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Summary

Visualization is pivotal for gaining insight in systems biology data. As the size and com-
plexity of datasets and supplemental information increases, an efficient, integrated frame-
work for general and specialized views is necessary. MAYDAY is an application for analysis
and visualization of general ‘omics’ data. It follows a trifold approach for data visualiza-
tion, consisting of flexible data preprocessing, highly customizable data perspective plots
for general purpose visualization and systems based plots. Here, we introduce two new
systems biology visualization tools for MAYDAY . Efficiently implemented genomic view-
ers allow the display of variables associated with genomic locations. Multiple variables
can be viewed using our new track-based ChromeTracks tool. A functional perspective
is provided by visualizing metabolic pathways either in KEGG or BioPax format. Multi-
ple options of displaying pathway components are available, including Systems Biology
Graphical Notation (SBGN) glyphs. Furthermore, pathways can be viewed together with
gene expression data either as heatmaps or profiles.
We apply our tools to two ‘omics’ datasets ofPseudomonas aeruginosa. The general anal-
ysis and visualization tools of MAYDAY as well as our ChromeTracks viewer are applied to
a transcriptome dataset. We furthermore integrate this dataset with a metabolome dataset
and compare the activity of amino acid degradation pathways between these two datasets,
by visually enhancing the pathway diagrams produced by MAYDAY .

1 Introduction

One main focus of today’s biology and life science research is to obtain a systems based view
of organisms and biological processes. Systems biology focuses on interactions in biological
systems with the ultimate aim to model so-called emergent properties of these systems. While
gene expression analysis is a valuable tool to monitor biological processes, it measures them on
a basic level. Measuring metabolite concentrations on the other hand addresses the final effects
of biological processes. Techniques like gas chromatography combined with mass spectrometry
(GC-MS) allow to measure metabolite concentrations in a high throughput approach. With this
technological advance, measuring all the metabolites that are present within a cell, tissue or
organism during a certain physiological status has become feasible, and therefore metabolomics
has received much attention in the last years. Though the number of metabolites that can be
identified and quantified is still significantly lower than with techniques allowing to measure
the proteome and transcriptome, a number of publications have actually dealt with analysis of
the ‘omics’ data from common samples (see [7] for a review).

A general workflow for any ‘omics’ data encompasses (i) quality control and normalization
of the raw data, (ii) statistical analysis (striving to find differentially abundant species) and
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(iii) higherlevel analyses aiming to find relevant relationships in the data. One of the biggest
challenges for systems biology comes in terms of the data integration that will be necessary
in order to cross-correlate information obtained from the different ‘omics’ approaches. One
important aspect is to offer software for pattern recognition by visual inspection and multi-
variate statistics. We have presented and continue to develop MAYDAY , an integrative tool for
transcriptome based systems biology [4, 8]. Data-agnostic by design, MAYDAY can also work
on general ‘omics’ data. Here, we introduce two new systems biology visualization tools for
MAYDAY , complementing the data processing and visual analytics features already available.

In systems biology, it is common to interpret measured gene expression in its genomic neigh-
borhood. Various tools have been implemented for this task. The UCSC Genome Browser [13]
is among the most commonly used web-based genome visualization tools. It provides a track-
based chromosome view, displaying one feature per track. It is mostly used for sequence anal-
ysis. ChromoViz [14] is a web-based genome visualization tool for displaying gene expression
data. It also employs a track-based view and allows some user interaction. However, only
ideogram-based chromosome navigation is possible. The Bluejay genome browser provides
an integrative way of visualizing multiple gene expression datasets either from one or several
organisms in a genomic context [5]. A stand-alone tool for genome visualization is Genome
Projector [2]. It features several modes of displaying prokaryotic gene expression data. Instead
of several tracks, Genome Projector displays one aspect per view, with the whole chromosome
arranged as a stack of lines. Data integration, including the addition of new genomes, requires
external software and considerable effort.

We have developed a new genome-based visualization tool, ChromeTracks, for MAYDAY . This
track-based genome browser is interactive and scalable, and it can visualize expression data
together with any metadata with genomic context.

When studying biological processes, the analysis of metabolic pathways has been proven to
be a valuable tool, especially when a mapping of gene expression and general ‘omics’ data is
possible. For this purpose, several applications with very different focuses have been imple-
mented. Among the most distinguished products is Cytoscape [21], a general purpose tool for
visualizing molecular interaction data including metabolic pathways. It is plugin based and
provides a wide range of functionality, including mapping of measured data to the pathways.
Ingenuity Pathway Analysis [11] is an extensive tool for exploring and analyzing metabolical,
signaling and disease-related pathways. However, it is limited to selected model organisms.
ProMeTra [18] is a web based tool for mapping systems biology data on pathway images. It
relies on annotated SVG images created from other pathway sources. Other web-based tools
include KaPPA-View [22] and MapMan [20] which are specifically designed for certain or-
ganisms, and Pathway Projector [15] which displays an overall map of metabolic pathways
but has very limited analytical features. Most the these tools have their distinction for spe-
cific purposes, but they often lack data integration and analysis capabilities, extensibility and
user interaction features. Besides visualizing metabolic pathways, systems biology software
should offer a visual representation of changes during a time series or a physiological switch,
thereby integrating data from different ‘omics’ sources. Our new pathway viewer visualizes
metabolomic data within metabolic pathways either in KEGG or BioPax format together with
expression data. Being a visual analytics tool it provides scalability and interactivity.

With our new visual analytics tools in MAYDAY we have continued our development of a
framework for contextualizing high throughput ‘omics’ datasets. We aim at closing the gap
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Figure 1: Visualization concept of MAYDAY . M AYDAY combines various analytical and visualiza-
tion methods, working on a wide range of data. For details on the different views and concepts,
see text.

between the data analysis workbench and the specific visualization tool. With our new features,
MAYDAY allows the user to analyze multi-omics data without switching the application, thus
minimizing the data conversion overhead.

2 Methods

General features of Mayday MAYDAY (“Microarray Data Analysis”) is an application
for the analysis and visualization of transcriptomics and other ‘omics’ data. It provides a plu-
gin based interface for all aspects of data processing, including filtering, clustering, statistical
analyses, and visualization. MAYDAY can import transcriptomics data from several sources,
such as the Affymetrix platform. Omics data can also be imported from any tabular text file, as
well as meta information such as gene names or probe genomic coordinates. The data model
used in MAYDAY is independent of the data itself and summarizes measured species (genes,
metabolites, etc) as probes. Meta information can be associated with all components of the data
model and is structured hierarchically in meta information groups. MAYDAY is implemented
in Java and freely available athttp://www-ps.informatik.uni-tuebingen.de/
mayday .

Our visualization approach is trifold (see figure 1). Generally, data (pre)processing precedes
visualization. Secondly, for investigating general data properties (data perspective), we provide
multiple purpose views tightly interconnected in a common framework. Thirdly, a systems
based view is achieved with tools for inspecting data in a genomic context and mapped on
metabolomic pathways (systems perspective).

For data analysis, MAYDAY offers a wide range of methods, including hierarchical and parti-
tioning clustering, filtering and statistics. Statistical tests include parametric and nonparametric
methods. Calculated test statistics andp-values are stored as meta information and can be used
for various types of visualization and filtering. Furthermore, any statistical method available in
R can be used via MAYDAY ’s RLink, which allows to operate directly on MAYDAY data using
R. For details on MAYDAY ’s data analysis features see [4].

Data perspective plots show general properties of the current dataset. Among these are the
profile plot, used to view temporal patterns of activity and the enhanced heatmap that offers the
integration of supplemental data from different sources for the visual exploration of microarray
data. Hierarchical clusterings can be directly viewed in a tree viewer or stored for later use. The
enhanced heatmap is also capable of displaying trees above or at the side, inducing an ordering

Journal of Integrative Bioinformatics, 7(3):115, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-115 3

http://journal.imbio.de/
http://www-ps.informatik.uni-tuebingen.de/mayday
http://www-ps.informatik.uni-tuebingen.de/mayday


on the data. To inspect distributions of experimental values and meta information, MAYDAY

provides scatterplots, histograms and box plots. A uniform data model supports multiple si-
multaneous views of the same data and communicates selections between plots. Most plots can
use meta information, allowing to display continuous, discrete and categorical meta informa-
tion values with the plotted data. All plots rely on a unified framework for mapping primary or
meta information to a wide range of color gradients and categorical data is mapped to distinct
colors. All plots created with MAYDAY can be exported to several bitmap formats as well as
the scalable vector graphics (SVG) format for high-quality publication-ready output.

To complement the data analysis and data perspective by a systems perspective we have now
added a set of scalable genome visualization tools based on a library of efficient data structures
for storing large genomic feature data. Furthermore, we introduce a framework for visualization
of metabolic pathways, featuring viewers for KEGG pathway data and BioPax data in SBGN
notation.

Genome Visualization Many types of ‘omics’ data are associated with genomic loci, such
as measurements of transcription, epigenetic modifications, and protein levels. These genomic
coordinates associated with each measurement can provide further insights, for instance on
chromosomal clusters of co-regulated genes or larger mutations such as deletions. We have
implemented ChromeTracks, a track-based genome browser for data associated with genomic
coordinates. This tool is fully integrated with MAYDAY ’s visualization framework described
above.

ChromeTracks displays data in one or more horizontal panels (tracks) which are aligned such
that the same genomic coordinate is displayed at the same horizontal position in each track
(see figure 2). Each track thus represents a linear view of the chromosome with associated
data. Currently we provide three main types of track renderers. The heatmap track renderer
can display either one strand or both strands of the chromosome. It allows to visualize two
variables associated with each position using color and transparency, respectively. In a systems
biology study, for instance, color could be used to represent the expression strength at a certain
locus while transparency can be used to indicate the abundance of the corresponding protein.
The stem track renderer adds a third variable, using its values to infer the vertical extent of
colored, transparent boxes aligned with the chromosome. A third renderer can display locus
data such as genes or exons, imported from tabular files, PTT, GFF or GenBank files. Further
track renderers can be implemented as MAYDAY plug-ins.

Users can swiftly navigate the genome, jump or scroll to new positions, zoom horizontally
(changing the number of base pairs per pixel displayed) and vertically (resizing individual
tracks to take a closer look). Tracks can be added, removed or reconfigured at any time and the
order of the tracks can be changed by the user. A region of the chromosome can be selected
to limit the visible range, probes can be selected (synchronous with other MAYDAY plots).
For increased resolution a second visualization option is offered: The heat stream visualization
splits the linear chromosome into a number of rows stacked vertically, both strands are visual-
ized together (see supplement for an example). The width of the visualizer window determines
the horizontal extent of each row and the total number of rows needed is determined by the
length of the chromosome and the zoom factor, configurable from single base-pair resolution
to a view fitting the whole chromosome into the current window. Each row is composed of
a ruler indicating genomic positions, and two rows of boxes, one for each DNA strand. Each

Journal of Integrative Bioinformatics, 7(3):115, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-115 4

http://journal.imbio.de/


Figure 2: M AYDAY ChromeTracks view of P. aeruginosa. From top to bottom tracks show ex-
pression data of the probes located on the plus and minus strand under the anaerobic nitrate
respiration, followed by the expression data of the plus and minus strand under the oxygen aero-
bic conditions. These tracks use a green-black-red color gradient, with green indicating low and
red indicating high expression. The two grey tracks show the genomic location of gene probes of
the GeneChip used for this study on the plus and minus strand respectively. The next tracks show
two statistical values derived from the expression data. The first track visualizes the expression
variance of each probe across the experiments followed by the coefficient of variation. Here yellow
indicates low variance and low coefficient of variation, respectively.

box represents a certain number of base pairs and is colored according to an associated value
(primary or meta information). The stacked view allows to show a larger genomic region than
a track-based view, simplifying the exact selection of individual probes. Since most genomic
data only covers the genome in a sparse manner, the heat stream offers a “condensed” view
wherein bases that are not covered by the data are hidden.

We have implemented efficient data structures for the representation of chromosomes sparsely
populated by features, complementing MAYDAY ’s data model with locus information. For most
operations these data structures allow to work in near-constant time. For memory efficiency,
we use native (non-object) data types and specialized containers wherever possible and map
genome coverage tolong values, each covering 64 bases. Depending on the zoom level,
we employ different strategies for multi-threaded rendering. Generally, a priority-queue based
rendering strategy is used which ensures that the currently visible area is always rendered with
preference while invisible areas are rendered in the background for later display. At higher
zoom levels, we restrict buffering to a large region centered around the currently displayed
area. This provides a smooth scrolling experience while the buffered region is shrunk/expanded
during scrolling. The third strategy is used at the highest zoom levels, when rendering directly
to screen is faster than buffering. All rendering is done in background threads, keeping the user
interface responsive at all times.

Pathway Viewer For a general systems-focused view on the data, metabolic pathways are
a valuable tool. Whole transcriptome expression studies and upcoming large scale metabolic
fingerprinting studies provide the underlying data for new insights in life sciences. Graphically
laid out pathways have been used in publications and textbooks for a long while and are intu-
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itively understandable [16]. Recently, SBGN, the Systems Biology Graphical Notation, a new
standard for the visual markup of pathways has been introduced [16]. Another quasi standard
for the visual presentation of pathways has been defined by KEGG [19]. We have implemented
a framework for directed graphs as a foundation of the pathway visualization features of MAY-
DAY . Based on this, MAYDAY can visualize metabolic pathways from different sources and in
two different styles.

We have added a lightweight library for directed graphs based on adjacency lists to MAYDAY .
It features some common algorithms, e.g. for traversing graphs and finding connected com-
ponents. For visualization, a model-view approach was used. Each graph is encapsulated by
a model and can be visualized by several views, which display each node as an independent
component. Each component has an individual renderer allowing to display different nodes
in several ways, for example as shapes or displaying probe expression values. This allows to
visualize pathways highlighting either the general structure, the type of the graph component,
or species abundance.

The KEGG pathway viewer visualizes KEGG pathways specific for the selected organism, re-
stricted to the enzymes and compounds actually present in the selected organism (see figure 3
for an example). Pathways are laid out as defined in the KEGG pathway file. Optionally, ref-
erences to neighboring pathways and connections from pathway components can be displayed
or hidden for clarity of the plot. Users can browse the whole pathway landscape by using path-
way icons as hyperlinks. The KEGG viewer uses locally stored pathways in KGML format
and KEGG annotation files. Annotations and pathways can be directly retrieved from KEGG
when required. Enzymes and compounds are displayed as boxes, with the type of component
indicated by a specific icon.

A common format for pathway definitions is BioPax [3]. It is used by all major providers
of metabolic and signaling pathways including MetaCyc, Reactome, Pathway Commons and
KEGG. We have implemented a lightweight parser to extract necessary information from BioPax
.owl files. From these components, a graph for each pathway is constructed, using the SBGN
notation as a conceptual framework. These graphs are laid out automatically and presented in
either SBGN notation or displaying quantitative information (see figure 6).

Pathway data from both formats are internally represented as graphs using our lightweight
graph library. They are subsequently mapped to probes using annotations derived from KEGG
and BioPax files. Our graph layout algorithm is based on a recursive scheme [12]: Primitive
types of pathways are laid out according to their type. This encompasses circular, linear and
branched pathways which are laid out using naive algorithms and a hierarchical algorithm [9].
First, pathways are dissected into strongly connected components. Each component is then an-
alyzed and rendered according to its class (circular, linear or branched). Complex components
that can not be further dissected are rendered using a force-based algorithm [10]. If the path-
way can be fragmented, each strongly connected component is laid out separately and collapsed
into a single vertex. The overall layout is done recursively on the reduced graph. For laying
out pathways, we first layout the pathway reaction backbone. The side components, including
enzymes and reactants, are then placed heuristically. Any mentioned layout algorithm can be
applied separately (with or without heuristically placing side nodes), allowing the user to find
an alternative view if desired. Quantitative information can be rendered on any component for
which a mapping between the names and references in the biopax file is available.

In both pathway viewers, visualization of ‘omics’ data or meta information is possible in differ-
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Figure 3: Part of the nitrogen metabolism (KEGG id pae00910) visualized with overlaid enzyme
expression values. All probes associated with the relevant enzymes are shown, either as profiles or
as heatmap rows. Expression values are encoded as colors (low=blue, high=red) and as profiles.
Conditions are sorted in ascending order by oxygen concentration (anaerobic, 0.4%, 2%, 20%),
with both replicates per condition shown as separate adjacent experiments. Enzymes are marked
with the letter “E”, metabolites are marked with the image of an Erlenmeyer flask. Components
are labelled with names assigned by KEGG.

ent ways. Components are rendered as boxes or other simple shapes, displaying basic informa-
tion via color. For nodes which can not be mapped to one or more probes or meta information,
a simple renderer states the name and type of the object. Concentrating on a single value, the
whole component is colored using a customizable color gradient. If several experiments are
to be inspected, a single-row heatmap is displayed instead. A multi-row heatmap rendering is
used to display several probes and experiments. The same data can be displayed by a profile
plot. Users can interactively change renderers for all or a single component (see figure 3). An
enlarged view of each node can be opened interactively. Furthermore, any component can be
moved and resized in any dimension. Edges are drawn either as straight lines, or as bezier
curves, heuristically and efficiently bundling edges.

3 Systems Biology of Pseudomonas aeruginosa

For an example of our integrative visualization approach we chosePseudomonas aeruginosaas
a case study for which poly-omics data is available. We downloaded microarray gene expres-
sion data from ArrayExpress (Accession id E-GEOD-6741) studying the growth ofP. aerugi-
nosaunder different conditions: anaerobic nitrate respiration, and 0.4%, 2% and 20% oxygen
aerobic conditions [1]. The data contains two independently prepared samples for each condi-
tion and measures the transcriptome of using the AffymetrixP. aeruginosaGeneChip.

Within MAYDAY we imported and normalized the raw data using RMA. For each probe the
genomic coordinates were acquired from GenBank and read into MAYDAY via a tab-separated
file. Further imported meta data included the common names for protein coding genes (PAxxxx)
and a mapping to MetaCyc identifiers. Furthermore, we acquired pathway files forP. aerugi-
nosafrom KEGG and MetaCyc.

First, the expression variance and coefficient of variation (CoV) of each probeset across the
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Figure 4: M AYDAY ChromeTracks showing a selected region of theP. aeruginosachromosome,
highlighting a cluster of highly variant probes. Among the visible genes, most genes of the highly
variant cluster between 4.335M and 4.345M belong to the nitrogen metabolism and are distinctly
highly expressed (fold change> 4; data not shown) in the anaerobic samples.

experiments were calculated. We used ChromeTracks to display these two deduced statistical
parameters together with the experimental values and gene loci as aligned tracks (see figures
2 and 4). From the plot it can nicely be seen that we can observe genomic clusters of high
variance that correlate with expression level differences between anaerobic and aerobic condi-
tions. Filtering with CoV> 0.1 yielded 642 probes. Using ChromeTracks, we interactively
inspected and extracted large clusters of genomically adjacent probes. We found many of the
highly variant genes to be involved in nitrogen metabolism. Furthermore, many genes in the
immediate genomic vicinity of nitrogen-related genes show a high variance and distinct expres-
sion profile (see figure 4). While genes involved in the oxidation of nitrate to nitrite exhibit a
strongly regulated behaviour, some genes involved the reduction of nitric oxide are distinctly
stronger expressed in anaerobic and 2% oxygen samples, albeit to a lower extent in the latter.
For visualization of this process, we used the pathway from KEGG (accession id pae00910) and
analyzed the nitrate metabolism part of it (see figure 3). While the energy metabolism related
reactions of the nitrate metabolism show a clearly visible reaction to anaerobic conditions, this
can not be said of the amino acid related reactions of this pathway (see supplement).

Other highly variant genes are involved in the degradation of several amino acids. Visually
inspecting the valine and leucine degradation pathway, we found that most genes in these path-
ways were less active in the 20% oxygen condition, while being highly expressed in the other
conditions (see figure 5). In contrast, most genes in the tyrosine degradation were less ex-
pressed under the anaerobic condition. Genes involved in the histidine degradation pathway
were found to be highest expressed in 0.4% oxygen condition.

For sake of exposition, we compared these finding with a metabolomics dataset acquired under
similar, though not identical conditions. Metabolomics data studyingP. aeruginosain various
growth phases and oxygen concentrations are available from the Systomonas project [6]. The
data contained measurements for anaerobic and aerobic conditions (10 samples each) during the
exponential growth phase, which is comparable to the transcriptomics data. The metabolomics
dataset is available fromhttp://www.systomonas.de/ (series 6 and 8). The data was
imported in MAYDAY , where it was transformed (log10) and missing values were imputed.
Species with more than 30% missing values were excluded from the analysis.

Using MAYDAY , we conducted a t-test to find metabolites which are differentially abundant in
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Figure 5: Profile plot (left) and enhanced heatmap (right) showing genes involved in histidine
(blue), tyrosine (black), leucine (red) and valine (green) degradation. The heatmap additionally
displays the coefficient of variation as a column using a blue gradient.

both conditions. We found that in fact, tyrosine and leucine had a FDR-correctedp-value< 0.05.
Their concentrations are decreased in the aerobic samples. Also valine abundance is decreased
in the aerobic condition (p = 0.07). Since the above gene expression data and the metabolomics
data are not directly comparable, we usedz-scores to transform the values to be visually com-
parable. We partitioned the transcriptome dataset into two classes combining conditions with
similar growth rates [1]: class one contained experiments with 0% and 0.4% O2 and class two
those with 2% and 20% O2. We visualized selected pathways using MAYDAY (see figure 6).

We found that the other metabolites in the degradation pathways of tyrosine (see figure 6),
leucine and valine had a more or less constant concentration in both conditions, while the basic
metabolite is decreased. The findings agree well with the fact thatP. aeruginosacultures grow
up to 2.5 times faster under aerobic than under anaerobic conditions, consuming amino acids
for proteins. The increased tyrosine degradation activity is in concordance with the fact that
tyrosine is less commonly used than leucine and valine, and that the tyrosine degradation yields
glutamate in the first step which is a substrate for many other biosynthesis pathways.

4 Discussion

Within MAYDAY we have implemented new visual analytics tools to integrate various ‘omics’
data. As a comprehensive platform for analyzing and visualizing systems biology data, MAY-
DAY provides tools for most of the necessary steps in one common environment. Our genome
viewer visualizes data in its genomic context. The track-based concept allows to compare sev-
eral measurements as well as meta data. Using the heat stream view, a single variable such as
gene expression or a statistical value can be highlighted in a genomic context.

Our new metabolic pathway viewer is an interactive visualization tool that allows researchers
to gain insights into the functional neighborhood of genes and proteins. Using automatically
laid out pathways from common sources, MAYDAY can be used to visualize pathways from any
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Figure 6: Tyrosine degradation pathway ofPseudomonas aeruginosawith integrated transcrip-
tomic and metabolomic data. For comparability data has been z-score transformed. Experiments
have been divided into two classes indicated by the color bars below the heatmaps: anaerobic and
low oxygen conditions (light blue), aerobic conditions (orange). (A) The transcriptome data; (B)
the metabolomics data.

organism. The layout and drawing of biological pathways is a subject of continued research. As
it is known from general graph layout, optimal solutions are difficult to acquire algorithmically.
Despite not necessarily being optimal, our automatically drawn layouts are flexible and fully
interactive. In the future we will expand the use of SBGN as a basis for analyzing biological
relationships.

We have demonstrated our new tools with poly-omics data fromP. aeruginosa. The application
of data analysis, data perspective visualization and systems perspective visualization shows how
MAYDAY can be used to integrate and interpret systems biology data. Using ChromeTracks we
identified clusters of high expression variance and distinctive expression profiles. These pointed
to amino acid degradation pathways which were further analyzed in both the transcriptome and
metabolome dataset. Furthermore, an indirect comparison with respect to the class labels was
conducted, yielding insights into the differences between aerobic and anaerobic conditions.
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Currentlypublisheddata sets are not yet exploiting the full potential of these tools, as very few
multi-omics data sets are freely available. We are well aware that only limited conclusions can
be drawn from related, but not identical studies. Furthermore transcriptome analysis poorly
predicts enzyme concentration and activity. However, the case study used here as a proof of
concept, shows that the visualization strategy of MAYDAY allows the user to analyze data of
different sources and to compare pathways between datasets by introducing class labels. MAY-
DAY allows cross-dataset poly-omics analysis within an intuitive and efficient framework. The
ChromeTracks genome viewer scales well even on large eukaryotic chromosomes, integrates
expression and other data easily. The pathway viewer allows use of SBGN which to our knowl-
edge is currently rarely used. Visual analytics features are provided by connection to other
views, data transformation and summary features.

The size of systems biology datasets makes analysis and visualization challenging. MAYDAY

meets this challenge by a tight integration of analysis and visualization tools. Making most of
the data is often a matter of the right visualization. In systems biology, both overviews and
detailed views are necessary. In general, MAYDAY can cope with large datasets, with up to
10 million data points, given enough memory available. The largest dataset analyzed in MAY-
DAY encompassed 110 million data points. ChromeTracks can easily render large eukaryotic
chromosomes, including the human chromosome 1 with 55 million bases mapped to genes. In
general, the number of mapped base pairs, rather than the length of the chromosome defines
the limitation of ChromeTracks. The graph framework underlying the pathway viewers can
work on tens of thousands of nodes and edges. Rendering and interaction speed depends on
the complexity of the visual representation and the density of the graph. In general practice,
neither of these limitations are of concern when working on common datasets.

Our new genomic visualizations are implemented very efficiently and we have already success-
fully tested them with large expression datasets for the human genome. These plots will be
especially useful in the context of the recently developed ultra-high throughput DNA sequenc-
ing technologies for measuring gene expression (RNA-Seq) [23] and protein-DNA interactions
(ChIP-Seq) [17]. We are currently working on an integration of these new type of data into
MAYDAY .
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Supplement to “Integrative Systems Biology Visualization with
Mayday”

Genome HeatStream Visualization

Figure 1: Genome Heat stream visualization of highly variant genes inPseudomonas aeruginosa
(variance across all experiments> 0.5).
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Nitr ogen Metabolism Pathway

Figure2: Amino acid-related part of the nitrogen metabolism ofPseudomonas aeruginosa(KEGG
pathway id pae00910). All probes associated with the relevant enzymes are shown, either as pro-
files or as heatmap rows. Expression values are encoded as colors (low=blue, high=red) and as pro-
files. Conditions are ordered ascendingly by oxygen concentration (anaerobic, 0.4%, 2%, 20%),
with both replicates per condition shown as seperate adjacent experiments. Enzymes are marked
with the letter “E”, metabolites are marked with the image of an Erlenmeyer flask. Components
are labelled with names assigned by KEGG.
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