non-quantum), with the possible exception of the sub-routine RandomIdealGen.

An obvious attempt to instantiate RandomIdealGen is the following: generate a random short

vector wK and set K ← (wK). But, among other problems, the output K is obviously a

principal ideal (i.e., has a single generator). Typically, most ideals in R are not principal,

so K cannot be said to be random. (We could restrict the worst-case and average-case

problems to principal ideals, but this leads to other technical difficulties.) It seems quite

challenging to efficiently generate a non-principal ideal together with a short vector in it.

If one, say, generates two “random” vectors v,w ∈ Zn, one of them short, and sets K to

be the ideal (v) + (w), most likely K will be all of R, or some uninteresting ideal with very

small norm.

One approach to fixing the “attempt” above is to use a factoring oracle. For example,

we can sample wK ∈ Zn from a Gaussian ball of small radius s centered at t · e1, so that

wK is nearly parallel to e1. We then factor the ideal (wK) and set K to be a random

divisor of (wK), subject to the norm requirements on K. However, there is no known

efficient classical algorithm to factor (wK) in R = Z[x]/(f(x)). But if we have an integer

factoring oracle, we can factor (wK) easily: factor det((wK)) into
∏

i p
ei
i , then (for each pi)

use an efficient classical polynomial factorization algorithm (e.g., Kaltofen-Shoup [75]) to

factor f(x) =
∏

j gij(x) mod pi, and finally test whether the various (possibly non-principal)

ideals (gij(x), pi) divide (wK). All of the prime ideal factors have this form [127] and will

be efficiently discovered. Shor [124] describes a quantum integer factoring algorithm, which

can be used to instantiate the oracle efficiently.

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 158

Why should the ideal K be random? The probability that an ideal K with det(K) ∈ [a, b]

divides (wK) is negligibly close to 1/det(K), for suitably chosen parameters, using results

on Gaussian distributions over lattices. If this immediately translated into some way to

choose K with probability negligibly close to 1/det(K) (or c/det(K) for some non-negligible

c), then we could make the distribution uniform by outputting the sampled K only with

probability det(K)/b, where b is an upper bound on det(K), and otherwise resampling.

However, actually picking a divisor of (wK) leads to some complications. One can

think of it like a balls and bins problem. For wK chosen according to the distribution

above, we know that K divides (wK) with probability very close to 1/det(K) – i.e., in

some sense K is in a 1/det(K) fraction of the bins. However, some of the K’s tend to be

in crowded bins – i.e., some K’s tend to divide only the values of (wK) that have many

(potentially a super-polynomial number of) divisors. In fact, we know exactly which K’s

are the problematic ones: they are the K’s that themselves have many divisors. To address

this problem, we could show that the fraction of “bad” K’s is small, and that we can sample

uniformly from among the remaining K’s. But this requires rather strong effective results

on the distribution of prime ideals – e.g., one can try to use an Erdös-Kac-like lemma that

characterizes the number of prime ideal divisors that (wK) is likely to have. This was our

original approach, but ultimately we opted for a reduction that still requires a factoring

oracle, but only needs weaker results on the distribution of prime ideals.

In the simpler reduction, given the WBDDP instance (M,u), we start off by generating

a vector v R← DM−1,s,t·e1
for t À s and setting L ← M ·(v) and t′ ← u×v. The idea here is

that the BDDP instance (L, t′) is just like the instance (M,u), except everything has been

multiplied by v, which is very close to a rigid transformation that essentially preserves the

“shape” of the BDDP instance. Consequently, a solution to (L, t′) would give a solution to

(M,u). Since v ∈ M−1, L is an integer (non-fractional) ideal. Moreover, since L inherits

some randomness from v’s distribution, we can show (for proper settings of parameters)

that the probability that L is divisible by an invertible prime ideal J with norm in our

desired interval [a, b] is proportional to 1/det(J). So, to sample uniformly from among the

candidate J ’s, we apply our factoring oracle to L, tentatively grab a candidate J , and make

the probability uniform over the J ’s through rejection sampling. The average-case BDDP

instance is essentially (J, t′ mod BJ), except that t′ is first rounded to an integer vector.

Since J is a super-lattice of L, the fact that t′ is a small distance from L implies that it is

a small distance from J , and therefore forms a valid BDDP instance, though of course this

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 159

distance is larger in relation to λ1(J) than to λ1(L). We begin describing this reduction

formally in Chapter 17.1.

We still describe RandomizeIdeal′ (the “other” approach) for two reasons. First, as

discussed above, we use a weak version of our RandomizeIdeal′ algorithm to obtain a IdealGen

algorithm (used in KeyGen) that efficiently generates ideals (classically) according to the

average-case distribution. The weak version requires only a weak version of RandomIdealGen,

which (as before) generates an ideal K that is uniformly random among ideals with norm in

a certain interval, but does not generate a short vector wK ∈ K; this weak version can be

instantiated classically. (The techniques used in RandomizeIdeal do not appear to be useful

for generating a classical IdealGen algorithm that generates ideals according to the average-

case distribution.) Second, we speculate that there may be a classical way to instantiate

RandomIdealGen efficiently, in which case the worst-case / average-case connection would

be entirely classical.

16.5 Application to our Fully Homomorphic Encryption Scheme

The KeyGen algorithm in our fully homomorphic encryption scheme uses an algorithm

IdealGen that outputs the basis of a (random) ideal J , together with a short independent

set BJ−1 of J−1. One technical requirement is that J must be relatively prime to an ideal

I, where I is a fixed global ideal used by everybody.

We give a specific instantiation of IdealGen that outputs ideals J according to our

average-case distribution, together with a short independent set BJ−1 of J−1 as needed

for decryption. Since, in our average case distribution, J is prime, it will automatically be

relatively prime to I.

It may seem counterintuitive that we can efficiently generate (classically) a random

ideal J and an associated secret key, even though we do not know how to instantiate

RandomIdealGen efficiently (classically). As a rough explanation, the reason is that the

secret key for J is a short independent set for the inverse ideal, while RandomIdealGen is

supposed to generate a short vector in the ideal itself.

A better explanation is simply to sketch why a weak version of RandomizeIdeal′, which

uses a weak version of RandomIdealGen that does not generate the short vector wK , suffices

to generate a random J together with a short independent set for J−1. In this weak version

of RandomizeIdeal′, we “randomize” the “worst-case” ideal M = R; that is, we generate

CHAPTER 16. RANDOM SELF-REDUCTION OF IDEAL LATTICE PROBLEMS 160

K and v as we did before and set J = K · (v) (instead of J = MK · (v)). So, how

do we obtain a short independent set for J−1? Given an independent set BK−1 of K−1,

we can obtain an independent set BJ−1 of J−1 simply by dividing each column vector in

BK−1 by v. We trivially have the independent set {ei} for K−1, so the rotation basis

of 1/v forms an independent set of J−1. When v is long enough, this independent set is

suitable for decryption. In particular, we prove that when we generate our secret key in this

way, we can obtain a value of rDec that is within a polynomial factor of λ1(J). Then, the

analysis given in Chapter 7.7 applies, where we showed that we could permit rDec/rEnc to

be as large as the approximation factor of our BDDP instance, up to a polynomial factor,

thereby maximizing the circuit depth that we can evaluate.

In Chapter 14, we described a sequence of reductions that, subject to certain conditions

– e.g., that det(I) is prime and poly(n), and sHBDDP is sufficiently small – reduces the I-

HBDDP with the distribution from IdealGen to the semantic security of our scheme. Later,

we give another sequence of reductions that reduces the (worst-case) SIVP to the WBDDP.

Overall, with the worst-case / average-case connection given here, this bases the security of

our scheme on quantum worst-case SIVP over ideal lattices in the ring R.

Chapter 17

How to Randomize a Worst-Case

Ideal

17.1 The RandomizeIdeal Algorithm

In this Section, we present our algorithm RandomizeIdeal and prove Theorems 16.3.4 and

16.3.5.

RandomizeIdeal(R,BM , N, s, t, a, b). Takes as input the ring R, a basis BM of an ideal M

of R whose norm is in [N, 2N] where log N is polynomial in n, and parameters s, t, a, and

b such that:

• s = ω(
√

log n),

• s = n3 · ‖f‖3 · (b/N)1/n · ω(
√

log n),

• t ≥ γMult(R) · n1.5 · s,

• the number of invertible prime ideals with norms in [a, b] is a non-negligible fraction

of b,

• a/b is non-negligible,

• log b is polynomial in n,

• a2 > 2N · tn0 where t0 = t + s · √n.

The algorithm does the following.

161

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 162

1. It generates a vector v per the discrete Gaussian distribution DM−1,s,t·e1
; it sets

L ← M · (v).

2. It uses a factoring oracle to compute bases of the invertible prime ideal divisors {pi}
of L.

3. It sets J to be an ideal in {pi} that has norm in [a, b], if there is one; otherwise, it

restarts.

4. With probability det(J)/b it outputs a basis BJ of J , along with the vector v; other-

wise, it restarts.

Remark 17.1.1. In Step 1, one can sample from the distribution DM−1,s,t·e1
by using the

GPV algorithm (see Chapter 13.3) with the independent set {ei} in M−1.

Remark 17.1.2. See Chapter 13.4 for more details on how an integer factoring oracle can

be used to compute in Step 2 to compute the bases of prime ideal factors of L.

17.2 Is the Ideal Random? The Proof of Theorem 16.3.4

Before proving that our RandomizeIdeal algorithm is efficient and has the proper distribution,

we provide a preliminary fact regarding v.

Lemma 17.2.1. The vector v drawn in Step 1 is in t · e1 + B(s · √n) with overwhelming

probability, where B(r) is the open ball of radius r.

Proof. First, observe that Zn is a sub-lattice of M−1. Therefore, regarding smoothing

parameters, we have ηε(M−1) ≤ ηε(Zn) ≤
√

π−1 · ln(2n(1 + 1/ε)). Since s = ω(
√

log n),

there is a negligible ε for which s >
√

π−1 · ln(2n(1 + 1/ε)) – i.e., s exceeds the smoothing

parameter of M−1. By Lemma 13.2.2, we have

Pr
v←DM−1,s,t·e1

[‖v − t · e1‖ > s · √n
] ≤ 1 + ε

1− ε
· 2−n

Now, we prove Theorem 16.3.4.

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 163

Theorem 16.3.4. We claim that the probability of restarting in Steps 3 and 4 is non-

overwhelming, from which the efficiency of our algorithm follows. For Step 3, this is true

because a/b is non-negligible. Regarding Step 4, we use Lemma 15.2.3, which establishes

that, for our choices of s, t, a, and b, there is a non-negligible probability that M ·(v) has an

invertible prime ideal divisor with norm in [a, b] when v is sampled according to the above

distribution.

Now, consider the probability that an invertible prime ideal J with norm in [a, b] is

chosen as the ideal J in Step 3 in a single trial (without restarts). Assuming v ∈ t · e1 +

B(s · √n) (which is indeed the case with overwhelming probability by Lemma 17.2.1), we

claim that J is chosen iff v ∈ JM−1.

For the ‘if’ direction of our claim, if v ∈ JM−1, then J divides (is a super-lattice of)

L ← M · (v). Since (v) is an invertible ideal (being principal), we have that det(L) =

det(M) · det((v)) ≤ 2N · tn0 < a2 ≤ det(J)2. Consequently, besides J , L cannot have any

other prime ideal divisors with norm in [a, b], and J is chosen. For the ‘only if’ direction,

that J is chosen implies that J divides (is a super-lattice of) L = M ·(v). But then JM−1 is

a super-lattice of M−1M ·(v). M is not necessarily invertible; in particular, M−1M may be

divisible by singular prime ideals that divide the conductor. (See Chapter 13.4.) However,

we also trivially have that JM−1 is a super-lattice of J · (v) since v ∈ M−1. Therefore,

all vectors in the sum of ideals J · (v) + M−1M · (v) = (J + M−1M) · (v) are contained

in JM−1. However, J and M−1M are relatively prime, since J is invertible while M−1M

is divisible by only singular (non-invertible) prime ideals. Therefore, (v) is contained in

JM−1; in particular, v ∈ JM−1.

Therefore, for fixed M , we have

Pr[J] =
∑

v∈JM−1 Pr[v]∑
v∈M−1 Pr[v]

=
ρs,t·e1(JM−1)
ρs,t·e1(M−1)

Since J is an invertible ideal, we have det(JM−1) = det(J) · det(M−1). Assuming that s

exceeds the smoothing parameter of JM−1, Lemma 13.2.6 thus implies that

ρs,t·e1(JM−1)
ρs,t·e1(M−1)

≈ 1/det(J)

where “≈” means up the equation is correct up to a multiplicative factor that is negligibly

close to 1. Step 4 adjusts this probability so that it is 1/b – i.e., uniform (and independent

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 164

of M) over all prime ideals with norms in [a, b].

It remains only to show that s exceeds the smoothing parameter of the lattice JM−1.

We have that

s = n3 · ‖f‖3 · (b/N)1/n · ω(
√

log n)

≥ n3 · ‖f‖3 · det(J)1/n/det(M)1/n · ω(
√

log n)

≥ n2 · ‖f‖2 · det(J)1/n · det(M−1)1/n · ω(
√

log n)

≥ n · ‖f‖ · det(JM−1)1/n · ω(
√

log n)

≥ λn(JM−1) · ω(
√

log n)

by the lemmata in Chapter 8.2.

17.3 Reduction of WBDDP to HBDDP and Worst-case IVIP

to Average-Case IVIP

Next, we prove Theorem 16.3.5, showing how to use the procedure RandomizeIdeal to reduce

WBDDP to HBDDP.

Proof. (Theorem 16.3.5) B wants to solve the WBDDP instance (M,u). It does the follow-

ing:

1. It runs (BJ ,v) R← RandomizeIdeal(R,BM , N, s, t, a, b).

2. It sets t′ ← u × v and t ← bt′e mod BJ ; let c ∈ [−1/2, 1/2)n be vector such that

t′ − t− c ∈ J .

3. It runs A on the instance (J, t), receiving back a vector y such that t− y ∈ J . (If A
does not solve this instance, restart.)

4. It outputs x ← (y + c)/v.

First, we verify that (J, t) is a valid HBDDP instance that should be solvable by A. By

Theorem 16.3.4, RandomizeIdeal outputs the basis of an ideal J that is statistically uniform

among invertible prime ideals with norm in [a, b].

Now consider t. By assumption, there exist m ∈ M and z with ‖z‖ ≤ sWBDDP such

that u = m + z. So, t′ = m′ + z′, where m′ ∈ M · (v) and (assuming v ∈ t · e1 +B(s · √n))

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 165

we have

‖z′‖ = ‖z× v‖ ≤ t · ‖z‖+ γMult(R) · s · √n · ‖z‖ ≤ 2t · sWBDDP

Since M · (v) is a sub-lattice of J , we have that t′ = j′+ z′ for some j′ ∈ J . When we round

t′ to obtain t (and reduce modulo BJ), this shifts the vector by a distance of at most
√

n

(modulo J), and thus t = j + z′′ for some j ∈ J and ‖z′′‖ ≤ 2t · sWBDDP +
√

n ≤ sHBDDP.

By the analysis above, A should solve the instance (J, t) with probability at least ε. If

A solves this instance – i.e., B receives from A a vector y with ‖y‖ < sHBDDP such that

t−y ∈ J – then, since z′′ is also a valid solution and since sHBDDP < λ1(J)/2, we have that

y = z′′. Then, z′′ + c = z′ and z′/v = z, and B solves its WBDDP instance.

We aim to set t as small as possible. For some function g(n) that is ω(
√

log n), when

N ≥ b, we can set s = n3 · ‖f‖3 · g(n), and then t = γMult(R) · n4.5 · ‖f‖3 · g(n).

The reduction from worst-case to average-case IVIP is very similar.

Theorem 17.3.1. Let Ia,b be the set of invertible prime ideals with norm in [a, b]. Suppose

that |Ia,b|/b is non-negligible and a2 > 2N · tn0 where t0 = t + s · √n for s = ω(
√

log n),

s = n3·‖f‖3·(b/N)1/n·ω(
√

log n), and t ≥ γMult(R)·n1.5·s. Suppose that there is an algorithm

A that solves sIVIP-IVIP with overwhelming probability (over the random coins chosen by A)

for a ε (weighted) fraction of invertible prime ideals J ∈ Ia,b. Then, there is an algorithm

B, with running time approximately O(1/ε) that of A, that solves IVIP for any (worst-case)

ideal M with det(M) ∈ [N, 2N] for parameter sIVIP/2t. In particular, if N ≥ b, for any

g(n) that is ω(
√

log n), it solves IVIP for parameter sIVIP/(2γMult(R) · n4.5 · ‖f‖3 · g(n)).

Proof. (Theorem 17.3.1) B is a given an ideal lattice M as its IVIP instance. It does the

following:

1. It runs (BJ ,v) R← RandomizeIdeal(R,BM , N, s, t, a, b).

2. It runs A on the instance J . If it does not receive back an independent set BJ−1 of

J−1 that satisfies sIVIP-IVIP, it restarts.

3. It sets the ith column of BM−1 to be the ith column of BJ−1 times v; it outputs

BM−1 .

Since RandomizeIdeal generates J as a uniformly random invertible prime ideal with

norm in [a, b], A outputs a satisfactory independent set in Step 2 with probability ε.

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 166

By the properties of RandomizeIdeal, J−1(v) is a sub-lattice of M−1. By multiplying

the generating columns of BJ−1 with v, we obtain an independent set BM−1 of M−1 that

satisfies

‖BM−1‖ ≤ ‖BJ−1‖ · t + γMult(R) · ‖BJ−1‖ · s · √n ≤ 2t · ‖BJ−1‖ ≤ 2t/sIVIP ,

as required.

We aim to set t as small as possible. For some function g(n) that is ω(
√

log n), when

N ≥ b, we can set s = n3 · ‖f‖3 · g(n), and then t = γMult(R) · n4.5 · ‖f‖3 · g(n).

17.4 An Alternative Way to Randomize an Ideal

In this Section, we present an algorithm RandomizeIdeal′ and prove Theorems 16.3.2 and

16.3.3. This algorithm will be used in our (classical) instantiation of IdealGen in KeyGen. The

algorithm invokes an as-yet-unspecified algorithm RandomIdealGen(R, i, j) that generates

the basis of a uniformly random invertible ideal K with det(K) ∈ [i, j], together with a

short vector wK ∈ K. Let s = ω(
√

log n) and t ≥ 20 · γMult(R) · s · n2. Let S = s · α and

T = t · α for α ≥ 1.

RandomizeIdeal′(R,BM , b, s, t, α). Takes as input the ring R, a basis BM of an invertible

ideal M of R, a bound b ≥ det(M), and s, t, and α (and hence S and T) as above. It does

the following.

1. Runs (BK ,wK) R← RandomIdealGen(R, bt2n/det(M), 4bt2n/det(M))

2. Generates a vector v per the discrete Gaussian distribution D(MK)−1,S,T ·e1

3. Sets J ← M ·K · (v)

4. Let c1 = 4bt2n, an upper bound on det(MK). It continues to Step 5 with probability

det(MK)/c1; otherwise, it returns to Step 1.

5. With probability c2 ·
ρS/T2,(1/T)·e1 (1/v)

ρS,T ·e1 (v) , continues to Step 6, where c2 is a constant to

be defined later; otherwise, it returns to Step 1.

6. Returns to Step 1 if det(J) /∈ [2bt2nTn, 3bt2nTn].

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 167

7. With probability 2bt2nTn/det(J), outputs BK , wK , v, and the Hermite normal form

of J ; otherwise, it returns to Step 1.

Remark 17.4.1. In Step 2, one can sample from the distribution D(MK)−1,S,T ·e1
by using

the GPV algorithm (see Chapter 13.3) with the independent set {ei} in (MK)−1.

Remark 17.4.2. We will show that 1/C ≤ ρS/T 2,(1/T)·e1
(1/v)/ρS,T ·e1(v) ≤ C, where

C = e6π
√

1/n. (See the proof of Theorem 16.3.2.) Therefore, it suffices to take c2 ← 1/C in

Step 5.

Remark 17.4.3. RandomizeIdeal′ outputs a uniformly random invertible ideal with norm

in a certain interval. It is straightforward to modify the algorithm so that it outputs a

uniformly random invertible prime ideal – per our preferred average case distribution –

simply by running the algorithm repeatedly until the output ideal is prime. This is efficient

as long as prime invertible ideals are a non-negligible fraction of invertible ideals in the

interval.

Before proving Theorem 16.3.2, we provide some lemmata regarding the properties of

v, the vector selected in Step 2.

Lemma 17.4.4. The vector v drawn in Step 2 is in T · e1 + B(S · √n) with overwhelming

probability, where B(r) is the open ball of radius r.

Proof. Similar to the proof of Lemma 17.2.1.

Since v is in the ball T · e1 + B(S · √n) with overwhelming probability – i.e., v is “almost

parallel” to the vector T · e1 and is therefore “almost a real number” – we would expect v

to “behave” almost like a real number, and the lattice (v) to behave almost like a scaling

of Zn. The following lemmas, which borrow from lemmas in Chapter 15.1 characterize this

intuition more formally.

Lemma 17.4.5. When v ∈ T · e1 + B(S · √n) in Step 2, it is the only vector in (v) inside

that ball. In fact, ρS,T ·e1(v)/ρS,T ·e1((v)) = 1− ε for negligible ε.

Proof. Let u be such that v = T (e1 + u). We have that ‖u‖ ≤ S · √n/T < 1/(δ · γMult(R))

for δ = n. By Lemma 15.1.3, v is the only vector in (v) that is within a distance of

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 168

T · ((n− 2)/n) > T/2 of T · e1. By Lemma 13.2.3,

ρS,T ·e1((v) \ {v}) ≤ ρS,T ·e1((v) \ [T · e1 + B(T/2)])

≤ ρS,T ·e1((v) \ [T · e1 + B(S · γMult(R) · n1.5/2)])

≤ 2Cn · ρS((v))

where C = c
√

2πe · e−πc2 and c = γMult(R) · n/2 and

ρS((v)) = 1 + ρS((v) \ B(T/2)) ≤ 1 + Cn · ρS((v))

≤ 1/(1− Cn)

Thus, ρS,T ·e1((v) \ {v}) is extremely small – approximately, exp(−γMult(R)2 · n3). One the

other hand, ρS,T ·e1(v) is not nearly as small, being at least (approximately) exp(−n), since

v is at most S · √n distant from T · e1.

In the next lemma, we apply Lemma 15.1.5 to the vector v.

Lemma 17.4.6. Suppose v ∈ T · e1 + B(S · √n) in Step 2. Let v′ = v/T , and σ = S/T .

Then, v′ satisfies the conditions of Lemma 15.1.5 for β =
√

1/n. In particular, if w′ =

1/v′ ∈ Q[x]/(f(x)), then

ρσ,e1(w
′)/ρσ,e1(v

′) ∈ [e−6π
√

1/n, e6π
√

1/n]

and consequently

ρS,T ·e1(w)/ρS/T 2,(1/T)·e1
(v) ∈ [e−6π

√
1/n, e6π

√
1/n]

where w = 1/v.

Proof. Let v′ = e1 + u. We have that ‖u‖ ≤ S · √n/T < 1/(n1.5 · γMult(R)). Also,

‖u‖3 ≤ β · σ2/γMult(R) ≤ β · n−4 · γMult(R)−3 for β =
√

1/n.

Now we prove Theorem 16.3.2.

Proof. (Theorem 16.3.2) First, we prove that RandomizeIdeal′ is correct – i.e., that it outputs

J according to a distribution that is uniform “up to negligible error” – i.e., Pr[J1]/Pr[J2] ≤
1 + ε for all J1, J2 with norms in the prescribed interval, for some negligible ε. (In general,

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 169

we use “up to negligible error” to mean an equality holds up to such a 1 + ε.) Afterwards,

we prove efficiency. To prove efficiency, it suffices to prove that neither of the rejection

sampling in Steps 5 and 6 rejects with overwhelming probability.

Correctness. For fixed M , consider the probability that IdealGen generates the pair (K, J)

at Step 3, for some K with det(K) in the required interval.

Pr[K ∧ J] = Pr[K] · Pr[J |K] = c · Pr[J |K] ,

where, by the assumption on RandomIdealGen, c is some factor independent of K and M .

The ultimate goal is to show that, for all J whose norms are in the prescribed interval,
∑

K Pr[J |K] is statistically the same.

We claim that

ρS,T ·e1(v)/ρS,T ·e1((MK)−1) ≤ Pr[J |K] ≤ ρS,T ·e1((v))/ρS,T ·e1((MK)−1)

The left inequality follows from the fact that we implicitly choose the ideal J when v is

chosen in Step 2 (out of all possible vectors in (MK)−1). However, v is not necessarily

the only vector that induces J ; in fact, for every unit u ∈ R (whose norm is 1), sampling

v×u in Step 2 induces J . All such v×u are in the ideal (v); hence, the second inequality.

From Lemmas 17.4.4 and 17.4.5, ρS,T ·e1(v) = ρS,T ·e1((v)), up to negligible error; hence the

inequalities above are very tight. Thus Pr[J |K] equals ρS,T ·e1(v)/ρS,T ·e1((MK)−1), up to

negligible error.

Now, consider the denominator ρS,T ·e1((MK)−1); we claim that, for fixed (S, T, M), this

summation is proportional to det(MK), up to negligible error. This follows from Lemma

13.2.6, and the fact that S exceeds the smoothing parameter of (MK)−1 for any integer

ideal M (since Zn is a sub-lattice of (MK)−1). So, after Step 3, we have

Pr[J |K] = c1 · ρS,T ·e1(v)/det(MK)

up to negligible error for some constant c1 that is independent of K, and thus, after the

rejection sampling in Step 4, we have

Pr[K ∧ J] = c2 · ρS,T ·e1(v)

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 170

up to negligible error for some constant c2 that is independent of K.

Let w = 1/v. After Step 5, we have

Pr[K ∧ J] = c3 · ρS/T 2,(1/T)·e1
(w) (17.1)

up to negligible error for some constant c3 that is independent of K. The rationale for this

step is rather technical; essentially, performing this inversion will allow us to compute a

certain sum over the K’s (rather than awkwardly over K−1’s). This will become clearer

momentarily.

In step 6, we eliminate J ’s that have norm falling outside of the interval. Intuitively,

the reason we discard J ’s that were on the edge of the interval is that these J ’s tend to

be “associated” to K’s that were on the edge of their interval. (Roughly, we say J is

“associated” to a K when Pr[J ∧K] is not absurdly small – i.e., the pair induces a v that is

in the ball T ·e1+B(S ·√n).) The problem with such J ’s is that they would also be associated

to some K’s with norms just outside the interval, if we had permitted RandomIdealGen to

generate such K’s – i.e., these J ’s have a “truncated” set of associates. It is easier to discard

these bad J ’s and just consider ones whose associates are not truncated.

We claim that for the J ’s in this interval, after Step 5 (and Step 6), it holds that

∑

K

Pr[K ∧ J] = c4 ·
∑

w∈J−1M

ρS/T 2,(1/T)·e1
(w)

up to negligible error for some constant c4 that is independent of K.

It suffices to show that

∑

K

ρS/T 2,(1/T)·e1
(w) =

∑

w∈J−1M

ρS/T 2,(1/T)·e1
(w)

– i.e., the only issue difference is that (using Equation 17.1) we sum up over K’s on the

left-hand side, defining w to be the inverse of v where v is the element in (MK)−1J that

is inside the ball T · e1 +B(T/2) (if there is one; if not, this value of K contributes nothing

to the sum), whereas on the right-hand side we are summing up directly over elements of

J−1M . For fixed J and M , each distinct K on the lhs that could have been chosen (i.e.,

that leads to a v in the ball) maps to a distinct v in (v) = (MK)−1J and thus a distinct

w ∈ J−1M . (Note: (w) = J−1MK.) Thus, the terms summed on the lhs are a subset of

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 171

the terms summed on the rhs. To show that the two sides are equal up to negligible error,

it suffices to show that the terms omitted on the lhs contribute a negligible fraction of the

weight.

So, consider the values of w ∈ J−1M that are inside the ball (1/T)e1 + B(S · √n/T 2);

these values contribute the overwhelming fraction of the sum on the right, assuming that

S/T 2 exceeds the smoothing parameter of J−1M , which we will establish shortly. We

claim that, that all such w’s are included in the sum on the lhs – i.e., that for every w in

this ball, there is some K with norm in the interval [bt2n/det(M), 4bt2n/det(M)] such that

(w) = J−1MK (for our fixed J). In particular, set K ← (w)·JM−1; it remains to check that

K has norm in the correct interval. Since the norm is a multiplicative map among invertible

ideals, we have det(K) = det((w)) · det(J) · det(M−1). Consider det((w)) = 1/det((v)).

We can lower- and upper-bound det((v)) by finding hypercubes that circumscribe and

are circumscribed by the parallelepiped P(Bv), where v is the rotation basis of v. Let

vi = v × xi mod f(x). For every point a on the surface of this parallelepiped, there is an i

such that

a = (±1/2) · vi +
∑

j 6=i

xj · vj

for xj ∈ [−1/2, 1/2]. So,

T/2− n · γMult(R) · S ≤ |〈a, ei〉| ≤ T/2 + n · γMult(R) · S

So, the parallelepiped inscribes a hypercube, centered at the origin, with sides of length

T − 2n · γMult(R) · S ≥ T (1 − 1/10n) and volume approximately Tn/1.1. Similarly, it is

circumscribed by a hypercube with volume approximately Tn · 1.1. Given these bounds on

det((w)), and since det(J) ∈ [2t2nTnb, 3t2nTnb], we have that det(MK) ∈ [2t2nb/1.1, 3t2nb ·
1.1], which proves the claim.

We claim that S/T 2 exceeds the smoothing parameter of J−1M . The norm of J−1 is

at most 1/(2bt2nTn) and the norm of M is at most b. Therefore, the norm of J−1M is at

most 1/(2t2nTn). By Minkowski, λ1(J−1M) is at most
√

n/(t2T); let a be a nonzero vector

in J−1M whose length is at most this value. Then we have:

λn(J−1M) ≤ max
i
{‖a× xi‖} ≤ γMult(R) · ‖a‖ ≤ γMult(R) · √n/(t2T) ≤ 1/(n1.5tT)

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 172

The value S/T 2 > 1/tT is much larger; in particular, it is λn(J−1M) · ω(
√

log n) – i.e.,

larger than the smoothing parameter of J−1M .

Finally, we consider the sum

∑

w∈J−1M

ρS/T 2,(1/T)·e1
(w)

Since S/T 2 exceeds the smoothing parameter of J−1M , the sum
∑

w∈J−1M ρS/T 2,(1/T)·e1
(w)

is proportional to det(J), for reasons similar to those discussed above. The final step gets

rid of the dependence on det(J) – i.e., Pr[J] becomes constant, up to negligible error.

Efficiency. Assuming RandomIdealGen is efficient, the efficiency of RandomizeIdeal′ follows

from our claims that the algorithm does not return to Step 1 with overwhelming probability

in Steps 5-6.

Regarding Step 5, we invoke Lemma 17.4.6, which says that with overwhelming proba-

bility it holds that

ρS,T ·e1(w)/ρS/T 2,(1/T)·e1
(v) ∈ [e−6π

√
1/n, e6π

√
1/n]

and therefore we can take c2 ← e−6π
√

1/n as claimed, so that the probability of rejecting is

very small.

As for the probability of rejecting J in Step 6, we see that this only occurs if det(J)

is outside of [2t2nTnb, 3t2nTnb]. But since the associated value of (w) = J−1MK has

norm in the interval [T−n/1.1, T−n · 1.1] with overwhelming probability, this implies (with

overwhelming probability) that MK has norm outside of [2t2nb ·1.1, 3t2nb/1.1] – i.e., K has

norm outside of [2t2nb/det(M) · 1.1, 3t2nb/1.1]. By the distribution of ideals (see Chapter

15.2), it seems reasonable to believe that this occurs only with only constant probability, in

which case the probability of rejecting in Step 6 is a constant.

Next, we prove Theorem 16.3.3, showing how to use the procedure RandomizeIdeal′ to

reduce WBDDP to HBDDP.

Proof. (Theorem 16.3.3) B wants to solve the WBDDP instance (M,u). It does the follow-

ing:

1. It runs (BK ,wK ,v, J) R← RandomizeIdeal′(R,BM , b, s, t, α), using α = 1.

2. It sets t ← u× v ×wK mod BJ .

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 173

3. It runs A on the instance (J, t), receiving back a vector y such that t− y ∈ J .

4. It outputs x ← y/(v ×wK).

Regarding Step 1, by assumption we have that the algorithm RandomIdealGen outputs a

basis BK for an ideal K that is uniformly random subject to the constraint that its det(K)

is in the specified interval. Therefore, by Theorem 16.3.2, RandomizeIdeal′ outputs the basis

BJ of an ideal J statistically uniformly, subject to the constraint that det(J) ∈ [2bt3n, 3bt3n].

It also outputs v satisfying J = M · K · (v) and v ∈ t · e1 + B(s · √n), the latter with

overwhelming probability. Also, we know that ‖wK‖ < X by assumption.

We verify that A can perform Step 3 – i.e., that (J, t) is a valid HBDDP instance,

and that A therefore should solve it with overwhelming probability for a ε fraction of J .

Specifically, we have that u = m + z for m ∈ M and ‖z‖ ≤ sWBDDP. We have

t = (m + z)× v ×wK mod BJ

= m× v ×wK + z× v ×wK mod BJ

= m′ + z′ mod BJ

= z′ mod BJ

where m′ ∈ J because M(v)K = J , and where z′ = z× v ×wK .

Now, we claim that z′ is short, so that (J, t) is a valid HBDDP instance. Note that

v = t · e1 + s
√

n · x where ‖x‖ ≤ 1 with overwhelming probability. So,

‖z′‖ ≤ γMult(R) · ‖z× v‖ · ‖wK‖ ≤ γMult(R) · (t + γMult(R) · s√n) · ‖z‖ · ‖wK‖
≤ γMult(R) · (t + γMult(R) · s√n) · sWBDDP ·X ≤ t2 · sWBDDP ·X ≤ sHBDDP

where the penultimate inequality holds for the value of t used in RandomizeIdeal′.

Since the HBDDP instance is valid, A solves it with probability ε. When A solves an

instance and outputs z′ = z× v ×wK , B outputs z.

The reduction from worst-case to average-case IVIP is very similar.

Theorem 17.4.7. Let s, t, and b be defined as in RandomizeIdeal′. Suppose that there is

an algorithm A that solves sIVIP-IVIP with overwhelming probability (over the random coins

chosen by A) for a ε (weighted) fraction of invertible ideals J with norm in [2bt3n, 3bt3n].

CHAPTER 17. HOW TO RANDOMIZE A WORST-CASE IDEAL 174

Suppose that RandomIdealGen (efficiently) outputs BK that includes a vector w ∈ K with

‖wK‖ < X. Then, there is an algorithm B, with running time approximately O(1/ε) that of

A, that solves IVIP for any (worst-case) ideal M with det(M) < b for parameter sWIVIP ≤
sIVIP/((t + s · √n · γMult(R)) · γMult(R) ·X).

Proof. (Theorem 17.4.7) B is a given an ideal lattice M as its IVIP instance. It does the

following:

1. It runs (BK ,wK ,v, J) R← RandomizeIdeal′(R,BM , b, s, t, α) using α = 1.

2. It runs A on the instance J . If it does not receive back an independent set BJ−1 of

J−1 that satisfies sIVIP-IVIP, it restarts.

3. It sets the ith column of BM−1 to be the ith column of BJ−1 times wK×v; it outputs

BM−1 .

Since RandomizeIdeal′ generates J as a uniformly random invertible ideal with norm in

[2bt3n, 3bt3n], A outputs a satisfactory independent set in Step 2 with probability ε.

By the properties of RandomizeIdeal′, M−1 = J−1K(v), and thus J−1(wK · v) is a sub-

lattice of M−1. By multiplying the generating columns of BJ−1 with wK · v, we obtain an

independent set BM−1 of M−1 that satisfies ‖BM−1‖ ≤ γMult(R) · ‖BJ−1‖ · ‖wK · v‖. Note

that v = t · e1 + s
√

n · x where ‖x‖ ≤ 1 with overwhelming probability. We have that

‖wK · v‖ ≤ t ·X + γMult(R) · s · √n · ‖x‖ ·X < (t + s · √n · γMult(R)) ·X

Thus,

‖BM−1‖ ≤ γMult(R) · (t + s · √n · γMult(R)) ·X/sIVIP

as required.

Chapter 18

KeyGen per the Average Case

Distribution

The first step in RandomizeIdeal′, which is invoked by IdealGen, is to generate the basis of

an ideal K that is uniformly random subject to its norm being in a prescribed interval. We

describe the algorithm to do this, called WeakRandomIdealGen, in this Chapter. The main

difference between RandomIdealGen and WeakRandomIdealGen is that, in the latter, we do

not generate a short vector wK ∈ K. As described below, this weak version suffices for

KeyGen.

18.1 The Secret Key

For the moment, let us assume that we have an algorithm WeakRandomIdealGen that outputs

a basis BK of an ideal that is uniformly random, subject to the constraint that its norm

is in some specified interval [a, b]. Define WeakRandomizeIdeal′ exactly like RandomizeIdeal′,

except that WeakRandomizeIdeal′ uses WeakRandomIdealGen instead of RandomIdealGen, and

the output of WeakRandomizeIdeal′ includes only BK , the vector v, and the Hermite normal

form BJ of J . Also, WeakRandomizeIdeal′ uses the modification mentioned in Remark 17.4.3;

it outputs a random invertible prime ideal rather than a random invertible one. As before,

s = ω(
√

log n) and t ≥ 20 · γMult(R) · s · n2, S = s · α, and T = t · α. However, whereas we

used α = 1 to obtain as tight a reduction as possible (between the worst-case ideal M and

the average-case ideal J), here we set M to be Zn and use a large value of α – e.g., on the

order of 2
√

n – which implicitly induces a large value of rDec, which permits greater depth

175

CHAPTER 18. KEYGEN PER THE AVERAGE CASE DISTRIBUTION 176

to be evaluated before bootstrapping is needed. We instantiate IdealGen as follows.

IdealGen(R,BI):

1. Run (BK ,v,BJ) ← WeakRandomizeIdeal(R, R, 1).

2. Set Bpk
J ← BJ .

3. Set Bsk
J ← Bv, where Bv is the rotation basis of v.

Remark 18.1.1. In practice, we will always choose J to have much larger determinant

than I, and thus the fact that J is prime will automatically imply that it is relatively prime

to I.

Remark 18.1.2. Recall that decryption works fine as long as the ideal lattice L(Bsk
J)

contains J . (In our case, this holds since J = K · (v) – i.e., (v) contains J .) Intuitively, if

ψ is a ciphertext very close to a J-vector, then it is also very close to a vector in L(Bsk
J) –

though, of course, to decrypt with Bsk
J , this distance needs to be comfortably less than the

first minimum of L(Bsk
J).

Let us consider the value of rDec associated to Bsk
J , and show that it is only polynomially

smaller than λ1(J). This implies that Bsk
J is the best secret key for J , up to a polynomial

factor.

Lemma 18.1.3. Suppose Bsk
J , Bpk

J , v and BK are generated by IdealGen(R, I), as described

above. Then, λ1(J)/rDec = poly(n) if γMult(R) is polynomial in n.

Proof. First, let us consider λ1(J). By Theorem 16.3.2, det(J) ∈ [2bt2nTn, 3bt2nTn]. There-

fore, λ1(J) < 31/n · √n · t2 · T by Minkowski.

Now, consider rDec, the radius of the largest circle circumscribed by the secret basis

Bsk
J = Bv. By Lemma 8.1.1, we have that rDec ≥ 1/(2n · ‖(Bsk

J)−1‖), where in our case

(Bsk
J)−1 is the rotation basis of the vector 1/v ∈ Q[x]/(f(x)). Since v is of the form

T · (e1 +u) for ‖u‖ ≤ S · √n/T ≤ 1/(γMult(R) ·n1.5), we can apply Lemma 15.1.4 to obtain

that

1/v = (1/T) · (e1 − u + x) for ‖x‖ ≤ γMult(R) · ‖u‖2

1− γMult(R) · ‖u‖

CHAPTER 18. KEYGEN PER THE AVERAGE CASE DISTRIBUTION 177

The rotation basis consists of the vectors ei/v, which has length at most

(1/T) · (‖ei‖+ γMult(R) · ‖u‖+ γMult(R) · ‖x‖) ≤ (1/T) · (1 + 1/n1.5 + 2/n3
) ≤ 2/T

Consequently, rDec ≥ T/4n.

The ratio of λ1(J) and rDec, which is bounded by 4(31/n)n1.5t2, is therefore polynomial

in n, assuming t is polynomial in n. We can set t to be polynomial in n if γMult(R) is

polynomial in n.

18.2 Adapting Kalai’s Algorithm to Generate a Random Fac-

tored Ideal

Now we describe how to instantiate WeakRandomIdealGen, an efficient classical algorithm

for generating a basis BK of an invertible ideal K that is uniformly random, subject to the

constraint that its norm is in a prescribed interval. Several difficulties conspire to make this

less trivial than it sounds.

1. The ring OQ(α), which contains our ring Z[α] where α is a root of f(x), enjoys unique

factorization of ideals. However, OQ(α) certainly does not have an ideal p of norm p

for every integer prime p. In other words, one cannot simply pick an integer N and

expect that OQ(α) that has an ideal of norm N .

2. If there is an ideal of norm N , there may be multiple ideals of norm N . In particular,

for prime p, if there is one ideal of norm p, there may be up to n ideals of norm p,

where n is the degree of f(x). If N has many prime factors, the number of ideals with

norm N may be very large: up to about nlog N/ log log N .

3. If OQ(α) has an ideal I of norm N , it is still not necessarily easy to find a basis of

I unless N is prime. If N is prime, one can find the ideals of norm N e (for some

e ≥ 1) essentially by factoring f(x) modulo N . (See Chapter 13.4.) However, this is

not efficient if N is composite.

These considerations, particularly the last one, lead us to construct an algorithm for gen-

erating a random factored ideal whose norm is in the prescribed interval, even though, in

principle, we do not need the factorization. Our algorithm for generating a random factored

CHAPTER 18. KEYGEN PER THE AVERAGE CASE DISTRIBUTION 178

ideal is a modification of Kalai’s algorithm for generating a random factored number [74].

Let us recall Kalai’s algorithm.

Kalai’s Algorithm for Generating a Random Factored Number.

Input: Integer b > 0.

Output: A uniformly random number 1 ≤ N ≤ b, with its factorization.

1. Generate a sequence b ≥ s1 ≥ s2 ≥ · · · ≥ s` = 1 by uniformly choosing s1 ∈ {1, . . . , b}
and si+1 ∈ {1, . . . , si}.

2. Let N be the product of the prime si’s.

3. If N > b, restart.

4. Output N and the prime si’s with probability N/b; otherwise, restart.

The main idea behind Kalai’s algorithm is that the probability that a prime p ≤ b is in

the sequence is 1/p, since p is not chosen iff one of 1, . . . , p − 1 is chosen before p (which

occurs with probability (p − 1)/p). Overall, the probability that exactly pe divides N is

1/pe−1/pe+1 = (p−1)/pe+1, and (subject to the constraint that all of N ’s factors must be at

most b) the probability that N =
∏

i p
ei
i is chosen is

∏
j(pj−1)/p

ej+1
j = (1/N)·∏j(pj−1)/pj ,

where pj runs over all primes up to b. Thus, the probability that N is chosen is exactly

1/N , up to some factor that does not depend on N . Two rejection sampling steps ensure

the correct distribution. By Mertens’ theorem, the algorithm will not restart in Step 3 with

probability θ(1/ log b).

We would like our algorithm for generating a random factored ideal to have a property

similar to Kalai’s algorithm: that, before some rejection sampling steps, the probability

that a prime ideal p is in the list is 1/det(p). Kalai’s strategy for ensuring this property

is very elegant; ideally, we would like to replicate it. However, as mentioned above, there

is a considerable difficulty: there may be many (up to n) prime ideals whose norms are to

the same prime integer. This makes it difficult to generate a sequence from large to small,

as Kalai does, since some ideals are “tied” in terms of largeness. We break these ties by

mapping prime ideals of norm q to distinct integers [n(q − 2) + 1, n(q − 1)]. We then use

Kalai’s algorithm to sample from the integers, and then pick prime ideals as pre-images

of these integers according to this map. Then, similar to Kalai, we multiply together the

prime powers in our list, and perform a couple of rejection steps before outputting the

CHAPTER 18. KEYGEN PER THE AVERAGE CASE DISTRIBUTION 179

result. From the bases of the individual prime factors, it easy to generate a basis of the

composite ideal (essentially by multiplying the bases together). By an analogue of Mertens’

theorem for ideals in number fields, our random factored ideal will have a norm less than

our desired bound with inverse-log probability.

We now present the algorithm; afterwards, we review the purpose of the individual steps.

Let h : I → N be an efficiently computable injective map from invertible prime ideals in

R to positive integers, such that h(p) ∈ [n · (Nm(p) − 2) + 1, n · (Nm(p) − 1)]. (Such an h

can always be constructed (incrementally), since there are at most n prime ideals of a given

norm.)

WeakRandomIdealGen(R, a, b).

Input: The ring R and integers b > a > 1 with (b− a)/b non-negligible.

Output: A basis BK of a uniformly random invertible ideal K with norm in [a, b].

1. Generate n integer sequences b ≥ si1 ≥ si2 ≥ · · · ≥ si`i = 1 as in Kalai’s algorithm.

2. Set S0 to be the set of integers in the sequences, with no duplications.

3. Set S1 to be the subset of S0 consisting of those integers that equal h(p) for some

invertible prime ideal p.

4. Generate S2 from S1 as follows. For each r ∈ S1, replace r with the prime ideal p such

that h(p) = r with probability 1/(Np(1− (1− 1/r)n)); otherwise, nothing replaces r.

(We use Np to abbreviate Nm(p).)

5. Construct a set S3 by, for each p ∈ S2, replacing p with the power pe with probability

(Nm(p)− 1)/Nm(p)e+1.

6. Set K to be the product of the prime power ideals in S3, and BK to be a basis for K.

7. If det(K) ∈ [a, b], output BK with probability det(K)/b; otherwise, restart.

Remark 18.2.1. Regarding Step 3, as discussed in Chapter 13.4, there are efficient algo-

rithms for recognizing when a prime power integer is the norm of a prime ideal, and for

computing a basis of such a prime ideal.

Regarding WeakRandomIdealGen, we have the following theorem.

CHAPTER 18. KEYGEN PER THE AVERAGE CASE DISTRIBUTION 180

Theorem 18.2.2. The algorithm uniformly samples an invertible ideal K ⊂ R with norm

in [a, b]. The algorithm takes time b/(a− b) · poly(n, log b).

Proof. (Theorem 18.2.2) Consider an invertible prime ideal p. What is the probability that

p is in S2? Let r = h(p), and consider the probability that r is in S0. For any integer

r′ ∈ [1, b], and any single sequence, the probability that r′ is in that sequence is 1/r′, just

as in Kalai’s algorithm. So, the probability that r is in at least one of the sequences is

1− (1− 1/r)n. Then, the probability that p ∈ S2 is 1/Np, assuming 1/(Np(1− (1− 1/r)n))

is in fact a quantity between 0 and 1 (so that Step 4 is possible).

This assumption is true, since

r < n · (Np − 1) + 1 ⇒ n/(r − 1) > 1/(Np − 1)

⇒ (r/(r − 1))n > Np/(Np − 1)

⇒ (1− 1/r)n < 1− 1/Np

⇒ 1− (1− 1/r)n > 1/Np

Step 5 adjusts the probabilities so that they are analogous to those in Kalai’s algorithm,

and the rest of the steps and analysis mirror his algorithm. Specifically, for each invertible

prime ideal pi of norm at most b, the probability that pti
i is chosen, and not p

t′i
i for some

t′i > ti, is (Nm(pi))ti · (1− 1/Nm(pi)). The probabilities associated to different prime ideals

are independent. So, for an invertible ideal M =
∏

Nm(pi)≤b pti
i , we have

Pr[M] = 1/Nm(M) ·
∏

Nm(pi)≤b

(1− 1/Nm(pi))

through Step 6. After Step 7, Pr[M] becomes (1/b) · ∏Nm(pi)≤b(1 − 1/Nm(pi)), which is

independent of M . By Merten’s theorem for number fields, we have

∏

Nm(pi)≤b

(1− 1/Nm(pi)) =
e−γ

aK

1
log b

+ O(
1

log2 b
)

where aK is the residue of ζK(s), the Dedekind zeta-function, at s = 1, and γ denotes

Euler’s constant 0.577 Since there are θ(b) ideals of norm at most b, there is an inverse-

log probability that Nm(K) ≤ b. Among K’s with norm at most b, approximately a (b−a)/b

fraction of them have norm at least a. The result follows.

Chapter 19

Basing Security on Worst-case

SIVP in Ideal Lattices

So far, we have based the security of our system on worst-case BDDP (WBDDP) over ideal

lattices (along with the additional problem SSSP induced by our technique for squashing the

decryption circuit). Theorem 14.6.2 uses Regev’s reduction [119] to establish that, for each

individual ideal lattice J , IVIP reduces to BDDP. Since this holds whether J is a worst-case

or an average-case instance, this bases the security of our system on the worst-case IVIP.

There is a subtlety here; the worst-case / average-case reduction requires a lower bound

on the determinant of the ideal used in the average-case instance in terms of the worst-case

instance – i.e., worst-case ideal might be required to have a smaller determinant than the

average-case ideal. But what if IVIP is hard only when the determinant of the ideal lattice

in question is large, and our worst-case instances are easy?

In this Chapter, we continue the series of reductions. First, we establish that IVIP

instances tend to be harder when the determinant of the lattice in question is small. (This

reduction uses a factoring oracle, and therefore the reduction is polynomial time in the

quantum setting.) Next, we show that the shortest independent vector problem (SIVP)

over ideal lattices is hard if the IVIP problem is hard for all lattices whose determinants

exceed a particular bound. This bases the security of our system on the SIVP over ideal

lattices.

181

CHAPTER 19. BASING SECURITY ON WORST-CASE SIVP IN IDEAL LATTICES182

19.1 Relationship Among Instances of IVIP

The following theorem clarifies that, if one has access to a factoring oracle (which can be

instantiated efficiently with quantum computation), the harder instances of IVIP involve

ideal lattices with smaller determinants.

Theorem 19.1.1. Suppose that there is an algorithm A that solves sIVIP-IVIP whenever

the given ideal has det(J) ∈ [a, b] for [a, b] = [dn
IVIP, 2 · dn

IVIP]. Let M be an ideal with norm

in [N, 2N] with N ≥ a. Assume that invertible prime ideals with norms in [a, b] are not

negligibly sparse. Then, there is an algorithm B that solves IVIP for M for parameter

sIVIP/(2γMult(R) · n2.5 · ‖f‖ · g(n)) for any g(n) that is ω(
√

log n).

Intuitively, it makes sense that solving IVIP for ideal lattices of smaller determinant

is the harder case. For any m > 1, if M has large enough determinant, then λn(M−1) <

2−n/m. In this case, LLL will return an independent set of M−1 of length at most 1/m, thus

solving m-IVIP. It seems reasonable to guess that, even when det(M) is not so large, IVIP

should become easier as the determinant of M becomes larger. Theorem 19.1.1 establishes

that this is indeed true (with access to a factoring oracle).

Proof. (Theorem 19.1.1) If det(M) ∈ [a, b], then solve IVIP for M immediately using A.

Otherwise, assume N ≥ b.

Our proof uses techniques similar to those in RandomizeIdeal. Let s and t be such that

s = ω(
√

log n), s = n · ‖f‖ · (b/N)1/n ·ω(
√

log n) and t ≥ γMult(R) ·n1.5 ·s. Let Ia,b be the set

of invertible prime ideals with norms in [a, b]. Generate a vector v per the discrete Gaussian

distribution DM−1,s,t·e1
and set L ← M · (v). By Lemma 15.2.3, if |Ia,b|/b is non-negligible,

then the probability that the ideal M · (v) has a divisor in Ia,b is non-negligible. Use a

factoring oracle to discover whether there is such a factor. If there is not, choose a new v.

If there is, set J to be such a factor.

B obtains from A an independent set BJ−1 of J−1 satisfying ‖BJ−1‖ ≤ 1/sIVIP. This

independent set is also an independent set of L−1, and we obtain an independent set BM−1

of M−1 from it by multiplying the vectors of BJ−1 by v. As in the proof of Theorem 17.3.1,

we obtain ‖BM−1‖ ≤ 2t/sIVIP.

We aim to set t as small as possible. For some function g(n) that is ω(
√

log n), since

N ≥ b, we can set s = n · ‖f‖ · g(n), and then t = γMult(R) · n2.5 · ‖f‖ · g(n).

CHAPTER 19. BASING SECURITY ON WORST-CASE SIVP IN IDEAL LATTICES183

19.2 Reduction of SIVP to IVIP

In SIVP, the length requirement on the output basis is stated in more absolute terms as a

multiple of the nth minimum of the lattice, rather than relative to a trivial known basis.

Definition 19.2.1 (Ideal SIVP). Fix ring R and a positive real dSIVP ≥ 1. Let BM be a

basis for an ideal lattice M of R. The problem is: given BM (and the fixed values), output

an independent set BM of M for which ‖BM‖ ≤ dSIVP · λn(M).

Toward reducing Ideal SIVP to Ideal IVIP, it is convenient to use an intermediate

problem.

Definition 19.2.2 (Inverse Ideal SIVP). Fix ring R and a positive real dISIVP ≥ 1. Let BM

be a basis for an ideal lattice M of R. The problem is: given BM (and the fixed values),

output an independent set BM−1 of M−1 for which ‖BM−1‖ ≤ dISIVP · λn(M−1).

It is easy to reduce Ideal SIVP to Inverse Ideal SIVP. (For convenience, we will use

SIVP and ISIVP to refer to these two problems.)

Theorem 19.2.3. Suppose that there is an algorithm A that solves dISIVP-ISIVP. Then

there is an algorithm B that solves dISIVP-SIVP.

Proof. B is given the basis BM of an ideal M for which it wants to solve SIVP. It gives

to A a basis BJ of the ideal J ← det(M) · M−1 ⊂ R. A sends back an independent set

BJ−1 of J−1 for which ‖BJ−1‖ ≤ dISIVP · λn(J−1). We know that J−1 = (1/det(M)) ·M ;

so, by multiplying BJ−1 by det(M), we obtain an independent set BM of M that satisfies

‖BM‖ ≤ dISIVP · λn(M).

The following theorem states the reduction from ISIVP to IVIP.

Theorem 19.2.4. Let dISIVP = (3 · e)1/n · dIVIP, where e is Euler’s constant. Suppose that

there is an algorithm A that solves IVIP for parameter sIVIP > 8 · γMult(R) · n2.5ω(
√

log n)

for all ideals with determinant at least dn
IVIP. Then, there is an algorithm B that solves

dISIVP-ISIVP. The running time is approximately log dIVIP times that of A.

Combining Theorem 19.1.1 with Theorem 19.2.4, we have the following corollary.

Corollary 19.2.5. Suppose that there is an algorithm A that solves sIVIP-IVIP for sIVIP >

16 · γMult(R)2 · n5 · ‖f‖ · g(n) for some g(n) that is ω(log n), whenever the given ideal has

CHAPTER 19. BASING SECURITY ON WORST-CASE SIVP IN IDEAL LATTICES184

det(J) ∈ [a, b] for [a, b] = [dn
IVIP, 2 · dn

IVIP]. Assume that invertible prime ideals with norms

in [a, b] are not negligibly sparse. Then, there is an algorithm B that solves worst-case

dISVIP-ISIVP for dISVIP = (3 · e)1/n · dIVIP, where e is Euler’s constant.

Roughly speaking (and somewhat inaccurately), our reduction from ISIVP to IVIP will

work as follows. We are given an ideal M for which we want to solve ISIVP – i.e., find a short

independent set for M−1. Our reduction will solve the ISIVP by using our IVIP algorithm

A recursively. We feed M to A. A sends back an “improved” basis BM−1 of M−1 for which

‖BM−1‖ ≤ 1/s for some s > 1. We use this improved basis to find a different ideal lattice,

J1, that has the basically same “shape” as M , but a smaller determinant. Our method for

doing this is to use the GPV algorithm to sample v from the intersection of M−1 and the

translated ball (1/2)e1 +B(
√

n(log n)/s), and then to set J1 ← (v) ·M , which is an integer

ideal lattice. GPV is able to use the improved basis to sample from this ball, even though

the ball’s radius is somewhat small (when s is large enough). The vector v is very close, and

nearly parallel, to (1/2)e1. For this reason, the rotation basis of v is a nearly orthogonal

matrix. In particular, the mapping from J−1
1 to M−1 given by multiplication by the vector

v roughly preserves “shape.” Also, we have det(J1) = det(v) · det(M) ≈ 2−n · det(M) –

i.e., the determinant decreases. Ultimately, through recursion, we end up with a lattice Ji

whose determinant is less than dn
IVIP, and which has basically the same shape as M – i.e.,

again, a known nearly orthogonal matrix transforms one ideal to the other. Since Ji has

determinant less than dn
IVIP, and therefore λn(J−1

i) ≥ 1/dIVIP, the “unimproved” basis {ei}
is a dIVIP-ISIVP solution for Ji. We then use the nearly orthogonal matrix that transforms

J−1
i to M−1 to obtain a (3 · e)1/n · dIVIP-approximate solution to ISIVP for M .

Proof. (Theorem 19.2.4) Given basis BM of ideal M , B does the following pre-processing

operation.

1. It generates a basis of M−1 and runs LLL on it to obtain a basis BM−1 of M−1 that

satisfies ‖BM−1‖ ≤ 2n · λn(M−1).

2. It generates a vector v0 ∈ M−1 that is in

sIVIP · ‖BM−1‖ · ((1/2)e1 + B(
√

n(log n)/sIVIP)
)

3. It sets J0 ← (v0) ·M and computes a basis B0 of J0.

CHAPTER 19. BASING SECURITY ON WORST-CASE SIVP IN IDEAL LATTICES185

It sets i = 0 and enters the following loop.

1. If det(Ji) < dn
IVIP, it outputs the rotation basis Bw of the vector w ← ∏i

j=0 vj and

iend ← i; break.

2. It runs A on Bi and receives from A a basis B∗
i of J−1

i with ‖B∗
i ‖ ≤ 1/sIVIP.

3. It generates a vector vi+1 ∈ J−1
i ∩ ((1/2)e1 + B(

√
n(log n)/sIVIP)).

4. It sets Ji+1 ← (vi+1) · Ji, computes a basis Bi+1 of Ji+1, and increments i.

(Notice that all of the Ji are integer ideals, even though the vi’s are not necessarily elements

of R, but rather elements of Q[x]/(f(x)). For example, J0 is an integer ideal since it is

generated by v0 × mi for mi ∈ M , and all of these generators are elements of R since

v0 ∈ M−1.)

First, we check that B can perform all of the steps efficiently; this is obvious aside except

for Step 2 of the preprocessing operation and Step 3 of the loop. In both cases, we pick a

point from the intersection of a lattice and a ball whose radius is at least
√

n log n times the

length of some independent set that we have for that lattice. (In the preprocessing step,

we trivially have the independent set {ei} of M−1, and in the loop step we have B∗
i , an

independent set of J−1
i received from the IVIP-solver A that must satisfy ‖B∗

i ‖ ≤ 1/sIVIP

by assumption.) We can use the GPV algorithm (see Chapter 13) to sample a point from

the lattice according to a discrete Gaussian distribution (centered anywhere we want) whose

deviation parameter is less than log n times the length of our independent set. By Lemma

13.2.2, with overwhelming probability, the sampled point falls within a ball of radius
√

n

times that deviation parameter. This implies that we can efficiently sample the vi as

claimed.

Next, we claim that the algorithm terminates in polynomial time with an iend such that

det(Jiend
) < dn

IVIP. Obviously, the algorithm does not break until det(Ji) < dn
IVIP. Also, we

have that det(Ji+1) = det((vi)) · det(Ji) ≈ (1/2)n · det(Ji) – i.e., the determinant decreases

substantially with each iteration.

A bit more accurately, Lemma 15.1.6 tells us that det((vi)) < e/2n. Suppose det(Ji) >

dn
IVIP. We have that det(Ji) < (e/2n)i · det(J0), implying

i < log2n/e(det(J0)/det(Ji)) < log2n/e(det(J0)/dn
IVIP) ≤ log2n/e det(J0)

CHAPTER 19. BASING SECURITY ON WORST-CASE SIVP IN IDEAL LATTICES186

We also have that

det(J0) = det((v0)) · det(M)

≤ e · (sIVIP/2)n · ‖BM−1‖n · det(M)

≤ e · (sIVIP/2)n · (2n · γMult(R) · det(M)−1/n)n · det(M)

≤ e · (2n · sIVIP · γMult(R)/2)n

Since (2n/e)2n−1 > e · (2n · sIVIP · γMult(R)/2)n for reasonable values of sIVIP and γMult(R),

we have that det(Ji) > dn
IVIP implies i < 2n−1. Therefore, iend ≤ 2n−1 and the algorithm

terminates in polynomial time.

Finally, let us consider the output basis Bw, the rotation basis of w ← ∏iend
j=0 vj . Since

(w) = Jiend
· M−1, we have that (w) is a sub-lattice of M−1 and therefore the rotation

basis Bw is an independent set of M−1. It remains to compute ‖Bw‖. From the fact that

det(Jiend
) < dn

IVIP, we have that

det((w)) < dn
IVIP/det(M)

We claim that

‖Bw‖ ≤ (3e)1/n · det((w))1/n

The theorem follows from this claim, since

det((w))1/n ≤ dIVIP · det(M−1)1/n ≤ dIVIP · λn(M−1)

For j > 0, we have vj = (1/2)(e1 +xj), where ‖xj‖ ≤ 2
√

n(log n)/sIVIP; for j = 0 these

equations are just multiplied by sIVIP · ‖BM−1‖ – i.e., v0 = (sIVIP · ‖BM−1‖/2)(e1 + x0),

where ‖x0‖ ≤ 2
√

n(log n)/sIVIP. So,

iend∏

j=0

vj = sIVIP · ‖BM−1‖/2iend+1 ·
iend∏

j=0

(e1 + xj)

CHAPTER 19. BASING SECURITY ON WORST-CASE SIVP IN IDEAL LATTICES187

We bound the distance of
∏iend

j=0(e1 + xj) from e1:

∥∥∥∥∥∥
e1 −

iend∏

j=0

(e1 + xj)

∥∥∥∥∥∥
≤

∑

∅6=S⊂[0,iend]

∥∥∥∥∥∥
∏

j∈S

xj

∥∥∥∥∥∥
≤

∑

∅6=S⊂[0,iend]

γMult(R)|S|−1 · (2√n(log n)/sIVIP)|S|

= (1/γMult(R))
∑

∅6=S⊂[0,iend]

(γMult(R) · 2√n(log n)/sIVIP)|S|

= (1/γMult(R))
(−1 + (1 + γMult(R) · 2√n(log n)/sIVIP)iend+1

)

≤ (1/γMult(R))(−1 + e(iend+1)γMult(R)·2√n(log n)/sIVIP)

≤ (2/γMult(R)) · ((iend + 1)γMult(R) · 2√n(log n)/sIVIP)

≤ 8n
√

n(log n)/sIVIP

≤ 1/nγMult(R)

The third-from-last inequality holds for reasonable values of n. Specifically, −1 + et ≈ t for

small values of t, and the exponent in the fourth-from-last expression is at most 1/2n (from

the upper bound on iend and lower bound on sIVIP). For n ≥ 1/2, t is small enough so that

indeed −1 + et ≤ 2t, as needed for the inequality.

So, for some x with ‖x‖ ≤ 1/nγMult(R), we have

w = sIVIP · ‖BM−1‖/2iend+1 · (e1 + x)

Thus, by Lemma 15.1.1, ‖Bw‖ ≤ (sIVIP · ‖BM−1‖/2iend+1) · (1 + 1/n).

By Lemma 15.1.6, we obtain det((w)) ≥ (sIVIP · ‖BM−1‖/2iend+1)n/3, from which the

claim follows.

Chapter 20

Circuit Privacy

Recall our definition of circuit privacy (Definition 2.1.6). We say that a homomorphic

encryption scheme E is circuit-private for circuits in CE if, for any key-pair (sk, pk) output

by KeyGenE(λ), any circuit C ∈ CE , and any fixed ciphertexts Ψ = 〈ψ1, . . . , ψt〉 that are in

the image of EncryptE for plaintexts π1, . . . , πt, the following distributions (over the random

coins in EncryptE , EvaluateE) are (statistically) indistinguishable:

EncryptE(pk, C(π1, . . . , πt)) ≈ EvaluateE(pk, C, Ψ)

where correctness obviously still must hold.

So far, our scheme may not be circuit private. In fact, ciphertexts output by Evaluate

clearly come from a different distribution than those output by Encrypt, since ciphertexts

output by Evaluate will tend to be further away from the lattice J (since they are not as

“fresh”).

However, obtaining circuit privacy for our scheme is quite straightforward. Our approach

is to use a public (i.e., not using the secret key) algorithm RandomizeCTE that, applied post

hoc, induces the same distribution (statistically) to ciphertexts output by EncryptE and

EvaluateE , while preserving correctness.

The idea is simple: to construct a random encryption ψ′ of π from a particular encryption

ψ of π, we simply add an encryption of 0 that has a much larger random “error” vector

than ψ – super-polynomially larger, so that the new error vector statistically obliterates all

information about ψ’s error vector. However, this description is not entirely accurate, since a

“proper” encryption of ‘0,’ whether output by EncryptE or EvaluateE , is a vector lying inside

188

CHAPTER 20. CIRCUIT PRIVACY 189

J + B(rDec/m) – i.e., a vector whose distance from J is at most rDec/m, where m depends

on which tweaks we use. On the other hand, our randomizing encryption of ‘0’ will be much

further away from J . In particular, it will be chosen from J+B(α·rDec/m) where α is super-

polynomial, so that the “noise” from this randomizing encryption statistically obliterates

any information about the initial ciphertext’s offset from J . We need B(α · rDec/m) ⊂ XDec

to ensure correct decryption; so, this tweak once again entails increasing m.

Bibliography

[1] N. Ahituv, Y. Lapid, and S. Neumann. Processing Encrypted Data, In Comm. of the

ACM, vol. 20, pages 777–780, 1987.

[2] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc.

of STOC ’96, pages 99–108, 1996.

[3] M. Ajtai. Generating hard instances of the short basis problem. In Proc. of ICALP

’99, pages 1-9, 1999.

[4] M. Ajtai and C. Dwork. A public key cryptosystem with worst-case / average-case

equivalence. In Proc. of STOC ’97, pages 284–293, 1997.

[5] M. Ajtai, R. Kumar, and D. Sivakumar. A Sieve Algorithm for the Shortest Lattice

Vector Problem. In Proc. of STOC ’01, pages 601–610, 2001.

[6] J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.

In Proc. of Eurocrypt ’02, LNCS 2332, pages 83–107. Springer, 2002.

[7] F. Armknecht and A.-R. Sadeghi. A New Approach for Algebraically Homomorphic

Encryption. Cryptology ePrint Archive: Report 2008/422.

[8] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and

the hardness of approximation problems. J. of the ACM, vol. 45, no. 3, 1998, pages

501–555.

[9] L. Babai. On Lovaszs lattice reduction and the nearest lattice point problem, Combi-

natorica, 6 (1986), pp. 113. Preliminary version in STACS 1985.

[10] E. Bach and J. Shallit. Algorithmic Number Theory, Volume 1, 1996.

190

BIBLIOGRAPHY 191

[11] W. Banaszczyk. New bounds in some transference theorems in the geometry of num-

bers. Mathematische Annalen 296(4) (1993) 625–635.

[12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang.

On the (Im)possibility of Obfuscating Programs. In Proc. of Crypto ’01, LNCS 2139,

pages 1–18.

[13] D. Barrington. Bounded-width polynomial-size branching programs recognize exactly

those languages in NC1. In Proc. of STOC ’86, pages 1–5.

[14] D. Beaver. Minimal-latency secure function evaluation. In Proc. of Eurocrypt ’00, pages

335350. Springer, 2000.

[15] M. Bellare and A. Sahai. Non-malleable encryption. Equivalence between two notions,

and an indistinguishability-based characterization. In Proc. of Crypto ’99, LNCS 1666,

pages 519–536. Springer, 1999.

[16] M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-user Setting:

Security Proofs and Improvements. In Proc. of Eurocrypt ’00, pages 259–274. Springer,

2000.

[17] J. Benaloh. Verifiable secret-ballot elections. Ph.D. thesis, Yale Univ., Dept. of Comp.

Sci., 1988.

[18] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence

of key-dependent messages. In Proc. of SAC ’02, LNCS 2595, pages 62–75. Springer,

2002.

[19] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptog-

raphy. Eurocrypt ’98, LNCS 1403, pp. 127–144.

[20] D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. J. ACM, vol. 48,

no. 4. Pages, 702-722. ACM, 2001. Preliminary version in Crypto 1997.

[21] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. TCC

’05, LNCS 3378, pp. 325–341.

[22] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-Secure Encryption from

Decision Diffie-Hellman. In Proc. of Crypto ’08, LNCS 5157, pages 108–125.

BIBLIOGRAPHY 192

[23] D. Boneh and R. Lipton. Searching for Elements in Black-Box Fields and Applications.

In Proc of Crypto ’96, LNCS 1109, pages 283–297. Springer, 1996.

[24] J. Boyar, R. Peralta, and D. Pochuev. On the Multiplicative Complexity of Boolean

Functions over the Basis (∧,⊕, 1). Theor. Comput. Sci. 235(1), pp. 43–57, 2000.

[25] E. Brickell and Y. Yacobi. On Privacy Homomorphisms. In Proc. of Eurocrypt ’87,

LNCS 304, pages 117–125. Springer, 1988.

[26] J.Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice

problems. In Proc. of FOCS ’97, pages 468–477.

[27] R. Canetti. Personal communication, 2008.

[28] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In

Proc. of STOC ’98, pages 209–218. ACM, 1998.

[29] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Proc.

of ACM CCS ’07.

[30] R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing chosen-ciphertext security. In

Proc. of Crypto ’03, pages 565–582. Springer, 2003.

[31] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. TR

CS0917, Dept. of Computer Science, Technion, 1997.

[32] M. Christodorescu. Private Use of Untrusted Web Servers via Opportunistic Encryp-

tion. In Web 2.0 Security and Privacy, 2008.

[33] D. Coppersmith and G. Seroussi. On the minimum distance of some quadratic residue

codes. In IEEE Trans. Inform. Theory 30 (1984), 407–411.

[34] D. Coppersmith and A. Shamir. Lattice Attacks on NTRU. In Proc. of Eurocrypt ’97,

LNCS 1233, pages 52–61.

[35] R. Cramer, I. Damgaard, and J. B. Nielsen. Multiparty computation from threshold

homomorphic encryption. In Proc. of Crypto ’01, LNCS 2045, pages 280–300.

[36] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure

Against Adaptive Chosen Ciphertext Attack. Crypto ’98, LNCS 1462, pp. 13–25.

BIBLIOGRAPHY 193

[37] W. van Dam, S. Hallgren, and L. Ip. Quantum algorithms for some hidden shift prob-

lems. In Proc. of SODA ’03, pages 489–498. Full version in SIAM J. Comput. 36(3):

763–778 (2006).

[38] I. Damgard and M. Jurik. A Length-Flexible Threshold Cryptosystem with Applica-

tions. ACISP ’03, LNCS 2727, pages 350–356.

[39] I. Damgard and J.B. Nielsen. Universally composable efficient multiparty computation

from threshold homomorphic encryption. In Proc. of Crypto ’03, LNCS 2729, pages

247–264. Springer, 2003.

[40] M. van Dijk Interval Obfuscation. To be published as an MIT-CSAIL Technical Report

in 2009. Also, personal communication, 2009.

[41] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput.

30(2):391–437 (electronic), 2000. Preliminary version in STOC 1991.

[42] T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms. Crypto ’84, pp. 469–472.

[43] R. Endsuleit, W. Geiselmann, and R. Steinwandt. Attacking a polynomial-based cryp-

tosystem: Polly Cracker. Int. Jour. Information Security, (1):143–148, 2002.

[44] M. Fellows and N. Koblitz. Combinatorial cryptosystems galore! In Contemporary

Mathematics, volume 168 of Finite Fields: Theory, Applications, and Algorithms, FQ2,

pages 51–61, 1993.

[45] M. Franklin and S. Haber. Joint encryption and message-efficient secure computation.

Journal of Cryptology, 9(4):217–232, 1996.

[46] W. Geiselmann and R. Steinwandt. Cryptanalysis of Polly Cracker. IEEE Trans. In-

formation Theory, (48):2990–2991, 2002.

[47] C. Gentry. Key Recovery and Message Attacks on NTRU-Composite. Eurocrypt ’01,

LNCS 2045, pp. 182–194.

[48] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proc. of STOC ’09,

pages 169–178.

BIBLIOGRAPHY 194

[49] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and New

Cryptographic Constructions. STOC ’08, pp. 197–206.

[50] C. Gentry and M. Szydlo. Cryptanalysis of the Revised NTRU Signature Scheme.

Eurocrypt ’02, LNCS 2332, pp. 299–320.

[51] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness.

1998.

[52] O. Goldreich. Foundations of Cryptography: Basic Applications, vol. 2, Cambridge

University Press, 2004.

[53] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice prob-

lems. Technical Report TR96-056, Electronic Colloquium on Computational Complex-

ity (ECCC) (1996).

[54] O. Goldreich, S. Goldwasser, and S. Halevi. Public-Key Cryptosystems from Lattice

Reduction Problems. In Proc. of Crypto ’97, LNCS 1294, pages 112-131.

[55] O. Goldreich and L. Levin. Hard-Core Predicates for Any One-Way Function. In Proc.

of STOC ’89. ACM, 1989.

[56] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game – a com-

pleteness theorem for protocols with honest majority. J. of the ACM, vol. 38, no. 1,

pp. 691-729, 1991. Preliminary version in FOCS ’86.

[57] O. Goldreich and R. Ostrovsky. Software protection and simulation by oblivious RAMs.

JACM, 1996.

[58] S. Goldwasser. Personal communication, 2009.

[59] S. Goldwasser, Y. T. Kalai, and G. Rothblum. One-Time Programs. In Proc. of Crypto

’08, LNCS 5157, pages 39–56. Springer, 2008.

[60] S. Goldwasser and D. Kharchenko. Proof of plaintext knowledge for the Ajtai-Dwork

cryptosystem. In Proc. of TCC 2005, pages 529-555, 2005.

[61] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker

keeping secret all partial information. In Proc of STOC ’82, pages 365–377, 1982.

BIBLIOGRAPHY 195

[62] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–

299, 1984.

[63] J. Groth, R. Ostrovsky, and A. Sahai. Perfect Non-Interactive Zero Knowledge for NP.

Eurocrypt ’06, LNCS 4004, pp. 339–358.

[64] L. Gurvitz. On the Complexity of Mixed Discriminants and Related Problems.

[65] I. Haitner. Personal communication, 2008.

[66] I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryption. In

Proc. of TCC ’09, LNCS 5444, pages 202–219. Springer, 2008.

[67] S. Halevi. Personal communication, 2009.

[68] S. Halevi and H. Krawczyk. Security under key-dependent inputs. In Proc. of ACM

CCS ’07, 2007.

[69] J. Hoffstein, J. Pipher and J. Silverman. NTRU: A Ring Based Public Key Cryptosys-

tem. In Proc. of ANTS ’98, LNCS 1423, pages 267–288.

[70] S. Hohenberger. Personal communication, 2009.

[71] S. Hohenberger, G. Rothblum, A. Shelat, V. Vaikuntanathan. Securely Obfuscating

Re-encryption. In Proc. of TCC ’07, LNCS 4392, pages 233-252.

[72] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random Generation from One-Way

Functions (Extended Abstracts). In Proc. of STOC ’89, pages 12–24.

[73] Y. Ishai and A. Paskin. Evaluating Branching Programs on Encrypted Data. In Proc.

of TCC ’07.

[74] A. Kalai. Generating Random Factored Numbers, Easily. J. Cryptology, vol. 16, no. 4,

pages 287–289. 2003. Preliminary version in SODA 2002.

[75] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields.

In Proc. of STOC ’95, pages 398–406. ACM, 1995.

[76] R. Karp. A Survey of Parallel Algorithms for Shared Memory Machines.

BIBLIOGRAPHY 196

[77] A. Kawachi, K. Tanaka, K. Xagawa. Multi-bit cryptosystems based on lattice problems.

In Proc. of PKC ’07, LNCS 4450, pages 315–329. Springer, 2007.

[78] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In Proc. of

STOC ’92, pages 723–732.

[79] J. Kilian. Improved Efficient Arguments. In Proc. of Crypto ’95, LNCS 963, pages

311–324.

[80] E. Landau. Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes. Mathe-

matische Annalen 56: 645-670.

[81] A.K. Lenstra, H.W. Lenstra, L. Lovsz. Factoring polynomials with rational coefficients.

Math. Ann. 261(4) (1982) 515–534.

[82] F. Levy-dit-Vehel, M.G. Marinari, L. Perret, and C. Traverso. A Survey On Polly

Cracker Systems.

[83] F. Levy-dit-Vehel and L. Perret. A Polly Cracker system based on satisfiability. In

Coding, Crypt. and Comb., Prog. in Comp. Sci. and App. Logic, v. 23, pp. 177–192.

[84] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. In Proc.

of ICS ’05 pages 314-328, 2005.

[85] L. Ly. A public-key cryptosystem based on Polly Cracker, Ph.D. thesis, Ruhr-

Universität Bochum, Bochum, Germany 2002.

[86] L. Ly. Polly two – a new algebraic polynomial-based public-key scheme. AAECC, 17(3-

4), 2006.

[87] V. Lyubashevky. Personal communication, 2009.

[88] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision re-

sistant. In Proc. of ICALP ’06. Springer, 2006.

[89] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision re-

sistant. Full version.

[90] V. Lyubashevky and D. Micciancio. Asymptotically efficient lattice-based digital sig-

natures. In Proc. of TCC ’08.

BIBLIOGRAPHY 197

[91] T. Matsumoto, K. Kato, and H. Imai. Speeding up secret computations with insecure

auxiliary devices. In Proc. of Crypto ‘88, LNCS 403, pages 497-506. Springer, 1988.

[92] U. Maurer and D. Raub. Black-Box Extension Fields and the Inexistence of Field-

Homomorphic One-Way Permutations. Asiacrypt ’07, pp. 427–443.

[93] A. May, Cryptanalysis of NTRU-107, manuscript, 1999. Available from

http://www.informatik.uni- frankfurt.de/~alex/crypto.html.

[94] C.A. Melchor, G. Castagnos, and P. Gaborit. Lattice-based homomorphic encryption

of vector spaces. ISIT ’08, pp. 1858–1862.

[95] C.A. Melchor, P. Gaborit, and J. Herranz. Additive Homomorphic Encryption with

t-Operand Multiplications. Eprint 2008/378.

[96] J. Merkle. Multi-round passive attacks on server-aided RSA protocols. In Proc. of ACM

CCS ’00, pages 102-107. ACM, 2000.

[97] D. Micciancio. Improving Lattice Based Cryptosystems Using the Hermite Normal

Form. In Proc. of CaLC ’01, LNCS 2146, pages 126–145. Springer, 2001.

[98] D. Micciancio. Improved cryptographic hash functions with worst-case / average-case

connection. In Proc. of STOC ’02, pages 609–618.

[99] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way

functions from worst-case complexity assumptions. In Proc. of FOCS ’02, pages 356–

365.

[100] D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions Based on Gaus-

sian Measures. FOCS ’04, pp. 372–381.

[101] K. Mulmuley and M. Sohoni. Geometric complexity theory I: An approach to the P

vs. NP and related problems. SIAM J. Comput., 31(2):496–526, 2002.

[102] D. Naccache and J. Stern. A New Public-Key Cryptosystem Based on Higher

Residues. ACM CCS ’98.

[103] M. Naor and K. Nissim. Communication preserving protocols for secure function

evaluation. In Proc. of STOC ’01, pages 590–599, 2001.

BIBLIOGRAPHY 198

[104] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ci-

phertext attacks. In Proc. of STOC ’90, pages 427–437. ACM, 1990.

[105] P.Q. Nguyen and I. Shparlinski. On the Insecurity of Some Server-Aided RSA Proto-

col. Asiacrypt ’01, LNCS 2248, pp. 21–35.

[106] P.Q. Nguyen and J. Stern. The BeguinQuisquater server-aided RSA protocol from

Crypto ‘95 is not secure. In Proc. of Asiacrypt ‘98, pages 372–379. Springer, 1998.

[107] A.M. Odlyzko. The rise and fall of knapsack cryptosystems. In Crypt. and Comp.

Num. Th., Proc. Sympos. Appl. Math., vol. 42, AMS, 1990, pp. 75–88.

[108] T. Okamoto and Uchiyama. A New Public-Key Cryptosystem as Secure as Factoring.

Eurocrypt ’98, LNCS 1403, pp. 308–318.

[109] R. Ostrovsky and W. E. Skeith. Private Searching on Streaming Data. In Proc. of

Crypto ’05, LNCS 3621, pp. 223–240.

[110] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. Eurocrypt ’99, pp. 223–238.

[111] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assump-

tions on cyclic lattices. In Proc. of TCC ’06, pages 145166.

[112] C. Peikert and A. Rosen. Lattices that Admit Logarithmic Worst-Case to Average-

Case Connection Factors. In Proc. of STOC ’07, pages 478–487.

[113] C. Peikert and B. Waters. Lossy Trapdoor Functions and Their Applications. STOC

’08, pp. 187–196.

[114] B. Pfitzmann and M. Waidner. Attacks on protocols for server-aided RSA computa-

tion. In Proc. of Eurocrypt ‘92, LNCS 658, pages 153-162. Springer, 1993.

[115] M. Prabhakaran and M. Rosulek. Homomorphic Encryption with CCA Security. In

Proc. of ICALP ’08. Springer, 2008.

[116] C. Rackoff and D.R. Simon. Non-interactive zero-knowledge proof of knowledge and

chosen ciphertext attack. In Proc. of Crypto ’91, LNCS 576, pages 433-444. Springer,

1991.

BIBLIOGRAPHY 199

[117] K. W. Regan. Understanding the Mulmuley-Sohoni Approach to P vs. NP.

[118] O. Regev. New lattice-based cryptographic constructions. Journal of the ACM 51(6)

(2004) 899942. Extended abstract in STOC ‘03.

[119] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptogra-

phy. In Proc. of STOC ’05, pages 84–93, 2005.

[120] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-

phisms. In Foundations of Secure Computation, pages 169–180, 1978.

[121] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. In Comm. of the ACM, 21:2, pages 120–126, 1978.

[122] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In

Proc. of FOCS ’99, pages 554–567, 1999.

[123] C.P. Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms.

Theoretical Computer Science, 53(2-3):201–224, 1987.

[124] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM Journal on Computing, 26(5): 1484–1509, 1997. Ex-

tended abstract in FOCS ’94.

[125] D.X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted

data. In IEEE Symposium on Security and Privacy, pages 44–55, 2000.

[126] R. Steinwandt. A ciphertext-only attack on Polly Two, 2006.

[127] P. Stevenhagen. The Arithmetic of Number Rings. Algorithmic Number Theory, MSRI

Publications, Volume 44, 2008. See also Stevenhagen’s course notes “Number Rings.”

[128] D.R. Stinson. Some baby-step giant-step algorithms for the low hamming weight dis-

crete logarithm problem. Mathematics of Computation, vol. 71, no. 237, pages 379–391,

2001.

[129] A.C. Yao. Protocols for secure computations (extended abstract). FOCS ’82, pages

80–91.

[130] A. C. Yao. How to generate and exchange secrets. FOCS ’86, pages 162-167.

