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Abstract. We introduce a family of multi-party authentication protocols and discuss six novel protocols,
which are members of this family. The first three generalize the well-known Needham-Schroeder-Lowe
public-key protocol, the Needham-Schroeder private-key protocol, and the Bilateral Key Exchange protocol.
The protocols satisfyinjective synchronisation, which is a strong authentication property, and establish
agreement over the nonces. These protocols make use ofdelegated authenticationto keep the protocols
small and efficient. For each of these protocols we define a strengthened version that does not rely on
delegated authentication. All instantiations of the protocol family consist of2p − 1 messages forp parties,
which we show to be the minimal number of messages required toachieve the desired security properties in
the presence of a Dolev-Yao style intruder with compromisedagents.

1 Introduction

In the context of Dolev-Yao style modeling of security protocols, several protocols have been proposed
in order to satisfy forms ofmutual authentication(for an overview of authentication protocols see [14,
39]). Of these, the best known is Needham-Schroeder-Lowe (NSL-public key protocol, or NSL for
short) from [31, 35]. The NSL protocol satisfies even the strongest forms of authentication [20], and
has been studied extensively.

The operation of the three-message base protocol is as follows (see Figure 1). In the first step,
the initiator of the protocol, executing thea role, creates a random value (often called a nonce or a
challenge)na. He encrypts this value along with his name with the public key pkb of the intended
responder. When the responder, executing theb role, receives such a message, he generates his own
random valuenb. He responds to the challenge by encrypting both nonces as well as his own name,
with the public key of the initiator. In the third step, the initiator sends back the random valuenb to
the responder, encrypted by the public key of the responder.

na

a

nb

b

{na, a}pkb

{na, nb, b}pka

{nb}pkb

Fig. 1. The Needham-Schroeder-Lowe protocol with public keys.

Similar protocols, such as the Needham-Schroeder (NS for short) private-key protocol and the
Bilateral Key Exchange protocol, have the same underlying structure as the NSL protocol. The under-
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lying communication pattern consists of two challenge-response steps, which can be realized through
three messages.

These protocols were designed for two parties who want to authenticate each other, which is often
referred to as bilateral authentication. In many settings such as modern e-commerce protocols there are
three or more parties that need to authenticate each other. In such a setting we could naively instantiate
multiple bilateral authentication protocols to mutually authenticate all partners. Forp parties, such
mutual authentication would require(p× (p− 1))/2 instantiations of the protocol, and three times as
many messages. In practice, when multi-party authentication protocols are needed, protocol designers
instead opt to design new protocols (often 3 or 4-way handshakes, see e.g. [25]), which possibly
introduces new faults. Central to our research is the question of how to generalize these NSL-like
protocols to a multi-party setting.

In this paper we present six novel multi-party authentication protocols, which are all instances of
the same family. Three of these are based ondelegation of authentication, which means that any of the
parties trusts any of the other parties to do his job in authenticating the other parties. We also define
three strengthened versions of these protocols that do not rely on the delegation of authentication.

All protocols have the same underlying communication structure and will only differ in the con-
tents of the messages. Forp parties, the underlying communication structure consistsof 2p − 1 mes-
sages, which turns out to be the optimal message complexity.

Every member of the protocol family is itself parameterizedwith a valuep, representing the num-
ber of participants. We do not only require that the protocolis correct for eachp in isolation, we require
that the protocol is correct even when run in parallel with several instances of the same protocol for
different values ofp.

We adopt the standard Dolev-Yao model with compromised agents to model the capabilities of
the adversary. This means that the intruder has complete control over the communication network and
that he can unpack encrypted messages if he knows the decryption key. We assume that a number of
agents can conspire with the intruder to break security of a protocol.

The security protocols will have to satisfy a strong form of authentication, calledinjective syn-
chronisation[22]. Since the development of correct security protocols has proven to be a notoriously
difficult task we have use the framework introduced in [18, 20–22] to prove the proposed protocols
correct. Due to space limitations the proofs are not included in this paper. For a correctness proof of
the generalized NSL protocol, we refer to our technical report [19].

We proceed as follows. In Section 2 we define the communication structure underlying our proto-
cols. Six instantiations are presented in Section 3. Related work is discussed in Section 4 and we draw
conclusions and discuss further work in Section 5.

2 A framework for multi-party authentication protocols

To give a feel of the structure of the kind of authentication protocols that we study, we first look at the
structure of the NSL protocol. In that protocol, each agent has a challenge-response cycle to validate
the other agent’s identity. These two challenge-response cycles are linked together by identifying the
response of the second agent with its challenge. Its generalization follows the same line of thinking.
Every agent conducts a challenge-response cycle with its neighbouring agent, while combining its
own challenge with a response to another agent’s challenge whenever possible.

The starting point is therefore a collection ofp partiesR(0), . . . , R(p−1), each controlling one of
the noncesn(0), . . . , n(p−1), as in Figure 2. The first agent,R(0) sends its challenge to the next agent,
R(1), which forwards it to the third agent, and so on. The challenge cycle for the first agent closes
if he receives his challenge back fromR(p − 1), which means that all agents have responded to his
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challenge. The second agent has a similar challenge-response cycle, while piggybacking as much as
possible on the messages sent on behalf ofR(0). This will yield one extra message, namely fromR(0)
toR(1) at the end ofR(1)’s cycle. Repeating this for all agents yields the zig-zag structure of Figure 2.
The figure also illustrates that we consider two types of messages. The firstp messages (of type MsgA)
contain both challenges and responses, while the lastp−1 messages (of type MsgB) contain responses
only. This distinction is merely made to provide simpler definitions of the instantiated protocols.

n(0)

R(0)

n(i)

R(i) (0 < i < p − 1)

n(p − 1)

R(p − 1)

MsgA(0)

MsgA(i − 1)

MsgA(i)

MsgA(p − 2)

MsgA(p − 1)

MsgB(0)

MsgB(i − 1)

MsgB(i)

MsgB(p − 2)

Fig. 2.Multi-party communication structure.

In order to be precise, we define thei’th protocol message, for0 ≤ i < 2p − 1, by

Msg(i) =

{

MsgA(i) if 0 ≤ i < p,

MsgB(i − p) if p ≤ i < 2p − 1.

Members of this protocol family can now be constructed by instantiating the messages of type MsgA
and MsgB in such a way that correct authentication is guaranteed. In the next section we will provide
some of the more interesting examples.

A protocol in this family can be deployed in two main ways. First, it can be instantiated for a
specific number of parties, to yield e.g. a four-party authentication protocol. In this way it can be
used instead of customn-way handshake protocols. Second, it can be used in its most generic form,
and have the initiating roleR(0) choose the number of participantsp. Agents receiving messages can
deduce the chosenp and their supposed role from the contents of the messages.

Based on this communication pattern, we cannot make any statements on the correctness of its
instantiations, since that will depend on the actual message contents. However, we can already discuss
the message complexity and the basic authentication requirement of this family of protocols. As stated
in the introduction, we require that the protocols satisfyinjective synchronisation, as defined in [22].
Informally, for a two-party protocol, it states the following:

Initiator I considers a protocol synchronising, wheneverI as initiator completes a run of
the protocol with uncompromised responderR, thenR as responder has been running the
protocol withI. Moreover, all messages are received exactly as they were sent, in the order
as described by the protocol. InitiatorI considers a protocol injectively synchronising if the
protocol synchronises and each run ofI corresponds to a unique run ofR.
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This definition extends in a natural way to multi-party protocols. Synchronisation is based on
the notion ofintensional specification, as introduced by Roscoe [37]. Lowe [32] expresses that the
definition of intensional specification is strictly stronger than the more common notion ofagreement.
This is formalized in [18, 20, 22], so the developed protocols satisfy agreement as well. We refer the
reader to [20–22] for a detailed definition of injective synchronisation and a proof that agreement is
implied by injective synchronisation, as well as comparisons between synchronisation and various
other notions of authentication.

As discussed in [22], theloop-propertyis instrumental to achieve injectivity. This property states
that for every two agentsA andB there must be a message sequence, starting and ending inA, which
passes throughB (possibly via some other agents). In the current context theloop-property turns
out to be a necessity. Phrased in terms of challenge-response behaviour: in order to achieve injective
synchronisation, each role must send a challenge that is replied to by all other roles.

Now we can prove that the minimal number of messages needed toachieve injective synchronisa-
tion of p parties is2p − 1. Consider the first message sent by some roleR(x), and call this message
m. In order to achieve a loop to all other roles after this first message, every role will have to send at
least one message afterm. Including messagem this will yield at leastp messages. Next we observe
that every role must take part in the protocol and we considerthe first message sent by each of the
roles. If we takeR(x) to be the last of thep roles that becomes active in the protocol, it must be the
case that beforeR(x) sends his first message, at leastp − 1 messages have been sent. Adding this to
thep messages that must have been sent after that message, yieldsa lower bound of2p− 1 messages.

Important to the approach here is that we considerlocal synchronisation claims. That means that
an agent may decide that the complete protocol has been executed exactly as expected, based on his
local observations only. These observations only take intoaccount the contents of the communications
that the agent was involved in. Whenever such an agent successfully completes a run of a synchronis-
ing protocol, all other parties involved in the protocol have executed their part exactly as expected.

3 Instantiations

In this section we will define six multi-party authentication protocols, which are all based on the
framework from Section 2. The first protocol (denoted byα) generalizes the NS private-key protocol.
Agents use signatures to construct their replies to the received challenges. Rather than signing whole
incoming messages, agents only sign the contents of these message, thereby effectively replacing
the signature of the previous agent. This expresses that agents can trust all other agents taking part
in the same session. We call this strategydelegated authentication. Stated differently, if one of the
agents taking part in a session is compromised, the adversary can abuse this to falsely authenticate
one or more other participants to the same session. The second protocol (denoted byβ) additionally
provides secrecy of the nonces, by using public keys for encrypting the nonces. It generalizes the
well-known NSL public-key protocol. The third protocol (denoted byβ∗) is an optimization of the
second protocol in the sense that it uses symmetric encryption instead of asymmetric encryption for
half of the messages.

These protocols have to be strengthened if it is desired to reach agreement with the uncompro-
mised participants of a session, even if some participants of that session are compromised. Therefore,
we define three non-delegated variants of the protocols, denoted byα-nd , β-nd andβ-nd

∗, that do
not rely on delegated authentication. This requires that every agent proves its identity to every other
agent, which in general yields protocols that are less efficient.

Please notice the distinction between two interpretationsof compromised agents. The first inter-
pretation considers the correctness of a session only if allparticipants are uncompromised, possibly
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executed in parallel with other session in which compromised agents take part. This is the standard
interpretation, adopted in most literature on security protocols. In this interpretation delegation of au-
thentication is acceptable. However, in the setting of multi-party authentication protocols the above
sketched interpretation can be useful. It states that decent behaviour of the protocol is required even if
compromised agents take part in the session under study. This interpretation requires direct authenti-
cation.

3.1 Generalized NS private-key protocol (α).

The first instantiation of our framework generalizes the NS private-key protocol. Figure 3 illustrates
the four-party version of this protocol.

n0

R0

n1

R1

n2

R2

n3

R3

{ n0, R1, R2, R3 }sk0

{ n0, n1, R0, R2, R3 }sk1

{ n0, n1, n2, R0, R1, R3 }sk2

{ n0, n1, n2, n3, R0, R1, R2 }sk3

{ n1, n2, n3, R1, R2, R3 }sk0

{ n2, n3, R0, R2, R3 }sk1

{ n3, R0, R1, R3 }sk2

Fig. 3. Four-party generalized NS private-key protocol (α).

First, the initiating agent chooses which parties he wants to communicate with. He creates a new
random value,n0, and combines this with the names of agentsR1, R2 andR3. He signs the resulting
message with his private key, and sends the message toR1. Upon receipt of this message and verifi-
cation of the signature, the second agent takes the contentsof the message, adds his own fresh nonce
and replaces his nameR1 by R0. This modified message is then signed and sent along. This continues
until each agent has added his nonce, upon which the message is sent back to the initiating agent. This
agent checks whether the message contains the nonce he created earlier, and whether all agent names
match. Then he can conclude that the other agents are authenticated. Next, in order to prove his own
identity, he sends a signed message containing the other agents’ nonces toR1. The subsequent agents
again check whether their own nonces are in the message, remove this nonce, and pass the resulting
message on.

For the general definition of this protocol we have to make thetwo message types explicit, which
requires the auxiliary function AL(x), defining the list of all parties exclusive ofx.

AL(x) = [R0, R1, . . . , R(p − 1)] \ x

MsgAα(i) = { [n0, . . . , ni], AL(Ri) }sk(Ri)

MsgBα(i) = { [n(i + 1), . . . , n(p − 1)], AL (Ri) }sk(Ri)

This protocol achieves injective synchronisation throughdelegated authentication.
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3.2 Generalized NSL public-key protocol (β).

Because the previous protocol makes use of a signature scheme, the nonces will be exposed to an
eavesdropping adversary. This is not problematic when using these nonces to generate a unique session
id, but the nonces cannot be used for establishing a secret session key. Secrecy of nonces can be
achieved by using the public key of the sender for encryption, as in the NSL public-key protocol. The
four-party generalization of this protocol is in Figure 4.

n0

R0

n1

R1

n2

R2

n3

R3

{ n0, R0, R2, R3 }pk1

{ n0, n1, R0, R1, R3 }pk2

{ n0, n1, n2, R0, R1, R2 }pk3

{ n0, n1, n2, n3, R1, R2, R3 }pk0

{ n1, n2, n3 }pk1

{ n2, n3 }pk2

{ n3 }pk3

Fig. 4. Four-party generalized NSL public-key protocol (β).

The messages of the generalized protocol are defined using the functionnext, which determines
the next role in the list of participants in a cyclic way.

next(i) = R((i + 1) mod p)

MsgAβ(i) = { [n(0) . . . n(i)], AL (next(i)) }pk(next(i))

MsgBβ(i) = { [n(i + 1) . . . n(p − 1)] }pk(next(i))

Clearly, if we instantiate the generalized protocol forp = 2, we get exactly the three message
version of the NSL protocol. The purpose of this protocol is to achieve authentication of all parties
and distribution and secrecy of all nonces.

We refer to our technical report [19] for a correctness proofof this protocol. In this proof we
have used some (but not all) information that distinguishesthe messages in the protocol. In particular,
we have only used the collection of agent names and nonces occurring in the messages. A direct
consequence of this is that the exact order of the agent list and nonce list is not relevant, as long as it
is used consistently. We could e.g. redefine messages of typeA as to start with a reversed list of roles,
followed by the list of nonces. Furthermore we did not require in the proof of the protocol, that there
was nothing else inside the encrypted terms besides names and nonces. Thus, we can add any payload
inside the encryption, as long as we ensure that it cannot be confused with an agent term or a nonce.

This opens up several possibilities for establishing e.g. keys between pairs of agents inside of the
generalized NSL protocol.

Finally we want to mention that our correctness proof implies that the protocol is not only correct
for any specific choice ofp. Rather, the protocol is even correct in a context where the instances of the
protocol for different values ofp run in parallel.
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3.3 Generalized Bilateral Key Exchange (β∗).

Similar to the Bilateral Key Exchange protocol (BKE) as described in [14] we can opt to replace the
asymmetric encryption for the messages of type B by symmetric encryption with the nonce of the
recipient. We can then omit this nonce from the list. We useǫ to denote a constant representing the
empty list. In general symmetric encryption is much less computationally intensive than asymmet-
ric encryption, resulting in a more efficient protocol than the previous one. Figure 5 illustrates the
four-party BKE protocol. The generalized BKE protocol satisfies the same security properties as the
generalized NSL public-key protocol.

n0

R0

n1

R1

n2

R2

n3

R3

{ n0, R0, R2, R3 }pk1

{ n0, n1, R0, R1, R3 }pk2

{ n0, n1, n2, R0, R1, R2 }pk3

{ n0, n1, n2, n3, R1, R2, R3 }pk0

{ n2, n3 }n1

{ n3 }n2

{ ǫ }n3

Fig. 5. Four-party generalized BKE protocol (β∗).

The generalized BKE protocol is described by the following message definitions.

nlist(i) =

{

[n(i + 2) . . . n(p − 1)] if i < p − 1

ǫ if i = p − 1

MsgAβ∗(i) = { [n0 . . . ni], AL(next(i)) }pk(next(i))

MsgBβ∗(i) = { nlist(i) }n(i+1)

3.4 Generalized NS private-key protocol without delegatedauthentication (α-nd ).

As stated before, the above protocols all make use of the delegation of authentication. If one of
R0, . . . , R(p − 1) is compromised in a given session, the attacker can falsely authenticate the other
parties throughout that session. The solution of this problem is to not rely on the chain of trust, which
means that every party has to explicitly verify the responses of all other parties. The simplest way
to achieve this is to accumulate the signatures of all parties involved. This yields the protocol from
Figure 6.
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n0

R0

n1

R1

n2

R2

n3

R3

L, n0

{ L, n0, n1 }sk1

{ { L, n0, n1 }sk1, n2 }sk2

{ { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3

{ { { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3 }sk0

{ { { { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3 }sk0 }sk1

{ { { { { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3 }sk0 }sk1 }sk2

Fig. 6. Four-party NS private-key protocol without delegated authentication, whereL = R0, R1, R2, R3 (α-nd ).

The messages of the generalized protocol are recursively defined as follows.

MsgAα-nd
(0) = R0, R1, . . . , R(p − 1), n(0)

MsgAα-nd
(i) = { MsgAα-nd

(i − 1), n(i) }sk(Ri) (for 0 < i ≤ p − 1)

MsgBα-nd(0) = { MsgAα-nd(p − 1) }sk(R0)

MsgBα-nd
(i) = { MsgBα-nd

(i − 1) }sk(Ri) (for 0 < i ≤ p − 2)

Like the previous protocols, this protocol satisfies injective synchronisation. However, in addition
it satisfies the fact that attacks on one agent cannot propagate through the protocol. When running a
session with one or more compromised parties, we cannot conclude anything about the behaviour of
these compromised parties. Because the adversary is able toforge the signatures of the compromised
parties they don’t even have to satisfy the, rather weak, property ofaliveness. Therefore, we can only
conclude about the status of the honest participants to the session. In particular, we can conclude that
all uncompromisedparties in a session achieveagreementover all nonces of these uncompromised
parties. For the definition of agreement, we refer to [32].

3.5 Generalized NSL public-key protocol without delegatedauthentication (β-nd ).

As the previous protocol is based on signatures, it does not provide secrecy of the nonces. This can
be achieved by merging this protocol with the generalized NSL public-key protocol from Section 3.2.
The resulting protocol is illustrated in Figure 7. The messages of this protocol are defined as follows.

MsgAβ-nd
(i) = { MsgAα-nd

}pk(next(i))

MsgBβ-nd
(i) = { MsgBα-nd

}pk(next(i))

The virtue of this protocol is that it satisfies injective synchronisation and secrecy of the nonces if
all participants to a session are uncompromised. In case of compromised participants, it satisfies agree-
ment between uncompromised parties on the nonces of these uncompromised parties. Please notice
that we do not have secrecy of the nonces if one or more participants in a session are compromised.
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n0

R0

n1

R1

n2

R2

n3

R3

{ L, n0 }pk1

{ { L, n0, n1 }sk1 }pk2

{ { { L, n0, n1 }sk1, n2 }sk2 }pk3

{ { { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3 }pk0

{ { { { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3 }sk0 }pk1

{ { { { { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3 }sk0 }sk1 }pk2

{ { { { { { { L, n0, n1 }sk1, n2 }sk2, n3 }sk3 }sk0 }sk1 }sk2 }pk3

Fig. 7. Four-party NSL public-key protocol without delegated authenication, whereL = R0, R1, R2, R3 (β-nd ).

This property would contradict the requirement that at the end of the protocol all participants know
all nonces. It is not possible for an agent to find out whether another agent has been compromised or
not, so the intruder will always learn all information made available to the compromised agent.

3.6 Generalized BKE protocol without delegated authentication (β-nd
∗).

The generalized BKE protocol without delegated authentication is constructed from the previous pro-
tocol by replacing the asymmetric encryption in type B messages by encryption with the recipient’s
nonce. We will only provide the message definition of this protocol.

MsgAβ-nd
∗(i) = { MsgAα-nd

}pk(next(i))

MsgBβ-nd
∗(i) = { MsgBα-nd

}n(i+1)

3.7 Type-flaw attacks.

In assessing the correctness of the six protocols above, we have assumed that type-flaw attacks are
not possible, i.e. agents can verify whether an incoming message is correctly typed. There are several
reasons for doing this. Without this assumption, there are type-flaw attacks on all members of the
defined protocol family provided here. There are not only simple attacks for specific instances ofp,
but also multi-protocol type-flaw attacks involving instances for several choices ofp in one attack,
as in [17]. Thus, we find that typing is crucial. Solutions forpreventing type-flaw attacks using type
information is examined in detail in e.g. [26]. Such type information can be easily added to each
message, but a simple labeling will also suffice. If we add a tuple(p, l) before each message inside the
encryption, wherep is the number of participants for this instance, andl is the label of the message,
the protocols become robust against type-flaw attacks and multi-protocol attacks with other instances
of itself.

Using an automatic protocol verification tool (Scyther, [16]) we have established that the type-
flaw attacks on synchronisation are not due to the specific ordering of the nonces and agent names
within the messages. In particular, we examined different options for the message contents (without
adding labels): reversing the order of either the agent or the nonce list, interleaving the lists, etc. We
established the existence of type-flaw attacks for some choices ofp for all variants we constructed.
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4 Related Work

In Dolev-Yao style analysis of security protocols, where black-box abstractions of cryptographic op-
erators are considered, protocols usually consist of two orthree roles only. There are many recent
successful methodologies [23,41] and analysis tools [3,6,15,16] that can be used to analyse protocols
in the Dolev-Yao model. All the tools mentioned assume the protocols have a fixed number of partici-
pants. Therefore, they cannot be used to analyze multi-party protocols in general, but they can be used
to analyze specific instances of such protocols. For example, Proverif [6] has been used to analyze
instances of the GDH protocols from [2], and here we have usedScyther [16] to analyze instances of
our protocol.

In spite of the success of these methods, few multi-party protocols have been constructed in the
Dolev-Yao setting. As a notable exception we would like to mention [12], where the authors construct
a challenge-response protocol for any number of parties. However, the protocol described there does
not satisfy synchronisation or agreement, which is shown inour technical report [19].

On the other hand, many multi-party protocols have been constructed and analyzed in a crypto-
graphic setting, e.g. [1,2,4,5,7–9,13,27,29,30,34]. These protocols are typically assumed to employ
a multicast primitive, and based on this primitive their complexity can be analyzed, as in e.g. [28,33].
Unfortunately the protocols in this category are designed to meet different goals than the protocol
presented here, and therefore cannot be used to compare withour approach.

On the borderline between the cryptographic approach and the formal Dolev-Yao approach, the
Bull protocol from [11] provides an interesting example. This protocol is flawed, as shown in [38],
although a more abstract version was shown to be correct in [36].1 Unlike the generalized NSL proto-
col, this protocol is based on agents sharing a symmetric keywith a server, and furthermore the server
is involved in each session.

Recently, a corpus of multi-party protocols have been established as part of the Coral project [40],
aiming to establish a reference set for multi-party protocol analysis.

Regarding proving authentication protocols correct, there have been some recent attempts to sim-
plify such proofs. For example, one successful approach is to use static analysis of the protocol to
prove authentication properties, as described in e.g. [10]. However, the notions of authentication used
there are weaker than synchronisation or agreement, and themethods used there do not seem suitable
for proving synchronisation.

5 Conclusions and Future Work

We proposed a family of security protocols for multi-party authentication and discussed six novel
protocols from this family. The first three protocols assumethat all agents taking part in the protocol
session are uncompromised, which makes it possible to use delegated authentication. In particular, we
provided a protocolα which is based on private key encryption (signing), and two protocolsβ andβ∗

based on public key encryption, that also provide secrecy ofthe nonces. Interestingly, the two-party
version ofβ coincides with the Needham-Schroeder-Lowe protocol, and the two party version ofβ∗

coincides with the Bilateral Key Exchange protocol.
The next three protocolsα-nd , β-nd , andβ-nd

∗ are strengthened versions of the first three pro-
tocols. They use direct authentication instead of delegated authentication, at the cost of a loss in
efficiency. Delegated authentication implies that a compromised participant in a protocol session can

1 In this particular case, the cryptographic implementationdiffers in a significant way from the abstract version, which
allows for new attacks: the exclusive or operator does not satisfy the properties required for black-box encryption, because
under certain conditions it is possible to retrieve the key encrypted term.
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falsely authenticate other participants of that session. This property has hardly been studied before,
since it has no meaning in the common setting of two-party protocols. There it is assumed that al-
though there may be compromised parties, an actual session only has to provide authentication if all
(both) partners are uncompromised. A recent study discussing a related issue for secrecy is in [24].

All six protocols satisfy injective synchronisation. Except for the two protocolsα andα-nd , that
are based solely on private keys, the protocols satisfy secrecy of the nonces as well. The third protocol
β∗ and its strengtheningβ-nd

∗ are optimized with respect to the use of symmetric encryption.
The correctness proofs, although not presented here, are formulated in terms of the operational

semantics framework introduced in [18,20–22] and do not require a fixed number of partiesp. This is
in line with more recent attempts (e.g. [40]) to develop methodologies for such (parameterised) multi-
party protocols, for which these protocols could be used as acase study. Correctness of the protocols
is subject to the assumption that the messages include enough information as to allow a receiving
agent to check if a message is correctly typed, and correctlysplit into subterms.

As has been shown by history, constructing correct securityprotocols is not trivial. Even knowing
this, we were surprised to find that all variants of the proposed protocol (irrespective of the ordering
of nonces and role names in the messages) suffer from type-flaw attacks. We found this out by using
the Scyther tool [16]. In fact, we extensively used this toolto investigate instances of the protocols for
a specific number of participants to guide us in our research.A simple (and standard) extension of the
messages will make the protocols resilient against such type-flaw attacks.

We showed that the communication structure underlying the protocols can serve as a generic pat-
tern for multi-party challenge-response mechanisms, in which many variants can be captured. These
generalized protocols can serve as efficient communicationstructures underlying multi-party authen-
tication schemes as used in electronic commerce protocols.An interesting topic for future research is
to study other members of the protocol family.
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ios: Models, Transformations and Tools, International Workshop, Dagstuhl Castle, Germany, September 7-12, 2003,
Revised Selected Papers, volume 3466 ofLNCS. Springer, 2005.

19. C.J.F. Cremers and S. Mauw. Generalizing Needham-Schroeder-Lowe for multi-party authentication. CS-Report 06/04,
Department of Mathematics and Computing Science, Eindhoven University of Technology, 2006.

20. C.J.F. Cremers, S. Mauw, and E.P. de Vink. Defining authentication in a trace model. In Theo Dimitrakos and Fabio
Martinelli, editors,FAST 2003, pages 131–145, Pisa, September 2003. IITT-CNR technical report.

21. C.J.F. Cremers, S. Mauw, and E.P. de Vink. A syntactic criterion for injectivity of authentication protocols. In P. Degano
and L. Vigano, editors,Arspa 2005, volume 135(1) ofENTCS, pages 23–38, July 2005.

22. C.J.F. Cremers, S. Mauw, and E.P. de Vink. Injective synchronisation: an extension of the authentication hierarchy.
Theoretical Computer Science, 2006. Special issue on ARSPA’05, (P. Degano and L. Vigano, eds.). To appear.

23. A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. Secure protocol composition. InFMSE ’03: Proceedings of the
2003 ACM workshop on Formal methods in security engineering, pages 11–23, New York, NY, USA, 2003. ACM
Press.

24. A. D. Gordon and A. S. A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the pi-calculus. InProc.
Concur, Lecture Notes in Computer Science, pages 186–201. Springer-Verlag, 2005.

25. C. He and J.C. Mitchell. Analysis of the 802.11i 4-way handshake. InWiSe ’04: Proceedings of the 2004 ACM
workshop on Wireless security, pages 43–50, New York, NY, USA, 2004. ACM Press.

26. J. Heather, G. Lowe, and S. Schneider. How to prevent typeflaw attacks on security protocols.Journal of Computer
Security, 11(2):217–244, 2003.

27. Just and Vaudenay. Authenticated multi-party key agreement. InASIACRYPT: Advances in Cryptology – ASIACRYPT:
International Conference on the Theory and Application of Cryptology. LNCS, Springer, 1996.

28. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. pages 110–125. LNCS 2729, Springer,
2003.

29. H. Lee, H. Lee, and Y. Lee. Multi-party authenticated keyagreement protocols from multilinear forms, 2002.
30. N.Y. Lee and M.F. Lee. Comments on multiparty key exchange scheme.SIGOPS Oper. Syst. Rev., 38(4):70–73, 2004.
31. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. InProceedings of TACAS,

volume 1055, pages 147–166. Springer Verlag, 1996.
32. G. Lowe. A hierarchy of authentication specifications. In Proc. CSFW ’97, Rockport, pages 31–44. IEEE, 1997.
33. D. Micciancio and S. Panjwani. Optimal communication complexity of generic multicast key distribution. In Jan Ca-

menisch and Christian Cachin, editors,Advances in cryptology - EUROCRYPT 2004, proceedings of theinternarional
conference on the theory and application of cryptographic techniques, volume 3027 ofLecture Notes in Computer
Science, pages 153–170, Interlaken, Switzerland, May 2004. Springer-Verlag.

34. D. Nalla and K. Reddy. Id-based tripartite authenticated key agreement protocols from pairings, 2003.
35. R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.Communications

of the ACM, 21(2):120–126, February 1978.
36. L.C. Paulson. Mechanized proofs for a recursive authentication protocol. In10th Computer Security Foundations

Workshop, pages 84–95. IEEE Computer Society Press, 1997.
37. A.W. Roscoe. Intensional Specifications of Security Protocols. InProc. CSFW ’96, pages 28–38. IEEE, 1996.
38. P. Y. A. Ryan and S. A. Schneider. An attack on a recursive authentication protocol. a cautionary tale.Inf. Process.

Lett., 65(1):7–10, 1998.
39. Security protocols open repository (SPORE).http://www.lsv.ens-cachan.fr/spore.
40. G. Steel. Coral project: Group protocol corpus, 2004.http://homepages.inf.ed.ac.uk/gsteel/

group-protocol-corpus.
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