
THE BRIDGE BETWEEN THE ABSTRACT AND THE

UNIMAGINABLE, A VERY ROUGH DRAFT

HARRY KIM

1. Introduction

1.1. Introduction. The purpose of this paper is to translate ”Hilbert Space Op-
erators and Quantum Mechanics” by Edward W. Packel into an undergraduate
understandable paper. A common difficulty in dealing with mathematics is the ab-
stractness and its relationship with familiar, everyday problems. The application
and usefulness of mathematics is generally unfathomable, however I will elucidate
a beautiful application of extremely theoretical Hilbert Spaces to Quantum Me-
chanics. Although quantum mechanics is not a familiar concept, the foundation of
Hilbert Spaces describes the theory of quantum mechanics almost flawlessly.

2. Let us begin

To begin the translation of this paper, I will introduce many definitions that
may be familiar concepts obfuscated by the terminology.

Definition 2.1. Dense Subset : A subset A is dense if Ā = X. A subset A of X is
dense if every x ∈ X is the limit of a sequence of points in A or is an element of A.

Definition 2.2. Metric Space: A metric is a function which defines the meaning
of ”distance” between two elements on a space. A metric space (X, d) is a space X
with a metric d : X × X → R defined on it. In other words, if I were to ask you
the distance between two points on X, you would get the same answer as everyone
else.

A metric has 3 specific properties, ∀x, y, z ∈ X

d(x, y) = d(y, x)

d(x, y) ≥ 0, d(x, y) = 0 ⇔ x = y

d(x, y) ≤ d(x, z) + d(z, y)

e.g. The metric in hyperbolic geometry is |dz| = 2|dz|
1−|z|2

Definition 2.3. Complete: A metric space (X, d) is complete if every Cauchy
sequence in X has a limit in X. In addition, a normed vector space that is complete
with respect to a metric is a Banach Space.

Definition 2.4. Normed Inner Product Space: A vector space V over complex
numbers where the metric d(x, y) = ||x− y|| = ⟨x− y, x− y⟩1/2 for all x, y ∈ V .
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Properties of the inner product is as follows, ⟨., .⟩ : H × H → C, ∀f, g, h ∈
H and ∀α, β ∈ C,

⟨f, g⟩ = ⟨g, f⟩(1)

⟨αf + βg, h⟩ = ⟨αf, h⟩+ ⟨βg, h⟩(2)

⟨f, f⟩ ≥ 0, equality iff f ≡ 0(3)

The inner product of two numbers (ordinary multiplication) or vectors is equivalent
to the well-known dot product or scalar product, ⟨x, y⟩ = x · ȳ. Suppose f, g are
Lebesgue integrable functions on the [a, b] then

⟨f, g⟩ =
∫ b

a

f ḡ,

if we ignore the differences between the two functions on Lebesgue measure zero.
Elements of Hilbert Spaces satisfy Schwarz’s (also known as Cauchy’s) Inequality

(4) ⟨f, g⟩ ≤ ||f || ||g||
As well as the Triangle Inequality, which can be derived from (4)

(5) ||f + g|| ≤ ||f ||+ ||g||
With the Triangle inequality and other properties easily derived from the inner
product, it can be shown that ⟨f, f⟩ = ||f ||1/2 satisfies the properties of a norm
and thus is indeed a metric defined by a norm.

Theorem 2.5. [2, I.7.6 Theorem] Suppose the sequences xn → x and yn → y in a
inner-product space X. Then ⟨xn, yn⟩ → ⟨x, y⟩. In other words, the inner product
is continuous on the metric space X ×X.

Proof.

⟨xn, yn⟩ − ⟨x, y⟩ = ⟨xn, yn⟩ − ⟨xn, y⟩+ ⟨xn, y⟩ − ⟨x, y⟩
= ⟨xn − x, yn⟩+ ⟨x, yn − y⟩

By Schwarz inequality

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ ||xn − x|| ||yn||+ ||x|| ||yn − y||
yn → y so ||yn|| → ||y|| and same for xn. So, ||xn − x|| → 0 and ||yn − y|| →=
0. Hence, ⟨xn, yn⟩ → ⟨x, y⟩, in other words, the inner product is a continuous
function. �

Example 2.6. Let

V = {{xk} : {xk} is a sequence of complex numbers and the series
∞∑
k=1

|xk|2 converges in R}.

Also, for every x, y ∈ V ,

⟨x, y⟩ =
∞∑
k=1

xkȳk

First, for all n ∈ N, we use the algebraic, geometric inequality and basic properties
of complex numbers and its conjugates,

|xnȳn| = |xn||yn| and by the algebraic, geometric inequality, 2|xn||yn| ≤ |xn|2+|yn|2.
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Since this inequality is true for all xn and yn,
∞∑
k=1

|xnȳn| ≤
1

2
[

∞∑
k=1

|xn|2 +
∞∑
k=1

|yn|2]

By the suppositions, the right hand side converges absolutely so by comparison,
the left hand side converges absolutely and thus converges in Cm. In addition, the
⟨., .⟩ defined in V satisfies equations (1)-(3) due to properties of convergent series.
Hence, V is a normed inner product space.

Definition 2.7. Hilbert Space: A complete normed inner product space.

Example 2.8. A commonly used example of a Hilbert space is the space of square
Lebesgue integrable functions L2(R). I will use this space to exemplify many uses
of Hilbert space in quantum mechanics, however it is a non-trivial proof to prove
that L2(R) is indeed a Hilbert space.

3. Operators on Hilbert Spaces

A crucial link between Hilbert Spaces and Quantum Mechanics are the operators
which map from one Hilbert space to another, U : H → H. These operators are
generally associated with observable physical quantities so we shall only consider
structure preserving operators for simplicity. Such morphisms are operators of H.
A bounded linear operator is a linear transformation between two normed vector
spaces T : X → Y (we are considering only transformations T : H → H) for
which ∃M > 0 such that ||T (h)|| ≤M ||h|| ∀h ∈ H. The norm of an operator is the
minimum M so the inequality is true for all h ∈ H.
More precisely, a (linear) operator T on Hilbert space H is bounded if ∀f, g ∈
H and α, β ∈ C, as defined in [4],

T : H → H (T is defined on all of H)

T (αf + βg) = αT (f) + βT (g) (T is linear)

||T || ≡ sup||f ||51 ||T (f)|| <∞ (T is bounded)

Example 3.1. A couple of familiar bounded linear operators are

(If)(x) = f(x)

(Uf)(x) = eix(x)

For the rotation operator, we know that ||eixf(x)|| = ||eix|| ||f(x)|| ≤ ||f(x)|| so it
is bounded and the identity operator is obviously bounded.

Theorem 3.2. [2, I.3.2 Theorem] Let T be a linear operator with domain X and
range Y where X, Y are normed linear spaces. Then, the following statements are
equivalent.

(i) T is continuous at a point
(ii) T is uniformly continuous on X
(iii) T is bounded; i.e., there exists a number M such that ∀x ∈ X

||T (x)|| ≤M ||x||

Proof. (i) implies(ii). Suppose T is continuous at xo ∈ X. Given ϵ > 0, there
exists a δ = δ(ϵ) such that

||T (x)− T (xo)| < ϵ ||x− xo|| < ϵ
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Let u be any point in X. Then for ||u − v|| < δ it follows from above and the
additivity of T that

||T (u)− T (v)|| = ||T (xo)− T (xo + u− v)|| < ϵ

This proves (ii).
(ii) implies (iii). The continuity of T on X implies that there exists a δ > 0

such that
||T (x)|| = ||T (x)− T (0)|| ≤ 1 ||x|| ≤ δ

For x ̸= 0 in X, δ = || δx||x|| ||, so

1 ≥ ||T ( δx
||x||

)|| = δ
||T (x)||
||x||

⇒ ||T (x)|| ≤ δ−1||x|| ∀x ∈ X

(iii) implies (i). The inequality ||T (x)− T (z)|| ≤M ||x− z|| implies (i). �
An operator T is unbounded, as defined in [4], if,

T : Ω → H where Ω is a dense subset of H

T is linear on Ω

||T || ≡ sup||f ||51 f∈Ω ||T (f)|| = ∞.

T is closed

Remark 1. An operator is closed if the set

graph(T ) = {(f, Tf) ∈ H ×H : f ∈ Ω}
is a closed subspace of H ×H.

Example 3.3. Couple of important examples of unbounded operators p and q are

(pψ)(x) = xψ(x) (the position operator).(6)

(qψ)(x) = −i~ψ′(x) (the momentum operator).(7)

on suitable subsets of L2(R). It requires a non-trivial proof to show that these
operators are dense closed and their domains dense, however to show that they are
not bounded, first consider the position operator. Consider the function

fk(x) =

{
1 : x ∈ [k − 1, k]
0 : otherwise

||xfk|| � C||fk|| for all fk since ||fk|| = 1. For the momentum operator, there is
not a constant C such that || − if ′|| = ||f ′|| ≤ C||f || for all x if f = 1/x

Definition 3.4. Unitary Operators: A linear transformation U that maps Hilbert
spaces H to K, U : H → K, is unitary if it is surjective (U(H) = M ⊆ K) and
||U(f)|| = ||f ||, f ∈ H.

Example 3.5. In Example 3.1 both operators are unitary operators.

Definition 3.6. Unitarily Equivalent Operators: An unitary operator U which
also satisfies, for linear operators f, g ∈ Hf , Hg respectively, (U−1fU)(x) = g(x)
for any x ∈ Hg.

Definition 3.7. Unitary Isomorphism: Given Hilbert spaces H and K, a linear
mapping U : H → K is a unitary isomorphism if it is bijective and preserves inner
products (e.g. ∀x, y ∈ X, ⟨Ux,Uy⟩ = ⟨x, y⟩).
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Definition 3.8. Self-Adjoint : An linear operator U on Hilbert space H is self-
adjoint if ∀f, g ∈ domain(U), ⟨Uf, g⟩ = ⟨f, Ug⟩ and range(T − iI) = range(T +
iI) = H.

Note that for a bounded complex valued operators U , this implies that U =

U
T
= U∗ (Hermition symmetric).

Remark 2. When an operator U is bounded, then it is sufficient for self-adjointness
if ⟨Ux, y⟩ = ⟨x, Uy⟩, however it becomes a bit more complicated when the operator
is unbounded. Thus the second condition is necessary a general case for all operators
on H.

Example 3.9. [1, Example 5A.17C] Consider the operators p and q from Example
3.3. Let H = L2(a, b) where ψ1, ψ2, pψ1, pψ2 ∈ H, consider the difference

⟨pψ1, ψ2⟩ − ⟨ψ1, pψ2⟩ =
∫ b

a

xψ1ψ2dt−
∫ b

a

ψ1xψ2dt = 0

since x is real on the interval. Hence, the position vector is self-adjoint.

Example 3.10. [1, Example 5A.17B] Now consider the momentum operator. Use
the same H = L2(a, b) and a linear manifold (a generalization of finite vector
subspaces) in L2(a, b) M = {ψ ∈ H| the set of points in (a,b) at which ψ is not
differentiable has Lebesgue measure zero, ψ′ ∈ H, and ψ(a) = ψ(b) = 0}. For
ψ1, ψ2 ∈M ,

⟨qψ1, ψ2⟩ − ⟨ψ1, pψ2⟩ = i

∫ b

a

ψ′
1ψ2dx+ i

∫ b

a

ψ1ψ′
2dx = i(ψ1ψ2(b)− ψ1ψ2(a)) = 0.

Hence, the momentum vector is also self-adjoint.

4. The Connection with Quantum Mechanics

Now that most of the necessary machinery have been introduced, I will start
to build the bridge and demonstrate the relationship between Hilbert space and
quantum mechanics.
Quantum mechanics, developed in early 20th century, introduced many baffling
properties such as the two-slit interference pattern which lead to the conclusion of
particles having wave-like behavior as well as waves having particle-like behavior.
Physicists call this the wave-particle duality. Another curious property of quan-
tum mechanics is the probabilistic nature of tiny forms of matter. Matter, in the
microscale, seemed to act completely randomly, but ”macroly” it followed rules
of probability, which invoked new mathematics to describe nature. A mathemati-
cian and physicist John von Neumann studied abstract generalizations of Euclidean
spaces, proposed axioms for Hilbert Spaces, and used them as the mathematical
foundations of quantum mechanics. A few more definitions need to be introduced
from basic probability to describe quantum mechanics.

Definition 4.1. Random Variable: A function that assigns numerical values to
each possible outcome of an experiment.

Example 4.2. Suppose our experiment is flipping a coin twice to see what the pos-
sible outcomes are. Of course the set of possible outcomes S = {HH,TH,HT, TT}
Let the random variable X represent the number of tails, which attains value from
a set P = {0, 1, 2}. Thus, the random variable maps outcomes to numerical values.
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Remark 3. Note that this random variable has discrete values 0,1,2. There are other
types of random variables, continuous and mixed (both discrete and continuous).

Definition 4.3. Probability Density Function: a function f : R → R such that∫
S
f = the probability of finding the variable in the subset S ∈ R.

Example 4.4. A Gaussian distribution is a common probability density function
for continuous random variables such as salary of certain jobs in a given area code.

Definition 4.5. Expectation: The expectation can be interpreted as the average
value of a random variable and is defined as Eg =

∫
R xg(x) dx.

Remark 4. The Expected Value is not necessary or usually the most probable
outcome, but more the value when repetition of the experiment is taken to infinity.

Example 4.6. Consider the coin flipping experiment from above. The random
variable is again the number of Tails so the expectation would be

(0× 1

4
) + (1× 1

2
) + (2× 1

4
) = 1.

Remark 5. The expectation for this is a possible outcome, but consider rolling
a six-sided dice once; the expected value would be 3.5, which is not a possible
outcome.

Definition 4.7. Variance: The variance can be interpreted as the deviation from
the expected value Eg and is defined as Dg =

∫
R(x− Eg)

2g(x)dx.

Remark 6. Generally in physics, (Dg)
1/2 is called the standard deviation of the

random variable from the expected value.

In quantum mechanics, the term observables describes quantities of a system
such as energy, momentum, and position. Observables in quantum mechanics cor-
respond to self-adjoint operators on L2(R) which acts on a function which is used
to describe the probability of an observable (the random variable). This function is
called the wavefunction ψ. The wavefunction is a function that describes the state
of the system. As the state of the system changes, the outcomes of experiments
done on the system changes. To go into more depth of how the wavefunction and
the state of a system are related would be too much of a tangent for the purpose of
this paper so we shall continue on the current path. If T is a operator corresponding
to some observable then,

(8) Eψ(T ) ≡ ⟨Tψ, ψ⟩

The variance for an operator in quantum mechanics is defined as

(9) Dψ(T ) ≡ ||(T − Eψ(T )I)ψ||2 = ⟨(T − Eψ(T )I)ψ, (T − Eψ(T )I)ψ⟩.

Theorem 4.8. [4, Theorem 1] If A and B are self-adjoint operators on a Hilbert
space H and if ψ is in domain(AB) ∩ domain(BA), then

Dψ(A)Dψ(B) = 1

4
|Eψ(AB −BA)|2
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Proof.

|Eψ(AB −BA)|2 =

|⟨(AB −BA)ψ,ψ⟩|2 =

|⟨ABψ,ψ⟩ − ⟨BAψ,ψ⟩|2 =

|⟨ABψ,ψ⟩ − ⟨ψ,ABψ⟩|2 =

|2ℑ⟨ABψ,ψ⟩|2

Note for any a and b in R,

(AB −BA) = (A− aI)(B − bI)− (B − bI)(A− aI) =

letting EψA = a and EψB = b, we get

1

4
|Eψ(AB −BA)|2 =

1

4
|Eψ[(A− aI)(B − bI)− (B − bI)(A− aI)] =

ℑ(⟨(A− aI)(B − bI)ψ,ψ⟩)2 =

ℑ(⟨(A− aI)ψ, (B − bI)ψ⟩)2 5
(Schwarz) ||(A− aI)ψ||2||(B − bI)ψ||2 =

Dψ(A)Dψ(B)

�

The quantity AB −BA from the proof is called the commutator of A and B. It
can be shown that the commutator of p and q on L2(R) is

(10) pq − qp = −iI.

The position and momentum operators, which are associated to observables, satisfy
the hypothesis of Theorem 4.8, so it can applied to q and p to conclude,

(11) Dψ(q)Dψ(p) =
1

4
[Eψ(−iI)]2

or in more familiar terms and using the correct units of ~ as done in quantum
mechanics,

(12) ∆p∆q = ~
2

which is the famous Heisenberg Uncertainty Principle.
The commutator of Equation 10 would be useful to generalize, however the next
Theorem makes it a bit more complicated.

Theorem 4.9. [4, Theorem 2] There do not exist bounded operators P and Q on
H that satisfy PQ−QP = −iI.

Proof. We can replace P with iP so the equation PQ-QP = -iI with PQ-QP = I
without any loss of generality. Suppose there are bounded operators P and Q such
that the equation holds. For n = 1, 2, ...

(13) nQn−1 = PQn −QnP
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For n = 1, the equation is the initial equation PQ-QP = I which is assumed to be
true and assuming it is true for n,
(14)

(n+1)Qn = nQ(n−1)Q+QnI = (PQn−QnP )Q+Qn(PQ−QP ) = PQn+1+Qn+1P

so for n = 1, 2, ...

(15) n||Qn−1|| 5 2||P || ||Q|| ||Qn−1|| ⇒ n 5 2||P || ||Q|| for all n.
�

This shows that ||Qn|| must equal 0 for some n because P and Q are bounded
operators, which implies ||Qn|| = 0 ⇒ Qn = 0 ⇒ Qn−1 = 0...⇒ I = 0 which is the
contradiction so both P and Q cannot be bounded.
Although this may seem like a roadblock, there is a nice little detour that takes us
in the right direction that is as follows,

Theorem 4.10. [4, Theorem 3] Every self-adjoint operator T on a Hilbert space H
generates a strongly continuous one-parameter group of unitary operators eitT on
H. Conversely, every such one-parameter group is generated by a unique self-adjoint
operator.

Proof. The proof for this heorem is a bit above undergraduates, so like the article
itself, I shall present a motivation for the theorem. If T is bounded, then using
Taylor expanisons,

(16) eitτ =

∞∑
k=0

(itτ)k

k!

If T is unbounded, then the identity,

(17) eitτ = lim
k→∞

(1− itτ

k
)−k

can be generalized to obtain bounded operators. Furthermore, for a self-adjoint T
and t ∈ R,

(18) (I − itT

k
)−1

always exists and is bounded. So for every f ∈ H

(19) eitT f = lim
k→∞

(1− itT

k
)−kf

�
Exemplifying the converse of Theorem 4.10, consider the strongly continuous

one-parameter operator, for t ∈ R and operators U, V ∈ L2(R),
(U(t)f)(x) = f(x+ t) and (V (t)f)(x) = eitxf(x).

With some simple manipulations, the reader can show that the generators of U(t)
and V (t) are the position and momentum operators, respectively. U(t) = eitp and
V (t) = eitq.

Example 4.11. Consider the operator U(t) from above.

(U ′(0)f)(x) = lim
h→0

(
U(h)− U(0)

h
f)(x) = lim

h→0

f(x+ h)− f(x)

h
= f ′(x).

Hence, U ′(0) = ip which implies that p is the generator of U(t).
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5. The Finale

5.1. Conclusion. My bridging between the abstractness of mathematics and its
application in quantum mechanics began, however there is still much more to ex-
plore of the admirable advancements in quantum mechanics in the 20th century. I
have shown a derivation of the Heisenberg Uncertainty Principle which is just the
surface of the usefulness of mathematics and in particular Hilbert spaces. Packel
does a fantastic job in his article in briefly yet thoroughly introducing quantum
mechanical applications of Hilbert spaces to mathematicians and I hope I’ve done
similar for the reader.
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