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Abstract. We introduce a family of multi-party authentication praséeand discuss six novel protocols,
which are members of this family. The first three generalize well-known Needham-Schroeder-Lowe
public-key protocol, the Needham-Schroeder private-keygeol, and the Bilateral Key Exchange protocol.
The protocols satisfynjective synchronisatignwhich is a strong authentication property, and establish
agreement over the nonces. These protocols make udelefated authenticatioto keep the protocols
small and efficient. For each of these protocols we defineemgtihened version that does not rely on
delegated authentication. All instantiations of the pcotdamily consist of2p — 1 messages fagy parties,
which we show to be the minimal number of messages requiradHi@ve the desired security properties in
the presence of a Dolev-Yao style intruder with compromagehts.

1 Introduction

In the context of Dolev-Yao style modeling of security piaits, several protocols have been proposed
in order to satisfy forms amnutual authenticatiorifor an overview of authentication protocols see [14,
39]). Of these, the best known is Needham-Schroeder-Lov& {plblic key protocol, or NSL for
short) from [31, 35]. The NSL protocol satisfies even thergjast forms of authentication [20], and
has been studied extensively.

The operation of the three-message base protocol is asviolleee Figure 1). In the first step,
the initiator of the protocol, executing therole, creates a random value (often called a nonce or a
challenge)na. He encrypts this value along with his name with the publig k&b of the intended
responder. When the responder, executingbtha@e, receives such a message, he generates his own
random valuenb. He responds to the challenge by encrypting both nonces lhasveis own name,
with the public key of the initiator. In the third step, thetiator sends back the random valué to
the responder, encrypted by the public key of the responder.

na nb
[ o ] [ v ]
{na, a}prp
{na,nb,b}pka
{nb}prs

Fig. 1. The Needham-Schroeder-Lowe protocol with public keys.

Similar protocols, such as the Needham-Schroeder (NS fmit)sprivate-key protocol and the
Bilateral Key Exchange protocol, have the same underlyingtire as the NSL protocol. The under-
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lying communication pattern consists of two challenggoese steps, which can be realized through
three messages.

These protocols were designed for two parties who want toeaticate each other, which is often
referred to as bilateral authentication. In many setting$ &is modern e-commerce protocols there are
three or more parties that need to authenticate each attsrch a setting we could naively instantiate
multiple bilateral authentication protocols to mutuallytizenticate all partners. Forparties, such
mutual authentication would requifg x (p — 1))/2 instantiations of the protocol, and three times as
many messages. In practice, when multi-party autherticgtiotocols are needed, protocol designers
instead opt to design new protocols (often 3 or 4-way hardshasee e.g. [25]), which possibly
introduces new faults. Central to our research is the cqurestf how to generalize these NSL-like
protocols to a multi-party setting.

In this paper we present six novel multi-party authentorarotocols, which are all instances of
the same family. Three of these are based@rgation of authenticatignvhich means that any of the
parties trusts any of the other parties to do his job in auit&ting the other parties. We also define
three strengthened versions of these protocols that deehyobdn the delegation of authentication.

All protocols have the same underlying communication stmecand will only differ in the con-
tents of the messages. Foparties, the underlying communication structure consit® — 1 mes-
sages, which turns out to be the optimal message complexity.

Every member of the protocol family is itself parameterizgth a valuep, representing the num-
ber of participants. We do not only require that the protagobrrect for eaclp in isolation, we require
that the protocol is correct even when run in parallel withesal instances of the same protocol for
different values op.

We adopt the standard Dolev-Yao model with compromised tagenmodel the capabilities of
the adversary. This means that the intruder has completeotomer the communication network and
that he can unpack encrypted messages if he knows the deoriel. We assume that a number of
agents can conspire with the intruder to break security abtopol.

The security protocols will have to satisfy a strong form offeentication, callednjective syn-
chronisation[22]. Since the development of correct security protocals proven to be a notoriously
difficult task we have use the framework introduced in [18;2%] to prove the proposed protocols
correct. Due to space limitations the proofs are not induidethis paper. For a correctness proof of
the generalized NSL protocol, we refer to our technical refd®].

We proceed as follows. In Section 2 we define the communicatiaicture underlying our proto-
cols. Six instantiations are presented in Section 3. Relatek is discussed in Section 4 and we draw
conclusions and discuss further work in Section 5.

2 A framework for multi-party authentication protocols

To give a feel of the structure of the kind of authenticatiootpcols that we study, we first look at the
structure of the NSL protocol. In that protocol, each agest & challenge-response cycle to validate
the other agent’s identity. These two challenge-respoyskes are linked together by identifying the
response of the second agent with its challenge. Its géregiah follows the same line of thinking.
Every agent conducts a challenge-response cycle with itghibeuring agent, while combining its
own challenge with a response to another agent's challemgmever possible.

The starting point is therefore a collectionyopartiesR(0), ..., R(p—1), each controlling one of
the nonces.(0),...,n(p—1), asin Figure 2. The first ager®(0) sends its challenge to the next agent,
R(1), which forwards it to the third agent, and so on. The chakeogrle for the first agent closes
if he receives his challenge back fraR{p — 1), which means that all agents have responded to his
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challenge. The second agent has a similar challenge-respmytle, while piggybacking as much as
possible on the messages sent on behali(6f. This will yield one extra message, namely frét(0)

to R(1) atthe end of?(1)’s cycle. Repeating this for all agents yields the zig-zagcstre of Figure 2.
The figure also illustrates that we consider two types of agss. The firgb messages (of type MsgA)
contain both challenges and responses, while the lagtmessages (of type MsgB) contain responses
only. This distinction is merely made to provide simpler digions of the instantiated protocols.

n(0) n(i) n(p—1)
| R(0) | |R(i) (0<'L'<p—1)| | R(p—1) |
MsgA(0)
MsgA(i — 1)
MsgA(7)
MsgA(p — 2)
MsgA(p — 1) >
MsgB(0)
MsgB(: — 1)
MsgB(4)
~ MsgB(p - 2)
| | |

Fig. 2. Multi-party communication structure.

In order to be precise, we define tlih protocol message, fdr < i < 2p — 1, by

Msg(i) = {MSQA@ rosi<p

MsgB(i —p) ifp<i<2p—1.
Members of this protocol family can now be constructed byainsating the messages of type MsgA
and MsgB in such a way that correct authentication is guaeahtin the next section we will provide
some of the more interesting examples.

A protocol in this family can be deployed in two main ways.sEiit can be instantiated for a
specific number of parties, to yield e.g. a four-party autiication protocol. In this way it can be
used instead of customrway handshake protocols. Second, it can be used in its neostrig form,
and have the initiating rol&(0) choose the number of participantsAgents receiving messages can
deduce the chosenand their supposed role from the contents of the messages.

Based on this communication pattern, we cannot make argnséaits on the correctness of its
instantiations, since that will depend on the actual messagtents. However, we can already discuss
the message complexity and the basic authentication esgemt of this family of protocols. As stated
in the introduction, we require that the protocols satisfgctive synchronisatigras defined in [22].
Informally, for a two-party protocol, it states the follavg:

Initiator I considers a protocol synchronising, wheneyeas initiator completes a run of
the protocol with uncompromised responder then R as responder has been running the
protocol with I. Moreover, all messages are received exactly as they watgeisdghe order
as described by the protocol. Initiatbrconsiders a protocol injectively synchronising if the
protocol synchronises and each run/aforresponds to a unique run Bf
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This definition extends in a natural way to multi-party pas. Synchronisation is based on
the notion ofintensional specificatignas introduced by Roscoe [37]. Lowe [32] expresses that the
definition of intensional specification is strictly stromdlean the more common notion afreement
This is formalized in [18, 20, 22], so the developed protecatisfy agreement as well. We refer the
reader to [20—-22] for a detailed definition of injective slgranisation and a proof that agreement is
implied by injective synchronisation, as well as comparsbetween synchronisation and various
other notions of authentication.

As discussed in [22], thiwop-propertyis instrumental to achieve injectivity. This property st
that for every two agentd and B there must be a message sequence, starting and endingvinich
passes througl? (possibly via some other agents). In the current contextidbp-property turns
out to be a necessity. Phrased in terms of challenge-resgmeisaviour: in order to achieve injective
synchronisation, each role must send a challenge thatliedep by all other roles.

Now we can prove that the minimal number of messages needsghigve injective synchronisa-
tion of p parties is2p — 1. Consider the first message sent by some File), and call this message
m. In order to achieve a loop to all other roles after this firsissage, every role will have to send at
least one message after. Including message: this will yield at leastp messages. Next we observe
that every role must take part in the protocol and we condiuefirst message sent by each of the
roles. If we takeR(z) to be the last of the roles that becomes active in the protocol, it must be the
case that befor&(z) sends his first message, at least 1 messages have been sent. Adding this to
the p messages that must have been sent after that message aji@iesr bound o2p — 1 messages.

Important to the approach here is that we consideal synchronisation claimsrhat means that
an agent may decide that the complete protocol has beentereexactly as expected, based on his
local observations only. These observations only takedotmunt the contents of the communications
that the agent was involved in. Whenever such an agent sfatgsompletes a run of a synchronis-
ing protocol, all other parties involved in the protocol baxecuted their part exactly as expected.

3 Instantiations

In this section we will define six multi-party authenticatiprotocols, which are all based on the
framework from Section 2. The first protocol (denotedd)ygeneralizes the NS private-key protocol.
Agents use signatures to construct their replies to thevetehallenges. Rather than signing whole
incoming messages, agents only sign the contents of theseages thereby effectively replacing
the signature of the previous agent. This expresses thatsagan trust all other agents taking part
in the same session. We call this stratetplegated authenticatiorStated differently, if one of the
agents taking part in a session is compromised, the adyecsarabuse this to falsely authenticate
one or more other participants to the same session. Thedg@cotocol (denoted by) additionally
provides secrecy of the nonces, by using public keys forygticlg the nonces. It generalizes the
well-known NSL public-key protocol. The third protocol fued bys*) is an optimization of the
second protocol in the sense that it uses symmetric enorypistead of asymmetric encryption for
half of the messages.

These protocols have to be strengthened if it is desiredachragreement with the uncompro-
mised participants of a session, even if some participdrttrabsession are compromised. Therefore,
we define three non-delegated variants of the protocolstddrbya-nd, 5-nd and 3-nd*, that do
not rely on delegated authentication. This requires thatyesgent proves its identity to every other
agent, which in general yields protocols that are less effici

Please notice the distinction between two interpretatarmsompromised agents. The first inter-
pretation considers the correctness of a session only |faaticipants are uncompromised, possibly
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executed in parallel with other session in which comprochiagents take part. This is the standard
interpretation, adopted in most literature on securitytqurols. In this interpretation delegation of au-
thentication is acceptable. However, in the setting of mpdtty authentication protocols the above
sketched interpretation can be useful. It states that déetraviour of the protocol is required even if
compromised agents take part in the session under studyinthrpretation requires direct authenti-
cation.

3.1 Generalized NS private-key protocol ).

The first instantiation of our framework generalizes the Ni8ape-key protocol. Figure 3 illustrates
the four-party version of this protocol.

n0 nl n2 n3
RO R1 R2 R3

{n0, R1, R2, R3 }sko

{n0,nl, RO, R2, R3 }sk1

{n0,nl,n2, RO, R1, R3 }k2
{|n0,n1,n2,n3, RO, R1, R2 }sjis3
{nl,n2,n3, R1, R2, R3 }sko

{n2,n3, R0, R2, R3 }s1

{ 77,3, .RO7 Rl7 R3 }Skg

Fig. 3. Four-party generalized NS private-key protoce).(

First, the initiating agent chooses which parties he wantommunicate with. He creates a new
random valuep0, and combines this with the names of agdits R2 and R3. He signs the resulting
message with his private key, and sends the messaBe.tdpon receipt of this message and verifi-
cation of the signature, the second agent takes the cortktits message, adds his own fresh nonce
and replaces his nanfel by R0. This modified message is then signed and sent along. Thimaes
until each agent has added his nonce, upon which the messsgat iback to the initiating agent. This
agent checks whether the message contains the nonce redogaaier, and whether all agent names
match. Then he can conclude that the other agents are daitedt Next, in order to prove his own
identity, he sends a signed message containing the othetshgences ta?1. The subsequent agents
again check whether their own nonces are in the messageyedine nonce, and pass the resulting
message on.

For the general definition of this protocol we have to makettlemessage types explicit, which
requires the auxiliary function Alz), defining the list of all parties exclusive of

AL(z) = [RO,R1,...,R(p — )]\ =
MSgA,, (i) = { [n0, ..., ni], AL(Ri) }er(i)
MsgB, (i) = { [n(i + 1),...,n(p — 1)], AL(Ri) }k(ri)

This protocol achieves injective synchronisation throdglegated authentication.
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3.2 Generalized NSL public-key protocol 3).

Because the previous protocol makes use of a signature sctibennonces will be exposed to an
eavesdropping adversary. This is not problematic whergubkiEse nonces to generate a unique session
id, but the nonces cannot be used for establishing a sessibeekey. Secrecy of nonces can be
achieved by using the public key of the sender for encryptsrin the NSL public-key protocol. The
four-party generalization of this protocol is in Figure 4.

n0 nl n2 n3
RO R1 R2 R3

{ n0, RO, R2, R3 } i1

{ n0,nl, RO, R1, R3 }pkg

{n0,n1,n2, RO, R1, R2 },k3
{n0,n1,n2,n3, R1, R2, k3 },ko

{nl,n2,n3 }pr

{ n2,n3 }pk2

{n3 }prs

Fig. 4. Four-party generalized NSL public-key protocg)(

The messages of the generalized protocol are defined usrgribtionnext, which determines
the next role in the list of participants in a cyclic way.

next(i) = R((1 +1) mod p)
MsgA;(i) = { [n(0) ... n(D)], AL (next(i) }pr(neat(i)
MSgBﬁ(l) = { [TL(Z + 1) s n(p - 1)] }pk(neact(i))

Clearly, if we instantiate the generalized protocol foe 2, we get exactly the three message
version of the NSL protocol. The purpose of this protocoloisithieve authentication of all parties
and distribution and secrecy of all nonces.

We refer to our technical report [19] for a correctness praiothis protocol. In this proof we
have used some (but not all) information that distinguighesmessages in the protocol. In particular,
we have only used the collection of agent names and noncesriogrin the messages. A direct
consequence of this is that the exact order of the agentigshance list is not relevant, as long as it
is used consistently. We could e.g. redefine messages oAtagdo start with a reversed list of roles,
followed by the list of nonces. Furthermore we did not reguir the proof of the protocol, that there
was nothing else inside the encrypted terms besides narde®anes. Thus, we can add any payload
inside the encryption, as long as we ensure that it cannoviieised with an agent term or a nonce.

This opens up several possibilities for establishing esgslbetween pairs of agents inside of the
generalized NSL protocol.

Finally we want to mention that our correctness proof ingptleat the protocol is not only correct
for any specific choice gf. Rather, the protocol is even correct in a context wherertstances of the
protocol for different values gf run in parallel.
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3.3 Generalized Bilateral Key Exchange 8*).

Similar to the Bilateral Key Exchange protocol (BKE) as ddsed in [14] we can opt to replace the
asymmetric encryption for the messages of type B by symmetrcryption with the nonce of the
recipient. We can then omit this nonce from the list. We i@ denote a constant representing the
empty list. In general symmetric encryption is much less potationally intensive than asymmet-
ric encryption, resulting in a more efficient protocol thdue fprevious one. Figure 5 illustrates the
four-party BKE protocol. The generalized BKE protocol skés the same security properties as the
generalized NSL public-key protocol.

n0 nl n2 n3

{n0, RO, R2, R3 },p1

{ ’17,07 77,1, RO7 Rl7 R3 }pkg

{n0,nl,n2, RO, R1, R2 }pk3

—~~

n0,nl,n2,n3, R1, R2, R3 },to

{ n2, n3 }nl

{n3 }n2

{e}ns

Fig. 5. Four-party generalized BKE protocg#?{).

The generalized BKE protocol is described by the followingssage definitions.

nlist(i) = {En(l +2)...n(p—1)] :: Z iz: 1

MsgA ;. (1) = { [n0...ni],AL (next (7)) }pk(nemt(i))
MsgBg. (i) = { nlist(i) },,i+1)

3.4 Generalized NS private-key protocol without delegate@uthentication (a-nd).

As stated before, the above protocols all make use of theyaksde of authentication. If one of
RO,...,R(p — 1) is compromised in a given session, the attacker can falsgheaticate the other
parties throughout that session. The solution of this @l to not rely on the chain of trust, which
means that every party has to explicitly verify the respersfeall other parties. The simplest way
to achieve this is to accumulate the signatures of all gantieolved. This yields the protocol from
Figure 6.
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n0 nl n2 n3
RO R1 R2 R3
L,n0

{ L7 77,0, nl }skl

{{L,n0,nl }sk1,n2 }sk2
{{|{ L, n0,n1 }sk1,n2 }sr2,n3 Ysk3

{{{A{|L,n0,n1 }sr1,n2 }sr2,n3 }sks Fsko
{{{{{1,n0,n1 }sk1,n2 }sk2,n3 }skd Fsko Fsk1
{{{{{{L,Mn0,n1 }sr1,n2 }sk2,m3 }sk3 fsko }sk1 }hrz

Fig. 6. Four-party NS private-key protocol without delegated euntftation, wherd, = R0, R1, R2, R3 (a-nd).

The messages of the generalized protocol are recursivéhedeas follows.

MsgA,,.,,;(0) = RO, R1,...,R(p — 1),n(0)

MsgA, 4(i) = { MsgA, ,4(i —1),n(i) }spryy (foro <i<p-—1)
MSgBa-nd(O) = { MSgAa-nd(p - 1) }sk(RO)

MsgB,.,4(i) = { MsgB,.,,;(i — 1) }srriy (for0 <i<p-2)

Like the previous protocols, this protocol satisfies injgcsynchronisation. However, in addition
it satisfies the fact that attacks on one agent cannot progdgaugh the protocol. When running a
session with one or more compromised parties, we cannotummanything about the behaviour of
these compromised parties. Because the adversary is doigéothe signatures of the compromised
parties they don't even have to satisfy the, rather wealpgatyg ofalivenessTherefore, we can only
conclude about the status of the honest participants toes®a. In particular, we can conclude that
all uncompromisegbarties in a session achieagreemenbver all nonces of these uncompromised
parties. For the definition of agreement, we refer to [32].

3.5 Generalized NSL public-key protocol without delegatecguthentication (3-nd).

As the previous protocol is based on signatures, it does nowide secrecy of the nonces. This can
be achieved by merging this protocol with the generalizedl N$blic-key protocol from Section 3.2.
The resulting protocol is illustrated in Figure 7. The meggesaof this protocol are defined as follows.

MSgAﬁ-nd (Z) = { MsgAa-nd }pk(nemt(i))
MsgB;._,,4(i) = { MSOB,_.4 }pk(neat(i))

The virtue of this protocol is that it satisfies injective skironisation and secrecy of the nonces if
all participants to a session are uncompromised. In cassgbmomised participants, it satisfies agree-
ment between uncompromised parties on the nonces of thesenpromised parties. Please notice
that we do not have secrecy of the nonces if one or more gaatits in a session are compromised.
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n0 nl n2 n3
RO R1 R2 R3
{ L7 n0 }Pkl

{ { L7 TLO, nl }skl }ka

{l{ { L,n0,n1 }sx1,n2 }si2 }R
{{{{|L;n0,n1 }sp1,12 Fsr2,n3 }sks ko

{{{{{8,n0,n1 }sp1,n2 }s2, 13 Jorg }sko }pr1
{{{{{{ L0, 11 Jor1,n2 Fosra,n3 Fsra Jsko Fsk1 Ypk2
LA L, n1 For1,n2 Foro, 3 Foks Fspo Yskr Forp bors

w

Fig. 7. Four-party NSL public-key protocol without delegated amication, wherd, = RO, R1, R2, R3 ((5-nd).

This property would contradict the requirement that at the ef the protocol all participants know
all nonces. It is not possible for an agent to find out whethetteer agent has been compromised or
not, so the intruder will always learn all information madei&ble to the compromised agent.

3.6 Generalized BKE protocol without delegated authenticgon (3-nd™).

The generalized BKE protocol without delegated authetitinds constructed from the previous pro-
tocol by replacing the asymmetric encryption in type B mgssaby encryption with the recipient’'s
nonce. We will only provide the message definition of thistpcol.

MSgAﬁ‘nd*(i) = { MSngz-nd }pk’(next(i))
MsgB;. 4+ (1) = { MSGB,_.g }n(it1)

3.7 Type-flaw attacks.

In assessing the correctness of the six protocols aboveawe dssumed that type-flaw attacks are
not possible, i.e. agents can verify whether an incomingsaggsis correctly typed. There are several
reasons for doing this. Without this assumption, there yoe-flaw attacks on all members of the
defined protocol family provided here. There are not onlypténattacks for specific instances gf
but also multi-protocol type-flaw attacks involving instas for several choices @fin one attack,
as in [17]. Thus, we find that typing is crucial. Solutions foeventing type-flaw attacks using type
information is examined in detail in e.g. [26]. Such typeommhation can be easily added to each
message, but a simple labeling will also suffice. If we addtet(p, 1) before each message inside the
encryption, where is the number of participants for this instance, amslthe label of the message,
the protocols become robust against type-flaw attacks ariitpnotocol attacks with other instances
of itself.

Using an automatic protocol verification tool (Scyther,])1%e have established that the type-
flaw attacks on synchronisation are not due to the specifiermgl of the nonces and agent names
within the messages. In particular, we examined differgioos for the message contents (without
adding labels): reversing the order of either the agente@ntince list, interleaving the lists, etc. We
established the existence of type-flaw attacks for somecehaifp for all variants we constructed.
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4 Related Work

In Dolev-Yao style analysis of security protocols, wheradilbox abstractions of cryptographic op-
erators are considered, protocols usually consist of twihi@e roles only. There are many recent
successful methodologies [23,41] and analysis tools [5,8,6] that can be used to analyse protocols
in the Dolev-Yao model. All the tools mentioned assume tlmquols have a fixed number of partici-
pants. Therefore, they cannot be used to analyze multy-pastocols in general, but they can be used
to analyze specific instances of such protocols. For exgrmpteverif [6] has been used to analyze
instances of the GDH protocols from [2], and here we have Sagther [16] to analyze instances of
our protocol.

In spite of the success of these methods, few multi-partyopods have been constructed in the
Dolev-Yao setting. As a notable exception we would like toran [12], where the authors construct
a challenge-response protocol for any number of partieadder, the protocol described there does
not satisfy synchronisation or agreement, which is showsuintechnical report [19].

On the other hand, many multi-party protocols have beentamisd and analyzed in a crypto-
graphic setting, e.g. [1,2,4,5,7-9,13,27,29, 30, 34].s€hwotocols are typically assumed to employ
a multicast primitive, and based on this primitive their gbexity can be analyzed, as in e.g. [28, 33].
Unfortunately the protocols in this category are desigrechéet different goals than the protocol
presented here, and therefore cannot be used to comparewviipproach.

On the borderline between the cryptographic approach amdotimal Dolev-Yao approach, the
Bull protocol from [11] provides an interesting example.islprotocol is flawed, as shown in [38],
although a more abstract version was shown to be correcéjtt [@nlike the generalized NSL proto-
col, this protocol is based on agents sharing a symmetrieviddya server, and furthermore the server
is involved in each session.

Recently, a corpus of multi-party protocols have been é&stednl as part of the Coral project [40],
aiming to establish a reference set for multi-party prot@calysis.

Regarding proving authentication protocols correct,dli@&ve been some recent attempts to sim-
plify such proofs. For example, one successful approach iss¢ static analysis of the protocol to
prove authentication properties, as described in e.g. H@)ever, the notions of authentication used
there are weaker than synchronisation or agreement, amddtieds used there do not seem suitable
for proving synchronisation.

5 Conclusions and Future Work

We proposed a family of security protocols for multi-partytteentication and discussed six novel
protocols from this family. The first three protocols asstuiha all agents taking part in the protocol
session are uncompromised, which makes it possible to Usgaded authentication. In particular, we
provided a protocoly which is based on private key encryption (signing), and twaiqeols3 and5*
based on public key encryption, that also provide secredfi@honces. Interestingly, the two-party
version of3 coincides with the Needham-Schroeder-Lowe protocol, hedwo party version of*
coincides with the Bilateral Key Exchange protocol.

The next three protocols-nd, 5-nd, andg3-nd* are strengthened versions of the first three pro-
tocols. They use direct authentication instead of delegatehentication, at the cost of a loss in
efficiency. Delegated authentication implies that a commised participant in a protocol session can

Y n this particular case, the cryptographic implementatiifers in a significant way from the abstract version, which
allows for new attacks: the exclusive or operator does ritfgahe properties required for black-box encryptiorngdiese
under certain conditions it is possible to retrieve the kayrgpted term.
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falsely authenticate other participants of that sessidis property has hardly been studied before,
since it has no meaning in the common setting of two-partyoeals. There it is assumed that al-
though there may be compromised parties, an actual sessipmas to provide authentication if all
(both) partners are uncompromised. A recent study disogissielated issue for secrecy is in [24].

All six protocols satisfy injective synchronisation. Eptéor the two protocolsy anda-nd, that
are based solely on private keys, the protocols satisfesgaf the nonces as well. The third protocol
4* and its strengthening-nd™* are optimized with respect to the use of symmetric encryptio

The correctness proofs, although not presented here, areifited in terms of the operational
semantics framework introduced in [18, 20—22] and do natireca fixed number of partigs This is
in line with more recent attempts (e.g. [40]) to develop rmodtiiogies for such (parameterised) multi-
party protocols, for which these protocols could be used@sa study. Correctness of the protocols
is subject to the assumption that the messages include lenofggmation as to allow a receiving
agent to check if a message is correctly typed, and corrsptiyinto subterms.

As has been shown by history, constructing correct secpritocols is not trivial. Even knowing
this, we were surprised to find that all variants of the pregogrotocol (irrespective of the ordering
of nonces and role names in the messages) suffer from typeaftacks. We found this out by using
the Scyther tool [16]. In fact, we extensively used this todhvestigate instances of the protocols for
a specific number of participants to guide us in our rese#cimple (and standard) extension of the
messages will make the protocols resilient against suakgpy attacks.

We showed that the communication structure underlying tb&opols can serve as a generic pat-
tern for multi-party challenge-response mechanisms, iichivinany variants can be captured. These
generalized protocols can serve as efficient communicatioctures underlying multi-party authen-
tication schemes as used in electronic commerce proto&nlmteresting topic for future research is
to study other members of the protocol family.
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