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Abstract. We give a simple algebraic example of a fixed additive category K, with a fixed additive self-

equivalence Σ : K → K having arbitrarily many structures of triangulated categories with Σ as suspension.

Introduction. Triangulated categories were introduced in Verdier’s PhD thesis [3] and by Puppe
(without Verdier’s key Octahedron Axiom about composition). A triangulated category is a suspended

category (i.e. an additive category K with an additive auto-equivalence Σ : K
∼→ K called the suspension)

plus a collection T of triangles which satisfies four well-known axioms, denoted (TR I)-(TR IV) in [3,
Def. II.1.1.1, p. 93-94]. It is natural to wonder whether these axioms are intrinsical. Or : Can a given
suspended category carry two different triangulations ? Of course, given a triangulated category (K,Σ, T )
with triangulation T , we can define the negative triangulation T − as the class of those triangles (u, v, w)

(∆) A
u // B

v // C
w // Σ(A)

such that (−u,−v,−w) ∈ T . Those two triangulations T and T − are different in general, already for

K = Kb(Z) the category of bounded complexes of abelian groups, up to homotopy. Then, we could ask :

Can a suspended category (K,Σ) admit more than two triangulations ?

(That is : one triangulation and its negative.) Strangely enough, this question seems to remain unclear,
even for a few experts of the subject, see for instance [2, Problem 3.4 and Def. 3.2]. The answer to this
question is indeed “yes”, and first in a trivial way : Let (K,Σ, T ) be a triangulated category such that T
and T − are different. Choose an integer n ≥ 1. Consider the additive category Kn = K × · · · ×K with
the obvious suspension. Then Kn has at least 2n different triangulations compatible with its suspension.
Well, this certainly sounds like cheating, because we basically only used T and T −. So, we would like
to build examples, say, with an indecomposable category K. In fact, it is possible to deduce from the
results of Sections 16 and 17 of Heller [1] that such an example is given by K the usual topological stable
homotopy category, although a picky reader might object that Heller does not consider the Octahedron
Axiom in loc. cit. In this short note, we give a simple algebraic example (see Theorem 7).

Acknowledgment. I sincerely thank Bernhard Keller for indicating the reference to Heller’s article
and Jeroen Maes for correcting a mistake.

Definition 1. Let (K,Σ) be a suspended category. A global endomorphism α of (K,Σ) will be an
endomorphism of the identity functor Id : K → K which commutes with Σ. In other words, it consists of
a collection of endomorphisms αA : A→ A, for all objects A ∈ K, such that for any morphism f : A→ B
in K one has αB f = f αA, and such that αΣ(A) = Σ(αA) for any A ∈ K. A global automorphism will be
an invertible global endomorphism. A global endomorphism α is pointwise nilpotent if for any A ∈ K,
there is an n ∈ N such that (αA)n = 0.

Example 2. Let R be a commutative ring and let b ∈ R. Then multiplication by b gives a global
endomorphism λb of Kb(R). It is a global automorphism when b is a unit.

Definition 3. Let (K,Σ, T ) be a triangulated category and let α be a global automorphism of (K,Σ).
Define the class Tα as the collection of those triangles (u, v, w), like in (∆) above, such that the twisted
triangle (u ·αA , v , w) belongs to T . This condition is equivalent to any of the following : (αB ·u , v , w) ∈
T , (u, v · αB , w) ∈ T , (u , αC · v , w) ∈ T , and so on : permuting α with the morphisms, and moving
α around; this flexibility follows from Axiom (TR I) and Def. 1.
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Proposition 4. Let (K,Σ, T ) and α be as in Definition 3. Then (K,Σ, Tα) is a triangulated category.
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The proof is straightforward. The Composition Axiom
(TR IV), for instance, can be checked by contemplating
the diagram on the left (or the reader’s favorite picture
instead). The arrows with a small dot are of degree 1.
Start with a composition w = v ◦ u. Then choose
triangles (u, u′, u′′), (v, v′, v′′), (w,w′, w′′) in Tα. The
morphism t : E → Σ(C) is as always defined to be
t := Σ(u′)v′′. The displayed octahedron is obtained for
T from αw = α v ◦ u. It induces the wanted octahe-
dron for Tα by “removing α”. For readability, we have
dropped the indices of α, forced by the objects. �

Lemma 5. Let R be a commutative ring and b ∈ R× a unit. Assume the existence of r ∈ R such that :

(1) the element r is not a zero divisor and (2) the element r does not divide 1− b.
Consider the category K = Kb(R) with its usual triangulation T . Consider the global automorphism λb
of K (see Example 2). Then the triangulations T and Tλb

are different.

Proof. Ab absurdo, assume that Tλb
= T . In the category K, consider the morphism R→ R given by

multiplication by r as a morphism of complexes concentrated in degree 0. Let C(r) be its cone with the
usual morphisms i : R→ C(r) and p : C(r)→ Σ(R). The triangle (b · r, i, p) is then exact. By (TR III),
there must exist a morphism h : C(r)→ C(r) which makes the following diagram commute :

R
r // R

i //

b
��

C(r)
p //

∃ h���
�

Σ(R)

R
b·r // R

i // C(r)
p // Σ(R).

The morphism h is characterized by two elements x, y ∈ R such that r · x = y · r which forces x = y
by hypothesis (1). The commutativity (up to homotopy !) of the above diagram implies the existence of
e, f ∈ R such that b = x+ r · e and 1 = x+ f · r. This gives 1− b ∈ rR which contradicts (2). �

Example 6. Of course T−Id = T −. The Lemma shows that T − 6= T for Kb(Z) as claimed above.

Theorem 7. There exists a suspended category (K,Σ) which carries infinitely many different triangu-
lations. Moreover, there exists such a (K,Σ) which cannot be decomposed as (K1,Σ1) × (K2,Σ2) with
K1 and K2 non-zero.

Proof. Let S be a commutative domain with infinitely many units. Let R = S[X] be the polynomial
ring with coefficients in S. Consider r = X ∈ R. It certainly satisfies conditions (1) and (2) of the above
Lemma for any unit b ∈ S× except for b = 1. Let us write Tb for Tλb

. It is clear that (Tb)c = Tb·c for any
b, c ∈ S×. Therefore Tb = Tc forces T = Tb−1c and thus b−1c = 1 by the Lemma and the above comment.
That is : all the triangulations Tb for b ∈ S× are distinct.

For the “moreover part”, assume (K,Σ) = (K1,Σ1)×(K2,Σ2) then the projection on the K1-summand
yields a global endomorphism β of K, see Definition 1. At the object R ∈ K, we have necessarily βR = 0
or 1− βR = 0, since EndK(R) ' R and since R is a domain. Let us say βR = 0 for instance. The object
R generates K as a triangulated category, this forces β to be pointwise nilpotent (easy induction). But
β = β2 is an idempotent, so we have β = 0 and thus K1 = 0. Similarly if 1− βR = 0, then K2 = 0. �

Problem 8. Is there a suspended category (K,Σ) admitting two triangulations T and T ′ such that
T ′ 6= Tα for any global automorphism α of (K,Σ)?
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