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Abstract

The goal of many sciences is to understand the mechanismsioy wariables came to take on
the values they have (that is, to find a generative model) taupdedict what the values of those
variables would be if the naturally occurring mechanismsensaibject to outside manipulations.
The past 30 years has seen a number of conceptual develagpthantre partial solutions to the
problem of causal inference from observational sample olatamixture of observational sample
and experimental data, particularly in the area of graple@asal modeling. However, in many do-
mains, problems such as the large numbers of variables| samaples sizes, and possible presence
of unmeasured causes, remain serious impediments toqaiegpiplications of these developments.
The articles in the Special Topic on Causality address taedether problems in applying graphi-
cal causal modeling algorithms. This introduction to the&gal Topic on Causality provides a brief
introduction to graphical causal modeling, places thelediin a broader context, and describes the
differences between causal inference and ordinary madbaraing classification and prediction
problems.

Keywords: Bayesian networks, causation, causal inference

1. Introduction

The goal of many sciences is to understand the mechanisms by which vacabhe to take on
the values they have (that is, to find a generative model), and to predatttiv values of those
variables would be if the naturally occurring mechanisms were subject t@eutsnipulations.
For example, a randomized experiment is one kind of manipulation that sulsstitgteutcome
of a randomizing device to set the value of a variable (for example, whetheot a particular
new medication is given to a patient who has agreed to participate in a drugrtrig§ce of the
naturally occurring mechanism that determines the variable’s value. hexperimental settings,
biologists gather data about the gene activation levels in normally functiogstgrss in order
to understand which genes affect the activation levels of which othersgemd to predict what
the effects of manipulating the system to turn some genes on or off would jpider&iologists
gather data about dietary habits and life expectancy in the general fopulad seek to find what
dietary factors affect life expectancy and predict the effects of adyjgeople to change their diets.
Finding answers to questions about the mechanisms by which variables cteke tm values, or
predicting the value of a variable after some other variable has been maripigatiearacteristic of
causal inference. If only non-experimental data are available, pirgglibe effects of manipulations
typically involves drawing samples from one probability density (in the unmaetipdi population)
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and making inferences about the values of a variable in a population thatditierent probability
density (in the manipulated population).

The rapid spread of interest in the last three decades in principled meathsdarch or esti-
mation of causal relations has been driven in part by technologicalagewents, especially the
changing nature of modern data collection and storage techniques, dndrteeses in the process-
ing power and storage capacities of computers. Statistics books fronaBfaggo often presented
examples with fewer than 10 variables, in domains where some backgroondekge was plau-
sible. In contrast, in new domains such as climate research (where sataHiteosaprovide daily
guantities of data unthinkable a few decades ago), fMRI brain imagingmaerdarray measure-
ments of gene expression, the number of variables can range into thd tansgands, and there
is often limited background knowledge to reduce the space of alternatigaldaypotheses. Even
when experimental interventions are possible, performing the many thaueesperiments that
would be required to discover causal relationships between thousatetsaf thousands of vari-
ables is often not practical. In such domains, non-automated causavetigdechniques from
sample data, or sample data together with a limited number of experiments, dpdeatopeless,
while the availability of computers with increased processing power andystoapacity allow for
the practical implementation of computationally intensive automated search atg®trer large
search spaces.

The past 30 years has also seen a number of conceptual developragate thartial solutions
to these causal inference problems, particularly in the area of gragiaieaal modeling. Sections
3 and 4 of this paper describe some of these developments: a variety afefie#d mathematical
objects to represent causal relations (for example, directed acycpbgrawvell defined connec-
tions between aspects of these objects and sample data (for example, sheNakov and Causal
Faithfulness Assumptions); ways to compute those connections (for exairgdparation); and a
theory of representation and calculation of the effects of manipulationgxtmple, by breaking
edges in a graph); and search algorithms (for example, the PC algorithowevdr, in many do-
mains, problems such as the large numbers of variables, small sampleasizpsssible presence
of unmeasured causes, remain serious impediments to practical applicatibeseoflevelopments.

The articles in the Special Topic on Causality (containing articles from 20Q@0@8) address
these and other problems in making causal inferences. Although theseragesuperficial simi-
larities between traditional supervised machine learning problems and c#asance (for exam-
ple, both employ model search and feature selection, the kinds of modelsyehoieerlap, some
model scores can be used for both purposes), these similarities canonaskary important dif-
ferences between the two kinds of problems. This introduction to the Spexpal ®n Causality
provides a brief introduction to graphical causal modeling, places théeartica broader context,
and describes the differences between causal inference andrgnaiaehine learning classification
or prediction problems; it is not intended to provide a broad overview otai&l surveying all
methods of causal inference.

Section 2 describes the problem of causal inference in more detail, dackdifates it from the
typical machine learning supervised classification or prediction probleatip&e describes several
different kinds of causal models; Section 4 describes some problerosiatses with search for
causal models, and why algorithms appropriate for the discovery ofgassification or prediction
models in machine learning are not always appropriate for the discof/gopd causal models; and
Section 5 describes some major open problems in the field. The various artitiesSpecial Topic
on Causality are described throughout this article, depending upon vadpchthey address.
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2. Manipulating Versus Conditioning

This section will describe three different kinds of problems (one typicalmme learning or statis-
tical problem, and two kinds of causal problems), and three differediskih probability densities
(conditional, manipulated, and counterfactual) that are useful for gpthie problems.

2.1 Conditional Probabilities

Suppose that there is a population of individuals with the following randamahlas at time: rw;
is the average number of glasses of red wine consumed per day in thes5yieatot, bmi is the
body mass index of a person at timeex is the person’s sex (0 = male, 1 = female) at titnand
ha; is whether or not an individual had a heart attack in the 5 years pribr$incesex is rarely
time-dependent, it will be replaced simply bgx

Suppose an insurance company at tinmeants to determine what rates to charge an individual
for health insurance who hawe; = 1, bmi = 25, andsex= 0, and that this rate is partly based on
the probability of the individual having a heart attack in the next 5 yednss dan be estimated by
using the rate of heart attacks among the subpopulation matching the sulgjeistih = 1, bmi =
25,sex= 0. It is impossible to measure the valuesef,s at timet, because they haven’t occurred
yet, but if the probability density is stable across time, the densibagf among the subset of the
population withrw; = 1, bmi = 25, andsex= 0 will be the same as the density lndy among the
subpopulation for whicliw;_s = 1, bmi_s = 25, andsex= 0. The density in a subpopulation is a
conditional density, in this cas&ha | rwi_s = 1, bmi_s = 25, sex= 0).

Conditioning maps a given joint density, and a given subpopulation (typispégified by a set
of values for random variables) into a new density. The conditionalityeas function of the joint
density over the random variables, and a set of values for a setdfmavariables. The estimation
of a conditional probability is often non-trivial because the number oplgewith rw;_5=1,bmi_s
= 25,sex= 0 might be small. A large part of statistics and machine learning is devoted to tsgma
conditional probabilities from realistic sample sizes under a variety of adgump

If the insurance company is not attempting to change anyone’s behaviothbajuestion of
whether drinking the right amount of red wipesventsheart attacks is irrelevant to their concerns;
the only relevant question is whether the amount of red wine that somemks gdredictsheart
attack rates. It is possible that people who drink an average of betwaeth 2 glasses of red wine
per day for 5 years have lowered rates of heart attacks becausei@fezonomic factors that both
cause average daily consumption of red wine and other life-style factmrpitvent heart attacks.
But even if moderate red wine consumption does not prevent heartgtthekinsurance company
can still use the conditional probability to help determine the rates to charge.

If X is a set of measured variables, the conditional probability deR§¥ty X) is not only useful
for predicting future values of, it is also useful for predicting current unmeasured value¥ ,of
and for classifying individuals in cases whefds categorical.

Problem 1: Predictive Modeling
Input: Samples from a densi§(O) (whereO is a set of observed random variables), and
two sets of variableX, Y C O.
Output: A consistent, efficient estimate B{Y | X).

1. In order to avoid technicalities, | will assume that the set of valuesittoned on do not have measure 0.
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2.2 Manipulated Probabilities

In contrast to the previous case, suppose that an epidemiologist is dewig@ther or not to recom-
mend providing very strong incentives for adults to drink an averagetofZlglasses of red wine
per day in order to prevent heart attacks. Suppose further thatptedithe incentives will be very
widely effective. The density of heart attacks observationadigditionalon drinking an average
of 1 to 2 glasses of red wine per day is not the density relevant to angitbitnquestion, and the
guestion of whether drinking red wine prevents heart attacks is crucippbdse drinking red wine
does not prevent heart attacks, but the heart attack rate is lower anmamegate red wine drinkers
because some socio-economic variable causes both moderate red wkiregdaimd other healthy
life-styles choices that prevent heart attacks. In that case, afterdbmstives to drink red wine are
in place, the density of socioeconomic status among red wine drinkers wilffbeedt than prior
to the incentives, and the conditional density of heart attacks among modedaténe drinkers
will not be the same after the incentives were adopted as prior to their adoftiaus, using ob-
servational conditional densities to predict heart attacks after the imesrie in place will lead to
incorrect predictions.

The density that is relevant to determining whether or not to recommend dyiakinoderate
amount of red wine is not the density of heart attacks among people wiecchagen to drink red
wine (choice being the mechanism for determining red wine consumption in thanipulated
population), but the density of heart attacks among people who would dethkvine after the
incentives are in place. If the incentives are very effective, theitjeof heart attacks among
people who would drink red wine after the incentives are in place is appadely equal to the
density of heart attacks among people who are assigned to drink modeatata of red wine in
an experimental study.

The density of heart attacks among people who have besignedo drink red wine (as op-
posed to those who haehoserto drink red wine, as is currently the case) manipulateddensity,
that results from taking action on a given population - it may or may not baleguany observa-
tional conditional density, depending upon what the causal relation&batwariables are. Manip-
ulated probability densities are the appropriate probability densities to usemdidng predictions
about the effects of taking actions (“manipulating” or “doing”) on a gipepulation (for example,
assigning red wine drinking), rather than observing (“seeing”) theegbi given variables. Ma-
nipulated probabilities are the probabilities that are implicitly used in decisionythetere the
different actions under consideration are manipulatfons.

A simple form of manipulation specifies what new dengttyis assigned to some variable in
a population at a given time. For example, forcing everyone in an (adys)lation to drink an
average of 1 glass of red wine daily from10 tot-5, assign®’(rw;_s= 1) = 1. (Sincerw;_s
measures red wine drinking for the past 5 years, an interventianvog begins att—10.) After
this density has been assigned, there is a resulting joint density for themavattiables at time
t, denoted byP(sex bmi.s, ha.s, rwi.s, bmk, ha, rw; || P'(rwi_s = 1) = 1), where the double bar
indicates the density that has been assignedita, in this case that everyone has been assigned the
valuerw,_s = 1.3 This is in contrast to the conditional densRysex bmi.s, ha.s, rwy.s, bmi, ha,

2. The use of manipulated probability densities in decision theory is ofteaxpdicit. The assumption that the den-
sity of states of nature are independent of the actions taken (act-stapemu#ace) is one way to ensure that the
manipulated densities that are needed are equal to observed condigosdies that can be measured.

3. There is no completely standard notation for denoting a manipulatedyddrrgs notation is adapted from Lauritzen
(1999).
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rw; | rwi_s = 1), which is the density of the variables in the subpopulation whete = 1 because
people have been observed to drink that amount of red wine, as in theniputated population.

P(sex bmi.s, ha.s, rwi_s, bmi, ha, rw; || P’'(rwi_s = 1) = 1) is a density, so it is possible to form
marginal and conditional probability densities from it. For examp{@a | bmi_s = 25| P’ (rwi_s
=1) =1) is the probability of having had a heart attack betwe&mandt among people who have
abmiof 25 att-5, everyone having been assigned to drink an average of 1 glasd wime daily
betweent—10 andt—5. In this paper, in order to simplify the exposition, it will be assumed that all
attempted manipulations are successful; that B;(ifw;_s = 1) =x thenP(rw;_s = 1 || P’ (rwi_s = 1)
=X) = X (that is, ifrwi_s is manipulated to have value 1 with probabilitythen in the manipulated
populationrw;_s has value 1 with probability.) For example, if it is assumed that(rw;_5 = 1) =
1 thenP(rwis = 1|| P’(rwi_s = 1) = 1) = 1, that is if everyone has been assigned to drink an average
of 1 glass of red wine per day for 5 years (dendee@w;_s = 1) = 1), that everyone has done so.

In a randomized trial, a manipulation could &¢rw;_5 = 1) = 0.5 andP’(rw;_5 = 0) = 0.5, in
which case the resulting densityR§sex bmi.s, ha.s, rwi.s, bmi, ha, rw; || {P’(rwi_s = 1) = 0.5,
P’(rwi—s = 0) = 0.5}).

In more complex manipulations, different probabilities can be assigned awatitf subpopula-
tions. For example, the amount of red wine someone is assigned to drinklmablased osex
P’(rwi—s = 0| sex =0) = 0.25,P’(rwis = 1| sex=0) = 0.75,P’(rwi_s = 0| sex= 1) = 0. 5,P"(rwi.s
= 2| sex=1) = 0.5. The resulting density B(sex bmi.s, ha.s, rwi.s, bmi, ha, rw || {P’(rwis
=0|sex =0) = 0.25,P'(rwis = 1 | sex= 0) = 0.75,P’(rwi_s = O | sex=1) = 0.5,P’(rwi.s = 2 |
sex= 1) = 0.5}). In general, which manipulations are performed on which subpopulatambe a
function both of the values of various random variables, and of what @iist manipulations have
been performed.

In many cases the values of some variables in the pre-manipulation densitalles and the
temporal indices on those variables are omitted. Similarly, if it is assumed thabbesr in the
post-manipulation population eventually stabilize to fixed values, the time inditees# variables
are omitted in the post-manipulation density, and the time-independent variafdesorthe stable
values. Both of these kinds of omissions of time indices are illustrated by thefisexin the
example.

In contrast to conditional probabilities, which can be estimated from samplessf population,
typically the gold standard for estimating manipulated densities is an experimtemt,cofandom-
ized trial. However, in many cases experiments are too expensive, tauldjffir not ethical to
carry out. This raises the question of what can be determined about Hseagprobability densi-
ties from samples from a population, possibly in combination with a limited numbeanobmized
trials. The problem is even more difficult because the inference is manlesfg®t of measured ran-
dom variable®© from samples that might not contain variables that are causes of multiplblearia
in O.

Problem 2: Causal Predictive Modeling
Input: Samples from a population with densRfO), and a (possibly empty) set of
manipulated densitieR(O || M3), ... P(O || My), a manipulatiorM, and setx, Y C O.
Output: A consistent, efficient estimate B{Y | X || M) if possible, and an output of “not
possible” otherwise.
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With causal inference, as with statistical inference, it is generally thetbas@ order to make
inference tractable both computationally and statistically, simplifying assumptiemaade. One
kind of simplifying assumption common to both statistical and causal inference essgumption
that the population distribution lies in some parametric family (for example, Gaszighat rela-
tionships between variables are exactly linear. An example of a simplifyingrgg&n unique to
causal inference is that multiple causal mechanisms relating variables exatily cancel (Section
3). So, although the goal of Problem 2 is stated as finding a consistent testiframanipulated
density, it is more realistic to state the goal as finding a sufficiently good estirmatmanipulated
density when the sample size is large enough.

Problem 2 is usually broken into two parts: finding a set of causal moduis $ample data,
some manipulations (experiments) and background assumptions (Sectiothg 8 and predicting
the effects of a manipulation from a set of causal models (Section 3), Blécausal model” (Sec-
tion 3) specifies for each possible manipulation that can be performed popidation (including
the manipulation that does nothing to a population) a post-manipulation densitg gixen set of
variables. In some cases, the inferred causal models may contain umeteeatuables as well as
measured variables.

Problem 3: Constructing Causal M odels from Sample Data
Input: Samples from a population with dens®O), a (possibly empty) set of manipulated
densitiedP(O||My), ... P(O||Mp), and background assumptions.
Output: A set of causal models that is as small as possible, and contains a tratroadel
that contains at least the variable<On

Problem 4: Predicting the Effects of Manipulations from Causal M odels
Input: An unmanipulated density(O), a setC of causal models that contain at least the
variables inO, a manipulatiorM, and setx, Y C O.
Output: A functiong such thaP(Y | X || M) =g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.

In analogy to the goals of statistical modeling, it would be more accurate but mace vague
to state that the goal in Problem 3 is to find a useful (for example, sufficieimtiple, sufficiently
accurate, etc.) causal model, rather than a true causal model.

The reason that the stated goal for the output of Problem 3 is a set sdlaaondels, is that
it is generally not possible to reliably find a true causal model given thetsnpEurthermore,
in contrast to predictive models, even if a true causal model can beedf&wm a sample from
the unmanipulated population, it generally cannot be validated on a sampiglfeounmanipu-
lated population, because a causal model contains predictions aboutpulataa population that
might not actually exist. This has been a serious impediment to the improvemalgooithms
for constructing causal models, because it makes evaluating the pemftgro&such algorithms
difficult. It is possible to evaluate causal inference algorithms on simulateg ieemploy back-
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ground knowledge to check the performance of algorithms, and to colihited (due to expense,
time, and ethical constraints) experiments, but these serve as only pheddschow algorithms
perform on real data in a wide variety of domains. For examples, see th&alig Challenge
(http://www.causality.inf.ethz.ch/challenge.php).

In the Special Topic on Causality in this journal, Shpitser and Pearl (Z2@8¥hang (2008)
address Problem 4. Bromberg and Margaritis (2009), Pellet and Efi¢28668), He and Geng
(2009), and (indirectly) Kang and Tian (2009), Aliferis et al. (201@ajd Aliferis et al. (2010b)
address Problem 3. Both the problems and the papers will be describeddmletail in subsequent
sections.

2.3 Effectsof Counterfactual Manipulations

There are cases in ethics, the law, and epidemiology in which there argogsesbout applying
a manipulation to a subpopulation whose membership cannot be measuredtiatettibat the
manipulation is applied. For example, epidemiologists sometimes want to know b the
effect on heart attacks have been, if a manipulation such as assigningateodienking of red wine
from t—10 tot-5, had been applied to the subpopulation whichri@snoderately drunk red wine
from t—10 tot-5. When the manipulation under consideration assigns a value to a raiaiaile/
to a subpopulation with a different actual value of the random variablegriftgability in question
is acounterfactuaprobability. If the subpopulation that did not moderately drink red wine betwe
t—10 andt-5 differs systematically from the rest of the population with respect toesaokheart
attacks, the subpopulations’ response to being assigned to drink redvairie be different than
the rest of the population.

Questions about counterfactual probabilities arise naturally in assigtangekn ethics or in
the law. For example, the question of whether tobacco companies wereemeglighe case of
someone who smoked and developed lung cancer depends upon thbilisothat person would
not have gotten lung cancer if they had not smoked.

A counterfactual probability cannot be estimated directly from a randongzpdriment, be-
cause it is impossible to perform a randomized experiment that assignsateodst wine drinking
betweern—10 tot—5 to a group of people who already have not been moderate wine drindsveen
t—10 andt-5. This raises the question of how counterfactual probabilities cantinea¢sd. One
general approach is to assume that the value of red wine drinking betw&@mandt—5 contains
information about hidden causes of red wine drinking that are also safibeart attacks.

Problem 5: Counterfactual predictive modeling
Input: An unmanipulated density(O), a setC of causal models that contain at least the
variables inO, a counterfactual manipulatidvi, and set, Y C O.
Output: A functiong such thaP(Y | X || M) =g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.

In the Special Topic on Causality in this journal, Shpitser and Pearl (208&)ibes a solution
to Problem 5 in the case where the causal graph is known, but may contagesured common
causes.
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3. Causal Moddls

This section describes several different kinds of commonly used lcengstels, and how to use
them to calculate the effects of manipulations. The next section describeeh sdgorithms for
discovering causal models.

A (parametrickstatistical mode{with free parameters) is a set of probability densities that can be
mapped into a single density by specifying the values of the free paranfeteezdmple, a family
of multivariate Gaussian densiti€s)For example, a Hidden Markov Model with a fixed structure
but free parameters is a statistical model that represents a certain sebabitity densities. A
causal model with free parameteasso specifies a set of probability densities over a given set of
variables; however, in addition, for each manipulation that can be peefbron the population
it also specifies a set of post-manipulation probability densities over a gieeaf variables. A
causal model with free parameters together with the values of the frem@tans is a&ausal model
with fixed parametersa causal model with fixed parameters is mapped to a single density given a
specification of a manipulation.

Often, a causal model is specified in two parts: a statistical model, and al cagaph that
describes the causal relations between variables. The most frequaesdigausal models belong to
two broad families: (1) causal Bayesian networks, (2) structuralteguenodels. Causal Bayesian
networks (and related models), specify a density for a variable as &idoraf the values of its
causes. Structural equation models (SEMSs) specify the value of a leadala function of the
values of its causes (typically including some unmeasured noise terms.) eiowet/surprisingly,
the two kinds of models are closely linked, as explained in Section 3.2.

The statistical setup for both causal Bayesian networks and structywatien models is a
standard one. There is a population of units, where depending upomdblem, the units could
be people, cities, cells, genes, etc. It is assumed that there is a densithep®pulation, which
assigns probabilities to each measurable subset (event) of the poputatnunit also has a set of
properties at a time, where the properties are represented by randabies which are functions
from the units to real numbers. The following sections describe the cpagalf the model.

3.1 Causal Bayesian Networks

A Bayesian networis a pair(G, P), whereG is a directed acyclic graph (DAG) whose vertices are
random variables, arfdis a density such that each variaMén G is independent of variables that
are neither descendants nor parent¥ @i G,> conditional on the parents &f in G. In this case?

is said to satisfy théocal directed Markov conditiofor G.

There are two conditions that are equivalent to the local directed Markwoglition described
below that are useful in causal inference: the global directed Matkaodition, and factorization
according tdG, both of which are described next.

The conditional independence relations specified by satisfying the lveatetd Markov condi-
tion for DAG G might also entail other conditional independence relations. There isa@dasithm
for determining fromG whether a given conditional independence relation is entailed by satisfying
the local directed Markov condition f@, that uses the d-separation relation, a relation among the

4. In the nomenclature of machine learning, what this article calls a “m@d#l free parameters)” is often called a
“model family” or “learning machine” and a “model (with fixed paranratalues)” is often called a “model instance”
or “model”

5. Xis aparentof Y if the graph contains the edge— Y. Y is adescendanof X if there is a directed path frobdto V.
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vertices ofG. A variableB is acollider (v-structurg on a path Uif and only if U contains a subpath
A — B+ C. For disjoint sets of verticeX, Y, andZ in a DAG G, X is d-connectedo Y givenZ
if and only if there is an acyclic patd between some memb#rof X, and some membef of Y,
such that every collider oW is either a member o or an ancestor of a member 8f and every
non-collider onU is not inZ.® For disjoint sets of vertices{, Y, andZ, X is d-separatedrom Y
givenZ if and only if X is not d-connected t¥ givenZ. X is d-separated fron¥ conditional on
Z in DAG G if and only if X is independent o¥ conditional onZ in every density that satisfies
the local directed Markov condition f@ (Pearl, 1988). IX is independent oY conditional onZ
in P wheneverX is d-separated fronY conditional onZ in G, thenP satisfies thaylobal directed
Markov conditiorfor G.

For the set of random variabl&sin G, a densityP(V) factors according toDAG G iff

P(V) = J_!/P(V|Parents(v, G))

whereParents(V,G) is the set of parents &f in G.

The local directed Markov condition, the global directed Markov condjtaord factorization
according to a DAGG are all equivalent under mild regularity assumptions (Lauritzen et al.,)1990
A DAG can also be used to represent causal relations between variAbtea direct causeof

B relative to a set of variabléé in a population when there exist two manipulation&/af B} (that

is, all the variables iV, exceptB, are manipulated to specific values) that differ only in the values
assigned té\ and that produce different probability densitieBofA causal DAG Gor a population
contains an edgl — Biff Ais a direct cause d in the specified population.

In order to use samples from probability densities to make causal inferesamae assumptions
relating causal relations to probability densities need to be made. The foll@®dngal Markov
Assumption is commonly made, if only implicitly. A set of variabMsis causally sufficientff
there is no variabl€ not inV that is a direct cause of more than one variabl¥ ifrelative toV U
{c)).

Causal Markov Assumption: For a causally sufficient set of variablgsin a populationN
with densityP(V), P(V) satisfies the local directed Markov condition for the causal DAG.of

Under the Causal Markov Assumption, in a causal Bayesian network gutaion of X to
P'(X ] Y) (whereY is assumed to contain only non-descendantX of a causal DAGG) simply
replaces the ter®(X | Parents(X,G)) in the factorization of the joint density by the manipulated
densityP’ (X | Y):

P(V||P'(X]Y)) =P/ (X]Y) |_| P(V|Parents(V,G)).
Vev\[X}

This is called themanipulation rule The importance of the manipulation rule is that if the
causal DAG is known, and the unmanipulated density can be estimated frammpdes it allows the
prediction of the effect of an unobserved manipulation. Hence the matiguutale is the solution
to Problem 4, in the special case where the observed variables asdlyaufficient, and the unique
correct causal DAG is known.

6. For both the d-separation relation and the independence relati¥n¢dhtains a single verteX, then X will be
written instead of X}, and similarly forY andZ. D-connection can also be defined for cyclic graphs and graphs with
double-headed arrows (Spirtes, 1995; Koster, 1999; Cox and Mteyii096).
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The solution to Problem 4 is more difficult when the set of observed vasableot causally
sufficient. There are sufficient and (almost) necessary rules forndigieg which manipulated
conditional probability densities are invariant under a given manipulati@t @ghwhich densities
are the same in the unmanipulated population and the manipulated population)esfor how to
express some non-invariant conditional densities as functions ofv@asdensities (Spirtes et al.,
1993). Pearl’s do-calculus extended the sufficient and (almost) seeyaonditions for determining
which conditional densities were invariant from single manipulations to segsef manipulations,
and showed how a broader range of non-invariant manipulated demwsitilsbe expressed in terms
of observed densities (Pearl, 1995). In the Special Topic on Caushtitysgournal, Shpitser and
Pearl (2008) describe an algorithm that has recently been develogeshaw that it is a complete
solution to Problem 4 in the special case where a unique causal DAG iski8hwitser and Pearl,
2006a,b; Huang and Valtorta, 2006).

Calculation of the effect of a counterfactual manipulation when caughfitisncy does not
hold among the observed variables is a complex operation that requiezalsmpies of the causal
graph in order to keep track both of the actual value of the variable beimjpoiated, and the
counterfactual value of the variable being manipulated. In the Speciat dapCausality, Shpitser
and Pearl (2008) describe for the first time an algorithm that is a compleettgoscto Problem 5 in
the special case where a unique causal DAG is known, even if the ebsefved variables is not
causally sufficient.

3.2 Structural Equation Models (SEMs)

Structural equation models are widely used in the social sciences (Bdi@8) d4nd in some natural
sciences. The set of random variables in a structural equation mdeMd)) (Gn be divided into two
subsets, the “error variables” or “error terms,” and the substantiiabtas (for which there is no
standard terminology in the literature). The substantive variables are filadles of interest, but
they are not necessarily all observed. Which variables are substaanit which variables are error
terms can vary with the analysis of the problem. Each substantive variabkeimetton of other
substantive variables and a unique error term. The joint density oveulistasitive variables is a
function of the density over the error terms and of the functions relating \ea@ble to its causes.
There is an edg@ — B in the graph (“path diagram”) of a SEM whéis a non-trivial argument
in the function forB. A manipulation of a variabl® to a constant is represented in a SEM by
replacing the equation fd with B =c.

In general, the graph of a SEM may have cycles (that is, directed pathsafvariable to itself),
and may explicitly include error terms with double-headed arrows betweemttheepresent that
the error terms are dependent (for examples— €g); if no such double-headed edge exists in the
graph, the error terms are assumed to be independent of each otheroAterm is not explicitly
included in the graph unless it is the endpoint of a double-headed aotberwise, an error term
occurs in the SEM model, but is not shown in the graph. If the graph hdgected cycles and no
double-headed arrows, then the graph is a DAG and the SEM is said¢oursive otherwise it is
said to benonrecursive

In arecursive SEM, if the marginal density over the substantive vagaiRéV), then(G,P(V))
is a Bayesian network (Spirtes et al., 2001; Pearl, 2000); for shgrthata SEM with an associated
graph that is a DAG is a Bayesian network (although the SEM contains sdraesgxcture in that it
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entails that any non-determinism among the substantive variables is only theenb@rginalization
of the error terms.)

Non-recursive SEMs are of interest because they allow for theseptation of feedback (with
cycles) or unmeasured common causes (represented by doubletheaes.) In the case of linear
non-recursive SEMs, it is still possible to deduce the conditional indipesies (or more generally
the zero partial correlations) entailed for all Gaussian SEMs (or morerginlinear SEMs) from
the graphG of a non-recursive linear SEM using a minor modification of the d-separatiation
(Koster, 1999; Spirtes, 1995).

For both theoretical interest and for the purposes of efficient (@instbased) search of the
space of linear non-recursive SEMs without cycles (Section 4.2), fiilgerest to find some proper
subset of the set of all conditional independence relations entailed kyntbatified) d-separation
which entail all the rest, that is, a modified form of the local directed Madandition. (In contrast
to the recursive case, where such a subset is given by the indepsslentailed by the local di-
rected Markov condition, in the non-recursive case SEMs do notrgiiyeatisfy the local directed
Markov condition). One such subset of conditional independenciesdescribed by Richardson
(2003). In this special issue, the paper by Kang and Tian (2009Yidescanother such subset,
which is often smaller than the one described by Richardson, and hencebmaigiore useful for
the purposes of search.

4. Model Search

Traditionally, there have been a number of different approaches takdiscovery. The gold
standard of causal discovery has typically been to perform plannedndomized experiments
(Fisher, 1971). There are obvious practical and ethical considesatiat limit the application of
experiments in many instances, particularly on human beings. Moreogentrdata collection
techniques and causal inference problems raise several practf@alltiés regarding the number
of experiments that need to be performed in order to answer all of the ditsgiequestions.

In the absence of experiments, in practice (particularly in the social gs€¢search for causal
models is often informal, and based on a combination of background assomptiout causal
relations together with statistical tests of the causal models. If a model is teiBctestatistical test,
the researcher looks for a modification of the original hypothesized ntloatelvill pass a statistical
test. The search typically halts when a model that is compatible with backgkmandedge does
not fail a statistical test (Rodgers and Maranto, 1989). Often, therfindel is presented, and the
search itself is not described. Informal searches of this kind fail towdcfor multiple testing
problems, and can potentially lead to severe overfitting problems. The reliafiktych a search
depends upon the correctness of the background assumptions, axdethieto which the space of
alternatives compatible with the background assumptions was searcheberfore, unless the
background assumptions are very extensive, or the number of variabiimy, it is not feasible
to estimate and test all of the models compatible with background assumptionsis Tinither
complicated by the fact that, as explained below, for reliable causal ndferi¢ is not sufficient to
find one model that passes a statistical test; instead it is necessary to indhalinodels. Recent
developments in automated model search have attempted to address thesagwdth traditional
methods of search.
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There are several major differences between model search in thefgaedicting the unmanip-
ulated value oft, and model search in the case of predicting the post-manipulation vafjeased
on the different uses of statistical models and causal models describedfalitiwing section.

4.1 Underdetermination of Causal M odels by Data

Causal model (with fixed parameter) search is often broken into two g&dsch for a causal graph,
and estimation of the free parameters from sample data and the causal @rapbme cases, the
prediction of the effects of manipulations does not require estimating all dfdbgarameters, but
does require estimating functionals of the free parameters.) Generallystthr@agon of the free
parameters employs standard statistical methods. For example, in a linear BER necursive
DAG, no unmeasured variables, and Gaussian errors, the maximum liletiistimate of the edge
coefficients is given by regressing each variable on its parents in the Dhi€section concentrates
on the search for causal graphs, because the search for ceaystad @5 significantly different than
the search for graphs that are to be used only as statistical models.

In causal model search based on unmanipulated data, if no prefdoerstmpler models over
more complex models is made, then the causal models are underdeterminell am gxtent that
useful causal inference is impossible for many important parametric fanfdiesq@mple, Gaussian
or multinomial) or unrestricted probability densities. There are a variety of siitypéissumptions
that select simpler models over more complex models that can be made. In ¢hefcsarch
based upon maximizing some model score given sample data (such as tistaBdgéormation
Criterion), the simplicity assumption is a penalty for complexity built into the scohéci@ring,
2002). For search that is not based upon model scores, the folloimipgjcty assumption is often,
if implicitly made:

Causal Faithfulness Assumption: For a causally sufficient set of variabMsn a populatior,
every conditional independence relation true in the density Wverentailed by the local directed
Markov condition for the causal DAG i.

There are several other versions of the assumption that are cotdydeaker than the one
stated here (and more intuitively justifiable) but still permit reliable causatentse, at the cost of
requiring more complicated algorithms with more complex and somewhat less itfogroatput
(Ramsey et al., 2006).

However, even given the Causal Markov and Faithfulness Assumpdiodghe assumption
that the observed variables are causally sufficient, the true causal imodeerdetermined by the
available evidence and background assumptions, because of thelmjeshequivalence relations
described below.

Two different DAGsG and G’ that have the same set of d-separation relations are said to be
Markov (conditional independenc¢d-separatioh equivalent

For each DAGG, there is a sel of probability densities that satisfy the local directed Markov
condition forG, denotedP(G) that are said to beepresentedy G. In many cases, some subset of
P that belongs to a parametric or semi-parametric fafily of interest; for example, the Gaussian
subset of. Two DAGsG andG’ arestatistically equivalent with respect iff P(G) N F =P(G’)

N F. Two DAGs that are statistically equivalent with respedt t@are the same statistical model with
respect td-.

Two DAGs arecausally equivalenfwith respect to a family of densitids) iff they represent
the same set of probability densities (in famiy for every manipulation (including the null ma-
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nipulation.) It is easy to see that no pair of DAGs that differ in their structame be causally
equivalent.

As an exampleA — B «— C «— D andA — B «— C — D are Markov equivalent, but not
causally equivalent. They are statistically equivalent with respect tossauSEMSs, but they are
not statistically equivalent with respect to linear SEMs with at most one @ausgor term, and
no determinism among the substantive variables (Shimizu et al., 2006).

In the absence of further information (for example, samples from manipud&esities or back-
ground domain knowledge) all of the DAGs in a statistical equivalence filéiss data and the back-
ground assumptions equally well, and are equally simple. Hence standaed scich as Bayesian
Information Criterion, Minimum Description Length, chi-squared statistics, &tgproduce equal
scores for the alternative DAGs in a statistical equivalence class faatalkets -- in general, there is
no one DAG with the highest score, but rather, there is a set of DAGs wjithlly high scores. Fur-
thermore, for computational and statistical reasons, it is sometimes easiardb && the Markov
equivalence class of DAGs, even if it is known that the statistical equizalelass is a proper subset
of the Markov equivalence class.

If the DAG is to be used to estimate observational (not manipulated) conditienaities, this
is not a problem, because all of the statistically equivalent models will peothecsame estimate.
However, if the DAG is to be used to predict the effects of manipulations,ttreedifferent models
will make different predictions about at least some manipulations. So in eeod@ausal modeling,
unlike observational statistical modeling, it is not enough to simply output doigaily selected
DAG from a set of highest scoring DAGs -- it is important to output the ersirie so that all of
the different answers given by the different models can be taken immuat Once the set of
highest scoring DAGs is found, the problem of dealing with the undenm@tation of the effects
of manipulations must also be dealt with. These problems are described irdetaren the next
two subsections.

If the assumption of causal sufficiency of the observed variables imade, all three kinds of
equivalence classes have corresponding equivalence classd¢beset of observed variables, and
the problem of causal underdetermination becomes much more seveexaRgple, for a given set
of observed variable®, the Markov equivalence class relativeQaconsists of the set of all DAGs
(possibly containing variables not @) that have the same set of d-separation relations among the
variables inO; this might be much larger than the Markov equivalence class that conkibts set
of DAGs (containing only variables @) that have the same set of d-separation relations among the
variables inO.

4.2 Constraint-based Search

First, the problem where only sample data from the unmanipulated populatisitydisravailable
will be considered. The number of DAGs grows super-exponentially wgmtimber of vertices,
so even for modest numbers of variables it is not possible to examine eés@ht@determine
whether it is compatible with the population density given the Causal MarkaWaithfulness As-
sumptions. Constraint based search algorithms, given as input an tiraicteturns answers about
conditional independence in the population and optional backgroungi&dge about orientations
of edges, return a representation of a Markov equivalence clagistjere is background knowl-

7. In alinear SEM it is assumed that each variable is a linear function ofiatparents and a unique error term; in a
Gaussian SEM it is assumed in addition that the errors term are Gaussian.
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edge, a subset of a Markov equivalence class) on the basis of gaalies. One example of a
constraint-based algorithm is the PC algorithm (Spirtes and Glymour, 1%&he oracle always
gives correct answers, and the Causal Markov and Causal FagkfuAssumptions hold, then the
PC algorithm always outputs a Markov equivalence class that contaimsitheausal model, even
though the algorithm does not check each directed acyclic graph. Infsewase, it is exponential
in the number of variables, but for sparse graphs it can run on hdsdfevariables in an accept-
able amount of time (Spirtes and Glymour, 1991; Spirtes et al., 1993; M868k).1 Kalisch and
Buhlmann (2007) showed that under a strengthened version of thalGaithfulness Assumption,
the PC algorithm is uniformly consistent for very high-dimensional, spafg@dwhere the num-
ber of nodes is allowed to quickly grow with sample sigas fast a©(n?) for any 0< a < «. In
practice, the judgments about conditional independence are made bynied (fallible) statistical
tests. A number of other variants of constraint-based algorithms havepbeosed that improve
on either the accuracy or speed of the PC algorithm, or to weaken the agswsnmder which it is
guaranteed to be correct.

There are both advantages and disadvantages of constraint basgtesers compared to either
a Bayesian approach to the problem of causal discovery (HeckerntaGaiger, 1995), or an
approach based upon assigning a score to each causal model f@nadgta set (for example,
Bayesian information criterion) and searching for the set of causal Iswtid® maximize the score
(Chickering, 2002).

The disadvantages of constraint-based search include that the ditpnstraint-based searches
give no indication of how much better the best set of output models is cothpatbe next best
set of models; at small sample sizes tests of conditional independencWwawewer, particularly
when many variables are conditioned on; mistakes made early in a consasatt bearches can
lead to later mistakes; and if the only constraints used are conditional indkspenconstraints, as
is often but not always the case, then at best the search outputs evMajlivalence class, rather
than a statistical equivalence cl&st addition, constraint-based methods have the problem of mul-
tiple testing. If no control is made for multiple testing, the models may overfit the dataever,
adjustments to control for overfitting, such as the Bonferroni correciimnoften too conservative
and as a result the corrected statistical tests are not very powerfulis3ine of multiple testing
appears in Bayesian approaches to causal discovery as multiple cangelIscoring. The issue is
handled automatically by Bayesian methods by their use of prior probabilitiesk@iman et al.,
1999).

The advantages of constraint-based algorithms are that they are eapeetalize to the case
where the observed variables are not causally sufficient, they aegallgrfast, and given recent
developments of nhon-parametric conditional independence tests, thapieable without para-
metric assumptions (Tillman et al., 2009).

In the Special Topic on Causation, Bromberg and Margaritis (2009) mtue|zroblem of low
power of statistical tests as a knowledge base containing a set of indgendcts related through
conditional independence axioms that may contain errors due to errors taedts of conditional
independence. The inconsistencies are resolved through the useetdasitlle logic called ar-
gumentation that is augmented with a preference function. The logic is useddorr about and
possibly correct errors in these tests. Experimental evaluation shawfcsigt improvements in the
accuracy of argumentative over purely statistical tests, and improventetite accuracy of causal

8. For searches that use non-conditional independence constesri#a et al. (2006) and Shpitser et al. (2009).
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structure discovery from sampled data from randomly generated caosils and on real-world
data sets.

The contributions to the Special Topic on Causality by Aliferis et al. (2026d)Aliferis et al.
(2010b) show that a general framework for localized causal menipesshicture learning is very
accurate even in small sample situations and can thus be used as a firstr stéfzient global
structure learning, as well as accurate prediction and feature seletlitiaiso provides extensive
empirical comparisons of state of the art causal learning methods withanmalcmethods for the
above tasks. In addition, they show that unexpectedly some constraied-lpaethods are self-
correcting with respect to multiple testing, and this may constitute a new methodologgntrol
of multiple statistical testing.

Another problem with constraint-based algorithms is to make them feasiblevdor ligher
dimensional data sets. In the Special Topic on Causality, Pellet and Hli€2@@8) link the causal
model search problem to a classic machine learning prediction problem.shbeyhow a generic
feature-selection algorithm returning strongly relevant variables caarbed into a causal model
search algorithm. Under the Causal Markov and Causal Faithfulnessmuions, the smallest set
of features relevant to predicting a vertéxs the set of parents, children, and parents of children
of V. Ideally, the variables returned by a feature-selection algorithm identisetifieatures of the
causal graph. Then further processing removes the extra edgesénd/ and those variables
that are parents of children &f but that are neither parents nor children\f and provides as
many orientations as possible. This algorithm is more accurate than PC andatktraint-based
algorithms, and has the advantage that it can use arbitrary featuréesetechniques developed for
high-dimensional data sets under different assumptions to providd caodel learning algorithms
for high-dimensional data under those assumptions.

4.3 Dealing with Underdeter mination

One possibility for dealing with the underdetermination of causal models Bredional data is
to strengthen the available information by sampling from manipulated densitigspthrer words,
performing experiments.

In the Special Topic on Causality, He and Geng (2009) propose arithlgdor distinguishing
between members of a Markov equivalence class by a set of optimally ddsgperiments. They
consider several kinds of experiments, and both a batch-design aqd@ntial design to minimize
the required number of manipulations using both minimax and maximum entropyecriter

If some members of the Markov equivalence class cannot be eliminatedjthesperimenta-
tion, there are several different approaches to using the entire Matkgvalence class to predict
the effects of manipulations. (This is Problem 4 in the case where the predietie made from
a set of causal mode(S rather than a single causal model, and the set of observed variables may
not be causally sufficient.) One possibility is to predict an interval for theng@l effects of the
manipulated quantity, instead of a point value. Theoretically, an intervad dmuobtained by cal-
culating the manipulated quantity for each DAZn the Markov equivalence class, and taking the
lower and upper limits. Depending upon how many different SEMs therasdhe output, this is
sometimes computationally feasible (Maathuis et al., 2009).

A second possibility is to use a Bayesian approach, and perform moeelgiwg. That is,
a prior probability is placed over each causal DA3and a posterior probability for eadh is
calculated. Then the manipulated quantity is calculated for €aain the output of the search,
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and the results are averaged together. This requires putting a prialiigbover each graph;
in addition, if there are many graphs in the output, then this may not be compalbtiteasible
(Hoeting et al., 1999).

A third alternative is to have an algorithm that determines whether each DAG iMénkov
equivalence class predicts the same effect of a given manipulation. x&opée, if the Markov
equivalence class contails— B +— C — D andA — B «— C < D, then the two causal DAGs
disagree about the effect of manipulatibgon C, but agree about the effect of manipulatifgn
B. Even when the observed variables are not causally sufficient themealgorithm (the Prediction
Algorithm) for determining when all of the DAGs in a Markov equivalence €ledative to the
observed variables agree about the effect of a particular manipulati@hreturns the common
value of the predicted manipulation when they do all agree (Spirtes et aB).18®wever, this
algorithm is known to be correct but incomplete (that is, it sometimes retuorst‘dnow” even
when all models in the equivalence class agree on the effect of a particatapulation). In this
special issue, Zhang (2008) provides a modified version of Peartaldolus that is more complete
than the Prediction algorithm.

5. Open Questions

The following is an overview of important problems that remain in the domainudalanodeling.

1. Matching causal models and search algorithms to causal problems areea wide variety
of causal models that have been employed in different disciplines. Vwatmodels and search
algorithms are appropriate for different domains such as feedbaekversible systems (Richard-
son, 1996)? What search algorithms are appropriate for differenbications of kinds of data,
such as experimental and observational data (Eberhardt et al., 88per and Yoo, 1999; Yoo
and Cooper, 2004; He and Geng, 2009)? What search algorithmgpaogpaate for different kinds
of background knowledge, and different families of probability dendities

2. Model selection, and prior knowledge. What kind of scores caséeé o best evaluate causal
models from various kinds of data? In a related vein, what are good farofli@sor densities that
capture various kinds of background knowledge?

3. Improve efficiency and efficacy of search algorithms. How canckealgorithms be im-
proved to incorporate different kinds of background knowledgarcteover different classes of
causal models, run faster, handle more variables and larger samplebgizasre reliable at small
sample sizes, and produce output that is as informative as possible?

4. Characterization of search algorithms. For causal search algoritirasare their semantic
and syntactic properties (for example, soundness, consistency, maiffarmativeness)? What
are their statistical properties (pointwise consistency, uniform consisteample efficiency)?
What are their computational properties (computational complexity)?

5. Adding or relaxing simplifying assumptions. What plausible alternativegtere to the
Causal Markov and Faithfulness Assumptions? Are there other assumitedrmight be weaker
and hold in more domains and applications without much loss about what cefidisy inferred?

9. Intuitively, an estimator is pointwise consistent when as the sample sizagss without limit, regardless of the true
value, with probability 1 the absolute value of the difference between theastimnd the true value approaches
zero. An estimator is uniformly consistent if for any giveandd, there is a single sample size such that in the worst
case, the probability is less thathat the absolute value of the difference between the estimator and thalneds/
greater thad. For precise definitions in the causal context, see Robins et al. (2003).
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Are there stronger assumptions that are plausible for some domains thatattoghfor stronger
causal inferences? How often are these assumptions violated, and htmdmuiolations of these
assumptions lead to incorrect inferences? Can various statistical assusripioelaxed? For ex-
ample, what if the sample selection process is not i.i.d., but may be causatliedffey variables of
interest?

6. Derivation of consequences from causal graph and unmanipwatesties. Shpitser and
Pearl have given complete algorithms for deriving the consequena@siotis causal models with
hidden common causes in terms of the unmanipulated density and the given lai@ompiShpitser
and Pearl, 2008). Partial extensions of these results to derivingqoemsees from sets of causal
models have been given (Zhang, 2008); are there further extensiaterivations from sets of
causal models?

7. New constraints for structure learning. The Causal Markov andaCkagthfulness Assump-
tions, in addition to entailing conditional independence constraints on densitsesentail other
constraints on densities. For example, in a linear SEM, if an unobserveableal causes ob-
served variableX1, Xp, X3, X4, and there are no other causal relations among these variables, then
there are no entailed conditional independence relations among just #greaedsariableX;, Xo,
X3, X4. However, the SEM entails caX¥{,X2) cov(X3,X4) = cov(X1,X3) cov(X2,X4) = COV(X1,X4)
cov(X2,X3) regardless of the values of the free parameters. This information iglusdfnding
causal structure with unmeasured variables. In addition, there are sometinstraints that are not
conditional independence constraints on the density of the observiadblearthat do not depend
upon any parametric assumptions (Shpitser et al., 2009). How can thegarametric constraints
be incorporated into search algorithms?

8. Find variable definitions. In many domains, such as fMRI researcte Hre thousands of
variables, but the measured variables do not correspond to functinitalof the brain. How is it
possible to define new variables that are functions of the measuredlgariaht more useful for
causal inference and more meaningful?

9. Find new applications of causal inference. Applications of causatente algorithms in
many domains (Cooper and Glymour, 1999) help test and improve causegnoé algorithms,
suggest new problems, and produce domain knowledge.

10. Creating good benchmarks. What are the most appropriate penfoemeeasures for causal
inference algorithms? What benchmarks can be established? What issthressarch design for
testing causal inference algorithms?

11. Formal connections between different causal modeling appreatheny different fields
have studied causal discovery including Artificial Intelligence, Econdost©perations Research,
Control Theory, and Statistics. What are the formal connections betieedifferent models,
assumptions, and algorithms used in each of these fields? What can dhelseoflomains learn
from the others?
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