Accelerating SQL Database Operations
on a GPU with CUDA

Peter Bakkum and Kevin Skadron
Department of Computer Science
University of Virginia, Charlottesville, VA 22904

{pbb7c, skadron}@virginia.edu

ABSTRACT

Prior work has shown dramatic acceleration for various data-
base operations on GPUs, but only using primitives that are
not part of conventional database languages such as SQL.
This paper implements a subset of the SQLite command
processor directly on the GPU. This dramatically reduces
the effort required to achieve GPU acceleration by avoiding
the need for database programmers to use new programming
languages such as CUDA or modify their programs to use
non-SQL libraries.

This paper focuses on accelerating SELECT queries and
describes the considerations in an efficient GPU implemen-
tation of the SQLite command processor. Results on an
NVIDIA Tesla C1060 achieve speedups of 20-70X depend-
ing on the size of the result set.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming)]: Parallel Programming;
H.2.4 [Database Management|: Parallel Databases

Keywords
GPGPU, CUDA, Databases, SQL

1. INTRODUCTION

GPUs, known colloquially as video cards, are the means
by which computers render graphical information on a screen.
The modern GPU’s parallel architecture gives it very high
throughput on certain problems, and its near universal use in
desktop computers means that it is a cheap and ubiquitous
source of processing power. There is a growing interest in
applying this power to more general non-graphical problems
through frameworks such as NVIDIA’s CUDA, an applica-
tion programming interface developed to give programmers
a simple and standard way to execute general purpose logic
on NVIDIA GPUs. Programmers often use CUDA and sim-
ilar interfaces to accelerate computationally intensive data
processing operations, often executing them fifty times faster

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GPGPU-3 March 14, 2010, Pittsburg, PA, USA

Copyright 2010 ACM 978-1-60558-935-0/10/03 ...$10.00.

on the GPU [2]. Many of these operations have direct par-
allels to classic database queries [4, 9].

The GPU’s complex architecture makes it difficult for un-
familiar programmers to fully exploit. A productive CUDA
programmer must have an understanding of six different
memory spaces, a model of how CUDA threads and thread-
blocks are mapped to GPU hardware, an understanding of
CUDA interthread communication, etc. CUDA has brought
GPU development closer to the mainstream but program-
mers must still write a low-level CUDA kernel for each data
processing operation they perform on the GPU, a time-
intensive task that frequently duplicates work.

SQL is an industry-standard generic declarative language
used to manipulate and query databases. Capable of per-
forming very complex joins and aggregations of data sets,
SQL is used as the bridge between procedural programs and
structured tables of data. An acceleration of SQL queries
would enable programmers to increase the speed of their
data processing operations with little or no change to their
source code. Despite the demand for GPU program acceler-
ation, no implementation of SQL is capable of automatically
accessing a GPU, even though SQL queries have been closely
emulated on the GPU to prove the parallel architecture’s
adaptability to such execution patterns [5, 6, 9].

There exist limitations to current GPU technology that af-
fect the potential users of such a GPU SQL implementation.
The two most relevant technical limitations are the GPU
memory size and the host to GPU device memory transfer
time. Though future graphics cards will almost certainly
have greater memory, current NVIDIA cards have a maxi-
mum of 4 gigabytes, a fraction of the size of many databases.
Transferring memory blocks between the CPU and the GPU
remains costly. Consequently, staging data rows to the GPU
and staging result rows back requires significant overhead.
Despite these constraints, the actual query execution can be
run concurrently over the GPU’s highly parallel organiza-
tion, thus outperforming CPU query execution.

There are a number of applications that fit into the do-
main of this project, despite the limitations described above.
Many databases, such as those used for research, modify
data infrequently and experience their heaviest loads during
read queries. Another set of applications care much more
about the latency of a particular query than strict adher-
ence to presenting the latest data, an example being Internet
search engines. Many queries over a large-size dataset only
address a subset of the total data, thus inviting staging this
subset into GPU memory. Additionally, though the finite
memory size of the GPU is a significant limitation, allocat-

ing just half of the 4 gigabytes of a Tesla C1060 to store a
data set gives the user room for over 134 million rows of 4
integers.

The contribution of this paper is to implement and demon-
strate a SQL interface for GPU data processing. This in-
terface enables a subset of SQL SELECT queries on data
that has been explicitly transferred in row-column form to
GPU memory. SELECT queries were chosen since they are
the most common SQL query, and their read-only charac-
teristic exploits the throughput of the GPU to the high-
est extent. The project is built upon an existing open-
source database, SQLite, enabling switching between CPU
and GPU query execution and providing a direct compari-
son of serial and parallel execution. While previous research
has used data processing primitives to approximate the ac-
tions of SQL database queries, this implementation is built
from the ground up around the parsing of SQL queries, and
thus executes with significant differences.

In this context, SQL allows the programmer to drastically
change the data processing patterns executed on the GPU
with the smallest possible development time, literally pro-
ducing completely orthogonal queries with a few changes in
SQL syntax. Not only does this simplify GPU data process-
ing, but the results of this paper show that executing SQL
queries on GPU hardware significantly outperforms serial
CPU execution. Of the thirteen SQL queries tested in this
paper, the smallest GPU speedup was 20X, with a mean of
35X. These results suggest this will be a very fruitful area
for future research and development.

2. RELATED WORK
2.1 GPU Data Mining

There has been extensive research in general data min-
ing on GPUs, thoroughly proving its power and the advan-
tages of offloading processing from the CPU. The research
relevant to this paper focuses on demonstrating that cer-
tain database operations, (i.e. operations that are logically
performed within a database during a query execution) can
be sped up on GPUs. These projects are implemented us-
ing primitives such as Sort and Scatter, that can be com-
bined and run in succession on the same data to produce
the results of common database queries. One paper divides
database queries into predicate evaluation, boolean combi-
nation, and aggregation functions [9]. Other primitives in-
clude binary searches, p-ary searches [14], tree operations,
relational join operations [6], etc. An area where GPUs have
proven particularly useful is with sort operations. GPUTera-
Sort, for example, is an algorithm developed to sort database
rows based on keys, and demonstrated significant perfor-
mance improvements over serial sorting methods [8]. One
of the most general of the primitive-based implementations
is GPUMiner, a program which implements several algo-
rithms, including k-means, and provides tools to visualize
the results [7]. Much of this research was performed on pre-
vious generations of GPU hardware, and recent advances
can only improve the already impressive results.

One avenue of research directly related to production SQL
databases is the development of database procedures that
employ GPU hardware. These procedures are written by the
user and called through the database to perform a specific
function. It has been shown using stored and external pro-
cedures on Oracle [1] PostgreSQL databases [13] that GPU

functionality can be exploited to accelerate certain opera-
tions. The novelty of this approach is that CUDA kernels
are accessed through a database rather than explicitly called
by a user program.

The most closely related research is Relational Query Co-
processing on Graphics Processors, by Bingsheng He, et al.
[12]. This is a culmination of much of the previous research
performed on GPU-based data processing. Its authors de-
sign a database, called GDB, accessed through a plethora
of individual operations. These operations are divided into
operators, access methods, and primitives. The operators in-
clude ordering, grouping, and joining functionality. The ac-
cess methods control how the data is located in the database,
and includes scanning, trees, and hashing. Finally the prim-
itives are a set of functional programming operations such as
map, reduce, scatter, gather, and split. GDB has a number
of similarities to the implementation described in this paper,
notably the read-only system and column-row data organi-
zation, but lacks direct SQL access. In the paper, several
SQL queries are constructed with the primitives and bench-
marked, but no parser exists to transform SQL queries to
sequences of primitives.

This paper’s implementation has similar results to the pre-
vious research, but approaches the querying of datasets from
an opposing direction. Other research has built GPU com-
puting primitives from the ground up, then built programs
with these primitives to compare to other database opera-
tions. This paper’s research begins with the codebase of a
CPU-based database and adapts its computational elements
to execute on a GPU. This approach allows a much more
direct comparison with traditional databases, and most im-
portantly, allows the computing power of the GPU to be
accessed directly through SQL. SQL presents a uniform and
standardized interface to the GPU, without knowledge of
the specific primitives of a certain implementation, and with
the option choosing between CPU and GPU execution. In
other words, the marginal cost of designing data processing
queries to be run on a GPU is significantly reduced with a
SQL interface.

To our knowledge, no other published research provides
this SQL interface to GPU execution. In practical terms,
this approach means that a CUDA thread executes a set of
SQLite opcodes on a single row before exiting, rather than
a host function managing bundle of primitives as CUDA
kernels. It is possible that a SQL interface to the primi-
tives discussed in other research could be created through
a parser, but this has not been done, and may or may not
be more advantageous for GPU execution. Many primitives
such as sort and group have direct analogs in SQL, future
research may clarify how an optimal SQL query processor
differs when targeting the GPU versus the CPU.

2.2 MapReduce

A new and active area of data mining research is in the
MapReduce paradigm. Originally pioneered by Google, it
gives the programmer a new paradigm for data mining based
on the functional primitives map and reduce [3]. This para-
digm has a fundamentally parallel nature, and is used exten-
sively by Google and many other companies for large-scale
distributed data processing. Though essentially just a name
for using two of the primitives mentioned in the previous
section, MapReduce has become a major topic itself. Re-
search in this area has shown that MapReduce frameworks

can be accelerated on multicore machines [16] and on GPUs
[11]. Notably, Thrust, a library of algorithms implemented
in CUDA intended as a GPU-aware library similar to the
C++ Standard Template Library, includes a MapReduce
implementation [24].

In some cases, a MapReduce framework has become a re-
placement for a traditional SQL database, though its use
remains limited. The advantage of one over the other re-
mains a hotly debated topic, both are very general methods
through which data can be processed. MapReduce requires
the programmer to write a specific query procedurally, while
SQL’s power lies in its simple declarative syntax. Conse-
quently, MapReduce most useful for handling unstructured
data. A key difference is that the simplicity of the MapRe-
duce paradigm makes it simple to implement in CUDA,
while no such SQL implementation exists. Additionally the
limited use of MapReduce restricts any GPU implementa-
tion to a small audience, particularly given that the memory
ceilings of modern GPUs inhibit their use in the huge-scale
data processing applications for which MapReduce is known.

2.3 Programming Abstraction

Another notable vector of research is the effort to simplify
the process of writing GPGPU applications, CUDA appli-
cations in particular. Writing optimal CUDA programs re-
quires an understanding of the esoteric aspects of NVIDIA
hardware, specifically the memory heirarchy. Research on
this problem has focused on making the heirarchy trans-
parent to the programmer, performing critical optimization
during compilation. Omne such project has programmers
write CUDA programs that exclusively use global memory,
then chooses the best variables to move to register mem-
ory, shared memory, etc. during the compilation phase [17].
Other projects such as CUDA-lite and hiCUDA have the
programmer annotate their code for the compiler, which
chooses the best memory allocation based on these notes,
an approach similar to the OpenMP model [10, 25]. Yet
another project directly translates OpenMP code to CUDA,
effectively making it possible to migrate parallel processor
code to the GPU with no input from the programmer [15]. A
common thread in this area is the tradeoff between the diffi-
culty of program development and the optimality of the fin-
ished product. Ultimately, programming directly in CUDA
remains the only way to ensure a program is taking full ad-
vantage of the GPU hardware.

Regardless of the specifics, there is clear interest in provid-
ing a simpler interface to GPGPU programming than those
that currently exist. The ubiquity of SQL and its pervasive
parallelism suggest that a SQL-based GPU interface would
be easy for programmers to use and could significantly speed
up many applications that have already been developed with
databases. Such an interface would not be ideal for all ap-
plications, and would lack the fine-grained optimization of
the previously discussed interfaces, but could be significantly
simpler to use.

3. SQLITE

3.1 Overview

SQLite is a completely open source database developed by
a small team supported by several major corporations [20].
Its development team claims that SQLite is the most widely
deployed database in the world owing to its use in popular

applications, such as Firefox, and on mobile devices, such
as the iPhone [22]. SQLite is respected for its extreme sim-
plicity and extensive testing. Unlike most databases which
operate as server, accessed by separate processes and usually
accessed remotely, SQLite is written to be compiled directly
into the source code of the client application. SQLite is dis-
tributed as a single C source file, making it trivial to add
a database with a full SQL implementation to a C/C++
application.

3.2 Architecture

SQLite’s architecture is relatively simple, and a brief de-
scription is necessary for understanding the CUDA imple-
mentation described in this paper. The core of the SQLite
infrastructure contains the user interface, the SQL command
processor, and the virtual machine [21]. SQLite also contains
extensive functionality for handling disk operations, mem-
ory allocation, testing, etc. but these areas are less relevant
to this project. The user interface consists of a library of
C functions and structures to handle operations such as ini-
tializing databases, executing queries, and looking at results.
The interface is simple and intuitive: it is possible to open
a database and execute a query in just two function calls.
Function calls that execute SQL queries use the SQL com-
mand processor. The command processor functions exactly
like a compiler: it contains a tokenizer, a parser, and a code
generator. The parser is created with an LALR(1) parser
generator called Lemon, very similar to YACC and Bison.
The command processor outputs a program in an intermedi-
ate language similar to assembly. Essentially, the command
processor takes the complex syntax of a SQL query and out-
puts a set of discrete steps.

Each operation in this intermediate program contains an
opcode and up to five arguments. Each opcode refers to a
specific operation performed within the database. Opcodes
perform operations such as opening a table, loading data
from a cell into a register, performing a math operation on
a register, and jumping to another opcode [23]. A simple
SELECT query works by initializing access to a database
table, looping over each row, then cleaning up and exiting.
The loop includes opcodes such as Column, which loads data
from a column of the current row and places it in a register,
ResultRow, which moves the data in a set of registers to the
result set of the query, and Next, which moves the program
on to the next row.

This opcode program is executed by the SQLite virtual
machine. The virtual machine manages the open database
and table, and stores information in a set of "registers”,
which should not be confused with the register memory of
CUDA. When executing a program, the virtual machine di-
rects control flow through a large switch statement, which
jumps to a block of code based on the current opcode.

3.3 Usefulness

SQLite was chosen as a component of this project for a
number of reasons. First, using elements of a well-developed
database removes the burden of having to implement SQL
query processing for the purposes of this project. SQLite
was attractive primarily for its simplicity, having been de-
veloped from the ground up to be as simple and compact
as possible. The source code is very readable, written in a
clean style and commented heavily. The serverless design of
SQLite also makes it ideal for research use. It is very easy

to modify and add code and recompile quickly to test, and
its functionality is much more accessible to someone inter-
ested in comparing native SQL query execution to execu-
tion on the GPU. Additionally, the SQLite source code is in
the public domain, thus there are no licensing requirements
or restrictions on use. Finally, the widespread adoption of
SQLite makes this project relevant to the industry, demon-
strating that many already-developed SQLite applications
could improve their performance by investing in GPU hard-
ware and changing a trivial amount of code.

From an architectural standpoint, SQLite is useful for its
rigid compartmentalization. Its command processor is en-
tirely separate from the virtual machine, which is entirely
separate from the disk i/o code and the memory alloca-
tion code, such that any of these pieces can be swapped
out for custom code. Critically, this makes it possible to re-
implement the virtual machine to run the opcode program
on GPU hardware.

A limitation of SQLite is that its serverless design means it
is not implemented to take advantage of multiple cores. Be-
cause it exists solely as a part of another program’s process,
threading is controlled entirely outside SQLite, though it has
been written to be thread-safe. This limitation means that
there is no simple way to compare SQLite queries executed
on a single core to SQLite queries optimized for multicore
machines. This is an area for future work.

4. IMPLEMENTATION

4.1 Scope

Given the range of both database queries and database ap-
plications and the limitations of CUDA development, it is
necessary to define the scope of of this project. We explicitly
target applications that run SELECT queries multiple times
on the same mid-size data set. The SELECT query qualifi-
cation means that the GPU is used for read-only data. This
enables the GPU to maximize its bandwidth for this case
and predicates storing database rows in row-column form.
The 'multiple times’ qualification means that the project has
been designed such that SQL queries are executed on data
already resident on the card. A major bottleneck to GPU
data processing is the cost of moving data between device
and host memory. By moving a block of data into the GPU
memory and executing multiple queries, the cost of loading
data is effectively amortized as we execute more and more
queries, thus the cost is mostly ignored. Finally, a 'mid-size
data set’ is enough data to ignore the overhead of setting
up and calling a CUDA kernel but less than the ceiling of
total GPU memory. In practice, this project was designed
and tested using one and five million row data sets.

This project only implements support for numeric data
types. Though string and blob types are certainly very use-
ful elements of SQL, in practice serious data mining on un-
structured data is often easier to implement with another
paradigm. Strings also break the fixed-column width data
arrangement used for this project, and transferring charac-
ter pointers from the host to device is a tedious operation.
The numeric data types supported include 32 bit integers,
32 bit IEEE 754 floating point values, 64 bit integers, and
64 bit IEEE 754 double precision values. Relaxing these re-
strictions is an area for future work.

4.2 Data Set

As previously described, this project assumes data stays
resident on the card across multiple queries and thus ne-
glects the up-front cost of moving data to the GPU. Based
on the read-only nature of the SQL queries in this project
and the characteristics of the CUDA programming model,
data is stored on the GPU in row-column form. SQLite
stores its data in a B-Tree, thus an explicit translation step
is required. For convenience, this process is performed with
a SELECT query in SQLite to retrieve a subset of data from
the currently open database.

The Tesla C1060 GPU used for development has 4 gi-
gabytes of global memory, thus setting the upper limit of
data set size without moving data on and off the card dur-
ing query execution. Note that in addition to the data set
loaded on the GPU, there must be another memory block
allocated to store the result set. Both of these blocks are al-
located during the initialization of the program. In addition
to allocation, meta data such as the size of the block, the
number of rows in the block, the stride of the block, and the
size of each column must be explicitly managed.

4.3 Memory Spaces

This project attempts to utilize the memory heirarchy of
the CUDA programming model to its full extent, employ-
ing register, shared, constant, local, and global memory [19].
Register memory holds thread-specific memory such as off-
sets in the data and results blocks. Shared memory, mem-
ory shared among all threads in the thread block, is used
to coordinate threads during the reduction phase of the ker-
nel execution, in which each thread with a result row must
emit that to a unique location in the result data set. Con-
stant memory is particularly useful for this project since
it is used to store the opcode program executed by every
thread. It is also used to store data set meta information,
including column types and widths. Since the program and
this data set information is accessed very frequently across
all threads, constant memory significantly reduces the over-
head that would be incurred if this information was stored
in global memory.

Global memory is necessarily used to store the data set
on which the query is being performed. Global memory has
significantly higher latency than register or constant mem-
ory, thus no information other than the entire data set is
stored in global memory, with one esoteric exception. Local
memory is an abstraction in the CUDA programming model
that means memory within the scope of a single thread that
is stored in the global memory space. Each CUDA thread
block is limited to 16 kilobytes of register memory: when this
limit broken the compiler automatically places variables in
local memory. Local memory is also used for arrays that
are accessed by variables not known at compile time. This
is a significant limitation since the SQLite virtual machine
registers are stored in an array. This limitation is discussed
in further detail below.

Note that texture memory is not used for data set access.
Texture memory acts as a one to three dimensional cache
for accessing global memory and can significantly accelerate
certain applications[19]. Experimentation determined that
using texture memory had no effect on query performance.
There are several reasons for this. First, the global data set
is accessed relatively infrequently, data is loaded into SQLite
registers before it is manipulated. Next, texture memory

is optimized for two dimensional caching, while the data
set is accessed as one dimensional data in a single block of
memory. Finally, the row-column data format enables most
global memory accesses to be coalesced, reducing the need
for caching.

4.4 Parsed Queries

As discussed above, SQLite parses a SQL query into an
opcode program that resembles assembly code. This project
calls the SQLite command processor and extracts the re-
sults, removing data superfluous to the subset of SQL queries
implemented in this project. A processing phase is also used
to ready the opcode program for transfer to the GPU, in-
cluding dereferencing pointers and storing the target directly
in the opcode program. A sample program is printed below,
output by the command processor for query 1 in Appendix

A.

0: Trace 0 0 0
1: Integer 60 1 0
2: Integer 0 2 0
3: Goto 0 17 0
4: OpenRead 0 2 0
5: Rewind 0 15 0
6: Column 0 1 3
7: Le 1 14 3
8: Column 0 2 3
9: Ge 2 14 3
10: Column 0 0 5
11: Column 0 1 6
12: Column 0 2 7
13: ResultRow 5 3 0
14: Next 0 6 0
15: Close 0 0 0
16: Halt 0 0 0
17: Transaction 0 0 0
18: VerifyCookie O 1 0
19: TableLock 0 2 0

20: Goto 0 4 0

A virtual machine execution of this opcode procedure iter-
ates sequentially over the entire table and emits result rows.
Note that not all of the opcodes are relevant to this project’s
storage of a single table in GPU memory, and are thus not
implemented. The key to this kind of procedure is that
opcodes manipulate the program counter and jump to dif-
ferent locations, thus opcodes are not always executed in
order. The Next opcode, for example, advances from one
row to the next and jumps to the value of the second ar-
gument. An examination of the procedure thus reveals the
block of opcodes 6 through 14 are executed for each row of
the table. The procedure is thus inherently parallelizable
by assigning each row to a CUDA thread and executing the
looped procedure until the Next opcode.

Nearly all opcodes manipulate the array of SQLite reg-
isters in some way. The registers are generic memory cells
that can store any kind of data and are indexed in an array.
The Column opcode is responsible for loading data from a
column in the current row into a certain register.

Note the differences between a program of this kind and
a procedure of primitives, as implemented in previous re-
search. Primitives are individual CUDA kernels executed
serially, while the entire opcode procedure is executed en-
tirely within a kernel. As divergence is created based on
the data content of each row, the kernels execute different

opcodes. This type of divergence does not occur with a
query-plan of primitives.

4.5 Virtual Machine Infrastructure

The crux of this project is the reimplementation of the
SQLite virtual machine with CUDA. The virtual machine
is implemented as a CUDA kernel that executes the op-
code procedure. The project has implemented around 40
opcodes thus far which cover the comparison opcodes, such
as Ge (greater than or equal), the mathematical opcodes,
such as Add, the logical opcodes, such as Or, the bitwise
opcodes, such as BitAnd, and several other critical opcodes
such as ResultRow. The opcodes are stored in two switch
statements.

The first switch statement of the virtual machine allows
divergent opcode execution, while the second requires con-
current opcode execution. In other words, the first switch
statement allows different threads to execute different op-
codes concurrently, and the second does not. When the
Next opcode is encountered, signifying the end of the data-
dependent parallelism, the virtual machine jumps from the
divergent block to the concurrent block. The concurrent
block is used for the aggregation functions, where coordina-
tion across all threads is essential.

A major piece of the CUDA kernel is the reduction when
the ResultRow opcode is called by multiple threads to emit
rows of results. Since not every thread emits a row, a reduc-
tion operation must be performed to ensure that the result
block is a contiguous set of data. This reduction involves
inter-thread and inter-threadblock communication, as each
thread that needs to emit a row must be assigned a unique
area of the result set data block. Although the result set is
contiguous, no order of results is guaranteed. This saves the
major overhead of completely synchronizing when threads
and threadblocks complete execution.

The reduction is implemented using the CUDA atomic
operation atomicAdd(), called on two tiers. First, each
thread with a result row calls atomicAdd() on a variable
in shared memory, thus receiving an assignment within the
thread block. The last thread in the block then calls this
function on a separate global variable which determine’s the
thread block’s position in the memory space, which each
thread then uses to determine its exact target row based on
the previous assignment within the thread block. Experi-
mentation has found that this method of reduction is faster
than others for this particular type of assigment, particularly
with sparse result sets.

This project also supports SQL aggregation functions (i.e.
COUNT, SUM, MIN, MAX, and AVG), though only for in-
teger values. Significant effort has been made to adhere
to the SQLite-parsed query plan without multiple kernel
launches. Since inter-threadblock coordination, such as that
used for aggregation functions, is difficult without using a
kernel launch as a global barrier, atomic functions are used
for coordination, but these can only be used with integer
values in CUDA. This limitation is expected to be removed
in next-generation hardware, and the performance data for
integer aggregates is likely a good approximation of future
performance for other types.

4.6 Result Set

Once the virtual machine has been executed, the result
set of a query still resides on the GPU. Though the speed

of query execution can be measured simply by timing the
virtual machine, in practice the results must be moved back
to the CPU to be useful to the host process. This is im-
plemented as a two-step process. First, the host transfers
a block of information about the result set back from the
GPU. This information contains the stride of a result row
and the number of result rows. The CPU multiplies these
values to determine the absolute size of the result block. If
there are zero rows then no result memory copy is needed,
otherwise a memory copy is used to transfer the result set.
Note that because we know exactly how large the result set
is, we do not have to transfer the entire block of memory
allocated for the result set, saving significant time.

5. PERFORMANCE
5.1 Data Set

The data used for performance testing has five million
rows with an id column, three integer columns, and three
floating point columns. The data has been generated us-
ing the GNU scientific library’s random number generation
functionality. One column of each data type has a uniform
distribution in the range [-99.0, 99.0], one column has a nor-
mal distribution with a sigma of 5, and the last column has
a normal distribution with a sigma of 20. Integer and float-
ing point data types were tested. The random distributions
provide unpredictable data processing results and mean that
the size of the result set varies based on the criteria of the
SELECT query.

To test the performance of the implementation, 13 queries
were written, displayed in Appendix A. Five of the thirteen
query integer values, five query floating point values, and
the final 3 test the aggregation functions. The queries were
executed through the CPU SQLite virtual machine, then
through the GPU virtual machine, and the running times
were compared. Also considered was the time required to
transfer the GPU result set from the device to the host.
The size of the result set in rows for each query is shown,
as this significantly affects query performance. The queries
were chosen to demonstrate the flexibility of currently im-
plemented query capabilities and to provide a wide range of
computational intensity and result set size.

We have no reason to believe results would change signif-
icantly with realistic data sets, since all rows are checked in
a select operation, and the performance is strongly corre-
lated with the number of rows returned. The implemented
reductions all function such that strange selection patterns,
such as selecting every even row, or selecting rows such that
only the first threads in a threadblock output a result row,
make no difference in performance. Unfortunately, we have
not yet been able to set up real data sets to validate this
hypothesis, and this is something left for future work, but
there is little reason to expect different performance results.

5.2 Hardware

The performance results were gathered from an Intel Xeon
X5550 machine running Linux 2.6.24. The processor is a 2.66
GHz 64 bit quad-core, supporting eight hardware threads
with maximum throughput of 32 GB/sec. The machine
has 5 gigabytes of memory. The graphics card used is an
NVIDIA Tesla C1060. The Tesla has 240 streaming multi-
processors, 16 GB of global memory, and supports a maxi-
mum throughput of 102 GB/sec.

5.3 Fairness of Comparison

Every effort has been made to produce comparison results
that are as conservative as possible.

e Data on the CPU side has been explicitly loaded into
memory, thus eliminating mid-query disk accesses.
SQLite has functionality to declare a temporary data-
base that exists only in memory. Once initalized, the
data set is attached and named. Without this step the
GPU implementation is closer to 200X faster, but it
makes for a fairer comparison: it means the data is
loaded completely into memory for both the CPU and
the GPU.

e SQLite has been compiled with the Intel C Compiler
version 11.1. It is optimized with the flags -02, the fa-
miliar basic optimization flag,
-xHost, which enables processor-specific optimization,
and -ipo, which enables optimization across source
files. This forces SQLite to be as fast as possible: with-
out optimization SQLite performs significantly worse.

e Directives are issued to SQLite at compile time to omit
all thread protection and store all temporary files in
memory rather than on disk. These directives reduce
overhead on SQLite queries.

e Pinned memory is not used in the comparison. Using
pinned memory generally speeds transfers between the
host and device by a factor of two. This means that the
GPU timing results that include the memory transfer
are worse than they would be if this feature was turned
on.

e Results from the host query are not saved. In SQLite
results are returned by passing a callback function along
with the SQL query. This is set to null, which means
that host query results are thrown away while device
query results are explicitly saved to memory. This
makes the the SQLite execution faster.

5.4 Results

Table 1 shows the mean results for the five integer queries,
the five floating point queries, the three aggregation queries,
and all of the queries. The rows column gives the average
number of rows output to the result set during a query, which
is 1 for the aggregate functions data, because the functions
implemented reduce down to a single value across all rows of
the data set. The mean speedup across all queries was 50X,
which was reduced to 36X when the results transfer time was
included. This means that on average, running the queries
on the dataset already loaded on to the GPU and transfer-
ring the result set back was 36X faster than executing the
query on the CPU through SQLite. The numbers for the all
row are calculated with the summation of the time columns,
and are thus time-weighted.

Figure 1 graphically shows the speedup and speedup with
transfer time of the tested queries. Odd numbered queries
are integer queries, even numbered queries are floating point
queries, and the final 3 queries are aggregation calls. The
graph shows the significant deviations in speedup values
depending on the specific query. The pairing of the two
speedup measurements also demonstrates the significant
amount of time that some queries, such as query 6, spend

Table 1: Performance Data by Query Type

Queries | Speedup | Speedup w/ Transfer | CPU time (s) | GPU time (s) | Transfer Time (s) | Rows Returned
Int | 42.11 28.89 2.3843 0.0566 0.0259148 1950104.4
Float | 59.16 43.68 3.5273 0.0596 0.0211238 1951015.8
Aggregation | 36.22 36.19 1.0569 0.0292 0.0000237 1
All | 50.85 36.20 2.2737 0.0447 0.0180920 1500431.08
GPU Speedup per Query
100
__ 80
=
a 60 -+
3
§_ 40 - M Speedup
Y 50 - B Speedup w/ Transfer
0 —4

Query

9 10 11 12 13

Figure 1: The speedup of query execution on the GPU for each of the 13 queries considered, both including

and excluding the results transfer time

transferring the result set. In other queries, such as query
2, there is very little difference. The aggregation queries all
had fairly average results but trivial results transfer time,
since the aggregation functions used all reduced to a single
result. These functions were run over the entire dataset,
thus the speedup represents the time it takes to reduce five
million rows to a single value.

The time to transfer the data set from the host memory
of SQLite to the device memory is around 2.8 seconds. This
operation is so expensive because the data is retrieved from
SQLite through a query and placed into row-column form,
thus it is copied several times. This is necessary because
SQLite stores data in B-Tree form, while this project’s GPU
virtual machine expects data in row-column form. If these
two forms were identical, data could be transferred directly
from the host to the device with a time comparable to the
result transfer time. Note that if this were the case, many
GPU queries would be faster than CPU queries even includ-
ing the data transfer time, query execution time, and the
results transfer time. As discussed above, we assume that
multiple queries are being performed on the same data set
and ignore this overhead, much as we ignore the overhead
of loading the database file from disk into SQLite memory.

Interestingly, the floating point queries had a slightly high-
er speedup than the integer queries. This is likely a result of
the GPU’s treatment of integers. While the GPU supports
IEEE 754 compliant floating point operations, integer math
is done with a 24-bit unit, thus 32-bit integer operations are
essentially emulated[19]. The resulting difference in perfor-
mance is nontrivial but not big enough to change the mag-
nitude of the speedup. Next generation NVIDIA hardware
is expected to support true 32-bit integer operations.

There are several major factors that affect the results of

individual queries, including the difficulty of each opera-
tion and output size. Though modern CPUs run at clock
speeds in excess of 2 GHz and utilize extremely optimized
and deeply pipelined ALUs, the fact that these operations
are parallelized over 240 streaming multiprocessors means
that the GPU should outperform in this area, despite the
fact that the SMs are much less optimized on an individual
level. Unfortunately, it is difficult to measure the compu-
tational intensity of a query, but it should be noted that
queries 7 and 8, which involve multiplication operations,
performed on par with the other queries, despite the fact
that multiplication is a fairly expensive operation.

A more significant determinant of query speedup was the
size of the result set, in other words, the number of rows
that a query returned. This matters because a bigger result
set increases the overhead of the reduction step since each
thread must call atomicAdd(). It also directly affects how
long it takes to copy the result set from device memory to
host memory. These factors are illuminated with figure 2.
A set of 21 queries were executed in which rows of data were
returned when the uniformi column was less than z, where
z was a value in the range [-100, 100] incremented by 10 for
each subsequent query. Since the uniformi column contains
a uniform distribution of integers between -99 and 99, the
expected size of the result set increased by 25,000 for each
query, ranging from 0 to 5,000,000.

The most striking trend of this graph is that the speedup
of GPU query execution increased along with the size of the
result set, despite the reduction overhead. This indicates
that the GPU implementation is more efficient at handling a
result row than the CPU implementation, probably because
of the sheer throughput of the device. The overhead of trans-
ferring the result set back is demonstrated in the second line,

Rows Returned vs.
Speedup

90
80

70

Z 60 /

%50 ‘ /

840 /

2 30

? 20
10
0 T T

QQ?J

e Speedup

P

e Speedup w/ Transfer

LN BN BN BN NN N B NN BN NN N B RN BN BN B B R

NGO q,q:p fbrb?o b(bfa 2}

Rows Returned (in millions)

Figure 2: The effect of the result set size on the
speedup of GPU query execution, including and ex-
cluding the results transfer time

which gradually diverges from the first but still trends up,
showing that the GPU implementation is still more efficient
when the time to transfer a row back is considered. For
these tests, the unweighted average time to transfer a single
16 byte row (including meta information and memory copy
setup overhead) was 7.67 ns. Note that the data point for
0 returned rows is an outlier. This is because transferring
results back is a two step process, as described in the imple-
mentation section, and the second step is not needed when
there are no result rows. This point thus shows how high
the overhead is for using atomic operations in the reduction
phase and initiating a memory copy operation in the results
transfer phase.

We have not yet implemented a parallel version of the
same SQLite functionality for multicore CPUs. This is an
important aspect of future work. In the meantime, the po-
tential speedup with multiple cores must be kept in mind
when interpreting the GPU speedups we report. Speedup
with multicore would have an upper bound of the number
of hardware threads supported, 8 on the Xeon X5550 used
for testing, and would be reduced by the overhead of coordi-
nation, resulting in a speedup less than 8X. The speedups we
observed with the GPU substantially exceed these numbers,
showing that the GPU has a clear architectural advantage.

6. FURTHER IMPROVEMENT

6.1 Unimplemented Features

By only implementing a subset of SELECT queries on the
GPU, the programmer is limited to read-only operations. As
discussed, this approach applies speed to the most useful and
frequently used area of data processing. Further research
could examine the power of the GPU in adding and removing
data from the memory-resident data set. Though it is likely
that the GPU would outperform the CPU in this area as
well, it would be subject to a number of constraints, most

importantly the host to device memory transfer bottleneck,
that would reduce the usefulness of such an implementation.

The subset of possible SELECT queries implemented thus
far precludes several important and frequently used features.
First and foremost, this project does not implement the
JOIN command, used to join multiple database tables to-
gether as part of a SELECT query. The project was de-
signed to give performance improvement for multiple queries
run on data that has been moved to the GPU, thus encour-
aging running an expensive JOIN operation before the data
is primed. Indeed, since data is transferred to the GPU with
a SELECT query in this implementation, such an operation
is trivial. GROUP BY operations are also ignored. Though
not as complex as join operations, they are a commonly
implemented feature may be included in future implemen-
tations. The SQL standard includes many other operators,
both commonly used and largely unimplemented, and this
discussion of missing features is far from comprehensive.

Further testing should include a multicore implementa-
tion of SQLite for better comparison against the GPU re-
sults presented. Such an implementation would be able to
achieve a maximum of only n times faster execution on an
n-core machine, but a comparison with the overhead of the
shared memory model versus the CUDA model would be in-
teresting and valuable. Additionally, further testing should
compare these results against other open source and com-
mercial databases that do utilize multiple cores. Anecdotal
evidence suggests that SQLite performance is roughly equiv-
alent to other databases on a single core, but further testing
would prove this equivalence.

6.2 Hardware Limitations

There exist major limitations of current GPU hardware
that significantly limit this project’s performance, but may
be reduced in the near future. First, indirect jumps are not
allowed. This is significant because each of the 35 SQLite
opcodes implemented in the virtual machine exist in a switch
block. Since this block is used for every thread for every op-
code, comparing the switch argument to the opcode values
creates nontrivial overhead. The opcode values are arbi-
trary, and must only be unique, thus they could be set to
the location of the appropriate code, allowing the program to
jump immediately for each opcode and effectively removing
this overhead. Without indirect jumps, this optimization is
impossible.

The next limitation is that dynamically accessed arrays
are stored in local memory rather than register memory in
CUDA. Local memory is an abstraction that refers to mem-
ory in the scope of a single thread that is stored in the global
memory of the GPU. Since it has the same latency as global
memory, local memory is 100 to 150 times slower than reg-
ister memory [19]. In CUDA, arrays that are accessed with
an an index that is unknown at compile time are automat-
ically placed in local memory. In fact it is impossible to
store them in register memory. The database virtual ma-
chine is abstract enough that array accesses of this nature
are required and very frequent, in this case with the SQLite
register array. Even the simplest SQL queries such as query
1 (shown in Appendix A) require around 25 SQLite register
accesses, thus not being able to use register memory here is
a huge restriction.

Finally, atomic functions in CUDA, such as atomicAdd ()
are implemented only for integer values. Implementation

for other data types would be extremely useful for inter-
threadblock communication, particularly given the architec-
ture of this project, and would make implementation of the
aggregate functions much simpler.

All three of these limitations are expected to disappear
with Fermi, the next generation of NVIDIA’s architecture
[18]. Significant efforts are being made to bring the CUDA
development environment in line with what the average pro-
grammer is accustomed to, such as a unified address space
for the memory heirarchy that makes it possible to run true
C++ on Fermi GPUs. It is likely that this unified address
space will enable dynamic arrays in register memory. Com-
bined with the general performance improvements of Fermi,
it is possible that a slightly modified implementation will be
significantly faster on this new architecture.

The most important hardware limitation from the stand-
point of a database is the relatively small amount of global
memory on current generation NVIDIA GPUs. The cur-
rent top of the line GPGPU, the NVIDIA Tesla C1060, has
four gigabytes of memory. Though this is large enough for
literally hundreds of millions of rows of data, in practice
many databases are in the terabyte or even petabyte range.
This restriction hampers database research on the GPU, and
makes any enterprise application limited. Fermi will employ
a 40-bit address space, making it possible to address up to a
terabyte of memory, though it remains to be seen how much
of this space Fermi-based products will actually use.

With the capabilities of CUDA there are two ways around
the memory limitation. First, data could be staged (or
'paged’) between the host and the device during the exe-
cution of a query. For example, a query run on a 6 GB
database could move 3 GB to the GPU, execute on this
block, then move the 2nd half to the GPU and complete ex-
ecution. The memory transfer time would create significant
overhead and the entire database would have to fit into the
host memory, since storing on disk would create huge bottle-
neck. It is possible that queries executed this way would still
outperform CPU execution, but this scheme was not tested
in this project. The second workaround for the memory
limitation is to utilize CUDA’s ’zero-copy’ direct memory
access functionality, but this is less feasible than the first
option. Not only does this type of DMA have prohibitively
low bandwidth, but it requires that the memory be declared
as pinned'[19]. In practice, both the GPU and the operat-
ing system are likely to have limits to pinned memory that
are less than 4 gigabytes, thus undermining the basis of this
approach.

6.3 Multi-GPU Configuration

A topic left unexamined in this paper is the possibility
of breaking up a data set and running a query concurrently
on multiple GPUs. Though there would certainly be coor-
dination overhead, it is very likely that SQL queries could
be further accelerated with such a configuration. Consider
the NVIDIA Tesla S1070, a server product which contains 4
Tesla GPUs. This machine has a combined GPU throughput
of 408 GB/sec, 960 streaming multiprocessors, and a total of
16 GB of GPU memory. Further research could implement
a query mechanism that takes advantage of multiple GPUs

LThis type of memory is also called page-locked, and means
that the operating system has relinquished the ability to
swap out the page. Thus, once allocated, the memory is
guaranteed to be in certain location.

resident on a single host and across multiple hosts.

7. CONCLUSIONS

This project simultaneously demonstrates the power of
using a generic interface to drive GPU data processing and
provides further evidence of the effectiveness of accelerat-
ing database operations by offloading queries to a GPU.
Though only a subset of all possible SQL queries can be
used, the results are promising and there is reason to believe
that a full implementation of all possible SELECT queries
would achieve similar results. SQL is an excellent interface
through which the GPU can be accessed: it is much simpler
and more widely used than many alternatives. Using SQL
represents a break from the paradigm of previous research
which drove GPU queries through the use of operational
primitives, such as map, reduce, or sort. Additionally, it
dramatically reduces the effort required to employ GPUs
for database acceleration. The results of this paper suggest
that implementing databases on GPU hardware is a fertile
area for future research and commercial development.

The SQLite database was used as a platform for the pro-
ject, enabling the use of an existing SQL parsing mechanism
and switching between CPU and GPU execution. Execution
on the GPU was supported by reimplementing the SQLite
virtual machine as a CUDA kernel. The queries executed on
the GPU were an average of 35X faster than those executed
through the serial SQLite virtual machine. The character-
istics of each query, the type of data being queried, and the
size of the result set were all significant factors in how CPU
and GPU execution compared. Despite this variation, the
minimum speedup for the 13 queries considered was 20X.
Additionally, the results of this paper are expected to im-
prove with the release of the next generation of NVIDIA
GPU hardware. Though further research is needed, clearly
native SQL query processing can be significantly accelerated
with GPU hardware.

8. ACKNOWLEDGEMENTS

This work was supported in part by NSF grant no. IIS-
0612049 and SRC grant no. 1607.001. We would also like to
thank the anonymous reviewers for their helpful comments.

9. REFERENCES

[1] N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi.
Hardware acceleration in commercial databases: a case
study of spatial operations. In VLDB ’04: Proceedings
of the Thirtieth international conference on Very large
data bases, pages 1021-1032. VLDB Endowment, 2004.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A performance study of
general-purpose applications on graphics processors
using cuda. J. Parallel Distrib. Comput.,
68(10):1370-1380, 2008.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107-113, 2008.

[4] A. di Blas and T. Kaldeway. Data monster: Why
graphics processors will transform database
processing. IEEE Spectrum, September 2009.

[5] S. Ding, J. He, H. Yan, and T. Suel. Using graphics
processors for high performance IR query processing.

[11]

[13]

[14]

[15]

[16]

In WWW ’09: Proceedings of the 18th international
conference on World wide web, pages 421-430, New
York, NY, USA, 2009. ACM.

R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. GPUQP: query
co-processing using graphics processors. In ACM
SIGMOD International Conference on Management of
Data, pages 1061-1063, New York, NY, USA, 2007.
ACM.

W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam,

P. Y. Yang, B. Hel, Q. Luo, P. V. Sander, and

K. Yang. Parallel data mining on graphics processors.
Technical report, Hong Kong University of Science
and Technology, 2008.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: high performance graphics co-processor
sorting for large database management. In ACM
SIGMOD International Conference on Management of
Data, pages 325-336, New York, NY, USA, 2006.
ACM.

N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. In SIGGRAPH 05: ACM
SIGGRAPH 2005 Courses, page 206, New York, NY,
USA, 2005. ACM.

T. D. Han and T. S. Abdelrahman. hicuda: a
high-level directive-based language for gpu
programming. In GPGPU-2: Proceedings of 2nd
Workshop on General Purpose Processing on Graphics
Processing Units, pages 52—61, New York, NY, USA,
2009. ACM.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and

T. Wang. Mars: a mapreduce framework on graphics
processors. In PACT ’08: Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques, pages 260-269, New York, NY,
USA, 2008. ACM.

B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):1-39, 20009.

T. Hoff. Scaling postgresql using cuda, May 2009.
http://highscalability.com/scaling-postgresql-
using-cuda.

T. Kaldeway, J. Hagen, A. Di Blas, and E. Sedlar.
Parallel search on video cards. Technical report,
Oracle, 2008.

S. Lee, S.-J. Min, and R. Eigenmann. Openmp to
gpgpu: a compiler framework for automatic
translation and optimization. In PPoPP ’09:
Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming,
pages 101-110, New York, NY, USA, 2009. ACM.

M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng. Merge: a programming model for
heterogeneous multi-core systems. In ASPLOS XIII:
Proceedings of the 13th international conference on
Architectural support for programming languages and
operating systems, pages 287-296, New York, NY,
USA, 2008. ACM.

W. Ma and G. Agrawal. A translation system for
enabling data mining applications on gpus. In ICS "09:

(18]

(19]

20]
(21]
(22]
23]
(24]

25]

Proceedings of the 23rd international conference on
Supercomputing, pages 400-409, New York, NY, USA,
2009. ACM.

NVIDIA. Nvidia’s next generation cuda compute
architecture: Fermi. http://www.nvidia.com/
content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf.
NVIDIA. NVIDIA CUDA Programming Guide, 2.3.1
edition, August 2009.
http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_
Guide_2.3.pdf.

SQLite. About sqlite.
http://sqlite.org/about.html.

SQLite. The architecture of sqlite.
http://sqlite.org/arch.html.

SQLite. Most widely deployed sql database.
http://sqlite.org/mostdeployed.html.

SQLite. Sqlite virtual machine opcodes.
http://sqlite.org/opcode.html.

Thrust. Thrust homepage.
http://code.google.com/p/thrust/.

S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei
W. Hwu. Cuda-lite: Reducing gpu programming
complexity. In LCPC, pages 1-15, 2008.

APPENDIX

A.

QUERIES USED

Below are the ten queries used in the performance mea-
surements. Note that uniformi, normali5, and normali20
are integer values, while uniformf, normalf5, and normalf20
are floating point values.

1.

10.

11.
12.

13.

SELECT id, uniformi, normali5 FROM test WHERE uni-
formi > 60 AND normalib < O

. SELECT id, uniformf, normalf5 FROM test WHERE uni-

formf > 60 AND normalfb < O

. SELECT id, uniformi, normali5 FROM test WHERE uni-

formi > -60 AND normali5 < 5

. SELECT id, uniformf, normalf5 FROM test WHERE uni-

formf > -60 AND normalf5 < 5

. SELECT id, normalib5, normali20 FROM test WHERE (nor-

mali20 + 40) > (uniformi - 10)

. SELECT id, normalf5, normalf20 FROM test WHERE (nor-

malf20 + 40) > (uniformf - 10)

. SELECT id, normalib5, normali20 FROM test WHERE nor-

malib * normali20 BETWEEN -5 AND 5

. SELECT id, normalf5, normalf20 FROM test WHERE nor-

malf5 * normalf20 BETWEEN -5 AND 5

. SELECT id, uniformi, normali5, normali20 FROM test

WHERE NOT uniformi OR NOT normali5 OR NOT normali20

SELECT id, uniformf, normalf5, normalf20 FROM test
WHERE NOT uniformf OR NOT normalf5 OR NOT normalf20

SELECT SUM(normalf20) FROM test

SELECT AVG(uniformi) FROM test WHERE uniformi >
0

SELECT MAX(normali5), MIN(normali5) FROM test

