
BacillusRegNet: A transcriptional regulation database and 
analysis platform for Bacillus species  

Goksel Misirli1, Jennifer Hallinan1, Richard Röttger2, Jan Baumbach2, Anil Wipat1,* 

1School of Computing Science, and Centre for Synthetic Biology and Bioexploitation, 
Newcastle University, Newcastle upon Tyne, NE1 7RU, UK 

2Department of Mathematics and Computer Science, University of Southern Denmark, 
Odense, DK-5230, Denmark  

Summary 

As high-throughput technologies become cheaper and easier to use, raw sequence data 

and corresponding annotations for many organisms are becoming available. However, 

sequence data alone is not sufficient to explain the biological behaviour of organisms, 

which arises largely from complex molecular interactions. There is a need to develop new 

platform technologies that can be applied to the investigation of whole-genome datasets 

in an efficient and cost-effective manner. One such approach is the transfer of existing 

knowledge from well-studied organisms to closely-related organisms. In this paper, we 

describe a system, BacillusRegNet, for the use of a model organism, Bacillus subtilis, to 

infer genome-wide regulatory networks in less well-studied close relatives. The putative 

transcription factors, their binding sequences and predicted promoter sequences along 

with annotations are available from the associated BacillusRegNet website 

(http://bacillus.ncl.ac.uk). 

1 Introduction 

As Next Generation Sequencing technologies become cheaper and easier to use, the number 

of available genome sequences is increasing exponentially. Large amounts of data about raw 

sequences and their annotations are publicly available in biological databases for many 

organisms. At the time of writing, the Genomes OnLine Database
1
 lists 12,856 complete and 

26,308 incomplete genomes [1]. However, in order to understand the biology of these 

organisms, interactions between different biological molecules must be understood in detail.  

In many cases, transcriptional-level interactions are easier to understand, infer and engineer 

than complex protein-protein interactions. Transcriptional regulatory networks can be used to 

convert environmental signals into cell-level biological signals and to regulate metabolic 

pathways. Although recent developments in high-throughput technologies such as 

transcriptome analysis and microarray experiments provide the data needed for biologists to 

investigate the regulatory relationships, carrying out these experiments for every new species 

is neither cost- nor time-effective. There is a large amount of information already available for 

model organisms such as Bacillus subtilis and Escherichia coli. This information can be 

systematically analysed and used to infer information about close relatives. 

B. subtilis and its relatives are widely used in the biotechnology industry. B. subtilis is a 

Gram-positive, non-pathogenic, model organism and is generally considered to be safe [2]. 

                                                 
*
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The organism inhabits the soil and can develop symbiotic relationships with plants [3]. B. 

subtilis is well studied, and its amenability to genetic manipulation makes it ideal for 

laboratory studies [4-6]. Other Bacillus species are also industrially important. B. 

amyloliquefaciens is known to promote plant growth [7], and B. megaterium is used to 

produce vitamin B12 [8]. B. licheniformis is also used in the production of antibiotics and 

enzymes [9]. There are also related species such as Geobacillus spp., some of which were 

initially classified under the genus Bacillus [10]. These species can be thermophilic, and 

hence can be used in high temperature environments, for example to metabolise hydrocarbons 

in oil fields [11]. In order to optimise these functions, and even create novel behaviours, the 

transcriptional control systems of these species must be well understood. 

Although the genomes of many non-model organisms have been sequenced, detailed 

information about the regulatory networks of these organisms is not typically available. There 

are over 80 sequenced Bacillus strains in the NCBI genome database
2
. The NCBI’s taxonomy 

browser
3
 lists over 20,550 taxonomy terms for different Bacillus strains. However, complete 

detailed information about transcription factors (TFs), their binding sequences and promoters 

is not available for non-model Bacillus species.  

Comparative genomic approaches can be used to infer the transcriptional regulatory networks 

of non-model Bacillus species. Taxonomic distance has been shown to correlate with 

measures of similarity between gene regulatory networks and, hence, the comparison of 

genomes in order to identify conserved genes has been used to predict gene regulatory 

networks [12]. This information is useful to elucidate the relationships between TFs and target 

genes in poorly-studied organisms. However, further details such as the sequences of TF 

binding sites (TFBSs) are needed in order to facilitate the engineering of regulatory networks. 

Moreover, the availability of TFBS sequences may aid in the inference of the regulatory 

networks [13, 14], increasing their quality [12, 15]. Searching for these sequences can be 

facilitated by the use of position weight matrices (PWMs) [16, 17], which represent TF 

binding motifs, and can be used as input to motif finding tools such as PoSSumSearch [18] 

and MAST [19]. Applications such as RegNet [20], FITBAR [21] and RegPredict [22] 

provide platforms for TFBS predictions, using existing methods and tools, and allowing Web 

access to results.  

1.1 The RegNet system 

RegNet is a system that reconstructs prokaryotic transcriptional regulatory networks on a 

genome-wide scale by combining TFBS searches with detection of orthology between genes 

in different species. This approach improves the construction of PWMs by using data from the 

reverse strand of binding sequences. Binding motifs are also optimised by modifying the 

predicted binding sequences using a sliding window [20]. Predictions are associated with p-

values indicating their statistical significance. 

The RegNet system uses model organisms to predict the regulatory networks of their close 

relatives, and was initially produced for the Corynebacteria [20]. The experimentally verified 

gene regulatory networks of Corynebacterium glutamicum ATCC 13032 were used to predict 

TFs and their binding sequences in other Corynebacterium species. The RegNet system was 

then extended to include E. coli [23] and the Mycobacteria [24]. The results were stored in the 

publicly-accessible databases CoryneRegNet [20, 23-26] and MycoRegNet [27].  

                                                 
2
 ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/ (accessed 30/01/2014) 

3
 http://www.ncbi.nlm.nih.gov/taxonomy/?term=txid1386[Subtree] (accessed 30/01/2014) 
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RegNet integrates a number of different types of data, such as the nucleotide and amino acid 

sequences of coding sequences (CDSs) and proteins, operon annotations and known gene 

regulatory relationships (Figure 1). The system initially detects orthology between genes in 

the model organism and those in the target organisms, and searches upstream of these genes 

to find TF binding sequences, using information from the model organism. The list of 

predicted interactions is then imported into a database. All-versus-all BLAST is then run to 

detect sequence similarities. The BLAST results are used as an input to a protein clustering 

algorithm to detect protein homologies [24, 25]. If the binding sites are conserved and their 

regulated genes are homologous, the predicted interactions are more reliable [20]. Therefore, 

interactions that have both homologous TFs and target gene pairs are searched for in terms of 

binding sequences in the relevant species.  

Binding sequences identified are used to construct PWMs, which are then searched for on a 

genome-wide scale in target organisms using the PoSSumSearch tool [18]. A list of binding 

sequences is produced for conserved TFs and target genes between the model organisms 

being used and their closely related species. It is assumed that the role of an interaction is also 

conserved, irrespective of whether the regulation is positive or negative [27].  

 

Figure 1: The components of the RegNet system. NCBI files, known gene regulatory 

relationships, and operon annotations are integrated. Protein homologies are inferred using 

BLAST and a protein clustering algorithm. PoSSumSearch is used to search for binding 

sequences. The results can then be accessed via a Web interface.  Users can also choose custom 

parameters to search for these sequences and can visualise the results via this interface. 

We extended the approach used in RegNet to B. subtilis in order to construct genome-wide 

gene regulatory networks for related Bacillus species. There is a large amount of genetic and 

metabolic data available for B. subtilis, which can thus be used as a template organism in 

RegNet in order to transfer experimentally obtained information about its gene regulatory 

networks to its close relatives.  

2 BacillusRegNet construction 

Data about TFs and their binding sequences from DBTBS [28], and the latest annotations for 

these TFs from BacilluScope [2] were integrated into the BacillOndex knowledgebase [29, 
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30]. BacillOndex was constructed using Ondex [31], a graph-based data integration tool, 

which can also be used for querying or visualising the data. A subset of this dataset containing 

the details of the gene regulatory networks of B. subtilis was used as an input into the RegNet 

system. Data about the gene regulatory relationships was created as a tab-delimited file. The 

file contains a row for each TF and its regulated CDS. Data from BacillOndex was mapped to 

RegNet’s format, as shown in Table 1. TF family names and accessions representing the locus 

tags were used for the mapping. If a CDS concept in the BacillOndex dataset has positive or 

negative autoregulation recorded as an attribute, the corresponding ‘Auto’ entry in the RegNet 

system is populated with ‘+’ and ‘-’ respectively. The CDS gene module is taken from the 

biological role classification attribute of the corresponding CDS concept. The characters ‘A’ 

and ‘R’ are used to represent the role of the TF as activator or repressor. The PubMed 

identifiers (PMIDs) and binding sequences were recorded as semi-colon separated lists. For 

TFs that are sigma factors, the binding sequences represent the core promoter sequences to 

which the RNA polymerases (RNAPs) bind. These TFs are identified with the ‘Is CDS Sigma 

factor’ field. Since the RegNet system only deals with proteins, genes that encode non protein 

coding RNAs were excluded. 

 

Table 1: List of gene regulation fields required for the RegNet system and the mapping from the 

BacillOndex dataset. 

RegNet field Values mapped from BacillOndex 

CDS CDS accession 

CDS gene name CDS name 

CDS gene module Role classification 

TF Family TF family name such as ArsR, GntR and sigma factor 

Auto Empty : if not auto regulatory 

-   : if negative auto regulatory 

+   : if positive auto regulatory 

Role Role of the binding 

Empty : If not known 

A   : If activator 

R   : If repressor 

Target gene Target CDS accession 

Target gene name Target CDS name 

Target gene module Role classification of the target CDS 

Motif known known : If the binding motif is known 

-   : If the binding motif is not known 

Evidence 
Experimental: To indicate that experimental information is 

known 

PubMed IDs Semi colon separated list of PMIDs 

Binding motif Semi colon separated list of TF binding sequences 

Is CDS Sigma factor +     : If the CDS is encoding for a sigma factor 

 

The resulting file included the binding sequences for transcription factors from B. subtilis. 

These sequences may include additional upstream and downstream sequences that are not part 

of the actual binding sites. As a result, the entire sequence may not be conserved. Although 

most of the binding sequences have annotations indicating the actual binding sequences, not 

all are annotated. However, PWMs, which are used to search for TFBSs in target organisms, 

require all of the binding sequences for a particular TF to be the same length. Therefore, 

binding sites must be aligned and the additional bases from upstream and downstream of the 

binding sites excluded. This process was carried out by using the MEME tool [19].  
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The parameters of MEME were adjusted to find a binding motif for each TF. Each TF binding 

sequence was required to possess the presence of binding motif, which was also searched for 

in reverse and complementary sequences. The maximum length of a binding motif was set to 

the smallest observed length of the binding sequence, and the minimum length was set to 90% 

of the smallest sequence length for the TF. MEME was run for every TF having more than 

one binding sequence available. The resulting sequences were used as the new binding 

sequences in genome-wide searches (Figure 2).  

 

Figure 2: The binding sequences for each TF from the BacillOndex dataset were adjusted to 

have the same length using the MEME tool in order to create PWMs. These matrices are used to 

search for binding sequences in other organisms. 

For example, in the system, eight binding sequences exist for the RocR TF. These sequences 

range from 21 to 29 bp in length (Figure 3). The motif was searched for with 19 and 21 as the 

minimum and maximum length respectively. The motif was constructed using the 19 bp 

sequences (Figure 4). 

 

Figure 3: The binding motif for the RocR TF. The coloured bases, inside the rectangle, show the 

sequences that form the binding motif. 
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FASTA files for the nucleotide sequences and GenBank files for all organisms were 

downloaded from NCBI
4
. For each non-model organism operon predictions were downloaded 

from Microbes Online [32] and converted into the RegNet format, using a utility provided in 

RegNet. For B. subtilis, this information was extracted from the BacillOndex dataset [30]. The 

final, integrated dataset with its associated analytical tools comprises BacillusRegNet. 

 

Figure 4: The sequence logo constructed for the binding motif of the RocR TF. 

3 BacillusRegNet: A platform for the analysis and transfer of 
Bacillus gene regulatory networks 

We used BacillusRegNet
5
 to infer the gene regulatory networks of B. subtilis 168 and 15 of its  

relatives including 13 Bacillus and two Geobacillus species. The list includes strains from B. 

amyloliquefaciens (FZB42), B. licheniformis (ATCC 14580), B. pumilus (SAFR-032), B. 

megaterium (DSM 319), B. halodurans (C-125), B. anthracis (A0248 and Sterne)¸ B. clausii 

(KSM-K16), B. thuringiensis (Al Hakam), B. cytotoxicus (NVH 391-98), B. 

weihenstephanensis (KBAB4), B. cereus (B4263), B. tusciae (DSM 2912), G. kaustophilus 

(HTA426) and G. thermodenitrificans (NG80-2). Some of these organisms host plasmids, the 

details of which are also available in BacillusRegNet. The system infers genome-wide gene 

regulatory networks for these non-model organisms using the well-understood TFs, and their 

target genes and binding sequences from B. subtilis 168. The system includes predictions for 

the nucleotide sequences of TF binding sites and promoters in target organisms, and 

homology information about CDSs and proteins.  

3.1 Genome-wide construction of gene regulatory networks 

BacillusRegNet provides two databases, Experimental and Predicted, each with a Web user 

interface (Table 3). The Experimental database contains information about experimentally-

confirmed regulatory relationships from DBTBS, and gene annotations from BacilluScope, 

together with information derived from GenBank files and nucleotide sequences. The 

experimental data include 69,388 genes and proteins for Bacillus species, and information 

about the gene regulatory networks of B. subtilis 168 for 140 TFs, 1,148 binding sequences 

and 1,250 regulatory relationships (Table 2). The Predicted database stores predictions based 

on the experimental gene regulatory relationships, in addition to containing all the data from 

the database of experimental data. The system was used to predict an additional 696 TFs, 

7,856 binding sequences and 14,540 regulatory relationships for 15 non-model organisms 

(Table 3). For all organisms in the system, the number of activatory and repressional 

interactions are 11,239 and 4,551 respectively. 

 

                                                 
4
 ftp://ftp.ncbi.nih.gov/genomes/Bacteria 

5
 http://bacillus.ncl.ac.uk 
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Table 2: Summary of the databases containing experimental and predicted data. ‘Experimental’ 

data include information about the gene regulatory networks of B. subtilis 168 only. The 

‘predicted’ database includes everything from the experimental data and the predictions for 15 

other non-model organisms in the system. 

 Experimental Predicted 

Genes 69388 69388 

Proteins 69388 69388 

Regulations 1250 15790 

Regulators 140 836 

Regulated genes 787 9349 

Binding motifs 1148 9004 

Position weight matrices 91 784 

Protein clusters 7081 7081 

Genomes 26 26 

 
 

Table 3: Number of predicted regulators, binding sequences, regulatory relationships and 

regulated genes are listed for each organism. Genome sizes for the organisms were taken from 

the NCBI's GenBank database. 
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B. subtilis 168 4,175 1,250 140 1,148 787 4,215 

B. amyloliquefaciens (FZB42) 3,693 1,611 75 875 870 3,918 

B. halodurans (C-125) 4,065 845 43 443 498 4,202 

B. anthracis (A0248) 5,040 862 43 466 528 5,227 

B. anthracis (Sterne) 5,289 945 45 559 494 5,228 

B. licheniformis (ATCC 14580) 4,173 989 72 989 567 4,222 

B. clausii (KSM-K16) 4,096 983 43 455 566 4,303 

B. thuringiensis (Al Hakam) 4,736 1,043 47 499 623 5,257 

B. cytotoxicus (NVH 391-98) 3,833 821 36 359 496 4,087 

B. pumilus (SAFR-032) 3,679 1,377 61 668 741 3,704 

B. weihenstephanensis (KBAB4) 5,155 1,056 46 502 626 5,262 

B. cereus (B4264) 5,398 901 43 517 529 5,419 

B. tusciae (DSM 2912) 3,150 284 14 121 249 3,384 

B. megaterium (DSM 319) 5,100 1,287 52 768 732 5,097 

G. kaustophilus (HTA426) 3,497 787 37 378 492 3,544 

G. thermodenitrificans (NG80-2) 3,392 748 38 326 480 3,550 

3.2 Analysis of the gene regulatory networks using BacillusRegNet 

BacillusRegNet provides both text- and graph-based data visualisation using HTML and 

GraphVis respectively. The data can be searched using gene and protein identifiers. Details 

for each gene include information about the protein product, TFs that regulate the gene, 

whether the gene encodes a TF, genes that are regulated by the TF, homologous genes and 

proteins, gene attributes, a PWM, and the sequence logo used to depict the binding motif.  

Figure 5 shows an example of a set of gene regulatory relationships predicted using 

BacillusRegNet. In the figure, the transcriptional network of the spo0A gene is visualised 

using GraphVis for B. subtilis 168 and the target organism B. licheniformis (ATCC 14580). 

The inhibition of kinA and yuxH by Spo0A, and the activation on spoIIE, spoIIAA, spoIIGA, 

dltA and kinC are predicted in the regulatory network of B. licheniformis (ATCC 14580). 
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However, the inhibition of sdpA and activation of skfA by Spo0A was not predicted since 

there are no homologues of these genes and their encoded proteins in the target organism B. 

licheniformis (ATCC 14580). Although there are homologues of era and yqxM in the target 

organism, the positive regulation of these genes by Spo0A could not be identified. The system 

was able to predict the sigA and sigH promoters of the spo0A gene. Additionally, activation 

relationships for lchAA, lchAB, lchAC and dhbF were predicted. The sequence logo 

constructed from predictions for B. licheniformis (ATCC 14580) is similar to that of B. 

subtilis 168. 

 

Figure 5: The transcriptional network of the spo0A gene for B. subtilis 168 and B. licheniformis 

(ATCC 14580). Red and green lines represent the inhibition and activation interactions, 

respectively. Similarly, red and green shapes represent the activators and inhibitors. Blue lines 

for the model organism show the sigma factor regulatory relationships. Squares and circles are 

used to represent whether or not the genes are part of operons and preceeded by TF binding 

sequences respectively. Sequence logos that depict the binding motifs are shown below each 

network. The sequences on the right-hand side are the known and predicted promoter and TF 

binding sequences for B. subtilis 168 and B. licheniformis (ATCC 14580) in BacillusRegNet 

respectively. 

TF binding sequence predictions can also be performed manually, allowing user-defined cut-

off values for the predictions of gene regulatory relationships to be input. Binding sequences 

can be searched for in two ways. In the first option, upstream sequences of all genes for a 

target organism are searched to find the genes that are regulated by the TF encoded by the 

queried gene. In the second option, TFs that regulate the queried gene are listed. In both cases, 
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the upstream sequences of the genes are searched. After running a transcription factor binding 

site (TFBS) search, both the source genes and the target genes can be visualised using 

GraphVis, with the relationships added for homologue proteins between the target and the 

source organisms. Additionally, TFBS predictions can also be achieved by submitting the 

binding sequences to be searched for as FASTA files through the TFBSScan section of the 

BacillusRegNet website. 

BacillusRegNet also contains data about B. subtilis 168 core promoters that include the 

binding sites for RNAPs. Therefore, the system also predicts promoters in closely related 

Bacillus species. Figure 6 shows the SigA sequence logos for B. subtilis 168 and B. 

amyloliquefaciens (FZB42) aligned with the consensus sequence TTGACA-N14-tgnTATAAT 

[33]. Compared to 317 experimentally known sigA promoters in B. subtilis 168, 574 sigA 

promoters were predicted for B. amyloliquefaciens (FZB42). As can be seen, the predicted 

sequence logo is also similar to the consensus sequence. The sigA gene is known as rpoD in 

B. amyloliquefaciens (FZB42). This information is available in the list of B. subtilis 168 sigA 

homologues. 

 

Figure 6: The sequence logos of sigA promoters for B. subtilis 168 and B. amyloliquefaciens 

(FZB42). The logo at the top is drawn using 317 core promoter sequences that includes the 

binding sequences for RNAPs from B. subtilis 168. The logo at the bottom was constructed from 

574 predicted B. amyloliquefaciens (FZB42) core promoters. The middle sequence shows the 

consensus sigA promoter sequence, aligned with two sequence logos. 

Genome-wide statistics can also be accessed from the website. The statistics provided include 

the distribution of binding sites from the genes’ start locations, quantities of regulators and 

regulation types, and the distribution of the number of co-regulating TFs. ATGC content for 

the genome, and coding and non-coding regions are also available for each organism in the 

system. Figure 7 shows the distribution of TFBS distances from the start of genes for G. 

kaustophilus (HTA426). The number of repressors and activators predicted for G. 

kaustophilus (HTA426) is 17 and 15. Additional five TFs have dual roles. However, 

compared to 552 activation relationships, only 235 repression relationships were predicted. 

These activators and repressor sites tend to be between 0 and +100 relative to the gene start 

locations. 
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Figure 7: An example of the distribution of TF binding site distances from gene start for G. 

kaustophilus (HTA426). Red and green lines show the distribution of repressions and activations 

respectively. The distribution for all regulations is represented with the dashed black lines. 

4 Discussion 

By developing the BacillusRegNet system described in this paper, we aim to extend the gene 

regulatory information available to researchers interested in working with organisms related 

to B. subtilis 168. In turn, use of the system should help increase our understanding of gene 

regulation in closely-related Bacillus species by providing putative gene regulatory networks 

for a range of these organisms. These predicted networks can then be used to inform 

experimental design in non-model Bacillus species [34]. 

The BacillusRegNet approach can be applied to any related species using the scripts built into 

the RegNet system. Currently there are, in the BacillusRegNet database, 16 species and 836 

TFs, 696 of which have been predicted to exist as orthologs in the 15 non-model organisms. 

For these non-model organisms 7,856 target binding sequences, including promoters, were 

predicted. The number of TFs predicted for an organism varies due to several factors.  

Firstly, the size of the total regulatory network varies between organisms. For example, the 

ecological niche occupied by an organism may affect the complexity of its regulatory 

networks and hence influences the specificity and the number of TFs needed for genetic 

regulation [20]. The number of TFs required follows a power law with the number of genes in 

a genome [34].  

Another factor affecting the size of a predicted transcriptional network is the evolutionary 

distance between an organism and B. subtilis 168. Organisms that are taxonomically closer 

will contain more orthologous TFs than those which are more evolutionarily distant. 

Therefore, more of the transcriptional network will be predictable. For example, although the 

genome sizes of B. amyloliquefaciens (FZB42) and B. licheniformis (ATCC 14580) are not 

the biggest, these organisms are the most closely related to B. subtilis 168, and thus have the 

most predicted TFs (75 and 72 respectively). Interestingly, the absolute number of genetic 

regulatory relationships predicted for B. amyloliquefaciens and B. licheniformis is higher than 

has been observed in B. subtilis 168. The information about TFBSs and promoters for B. 

subtilis 168 used in BacillusRegNet is derived from DBTBS and may not represent the entire 

set of gene regulatory networks. Therefore, the number of binding sequences predicted for 

non-model organisms may be greater than those known of in B. subtilis 168 in 

BacillusRegNet. For example, there are 317 SigA promoters available for B. subtilis 168, but 

574 SigA promoters were predicted for B. amyloliquefaciens (FZB42). This increase could be 
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due to incomplete coverage of the gene regulatory networks for B. subtilis 168, or the 

presence of new regulatory relationships that do not exist in B. subtilis 168. In addition, B. 

tusciae (DSM 2912), the most distant organism from B. subtilis 168 in the taxonomy, has the 

lowest number of predicted TFs. Geobacillus species have many proteins homologous to 

those in B. subtilis despite their relatively small genome sizes. Although the two Geobacillus 

species are not classified directly under the Bacillus taxonomy, 37 and 38 TFs respectively 

were predicted.  

Even for model organisms, many details about genes and molecular interactions are still 

unknown. High-throughput experiments promise to advance the genome-scale understanding 

of organisms. However, the generation of wet-lab based high-throughput data is expensive 

and time consuming to carry out for every new species [20]. Using the RegNet system, the 

regulatory networks of 15 Bacillus species were predicted in a time- and cost-effective 

manner. 

BacillusRegNet increases the amount of information available about host organisms for 

synthetic biologists. For example, transcription factors from B. subtilis that are not found in 

close relatives may be used to facilitate the engineering of regulatory pathways in the chosen 

non-model organism. This system also provides a valuable approach for the computational 

transfer of information of regulatory networks from model to non-model organisms for 

systems biology modelling approaches. BacillusRegNet will provide a useful resource to the 

biological community.  
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