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Abstract

Local and global existence and uniqueness of mild solution for the fractional integro-differential equations of mixed type
with delay are proved by using a family of solution operators and the contraction mapping principle on Banach space.
The Bolza optimal control problem of a corresponding controlled system is solved. The Gronwall lemma with singular
and time lag is derived to be tool for obtaining a priori estimate. In addition, the application to the fractional nonlinear
heat equation is shown.
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1. Introduction

In this paper, we consider fractional integro-differential equations of mixed type with delay;⎧⎪⎪⎨⎪⎪⎩Dαt x(t) = Ax(t) + f (t, x(t),Gx(t), S x(t)) + B(t)u(t), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0],
(1)

on infinite dimensional Banach space X, where I = [0,T ], 0 < α ≤ 1, Dαt denote the fractional derivative in the sense
of Riemann-Liouville, f : I × X × X × X → X and ϕ ∈ C([−r, 0], X) are given, A is a linear operator corresponding to a
solution operator {Tα(t)}t≥0 in the Banach space X and G, S are nonlinear integral operators given by

Gx(t) =
∫ t

−r

k(t, s)g(s, x(s))ds, S x(t) =
∫ T

0
h(t, s)q(s, x(s))ds. (2)

Many research groups have studied and reported on integro-differential systems and fractional differential systems. These
reports include the proof of the existence and uniqueness of a classical solution of an integro-differential equation by
Chonwerayuth and a portion of work on the nonlinear impulsive integro-differential equations of mixed type by Wei.W.
Furthermore, in 2009, Gisele M.Mophou proved existence and uniqueness of mild solution to impulsive fractional differ-
ential equations .

The scope of our work is to extend some results of these reports starting with preliminaries, some necessary definitions
and theorems for proving main results such as description of fractional calculus and some different generalized Gronwall
lemmas are introduced. The proof of the existence and uniqueness of solution for system (1) without control is then shown
in Section 3. Moreover, the optimal control for system (1) via the Bolza cost functional is solved and reported in Section
4,. In the last section, we apply our result to fractional nonlinear heat equation.

2. Preliminaries

Let X be a Banach space and I = [0,T ], some important definitions and theorems those are used in this work are given as
follows.

Definition 2.1. Let f : #→ X be a continuous(but not necessarily differentiable) function and let h > 0 denote a constant
discretization span. The fractional difference of order α (α ∈ #+) of f is defined by the expression

Δα f (t) ≡
∞∑

k=0

(−1)k
(
α

k

)
f [t + (α − k)h],

(
α

k

)
=

Γ(α + 1)
k!Γ(α − k + 1)

and its fractional derivative of order α is

Dα f (t) ≡ lim
h→0

Δα f (t)
hα
. (3)
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Definition 2.2. Assume that the function in the definition 2.1. has a Laplace ’s transform. Then its fractional derivative of
order α is defined by the following expression

Dαt f (t) ≡ 1
Γ(1 − α)

∫ t

0
(t − s)−α f (s)ds. (4)

where 0 < α < 1, and the fractional integral of order α > 0 is defined by

Iα f (t) ≡ 1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds. (5)

These expression are called Riemann-Liouville definition, in particular, let f , u, v ∈ C(#, X) and w be a real value
function, we obtain some properties for 0 < α ≤ 1

Dαt [u(t)v(t)] = u(t)Dαt v(t) + v(t)Dαt u(t) (6)

Dαt f (w(t)) =
d f (w)

dw
.Dαt w(t) = Dαw f (w)(

dw

dt
)α, (7)

see more detail in Jumarie G.

Let X and Y be two Banach spaces, L(X,Y) denote the space of bounded linear operators from X to Y . Particularly
L(X) = L(X, X) whose norm is denoted by || · ||L(X). Suppose that r > 0. Let C([−r, a], X) be the Banach spaces of
continuous functions from [−r, a] to X with the usual supremum norm || · ||C([−r,a],X). If a = 0, we denote this space simply
by C and its norm by || · ||C . Throughout this paper, we let ϕ be a given continuous function, denote

B = {x ∈ C([−r,T ], X) | x(t) = ϕ(t) for − r ≤ t ≤ 0} (8)

whose moving norm is defined by ||xt ||B = sup
−r≤s≤t

||x(s)||. From this moving norm, we generalize Gronwall lemma with

time delay as follow.

Lemma 2.3. Suppose x ∈ C([−r,T ], X) satisfied the following inequality⎧⎪⎪⎨⎪⎪⎩||x(t)|| ≤ a +
∫ t

0 b(s)(t − s)β−1||x(s)||ds +
∫ t

0 c(s)(t − s)β−1||xs||Bds; t ∈ I,

x(t) = ϕ(t); − r ≤ t ≤ 0
(9)

where 0 < β ≤ 1, a ≥ 0, b(s) and c(s) are non-negative continuous functions. Then

||x(t)|| ≤ [||ϕ||C + a]e
btβ

β , t ∈ I where b = sup
s∈I

[b(s) + c(s)].

Using lemma 2.3, we devise the following new generalized Gronwall lemma which is very important for our work.

Lemma 2.4. Suppose x ∈ C([−r,T ], X) satisfies the following inequality⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
||x(t)|| ≤ a + b

∫ t

0 (t − s)β−1||x(s)||ds + c
∫ t

0 (t − s)β−1||xs||Bds

+ e
∫ t

0 (t − s)β−1||x(s)||γds, t ∈ I

x(t) = ϕ(t); t ∈ [−r, 0]
(10)

where 0 < γ < 1, a, b, c, e ≥ 0 are constants. Then ||x(t)|| ≤ [||ϕ||C + a + eT β

β
]e

(b+c+e)tβ
β , t ∈ [0,T ].

Proof. Note that ||x(s)|| ≤ sup
−r≤τ≤s

||x(τ)|| = ||xs||B, for s ∈ I and ||xt ||B is increasing function, then one can show that∫ t

0 (t− s)β−1||xs||Bds is monotonously increasing and there is a t0 ∈ [0,T ] such that ||xt ||B ≤ 1 for all t ∈ [0, t0] and ||xt ||B > 1
for all t ∈ (t0,T ]. Then, by (10),

||x(t)|| ≤ a + b

∫ t

0
(t − s)β−1||x(s)||ds + c

∫ t

0
(t − s)β−1||xs||Bds + e

∫ t

0
(t − s)β−1||xs||γds

≤ a + b

∫ t

0
(t − s)β−1||x(s)||ds + c

∫ t

0
(t − s)β−1||xs||Bds + e

∫ t0

0
(t0 − s)β−1||xs||γBds

+ e

∫ t

t0

(t − s)β−1||xs||γBds

≤ a +
et
β
0

β
+ b

∫ t

0
(t − s)β−1||x(s)||ds + (c + e)

∫ t

0
(t − s)β−1||xs||Bds.

Apply lemma 2.3 to obtain that ||x(t)|| ≤ [||ϕ||C + a +
et
β
0
β

]e
(b+c+e)tβ
β , t ∈ [t0,T ]. Therefore, we conclude that ||x(t)|| ≤

[||ϕ||C + a + eT β

β
]e

(b+c+e)tβ
β , t ∈ [0,T ]. �
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The notion of solution operator plays a basic role in this study. We now consider a closed linear operator A densely defined
in a Banach Space X and give a definition for the solution operator following.

Definition 2.5. Let A : X → X. For each α ∈ (0, 1], a family of bounded linear operators {Tα(t)}t≥0 on X is called a
solution operator corresponding to A if it satisfies the following conditions;

1. Tα(t) is strongly continuous for t ≥ 0 and Tα(0) = I;

2. Tα(t)x ∈ D(A) for all x ∈ D(A) and Dαt Tα(t)x = ATα(t)x = Tα(t)Ax.

3. Existence of Solutions to Fractional Integro-differential equations of mixed type

Consider the nonlinear fractional system (1),⎧⎪⎪⎨⎪⎪⎩Dαt x(t) = Ax(t) + f (t, x(t),Gx(t), S x(t)), t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0],

where A : D(A) → X be an operator corresponding to a solution operator {Tα(t)}t≥0 satisfying ||Tα(t)||L(X) ≤ Meωt for some
M ≥ 1, ω > 0 for all t ≥ 0, f : I ×X ×X ×X → X and ϕ ∈ C([−r,T ], X) are given functions satisfies following conditions;

(HF1) f : I × X × X × X → X is uniformly continuous in t and locally Lipschitz in x, ξ, η that for every τ > 0 and ρ > 0,
there is a constant a f = a f (ρ, τ) such that

|| f (t, x1, ξ1, η1) − f (t, x2, ξ2, η2)|| ≤a f [||x1 − x2|| + ||ξ1 − ξ2|| + ||η1 − η2||]
provided ||x1||, ||x2||, ||ξ1||, ||ξ2||, ||η1||, ||η2|| ≤ ρ and t ∈ [0, τ].

(HF2) There exists c ≥ 0 such that || f (t, x, ξ, η)|| ≤ c(1 + ||x|| + ||ξ|| + ||η||) for all x, ξ, η ∈ X and t ∈ I.

First of all, we study the properties of integral operators;

Gx(t) =
∫ t

−r

k(t, s)g(s, x(s))ds, S x(t) =
∫ T

0
h(t, s)q(s, x(s))ds.

We introduce the following assumptions (HG) and (HS );

(HG1) g : [−r,T ] × X → X is measurable in t on [−r,T ] and locally Lipschitz in x, i.e., let ρ > 0, there exists a constant
Lg = Lg(ρ) such that

||g(t, x1) − g(t, x2)|| ≤ Lg||x1 − x2|| provided ||x1||, ||x2|| ≤ ρ.

(HG2) There exists a constant ag such that

||g(t, x)|| ≤ ag(1 + ||x||), for all t ∈ [−r,T ], x ∈ X.

(HG3) k ∈ C([−r,T ]2,#).

(HS1) q : I × X → X is measurable in t on I and locally Lipschitz in x, i.e., let ρ > 0, there exists a constant Lq = Lq(ρ)
such that

||q(t, x1) − q(t, x2)|| ≤ Lq||x1 − x2|| provided ||x1||, ||x2|| ≤ ρ.
(HS2) There exists a constant aq and γ ∈ (0, 1) such that

||q(t, x)|| ≤ aq(1 + ||x||γ), for all t ∈ I, x ∈ X. (11)

(HS3) h ∈ C(I2,#).

Using moving norm || · ||B one can verify that integral operator G and S have the following properties.

Lemma 3.1. Under the assumption (HG), the operator G has the following properties;

(1) G : C([−r,T ], X) → C([−r,T ], X).
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(2) For ρ > 0, if x1, x2 ∈ C([−r,T ], X) and ||x1||, ||x2|| ≤ ρ, then

||Gx1(t) −Gx2(t)|| ≤ Lg||k||(T + r)||(x1)t − (x2)t ||B, for all t ∈ [−r,T ].

(3) For x ∈ C([−r,T ], X), we have ||Gx(t)|| ≤ ag(T + r)||k||(1 + ||xt ||B), for all t ∈ [−r,T ].

Proof. (1) Let x ∈ C([−r,T ], X) and t ∈ [−r,T ]. Given ε > 0. Since k ∈ C([−r,T ]2,#), there exist δ = δ(ε) > 0 such
that if |t − a| < δ , then |k(t, s) − k(a, s)| < ε for all a, s ∈ [−r,T ]. Let 0 < τ < δ. Then

||Gx(t + τ) −Gx(t)|| =||
∫ t+τ

−r

k(t + τ, s)g(s, x(s))ds −
∫ t

−r

k(t, s)g(s, x(s))ds||

≤
∫ t

−r

|k(t + τ, s) − k(t, s)|||g(s, x(s))||ds +

∫ t+τ

t

|k(t + τ, s)|||g(s, x(s))||ds

≤(T + r)εag(1 + ||xt ||B) + δ(ε)||k||(1 + ||xt ||B).

Since ε is arbitrary, Gx ∈ C([−r,T ], X).

(2) Given ρ > 0 and x1, x2 ∈ C([−r,T ], X) such that ||x1||, ||x2|| ≤ ρ. Then

||Gx1(t) −Gx2(t)|| =||
∫ t

−r

k(t, s)g(s, x1(s))ds −
∫ t

−r

k(t, s)g(s, x2(s))ds||

≤
∫ t

−r

|k(t, s)|||g(s, x1(s)) − g(s, x2(s))||ds ≤ ag||k||(T + r)Lg||(x1)t − (x2)t ||B.

(3) Let x ∈ C([−r,T ], X). Then ||Gx(t)|| ≤ ∫ t

−r
|k(t, s)|||g(s, x(s))||ds ≤ ||k||(T + r)(1 + ||xt ||B), for all t ∈ [−r,T ].

�

We can similarly obtain the following lemma.

Lemma 3.2. Under the assumption (HS ), the operator S has the following properties;

(1) S : C(I, X) → C(I, X).

(2) For ρ > 0, if x1, x2 ∈ C(I, X) and ||x1||, ||x2|| ≤ ρ, then

||S x1(t) − S x2(t)|| ≤ Lq||h||T ||x1 − x2||C(I,X), for all t ∈ I

(3) For x ∈ C(I, X), we have ||S x(t)|| ≤ aqT ||h||(1 + ||x||γ
C(I,X)), for all t ∈ I.

Proof. The proof is similar to the proof of the lemma 3.1. �

Recall fractional integro-differential equations of mixed type (1), let 0 < α ≤ 1. By using (6) and (7), if x is a solution of
(1), then the X−value function w(s) = Tα(t − s)x(s) is α−differentiable for 0 < s < t and

Dαs w(s) = Tα(t − s)Dαs x(s) − ATα(t − s)x(s) = Tα(t − s) f (s, x(s),Gx(s), S x(s)). (12)

Since f is integrable, the right hand side of (12) is integrable in the sense of Bochner and apply w(0) = Tα(t)ϕ(0) yields,

x(t) = Tα(t)ϕ(0) +
1
Γ(α)

∫ t

0
(t − s)α−1Tα(t − s) f (s, x(s),Gx(s), S x(s))ds, t ∈ I.

Definition 2.1. Let x ∈ C([−r, t0], X). If there exists a t0 > 0 such that⎧⎪⎪⎨⎪⎪⎩x(t) = Tα(t)ϕ(0) + 1
Γ(α)

∫ t

0 (t − s)α−1Tα(t − s) f (s, x(s),Gx(s), S x(s))ds, t ∈ [0, t0]
x(t) = ϕ(t), t ∈ [−r, 0]

(13)

then the system (1) is called mildly solvable on [−r, t0] and this x is called a mild solution on [−r, t0].

Lemma 3.4. (An a priori bound) If x ∈ C([−r,T ], X) is any solution of system (1) then x has an a priori bound, i.e., there
exist a constant ρ > 0, if x is solution of (1) on [−r,T ] then ||x(t)|| ≤ ρ, for all t ∈ [−r,T ].
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Proof. Let x ∈ C([−r,T ], X). For t ∈ [0,T ], we use (HF2), lemma 3.1 and lemma 3.2, there exists a constant L̃ such that

|| f (s, x(s),Gx(s), S x(s))|| ≤ L̃(1 + ||x(s)|| + ||xs||B + ||x(s)||γ), s ∈ [0,T ] (14)

and

||x(t)|| ≤ MeωT ||ϕ||C + MeωT L̃

Γ(α)

∫ t

0
(t − s)α−1(1 + ||x(s)|| + ||xs||B + ||x(s)||γ)ds.

≤ MeωT ||ϕ||C + MeωT L̃Tα

αΓ(α)
+

MeωT L̃

Γ(α)

∫ t

0
(t − s)α−1(||x(s)|| + ||xs||B)ds

+
MeωT L̃

Γ(α)

∫ t

0
(t − s)α−1||x(s)||γds.

By lemma 2.4, there exists a constant ρ > 0 such that ||x(t)|| ≤ ρ, for t ∈ I. �

The existence and uniqueness of mild solution of (1) is then proved by constructed an operator F and proved that it is a
strictly contraction by the following lemmas.

For each τ > 0, Cτ ≡ C([−r, τ], X) with the usual supremum norm and for λ > 0, we set

S (λ, τ) = {y ∈ Cτ| max
0≤t≤τ

||y(t) − ϕ(0)|| ≤ λ and y(t) = ϕ(t), t ∈ [−r, 0]}.

Then S (λ, τ) is a nonempty closed convex subset of Cτ. Define F : S (λ, τ) → Cτ by⎧⎪⎪⎨⎪⎪⎩Fy(t) = Tα(t)ϕ(0) + 1
Γ(α)

∫ t

0 (t − s)α−1Tα(t − s) f (s, y(s),Gy(s), S y(s))ds, t ∈ [0, τ]
Fy(t) = ϕ(t), t ∈ [−r, 0].

(15)

Then the map F is bounded. Indeed, by using (14), we obtain that

||Fy(t)|| ≤ MeωT ||ϕ||C + MeωT L̃

Γ(α)

∫ t

0
(t − s)α−1(1 + ||y(s)|| + ||ys||B + ||y(s)||γ)ds.

Since y ∈ Cτ, there is a constant N > 0 such that 1 + ||y(s)|| + ||ys||B + ||y(s)||γ ≤ N, so

||Fy(t)|| ≤MeωT ||ϕ||C + MeωT L̃NTα

αΓ(α)
< ∞.

Moreover, the properties of the map F are listed as following.

Lemma 3.5. The operator F is well-defined on S (λ, τ) for each τ > 0. Moreover, there exists τ0 > 0 such that F maps
S (λ, τ0) into itself, i.e., F(S (λ, τ0)) ⊆ S (λ, τ0).

Proof. For λ > 0 and τ > 0, let {yn} be a sequence in S (λ, τ) and y ∈ S (λ, τ) such that yn → y. By condition (HF1),
lemma 3.1 and lemma 3.2, there exists a Lipschitz constant L̃(ρ, τ) > 0 such that

|| f (s, yn(s),Gyn(s), S yn(s)) − f (s, y(s),Gy(s), S y(s))|| ≤ L̃(ρ, τ)[||yn(s) − y(s)|| + ||(yn)s − ys||B].

for all s ∈ [0, τ]. Then, for t ∈ [0, τ]

||Fyn(t) − Fy(t)|| ≤ MeωT L̃(ρ, τ)
Γ(α)

∫ t

0
(t − s)α−1[||yn(s) − y(s)|| + ||(yn)s − ys||B]ds

≤ MeωT L̃(ρ, τ)Tα

αΓ(α)
[||yn − y||C(I,X) + ||(yn)t − yt ||B].

Since ||(yn)t − yt ||B = sup
0≤s≤t

||yn(s) − y(s)|| ≤ ||yn − y||C(I,X) → 0 as n → +∞ , ||Fyn − Fy|| → 0 as n → +∞. This implies that

the map F is well-defined. We next show that there is a τ0 such that F map S (λ, τ0) into itself, i.e., F(S (λ, τ0)) ⊆ S (λ, τ0).
For each y ∈ S (λ, τ), by assumptions (HF1), (HF2), lemma 3.1 and lemma 3.2, there exist κ, L(λ, τ) > 0 such that

|| f (0, y(0),Gy(0), S y(0))|| ≤ κ(1 + ||ϕ||C)

and for all s ∈ [0, τ]

|| f (s, y(s),Gy(s), S y(s))) − f (0, y(0),Gy(0), S y(0)))|| ≤ L(λ, τ)[||y(s) − ϕ(0)|| + ||ys − y0||B]
≤ 2λL(λ, τ).
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We obtain,

||Fy(t) − ϕ(0)|| ≤ ||Tα(t)ϕ(0) − ϕ(0)|| + Meωτ

Γ(α)

∫ t

0
(t − s)α−1|| f (0, y(0),Gy(0), S y(0))||ds

+
Meωτ

Γ(α)

∫ t

0
(t − s)α−1|| f (s, y(s),Gy(s), S y(s)) − f (0, y(0),Gy(0), S y(0))||ds

≤ max
0≤t≤τ

||Tα(t)ϕ(0) − ϕ(0)|| + Meωτ[κ(1 + ||ϕ||C) + 2λL(λ, τ)]τα

αΓ(α)
≤ λq(τ)

where q(τ) = 1
λ
[max
0≤t≤τ

||Tα(t)ϕ(0) − ϕ(0)|| + Meωτ[κ(1 + ||ϕ||C) + 2λL(λ, τ)]τα

αΓ(α)
].

Since q(τ) → 0 as τ → 0+, a suitable τ0 can be found such that 0 < q(τ0) < 1, so we conclude that the F maps S (λ, τ0)
into itself. �

Theorem 3.6. Suppose (HF), (HS ), (HG) holds and A is a corresponding generator to a solution operator {Tα(t)}t≥0
with exponentially bound. Then there exists a τ0 > 0 such that the system (1) is mildly solvable on [−r, τ0] and the mild
solution is unique.

Proof. For τ > 0, set S (1, τ) = {y ∈ Cτ | max
0≤t≤τ

||y(t) − ϕ(0)|| ≤ 1, y(t) = ϕ(t), t ∈ [−r, 0]}. Then S (1, τ) is the nonempty

closed convex set. Define the operator F : S (1, τ) → Cτ by (15). Then, by lemma 3.5, the operator F is well-defined on
S (1, τ) and there exists a τ0 such that F maps S (1, τ0) into itself. We now only show that F is a strictly contraction on
S (1, τ0). Given ρ > 0, let y1, y2 ∈ S (1, τ0) such that ||y1||, ||y2|| ≤ ρ. By (HF1), lemma 3.1, lemma 3.2 and lemma 3.5, for
0 ≤ s ≤ τ ≤ τ0, there exists b(ρ, τ) > 0 such that

|| f (s, y1(s),Gy1(s), S y1(s))− f (s, y2(s),Gy2(s), S y2(s))||
≤ b(ρ, τ)[||y1(s) − y2(s)|| + ||(y1)s − (y2)s||B] ≤ 2b(ρ, τ)||y1 − y2||C([−r,τ0],X).

Then

||Fy1(t) − Fy2(t)|| ≤ 2Meωτb(ρ, τ)τα

αΓ(α)
||y1 − y2||C([−r,τ0],X) = p(τ)||y1 − y2||C([−r,τ0],X)

where p(τ) = 2Meωτb(ρ,τ)τα

αΓ(α) for all t ∈ [0, τ]. Since p(τ) → 0 as τ→ 0+, a suitable τ̄0 ≤ τ0 can be found such 0 < p(τ̄0) < 1,
so we conclude that the map F is strictly contraction. By the contraction mapping on Banach space, F has a unique fixed
point x ∈ S (1, τ0) such that Fx(t) = x(t), i.e.,⎧⎪⎪⎨⎪⎪⎩x(t) = Tα(t)ϕ(0) + 1

Γ(α)

∫ t

0 (t − s)α−1Tα(t − s) f (s, x(s),Gx(s), S x(s))ds, t ∈ [0, τ0]
x(t) = ϕ(t), t ∈ [−r, 0].

In other word, we say that x(t) is the unique mild solution of system (1) on [−r, τ0]. �

We break the main system (1) for a moment and consider the initial value problem,⎧⎪⎪⎨⎪⎪⎩Dαt x(t) = Ax(t) + f (t, x(t),Gx(t), S x(t)), t ≥ t0

x(t0) = x0,
(16)

where A is an operator corresponding to the solution operator {Tα(t)}t≥0 and f : [t0,T ] × X × X × X → X is continuous in
t on [t0,T ] and uniformly Lipschitz continuous on X. We have the following results.

Definition 3.7. A continuous solution x of the integral equation,

x(t) = Tα(t − t0)x0 +
1
Γ(α)

∫ t

t0

(t − s)α−1Tα(t − s) f (s, x(s),Gx(s), S x(s))ds, t ∈ [t0,T ] (17)

will be called a mild solution of the system (16).

Theorem 3.8. Under the assumptions (HF2), (HG) and (HS ), if f : [t0,T ] × X × X × X → X is continuous in t on
[t0,T ] and uniformly Lipschitz continuous (with constant L) on X then for every x0 ∈ X the system (16) has a unique mild
solution x ∈ C([t0,T ], X). Moreover, the map x0 → x is Lipschitz from X into C([t0,T ], X).
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Proof. For a given x0 ∈ X, we define a mapping F : C([t0,T ], X) → C([t0,T ], X) by

Fx(t) = Tα(t − t0)x0 +
1
Γ(α)

∫ t

t0

(t − s)α−1Tα(t − s) f (s, x(s),Gx(s), S x(s))ds, t ∈ [t0,T ]. (18)

Then F is well-defined and bounded. For each x, y ∈ C([t0,T ], X), it follows readily from the definition of F, lemma 3.1
and lemma 3.2 that

||Fx(t) − Fy(t)|| ≤ MαL(t − t0)||x − y||C([t0,T ],X) (19)

where Mα is a bound of 1
αΓ(α) ||Tα(t)|| on [t0,T ]. Using (18), (19) and induction on n it follows that

||Fnx(t) − Fny(t)|| ≤ (MαL(t − t0)α)n

n!
||x − y||C([t0,T ],X) (20)

whence

||Fnx − Fny|| ≤ (MαLTα)n

n!
||x − y||C([t0,T ],X). (21)

For n large enough (MαLTα)n

n! < 1 and by a well-known extension of the contraction principle, F has a unique fixed point x

in C([t0,T ], X). This fixed point is desired mild solution of (16).

The uniqueness of x and the Lipschitz condition of the map x0 → x are consequences of the following argument. Let y be
a mild solution of (16) on [t0,T ] with the initial value y0. Then,

||x(t) − y(t)|| ≤ ||Tα(t − t0)x0 − Tα(t − t0)y0||
+

1
Γ(α)

∫ t

t0

(t − s)α−1||Tα(t − s)|||| f (s, x(s),Gx(s), S x(s)) − f (s, y(s),Gy(s), S y(s))||ds

≤ αΓ(α)Mα||x0 − y0|| + MαL

∫ t

t0

(t − s)α−1[||x(s) − y(s)|| + ||xs + ys||B]ds

which implies, by lemma 2.3, that

||x(t) − y(t)||C([t0,T ],X) ≤ αΓ(α)Mαe
MαL(T−t0)α ||x0 − y0||

and therefore

||x − y|| ≤ αΓ(α)Mαe
MαL(T−t0)α ||x0 − y0||

which yields both the uniqueness of x and the Lipschitz continuity of the map x0 → x. �

From the result of theorem 3.8, if f is uniformly Lipschitz, then we have the existence and uniqueness of a global mild
solution for system (1). However, if we assume that f satisfies only local Lipschitz in x and uniformly continuous in t on
bounded intervals, then we have the following local version of theorem 3.8.

Theorem 3.9. Assume the assumptions of theorem 3.6 are holding. Then for every x0 ∈ X, there is a tmax ≤ ∞ such that
the initial value problem ⎧⎪⎪⎨⎪⎪⎩Dαt x(t) = Ax(t) + f (t, x(t),Gx(t), S x(t)), t > 0

x(0) = x0
(22)

has a unique mild solution x on [0, tmax). Moreover, if tmax < ∞, then lim
t→tmax

||x(t)|| = ∞.

Proof. We start by showing that for every τ0 ≥ 0 and x0 ∈ X, and there exists a δ = δ(τ0, ||x0||) such that the system (16)
has a unique mild solution x on an interval [τ0, τ0 + δ] whose length δ is define by,

δ(τ0, ||x0||) = min{1, [ ||x0||αΓ(α)
ρ(τ0)L(ρ(τ0), τ0 + 1) + N(τ0)

]1/α} (23)

where L(c, t) is the local Lipschitz constant of f following from (HF1), lemma 3.1 and lemma 3.2, M(τ0)= sup{||Tα(t)|| | 0 ≤
t ≤ τ0 + 1}, ρ(τ0) = 2||x0||M(τ0) and N(τ0) = max{|| f (t, 0,G0(t), S 0(t))|| | 0 ≤ t ≤ τ0 + 1}. Indeed, Let τ1 = τ0 + δ where δ
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is given by (23). Define a map F by (18) maps the ball of radius ρ(τ0) centered at 0 of C([τ0, τ1], X) into itself as a result
from the following estimation,

||Fx(t)|| ≤ M(τ0)||x0|| + 1
Γ(α)

∫ t

t0

(t − s)α−1||Tα(t − s)||(|| f (s, x(s),Gx(s), S x(s))

− f (s, 0,G0(s), S 0(s))|| + || f (s, 0,G0(s), S 0(s))||)ds

≤ M(τ0)||x0|| + M(τ0)ρ(τ0)L(ρ(τ0), τ0 + 1)
αΓ(α)

(t − τ0)α +
M(τ0)N(τ0)
αΓ(α)

(t − τ0)α

≤ 2M(τ0)||x0|| = ρ(τ0), for all t ∈ [τ0, τ1]

where the last inequality is a consequence from the definition of τ1. In this ball, F satisfies a uniform Lipschitz condition
with constant L = L(ρ(τ0), τ0 + 1) and thus in the proof of theorem 3.8, it possesses a unique fixed point x in the ball. This
fixed point is the desired solution of (16) on the interval [τ0, τ1].

From what we have just proved, it shows that if x is a mild solution of (22) on the interval [0, τ], it can be extended to the
interval [0, τ + δ] with δ > 0 by defining on [τ, τ + δ], x(t) = w(t) where w(t) is the solution of the integral equation,

w(t) = Tα(t − τ)x(τ) +
1
Γ(α)

∫ t

τ

(t − s)α−1Tα(t − s) f (s,w(s),Gw(s), S w(s))ds, t ∈ [τ, τ + δ].

Moreover, δ depends only on ||x(τ)||, ρ(τ) and N(τ).

Let [0, tmax) be the maximum interval of existence of mild solution x for (22). If tmax < ∞, then lim
t→tmax

||x(t)|| = +∞, indeed,

if it is false, then there exists a sequence {tn} and C > 0 such that tn → tmax and ||x(tn)|| ≤ C for all n, this implies that for
each tn near enough to tmax, x define on [0, tn] can be extended to [0, tn + δ] where δ > 0 is independent of tn, hence x can
be extend beyond tmax, this contradicts the definition of tmax. So if tmax < ∞, then lim

t→tmax

||x(t)|| = +∞.

To prove the uniqueness of the local mild solution of (22) we note that if y is a mild solution of (22), then on every closed
interval [0, τ0] on which both x and y exist, they coincide by the uniqueness argument given in the end of the proof of
theorem 3.8. Therefore, both x and y have the same tmax and on [0, tmax), x = y. �

Theorem 3.10. If the assumptions of theorem 3.6 are holding, then the system (1) has a unique mild solution on [−r,T ].

Proof. Let [−r, tmax) be the maximum interval of existence of mild solution x for (1). If tmax > T , there is nothing to
prove. If tmax < T , by theorem 3.9, then lim

t→tmax

||x(t)|| = +∞, contradicts with an a priori bound of solution. So the system

(1) has a unique mild solution on [−r,T ]. �

4. Existence of Optimal Controls

In this section, the existence of optimal controls of system governed by the fractional integro-differential equation (1) will
be discussed.

Suppose that A is a linear operator corresponding to a solution operator {Tα(t)}t≥0 and Y is another separable reflexive
Banach space from which the controls u take the values. Let Uad = Lq(I,Y), 1 < q < ∞ denoting the admissible controls
set. Consider the following controlled system;⎧⎪⎪⎨⎪⎪⎩Dαt x(t) = Ax(t) + f (t, x(t),Gx(t), S x(t)) + B(t)u(t), t ∈ I

x(t) = ϕ(t) t ∈ [−r, 0].
(24)

(HB) Suppose that B ∈ L(I, L(Lq(I,Y), Lp(I, X))) where 1 < q < ∞ and p > 1/α. Then B(·)u ∈ Lp(I, X) for all u ∈ Uad

and we give the definition of mild solution with respect to a control in Uad.

Definition 4.1. Let x ∈ C([−r,T ], X) and u ∈ Uad. If x is a solution of,⎧⎪⎪⎨⎪⎪⎩x(t) = Tα(t)ϕ(0) + 1
Γ(α)

∫ t

0 (t − s)α−1Tα(t − s)[ f (s, x(s),Gx(s), S x(s)) + B(s)u(s)]ds, t ∈ I

x(t) = ϕ(t), t ∈ [−r, 0]

then x is said to be a mild solution with respect to (w.r.t.) u on [−r,T ].

Theorem 4.2. Under assumptions (HF), (HG), (HS ), (HB) and A is a linear operator corresponding to a solution operator
{Tα(t)}t≥0 with exponentially bound. Then for every u ∈ Uad, the system (24) has a unique mild solution w.r.t. u on [−r,T ].
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Proof. Let u ∈ Uad, define f̃ (t, x(t)) = f (t, x(t),Gx(t), S x(t)) + B(t)u(t) for all x ∈ X. Use the fact that B(·)u ∈ Lp(I, X)
for all u ∈ Uad and use assumption (HF), lemma 3.1 and lemma 3.2, we obtain that f̃ satisfies the assumption (HF). By
theorem 3.10, the system (24) has a unique mild solution w.r.t. u on [−r,T ]. �

We consider the Bolza problem (P0): Find (x0, u0) ∈ X × Uad such that

J(x0, u0) ≤ J(xu, u), for all u ∈ Uad (25)

where J(xu, u) =
∫ T

0 l(t, xu(t), xu
t , u(t))dt + Φ(xu(T )), for short, denoting by J(u) and xu denote the mild solution of the

system (24) corresponding to the control u ∈ Uad.

We impose some assumptions for l, say (HL);

1) l : I × X × X × Y → (−∞,∞] is Borel measurable and Φ : X →# is continuous and nonnegative.

2) l(t, ·, ·, ·) is sequentially lower semicontinuous on X × X × Y for a.e. t ∈ I.

3) l(t, x, yt, ·) is convex on Y for each x, yt ∈ X and for a.e. t ∈ I.

4) There are a, b ≥ 0, c > 0 and η ∈ L1(I,#) such that l(t, x, yt, u) ≥ η(t) + a||x|| + b||yt ||B + c||u||q
Y
, for all t ∈ I and all

x, yt ∈ X, u ∈ Uad

A pair (xu, u) is said to be feasible if it satisfies equation (24).

Theorem 4.3. Suppose the assumption (HL) and the assumptions of theorem 4.2 hold. Then problem (P0) admits at least
one optimal pair.

Proof. If in f {J(u)|u ∈ Uad} = +∞ there is nothing to prove. So we assume that in f {J(u)|u ∈ Uad} = m < +∞. By (HL4),
there exist a, b ≥ 0, c > 0 and η ∈ L1(I,#) such that l(t, xu, xu

t , u) ≥ η(t) + a||xu|| + b||xu
t ||B + c||u||q

Y
for all feasible pair

(xu, u). Since Φ is nonnegative, we have

J(u) =
∫ T

0
l(t, xu(t), xu

t , u(t))dt + Φ(xu(T ))

≥
∫ T

0
η(t)dt + a

∫ T

0
||xu(t)||dt + b

∫ T

0
||xu

t ||Bdt + c

∫ T

0
||u(t)||q

Y
dt + Φ(xu(T )) ≥ −ξ > −∞

for some ξ > 0, for all u ∈ Uad. Hence m ≥ −ξ > −∞. By definition of minimum, there exists a minimizing sequence {un}
of J , that is lim

n→∞J(un) = m and

J(un) ≥
∫ T

0
η(t)dt + a

∫ T

0
||xun (t)||dt + b

∫ T

0
||xun

t ||Bdt + c

∫ T

0
||un(t)||q

Y
dt + Φ(xun (T )).

So there exist N0 > 0 and m̃ > 0 such that m ≥ J(un) ≥ −m̃ + c
∫ T

0 ||u(t)||q
Y
dt for all n ≥ N0, hence ||un||qLq(I,Y) ≤ m̃+m

c
.

This implies that un is contained in a bounded subset of the reflexive Banach space Lq(I,Y). So un has a convergence
subsequence relabeled as un and un → u0 for some u0 ∈ Uad = Lq(I,Y). Let xn ⊆ C([−r,T ], X) be the corresponding
sequence of solutions for the integral equation;⎧⎪⎪⎨⎪⎪⎩xn(t) = Tα(t)ϕ(0) + 1

Γ(α)

∫ t

0 (t − s)α−1Tα(t − s)[ f (s, xn(s),Gxn(s), S xn(s)) + B(s)un(s)]ds, t ∈ I,

xn(t) = ϕ(t) t ∈ [−r, 0].

From the a priori estimate, there exists a constant ρ > 0 such that

||xn||C([−r,T ],X) ≤ ρ for all n = 0, 1, 2, ...

where x0 denote the solution corresponding to u0, that is⎧⎪⎪⎨⎪⎪⎩x0(t) = Tα(t)ϕ(0) + 1
Γ(α)

∫ t

0 (t − s)α−1Tα(t − s)[ f (s, x0(s),Gx0(s), S x0(s)) + B(s)u0(s)]ds, t ∈ I,

x0(t) = ϕ(t), t ∈ [−r, 0]
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By (HF), (HG), (HS ), (HL), lemma 3.1 and lemma 3.2, for every t ∈ I there is a constant a(ρ) such that

||xn(t) − x0(t)|| ≤ MeωT a(ρ)
Γ(α)

∫ t

0
(t − s)α−1[||xn(s) − x0(s)|| + ||(xn)t − (x0)t ||B]ds

+
MeωT

Γ(α)

∫ t

0
(t − s)α−1||B(s)un(s) − B(s)u0(s)||ds

≤ MeωT a(ρ)
Γ(α)

∫ t

0
(t − s)α−1[||xn(s) − x0(s)|| + ||(xn)t − (x0)t ||B]ds

+
MeωT

Γ(α)
[
(p − 1)T (αp−1)/(p−1)

αp − 1
]

p−1
p ||B(·)un − B(·)u0||Lp(I,X).

By using lemma 2.3, we found that ||xn(t) − x0(t)|| ≤ M̃||B(·)un − B(·)u0||Lp(I,X) where M̃ is a constant, is independent
of u, n and t. Since B is strongly continuous, we have ||B(·)un − B(·)u0||Lp(I,X) → 0. This implies that ||xn − x0|| → 0 in
C([−r,T ], X). We know that l(t, xn(t), (xn)t, un(t)) andΦ are nonnegative and by using (HL2), (HL3) and Fatou’s Theorem,

m = lim
n→∞

J(un) = lim
n→∞

∫ T

0
l(t, xn(t), (xn)t, un(t))dt + lim

n→∞
Φ(xn(T ))

≥
∫ T

0
lim
n→∞

l(t, xn(t), (xn)t, un(t))dt + Φ( lim
n→∞

xn(T ))

=

∫ T

0
l(t, x0(t), (x0

n)t, u
0(t))dt + Φ(x0(T )) = J(u0).

This show that J(u0) = m, i.e., J(u0) ≤ J(u) for all u ∈ Uad. �

5. Application to Fractional Nonlinear Heat Equation

Consider the nonlinear heat equation control;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
∂αy(x,t)
∂tα
= Δy(x, t) + f1(x, t, y(x, t)) +

∫ t

−r
k(t − s)g(x, s, y(x, s))ds

+
∫ T

0 h(t − s)q(x, s, y(x, s))ds +
∫
Ω

B(x, ξ)u(ξ, t)dξ, (x, t) ∈ Ω̄ × I

y(x, t) = 0, (x, t) ∈ ∂Ω × I and y(x, 0) = y0(x), x ∈ Ω̄
y(x, t) = ϕ(x, t), (x, t) ∈ Ω̄ × [−r, 0],

(26)

where Ω is a bounded domain of #N , u ∈ Lq(Ω × I) (1 < q < ∞), k ∈ C([−r,T ]2,#), h ∈ C(I2,#) and B : Ω̄ × Ω̄ → #
and ϕ : Ω̄× [−r, 0] →# are continuous. Suppose that f : Ω̄× I ×# → #, g : Ω̄× [−r,T ]×# → #, q : Ω̄× I ×# → #
, and for each ρ > 0 there are L1, L2, L3 > 0 such that

| f (x, t, ξ) − f (x, s, ξ̃)| ≤ L1(|t − s| + |ξ − ξ̃|), (A1)

|g(x, t, ξ) − g(x, s, ξ̃)| ≤ L2(|t − s| + |ξ − ξ̃|), (A2)

|q(x, t, ξ) − q(x, s, ξ̃)| ≤ L3(|t − s| + |ξ − ξ̃|), (A3)

provided ||ξ||, ||ξ̃|| ≤ ρ and s, t ∈ I. If we interpret y(x, t) as temperature at the point x ∈ Ω at time t, then the initial
condition y(x, 0) means that the temperature at the initial time t = 0 is prescribed. Condition y(x, t) = 0, (x, t) ∈ ∂Ω × I

means that the temperature on the boundary ∂Ω is equal to zero at any time. The function f describes an external
heat sources. In this system, f and u are given. We then introduce the integral Gy(x, t) =

∫ t

−r
k(t − s)g(x, s, y(x, s))ds

and S y(x, t) =
∫ T

0 h(t − s)q(x, s, y(x, s))ds, which directly impact to the system. Moreover, the system is controlled by
controlling u via the sensor mapping

∫
Ω

B(x, ξ)u(ξ, t)dξ. Let Uad = Lq(Ω × I) be the admissible control set. We will solve
the optimal problem (P0) via the cost functional;

J(u) =
∫ T

0

∫
Ω

|y(ξ, t)|2dξdt +

∫ T

0

∫
Ω

∫ 0

−r

|y(ξ, t + s)|2dsdξdt +

∫ T

0

∫
Ω

|u(ξ, t)|2dξdt + Φ(y(x,T )).

where Φ : X →# is continuous and nonnegative. Let X = Lp(Ω) (p > 1/α). For t ∈ [−r,T ], define y(t) : Ω→ X by

y(t)(x) = y(x, t) for all x ∈ Ω,
and define

∂αy(x, t)
∂tα

= lim
h→0

Δα
h
y(t)(x)
hα

, for all y ∈ X, and Δαh y(t)(x) =
∞∑

k=0

(−1)k
(
α

k

)
y[t + (α − k)h](x).
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We define

f (t, y(t),Gy(t), S y(t))(x) = f1(x, t, y(x, t)) +Gy(t)(x) + S (t)(x), (27)

B(t)u(t)(x) =
∫
Ω

B(x, ξ)u(ξ, t)dξ, (28)

where

Gy(t)(x) =
∫ t

−r

k(t − s)g(x, s, y(x, s))ds, S y(t)(x) =
∫ T

0
h(t − s)q(x, s, y(x, s))ds.

Define an operator A : X → X as Ay = Δy for all y ∈ D(A), Δ denote the Laplacian operator on #N where D(A) consists
of all C2(Ω̄) function vanishing on ∂Ω.

Lemma 5.1. The operator Ay = Δy is a linear operator corresponding to a solution operator {Tα(t)}t≥0 on X.

Proof. Consider the general heat equation of fractional order 0 < α ≤ 1,

Dαt u = Au, u(0, x) = f (x). (29)

Applying the Fourier transformation, we obtain

Dαt û = −|ξ|2û, û(0, ξ) = f̂ (ξ). (30)

By solving (30),

û(ξ, t) = Eα(−tα|ξ|2) f̂ (ξ). (31)

Take the inverse Fourier formula, the solution of (29) is,

u(t, x) = Eα(tαA) f (x) = (2π)−n/2
∫
#n

Eα(−tα|ξ|2) f̂ (ξ)eixξdξ (32)

where Eα(t) is denoted by the Mittag-Leffler function. Set Tα(t) = Eα(tαA). Then Tα(t) satisfies the conditions of definition
2.5. Therefore A = Δ is a linear operator corresponding to a solution operator {Tα(t)}t≥0 on X. �

Then by lemma 5.1 and all above, the system (26) can transform to the abstract problem as followed;⎧⎪⎪⎨⎪⎪⎩Dαt y(t) = Ay(t) + f (t, y(t),Ky(t)) +Gy(t) + B(t)u(t), t ∈ I

y(t) = ϕ(t), t ∈ [−r, 0].
(33)

Theorem 5.2. Suppose conditions (A1), (A2) and (A3) hold. Then the control problem (P0) for system(26) has a solution,
that is there exists an admissible state-control pair (u0, y0) such

J(u0, y0) ≤ J(u, y) for all u ∈ Uad.

Proof. We solve the control problem (P0) for system(26) via the Cauchy abstract form (33). By using the conditions (A1),
(A2), (A3) and the cost functional J, it satisfies all the assumptions given in theorem 4.3 and theorem 3.6. Then the control
problem (P0) for system(26) has a solution. �
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