Feedback-directed Random Test Generation

Carlos Pachecdo Shuvendu K. Lahifi, Michael D. Ernst, and Thomas Ball
IMIT CSAIL, 2Microsoft Research
{cpacheco,mernst }@csail.mit.edu, {shuvendu,tball @microsoft.com

Abstract no errors, the comparison was in terms of coverage or rate
of mutant killing [20], not in terms of true error detection,
We present a technigue that improves random test gen-which is the best measure to evaluate test input generation
eration by incorporating feedback obtained from executing techniques. While the systematic techniques used sophisti-
test inputs as they are created. Our technique builds inputscated heuristics to make them more effective, the type of
incrementally by randomly selecting a method call to apply random testing used for comparison is unguided random
and finding arguments from among previously-constructed testing, with no heuristics to guide its search.
inputs. As soon as an input is built, it is executed and Our work addresses random generation of unit tests for
checked against a set aontractsand filters. The result object-oriented programs. Such a test typically consists
of the execution determines whether the input is redundant,of a sequence of method calls that create and mutate ob-
illegal, contract-violating, or useful for generating more in- jects, plus an assertion about the result of a final method
puts. The technique outputs a test suite consisting of unitcall. A test can be built up iteratively by randomly select-
tests for the classes under test. Passing tests can be useithg a method or constructor to invoke, using previously-
to ensure that code contracts are preserved across programcomputed values as inputs. It is only sensible to build upon
changes; failing tests (that violate one or more contract) a legal sequence of method calls, each of whose interme-
point to potential errors that should be corrected. diate objects is sensible and none of whose methods throw
When applied to 14 widely-used libraries comprising an exception indicating a problem. For example, if the one-
780KLOC, feedback-directed random test generation findsmethod tesh=sqrt(-1) is erroneous (say, the argument is
many serious, previously-unknown errors. Compared with required to be non-negative), then there is no sense in build-
both systematic test generation and undirected random tesiing upon it to create the two-method testsqrt(-1);
generation, feedback-directed random test generation findsb=log(a) . Our technique uses feedback obtained from ex-
more errors, finds more severe errors, and produces fewerecuting the sequence as it is being constructed, in order to
redundant tests. guide the search toward sequences that yieldandlegal
object states. Inputs that create redundant or illegal states
are never extended; this has the effect of pruning the search
1 Introduction space.
We have implemented the technique imNbOOP.!
There is an ongoing controversy regarding the relative Ranpoor is fully automatic, requires no input from the
merits of random testing and systematic testing. Theoret-user (other than the name of a binary for .NET or a class
ical work suggests that random testing is as effective asdirectory for Java), and scales to realistic applications with
systematic techniques [7, 14]. However, some believe thathundreds of classes.ARDOOP has found serious errors in
in practice, random testing cannot be as effective as sys-widely-deployed commercial and open-source software.
tematic testing because many interesting tests have very lit- Figure 1 shows a test case generated Ax®oopwhen
tle chance of being created at random. Previous empiri-ryn on Sun’s JDK 1.5. The test case shows a violation of the
cal studies [8, 17, 26] found that random test input gener-equals contract: a ses1 returned byunmodifiable-
ation achieves less code coverage than systematic generasey(set) returnsfalse for sl.equals(sl) . This vi-
tion techniques, including chaining [8], exhaustive genera- gjates the reflexivity obquals as specified in Sun’s API
tion [17], model checking, and symbolic execution [26]. documentation. This test case actually reveals two errors:
Itis difficult to generalize the results of these studies with one inequals , and one in theTreeSet(Collection)
regard to the relative advantages of random and systemati@onstructor, which failed to thro@lassCastException
testing. The evaluations were performed on very small pro-
grams. Because the small programs apparently contained !Ranpboop stands for tandom tester foobjectorientedprograms.”

Test case fojava.util public class A { public class B {

public A() {...} public B(int i) {..}
public static void testl() { public B m1(A al) {...} public void m2(B b, A a) {..}
LinkedList 11 = new LinkedList(); } }
Object 'ol = new Object();
I1.addFirst(01); sequence; sequencea; sequenceas
TreeSet t1 = new TreeSet(I1); A al = new AQ;
Set s1 = Collections.unmodifiableSet(t1); B bl = new B(0); ||B b2 = new B(0); B b3 < al ml(ai)'
/I This assertion fails Gl J
) Assert.assertTrue(s1l.equals(sl)); seqs vals extend(nz seqs, vals
1 1 1 B bl = new B(0);
Figure 1.A test case generated byARDOOP. The test case reveals (s1,83) (s1.1,51.1,85.1) é Eé = niw 1A(();1)
i , ’ i.e.ib1,bl,al = al.mi(al);
an error in Sun’s JDK 1.5. () b1.m2(b1,a1):
A al = new A();
(s3,51) (s1.1,51.1,85.1) B b3 = al.mi(al);
as required by its specification. ’ (i.e.:b1,b1,al1) B bl = new B(0);

bl.m2(bl,al);
(s1.1,s2.1, null) E E; = new gggg;
. = new :
(l.e.: bl, b2, null) b1.m2(b2,null);

Our experimental results indicate that feedback-directed
random testing can outperform systematic testing in terms | {s1, s2)
of coverageand error detection. On four container data
structures used previously to evaluate five different sys- _Figure 2. Three example applications of ttendoperator.
tematic input generation techniques [26], inputs created

with feedback-directed random generation achieve equal Ofal call. This section describes a randomized, feedback-

higher block and predicate coverage [1] than all the system- jiracted technique for generating such unit tests.
atic techniques.

In terms of error detection, feedback-directed random 2.1 Method Sequences
testing revealed many errors across 14 widely-deployed,
well-tested Java and .NET libraries totaling 780KLOC.
Model checking using JPF [24] was not able to create any
error-revealing test inputs: the state space for these librarie
is enormous, and the model checker ran out of resource
after exploring a tiny, localized portion of the state space.
Our results suggest that for large libraries, the sparse, globa
sampling that RNDOOP performs can reveal errors more
efficiently than the dense, local sampling that JPF performs.
And unlike systematic techniques, feedback-directed ran-

dom testing d ¢ . ialized virtual hi print it as code and assign identifiers (names) to return val-
om testing does not require a specialized virtual Maching, . ot method calls. This is only for ease of understanding;
code instrumentation, or the use of constraint solvers or the-

. ; . specific identifiers are not part of a sequence and are onl
orem provers. This makes the technique highly scalable: P P 9 y

necessary when outputting a sequence as code.
we were able to run RNDooOP on the .NET Framework y P 9 q
libraries and three industrial implementations of the JDK, 2.2 Extending sequences

and found previously-unknown errors. . . , . :
P y This section defines an extension operation that takes

In summary, our experiments indicate that feedback-
.) . . zero or more sequences and produces a new sequence. Ex-
directed random generation retains the benefits of random

testing (scalability, simplicity of implementation), avoids tension is the core operation of the feedback-directed gen-

R X eration algorithm. The extension operation creates a new

random testing’s pitfalls (generation of redundant or mean- N

) . : o . . sequence by concatenating its input sequences and append-
ingless inputs), and is competitive with systematic tech- :
niques ing a method call at the end. More formally, the operator

' . . extend(m, seqgs, valgkes three inputs:
The rest of the paper is structured as follows. Section 2 (d EE), P i ,

describes feedback-directed random testing. Section 3 de- ® ™M i @ method with formal parameters (including the
scribes experiments that compare the technique with sys- ~ €CelVer, if any) of typd, ..., Tj.

tematic testing and with undirected random testing. Sec- ® Sedsis alistof sequences.

A method sequencer simplysequencds a sequence of
method calls. Each call in the sequence includes a method
name and input arguments, which can be primitive values
%i.e., constants like®, true or null) or reference values
Yeturned by previous method calls. (We treat the receiver, if

ny, as the first input argument.) We writé to mean the
Calue returned by théth method call in sequence This
notation applies only to non-void methods.

When giving the textual representation of a sequence, we

tion 4 surveys related work, and Section 5 concludes. o valsis alistof values), : T, ..., vy : Ty. Each value
is a primitive value, or it is the return value; of the
2 Technique i-th method call for a sequeneeappearing irseqs

The result ofextend(m, seqs, val§ a new sequence that
An object-oriented unit test consists of a sequence of is the concatenation of the input sequersagsn the order
method calls that set up state (such as creating and muthat they appear, followed by the method ealb, . . . , vg).
tating objects), and an assertion about the result of the fi-Figure 2 shows three examples of applying the operator.

GenerateSequenceslassescontracts filters, timeLimit) adds a value twals and potentially also a sequencests

1 errorSeqs— {} // Their execution violates a contract. For each input argument of ty[, it does the following:
2 nonErrorSeqs— {} // Their execution violates no contract.

3 while timeLimitnot reachedio

e If T; is a primitive type, select a primitive value from a
« /I Create new sequence.

fixed pool of values. (In the implementation, the primi-

s m(T1...Tr) < randomPublicMethogtlasse . - L .

\ (sfaqsvals) <)_ randomSequndVa(lso%Errorgequl Ty :[I\{e pool contains a small set of primitives like, 0, 1,

' newSeq — extendm, segsvals) a ,true , etc., and can be augmented by the user or by
s I/ Discard duplicates. other tools.)

o if newSeq € nonErrorSeqs errorSeqghen o If T; is a reference type, there are three possibilities: use
10 continue a valuev from a sequence that is alreadysaqgs select

u endif a (possibly duplicate) sequence fraranErrorSegsadd

12 I/ Execute new sequence and check contracts. it to seqs and use a value from it; or usell . The al-

1 (0,violated «— executénewSeq, contracty gorithm selects among these possibilities at random. (By
1/ Classify new sequence and outputs. default, it usesull only if no sequence inonErrorSeqs

15 if violated= truethen produces a value of typ€;.) When using a value of

1 elseerrorSeqs errorSeqsJ {newSeq} typeT; produced by an existing sequence, the value must
17 . . .
. nonErmorSegs— nonErrorSeqs) { newSeq} be extensible, that is, extensible = true.

E ibleF filt 0) /I Apply filters. . . .
zz enffﬁ stensibleFlags(newSeq filters, 0) /I Apply filters The sequenceewSeds the result of applying the extension
.. end while operator tam, seqs andvals(line 7). The algorithm checks

2 return(nonErrorSeqserrorseqs Whet_her anequi.valentsequence was already creatgd in a

Figure 3. Feedback-directed generation algorithm for sequences.prevlous step (lines 9-11). Two sequences are equivalent if
they translate to the same code, modulo variable names. If

newSeds equivalent to a sequence monErrorSeqor er-

Both reuse of a value (as illustrated in the first example) rorSeqs the algorithm tries again to create a new sequence.

and use of distinct duplicate sequences (as illustrated in the Now, the algorithm has created a new (i.e. not

third example) are possible. previously-created) sequence. The helper function
. . execute(newSeq, contracts) executes each method call in
2.3 Feedback-directed generation the sequence and checks the contracts afehcall. In

rother words, the contracts express invariant properties that

algorithm. It builds sequences incrementally, starting from N0ld both at entry and exit from a call. A contract takes
an empty set of sequences. As soon as a sequence is built, #S input .the current state of the system (the runtl_me values
is executed to ensure that it creates non-redundant and legdiré@ted in the sequence so far, and any exception thrown

objects, as specified Hifters andcontracts The algorithm PY the last call), and returreatisfiedor violated (This ter-
takes four inputs: a list oflassesfor which to create se- Minology differs from some other uses of “contract” in the

quences, a list ofontracts a list offilters, and a time limit literature.) Figure 4 shows the default contracts thatR
(timeLimif) after which the generation process stopsnR ~ DOOPchecks. _ L .

DOOP provides default contracts, filters, and time limit (2 | "€ output ofexecutas the pair(o, violated consisting
minutes), so the only required argument s the list of classes °f the runtime values created during the execution of the
A sequence has an associated boolean vector: every€duencé,and a boolean flagiolated The flag is set to
value s.i has a boolean flag.i.extensiblethat indicates true if at least one contract was V|oIateq du_rlng_ execution.
whether the given value may be used as an input to a new/ sequence that .Ieads to a contract violation is added to
method call. The flags are used to prune the search spacdn® SeterrorSeqgs(lines 15 to 16). If the sequence leads to
the generator sets a valugstensibleflag to falseif the N0 contract violations, line 18 adds it lnErrorSeqsand

value is considered redundant or illegal for the purpose of IN€ 19 applies ilters to it (see Section 2.4).

creating a new sequence. Section 2.4 explains how these RANDOOP outputs the two input setsonErrorSegsand
flags are set. errorSegsas JUnit/NUnit tests, along with assertions rep-

Sequence creation first selects a methdd ... T) at resenting the contracts checked. The first set contains se-
random among the public methodsotdissegline 5). Next guences that violate no contracts and are considered non-
it tries to apply the extension operator #e. Recall that redundant and legal with respect to the filters given. These

the operator also requires a list of sequences and a list of2"® €Sts that the tested classes pass; they could be used
values; the helper functiorandomSeqsAndVals, ... T,) of regression testing. The second set contains sequences

(Ca”ed on line 6 of Figure 3) incremema"y builds a ”SF of 2We use a bold sans-serif font for variables that hold runtime values of
sequenceseqgsand a list of valuevals At each step, it the classes under test.

Figure 3 shows the feedback-directed random generatio

Method Null. Null dereference exceptions caused by usiaig
contract | description as an argument are often uninteresting, and usually point to
Exception method throws nelullPointerException the (possibly intentional) absence of a null check on the ar-
(Java) | if no input parameter was null guments. However, when a null dereference exception oc-
Excenion mg:zgg Ez:gxz Egzig;f’er:z?;zxcepﬁon curs in the absence of any null value in the input, it often
indicates some internal problem with the method. The null

(.NET) if no input parameter was null fil Sed ibldo falseiff th di
method throws nendexOutOfRangeException ilter setsnewSedq.extensibldo falseiff the corresponding

method throws n@éssertionError object isnull
Object Null arguments are hard to detect statically because the
contract | description arguments to a method in a sequence themselves are outputs
equals |o.equals(c) returnsirue of other sequences. Instead, the null filter checks the values
o.equals(o) throws no exception computed by execution of a specific sequence.
hashCodg o.hashCode() _throws no exception Exceptions. Exceptions frequently correspond to pre-
toString | otoString() __throws no exception condition violations for a method, and therefore there is lit-

Figure 4. Default contracts checked byARDooOP. Users can tle point extending them. Furthermore, an extension of the

extend these with additional contracts, including domain-specific sequence would lead to an exception before the execution

ones. A contract is created programmatically by implementing a completes. This filter prevents the addition of a sequence to

public interface. the nonErrorSeqgset if its execution leads to an exception,
even if the exception was not a contract violation.

that violate one or more contracts. These are tests that the2 5 R titi
classes fail; they indicate likely errors in the code under test. <* epetition

2.4 Filtering Sometimes, a good test case needs to call a given method
. . - . . multiple times. For example, repeated callsatil may be
Line 1.9 of Figure 3 applleﬁltgrs (given as inputs to necessary to reach code that increases the capacity of a con-
the algorithm) that determine which values of a sequence

are extensible and should be used as inputs to new methogiiner object, or repeated calls may be required to create two
. . P quivalent objects that can cause a methoddigals to
calls. A filter takes as input a sequence and the values re-

lting 1 it i A It of Vi il go down certain branches. To increase the chances that such
f’u {ng rom its exet(;]u I?'Ir:. S a re?u ot app {Ing_;\l " cases are reached, we build repetition directly into the gen-
fggso t?) fsa ?g:evr\:ﬁﬁ thg elﬁir(:{ntiétsfhesc\)/gﬁg(\a/i/(il(lel:]f)lt Se erator, as follows. When generating a new sequence, with
used as input to new method calls. The helper function probability V, instead of appending a single call of a chosen
) I) methodm to create a new sequence, the generator appends
setExtensibleFlags(newSeq, filters, o) in line 19 iterates " q ¢ bp

. N : ’ ; M calls, wh is ch iforml
through the list of filters given as input to the algorithm and calls, wherel is chosen uniformly at random between

i h filter taewSedn turn. Below we describe th 0 and some upper limihaz. (max andN are user-settable;
applies each Tier laewsegn turn. below We desclibe € e default values areaz = 100 andN = 0.1.) There are
three filters that RNDOOP uses by default.

Equality. This filter uses thequals) method to de- other possible ways to add repetition to the generator (e.g.,

termine if the resulting object has been created before. TheWe could repeat parameters or entire subsequences).
filter maintains a sedllobjs of all extensible objects that .

have been created by the algorithm across all sequence ex3 Evaluation

ecutions (the set can include primitive values, which are

boxed). For each valupewSeq in the sequence, it sets This section presents the results of three experiments
newSeq.extensibleo falseif the runtimeo corresponding that evaluate the effectiveness of feedback-directed ran-
to newSeq is such thatlo’ € allobjs : o.equals(0’). dom input generation. Section 3.1 evaluates the coverage

This heuristic prunes any object with the same abstractthat RaNDOOP achieves on a collection of container data
value as a previously-created value, even if their concretestructures, and compares it with that achieved by system-
representations differ. This might causaNdOOP to miss atic input generation techniques implemented in the JPF
an error, if method calls on them might behave differently. model checker [24, 26]. Section 3.2 useaN®OOP to
The heuristic works well in practice but can be disabled or generate test inputs that find APl contract violations on
refined by the user. For instance, it is straightforward to use 14 widely-used libraries, and compares with JPF and with
reflection to write a method that determines whether two ob- undirected random testing (as implemented inNRoOOP
jects have the same concrete representation (the same valuesd in JCrasher [3]). Section 3.3 usesN®oOOP-generated
for all their fields), or a user could specify more sophisti- regression test cases to find regression errors in three indus-
cated computations to determine object equality [28]. trial implementations of the Java JDK.

coverage time (seconds) ters reported in [26] (i.e., the parameters for which the

[apF[[re [[oPr; [[RPy | [PF]] RP [[9PR; [[RPy | technique achieves highest coverage).

2. We ran RANDOOP on the containers, specifying the
same methods under test as [26]. Random testing has
no obvious stopping criterion; we ramRDOOP for two
minutes (its default time limit).

3. To compare against unguided random generation, we

BinTree | .78|| .78 .78 .78| [0.14(| 0.21|| 0.14|| 0.13
BHeap 95| .95 .95 .86 4.3|] 0.59 6.2 6.6
FibHeap 1 1 1 .98 23| 0.63 1.1 27
TreeMap| .72|| .72 72 .68| | 0.65(| 0.84 15 1.9

block
coverage

o o |BinTree |53.2|| 54| 52.1|| 53.9| |0.41|| 16| 20| 4.2 also reproduced Visser et al.’s results for random gen-
g § BHeap | 101(|101|| 88.3|| 585| | 9.8(| 42|| 12| 15 eration, using the same stopping criterion as [26]: gen-
© 8 |FibHeap| 93| 96| 86|l 20.3] | 95| 60| 16| 67 eration stops after 1000 inputs.
TreeMap| 106||106|| 104|| 55| | 47| 10| 10|| 1.9 4. To obtain a second data point for unguided random gen-
eration, we ran RNDOOP a second time, turning off all
JPF : Best-performing of 5 systematic techniques in JPF. filters and heuristics.
RP . RanDoOOP: Feedback-directed random testing.

As each tool ran, we tracked the coverage achieved by the
test inputs generated so far. Every time a new unit of cover-
age (basic block or predicate) was achieved, we recorded
Figure 5.Basic block coverage (ratio) and predicate coverage (ab-the coverage and time. To record coverage, we reused
solute) achieved by four input generation techniques. Visser et al.'s experimental infrastructure, with small modi-

fications to track time for each new coverage unit. For basic
block coverage, we report the ratio of coverage achieved to
maximum coverage possible. For predicate coverage, we

Container classes have been used to evaluate many inpdPort (like Visser et al.[26]) only absolute coverage, be-

generation techniques [17, 29, 28, 25, 26]. In a recent papef°2use the maximum predicate coverage is not known. We
[26], Visser et al. compared basic block and a form of predi- repeated each run ten times with different seeds, and report

cate coverage [1] achieved by several input generation tech#V€rages. _
niques on four container classes: a binary t@ieTree | Figure 5 shows the results. For eactechnique, con-

154 LOC), a binomial heaBteap, 355 LOC), a fibonacci tainer) pair, we report the maximum coverage achieved,
heap EibHeap , 286 LOC), and a red-black treBréeMap and the time at which maximum coverage was reached, as
580 LOC). Th’ey used a form of predicate coveragé that tracked by the experimental framework. In other words, the
measures the coverage of all combinations of a set of predi-iMe shown in Figure 5 represents thme that the tech-

cates manually derived from conditions in the source code.Mdue required in order to achieve its maximum coverage

They compared the coverage achieved by six techniques_after that time, no more coverage was achieved in the run

(1) model checking, (2) model checking with state match- ©f the tool. (But the tool may have continued running un-

ing, (3) model checking with abstract state matching, (4) til it regched its stopping criterion: on average, each run of

symbolic execution, (5) symbolic execution with abstract JPF with shape abstraction took a total of 89 seconds; the

state matching, and (6) undirected random generation. ~ 1ongest run was 220 seconds, fireeMap . Every run of
Visser et al. report that the technique that achieved high- RANDOQPtOOK 120 seconds, its default time I|m|t._)

est coverage was model checking with abstract state match- For BinTree , BHeap ?‘”d TreeMap, feedback—dlrected_

ing, where the abstract state records the shape of the confandom generation achieved the same block and predicate

tainer and discards the data stored in the container. Foc0Verage as shape abstraction. FarHeap , feedback-
brevity, we'll refer to this technique ashape abstrac- directed random generation achieved the same block cov-

tion. Shape abstraction dominated all othersystematictech-erage' but higher predicatg coverage (,96 predicates) than
niques in the experiment: it achieved higher coverage, Orshape abstraction (93 predicates). Undirected random test-

achieved the same coverage in lesser time, than every othelld Was competitive with the other techniques in achiev-

techniqué® We compared feedback-directed random gen- N9 block coverage. For the more challenging predicate

eration with shape abstraction. For each data structure, we-©Verage, both implementations of undirected random test-
performed the following steps. ing always achieved Iess.predlcate coverage than feedback-
) directed random generation.

1. We reproduced Visser et al.'s results for shape abstrac- \ye should note that the container data structures are non-
tion on our machine (Pentium 4, 3.6GHz, 4G memory, rivial. For BHeap, to achieve the highest observed block
running Debian Linux). We used the optimal parame- coyerage, a sequence of length 14 is required [26]. This sug-
SRandom generation was able to achieve the same predicate coverag\g’es'(S that feedback-directed random generation Is effective

as shape abstraction in less time, but this happened only for 2 (out of 520)!n.generatin.g- com.plex test inp_uts—on_these data structures,
“lucky” runs. it is competitive with systematic techniques.

JPR; : Undirected random testing implemented in JPF.
RPy : Undirected random testing implemented iaN®OOP.

3.1 Generating test inputs for containers

FibHeap and BHeap have a larger input space than
BinTree andTreeMap (Visser et al. defined more testable

public
classe

public
methods

!

’Java libraries ‘ LOC ‘ ‘description

methods for them, which leads to more possible sequences

It is interesting that forFibHeap and BHeap, feedback-

directed random generation achieved equal or greater pred

icate coverage as shape abstraction, and did so faster (2

times faster foBHeap and 15.8 times faster fétibHeap),

despite the higher complexity. This suggests that feedbackq

directed random generation is competitive with systematic
generation even when the state space is larger. (The obse
vation holds for much larger programs used in Section 3.2).
Another interesting fact is that repetition of method calls
(Section 2.5) was crucial. When we analyzed the inputs

created by feedback-directed random generation, we saw

that for FibHeap andTreeMap, sequences that consisted
of several element additions in a row, followed by several

Java JDK 1.5

. java.util [39K[204] 1019[Collections, text, formatting, etc.

javax.xml [14K] 68| 437| XML processing.
Jakarta Commons

F chain 8K 59 226| API for process flows.

Rcollections 61K 402 2412|Extensions to the JDK collections.
jelly 14K 99 724] XML scripting and processing.
logging 4K 9 140| Event-logging facility.
math 21K 111 910| Mathematics and statistics.
primitives 6K 294 1908| Type-safe collections of primitives.

public | public

[NET libraries | LOC |classesmethods

ZedGraph 33K 125 3096| Creates plots and charts.

.NET Framework
Mscorlib 185K| 1439 17763 .NET Framework SDK class Iibrarigf.
System.Data |196K| 648 11529 Provide access to system functionality
System.Security 9K 128 1175|and designed as foundation on whi¢ch
System.Xml |150K| 686 9914| .NET applications, components, ang
Web.Services | 42K| 304 2527| controls are built.

Figure 6. Libraries used for evaluation.

removals, reached predicates that were not reached by se-

guences that interleaved additions with removals. This is
why undirected random generation achieved less coverage

Two other systematic techniques that generate method,

sequences for containers are Rostra [28] and Symstra [29]

after a call to the JDK methodnmodifiableSet(Set)

belong to the same equivalence class. This step retains only
ne test per equivalence class (chosen at random); the re-
maining tests are discarded.

Rostra generates tests using bounded exhaustive generation

with state matching. Symstra generates method sequence,
using symbolic execution and prunes the state space base

on symbolic state comparison. Unfortunately, the tools

were not available to us. The authors of Rostra and Symstra,
remarked [27] that for evaluation purposes, their techniques™

are comparable with those evaluated by Visser et al.

The best measure to evaluate input generation techniques
is error detection, not coverage. Our results suggest that

further experimentation is required to better understand

how systematic and random techniques compare in detect"
ing errors in data structures. The next section evaluates™

feedback-directed random generation’s error-detection abil-
ity on widely-used libraries, and compares it with system-
atic and (unguided) random generation.

3.2 Checking API contracts

In this experiment, we used feedback-directed random
generation, undirected random generation, and systemati
generation to create test suites for 14 widely-used libraries
comprising a total of 780KLOC (Figure 6). Section 3.2.1
describes the results for feedback-directed random testing

testing.

To reduce the amount of test cases we had to inspect, we

implemented a test runner calledcRUCE, which can re-
place JUnit or NUnit. Like those tools,B®UCEshows only
failing tests, but RbucE only shows a subset of the failing
tests. REDUCE partitions the failing tests into equivalence
classes, where two tests fall into the same class if their ex-
ecution leads to a contract violation after the same method
call. For example, two tests that exhibit a contract failure

Section 3.2.2 describes the results for systematic testing.

Section 3.2.3 describes the results for undirected random4' Error-revealing test cases. The number of test cases

.2.1 Feedback-directed random generation

For each library, we performed the following steps:

1. We ran RARNDOOP on a library, specifying all the pub-
lic classes as targets for testing. We usextNBOOP's
default parameters (contracts from Figure 4, filters from
Section 2.4, and 2 minute time limit). The output of this
step was a test suite.

2. We compiled the test suite and ran it witlEERUCE.

We manually inspected the failing test cases reported by
REDUCE.

For each iteration, we report the following statistics.

1. Test cases generatedlhe size of the test suite (humber

of unit tests) output by RNDOOP.

2. Violation-inducing test casesThe number of violation-
inducing test cases output byARDOOP.

. REDUCE reported test casesThe number of violation-
inducing test cases reported byeRUCE (after reduc-
tion and minimization) when run on the ARDOOP-
generated test suite.

reported by RDUCEthat revealed an error in the library.
We made this determination as follows.

Java libraries. We labeled a test case as error-revealing
only if it violated an explicitly stated property in the doc-
umentation for the code in question.

.NET libraries. The design guidelines for .NEfequire

that public methods respect the contracts in Figure 4 (i.e.
.NET has a stronger specification). We labeled each dis-
tinct method that violated a contract as an error for the

) violation- | REDUCE | error- errors NullPointerException when itsnext() method is in-
est caseg inducing | reported | revealing per
library generated| test cases test casestest caseserrors | KLOC voked.
Java JDK . .
Tava.utl 2247429 20] o[6] 5| .NET framework libraries. RANDOOP generated a total
Javax.xm 15,311 315] 2| 0] 2| 14 of 196 error-revealing test cases. Out of these, 155 were
Jakarta Commor] : ; Pl
— 57601275 5 5 5 5 NullReferenceException s in the apsence ofull in
collections 16,740 188 67 25 4] 07 puts, 21 werelndexOutOfRangeException s, and 20
jelly_ 18,846 1484 8 of © 0 were violations ofequals , hashCode or toString con-
logging 764 0 0 0 0 0 . . .
math 3049 57) 7 09 tracts. RANDOOP also led us to discover nonterminating
primitives 49,789 119 13 0 0 0 behavior in System.Xml. This error was assigned the high-
ZNegTGfFaph] 8,179] 15] 3 4l 4] 17 est priority ranking (it can render unusable an application)
. ramewor . . .
Mscorlib 5685 &l) o 1910 and was fixed almost immediately.
gystem-gata‘ g%g g; gg gg gg 24; Reusability of tests. Future work could evaluate the
tem. , . - -) . .
B vt = = wowl e reusability (or fragility) of RARNDOOPS test suites against
Web Services 7,941 146 a1 41 41 98 changes in the subject program. However, given thet R
[Total [[208503 4200] 424 254 2I0] | DOOPIs so fast, reusability may be a minor issue: a devel-
Figure 7. Statistics for test cases generated lyWROOP. Section ~ OPer could re-run RNDOOP every time the code changes,
3.2.1 explains the metrics. rather than re-running the test suite that the tool outputs.

.NET programs: a method that leads to the contract vi- 3.2.2 Systematic Testing

olation either contains an error, fails to do proper argu- To compare feedback-directed random testing with system-
ment checking, or fails to prevent internal errors from atic testing, we used JPF to test the Java libraries. JPF
escaping to the user of the library. BecausebRCE re- does not actually create method sequences—to make it ex-
ports one test case per such methodpBCEreported plore method sequences, the user has to manually write a
test cases coincide with error-revealing test cases fordriver program that nondeterministically calls methods of
.NET. the classes under test, and JPF explores method sequences
5. Errors. The number of distinct errors uncovered by the by exploring the driver (for instance, Visser et al. wrote
error-revealing test cases. We count two errors as distinctdriver programs for the container experiments [26]). We
if fixing them would involve modifying different source wrote auniversal drivergenerator which, given a set of

code. classes, creates a driver that explores all possible method
6. Errors per KLOC. The number of distinct errors di- sequences up to some sequence length, using only public
vided by the KLOC count for the library. methods and constructors. For this experiment, we aug-
Errors discovered. Figure 7 shows the results.ARDOOP mented the drivers with the code that checked the same

created a total of 4200 distinct violation-inducing test cases. contracts as RNpoor (Figure 4). We performed the ex-
Of those, REDUCE reported approximately 10% (and dis- P€riments on a Pentium 4, 3.6GHz, 4G memory, running
carded the rest as potentially redundant). Out of the 424D€bian Linux. _ _

tests that RDUCE reported, 254 were error-revealing. The __For each library, we generated a universal driver and had
other 170 were illegal uses of the libraries or cases whered”F explore the driver until it ran out of memory. We spec-
the contract violations were documented as normal opera-f€d sequence length 10 (this was greater than the length
tion. The 254 error-revealing test cases pointed to 210 dis-"équired to find all the Java errors from Figure 7). We used
tinct errors. Next we present representative examples of thedPF’s breadth-first search strategy, as done for all system-

errors (for more details, see Appendix A). atic techniques in [26]. In that paper, 'Vis.ser et al. suggest
that BFS is preferable than DFS for this kind of exploration

JDK libraries. Eight other methods inava.util.- scenario. We used JPF’s default state matching (shape ab-

Collections create collections that returfalse on straction is not currently implemented in JPF, other than for
s.equals(s) (like Figure 1). These eight methods shared iha four containers from Section 3.1).

some code, and together they revealed four distinct errors. £qr all the libraries, JPF ran out of memory (after 32 sec-

Jakarta Commons librariesIn math, a matrix class has onds on average) without reporting any errors. Considering
a field that holds the matrix data. One of the construc- the size of the libraries, this is not surprising, as JPF was
tors leaves the field null, which is a legal, distinct state— barely able to explore the libraries before state space explo-
a number of the methods implement special cases if thesion became a problem.

field is null. The check is omitted frorhashCode . In RANDOOP was able to explore the space more effec-

collections , an iterator initialized with zero elements tively not because it explored a larger portion of the state
(which is legal, according to the documentation) throws a space—it only explored a tiny fraction of an enormous state

space. For example, java.util declares about 1000 pub-pare this technique to ours, or to combine their strengths.
lic methods; consider how many sequences of length 10

are possible. While JPF thoroughly sampled a tiny, local- 3-3 Regression and compliance testing

ized portion of the space, ARRDOOP sparsely sampled a
larger portion. Our results suggest that for large libraries,
sparse, global sampling can reveal errors more efficiently
than dense, local sampling.

JCUTE [23] performsconcolic testinga systematic tech-
nique that performs symbolic execution but uses randomly-
generated test inputs to initialize the search and to allow
the tool to make progress when symbolic execution fails
due to limitations of the symbolic approach (e.g. native
calls). Comparing feedback-directed random generation
with concolic testing would be interesting. Unfortunately,

This section describes a case study in which we used
feedback-directed random testing to find inconsistencies be-
tween different implementations of the same API. As our
subject program, we used the Java JDK. We tested three
commercial implementations: Sun 1.5, Sun 1.6 beta 2, and
IBM 1.5 The goal was to discover inconsistencies between
the libraries which could point to regression errors in Sun
1.6 beta 2 or compliance errors in either of the libraries.
RANDOOP can optionally create aegression oraclefor
each input, which records the runtime behavior of the pro-

iCUTE crashed when compiling the drivers generated for gram under test on the input by invoking observer methods

the classes because it could not handle drivers of the size’" the objttar?tzcreqted by_thellnptl,ltzilﬁDC?OPgutehssgg ob- b
generated for our subject programs. server methods using a simple strategy: a method is an ob-

server if all of the following hold: (i) it has no parameters,
. . (i) it is public and non-static, (iii) it returns values of prim-
3.2.3 Undirected Random Testing itive type (orString), and (iv) its name isize , count ,

To measure the benefits of feedback-directed random test!ength toString , or begins W'tm?t oris . .
We ran RRNDOOP on Sun 1.5, using the option that cre-

ing versus undirected random testing, we reramBRooOP

as described in Section 3.2.1 a second time, using the sam8t€S regressiond oracles and the default time limianR o
parameters, but disabling the user of filters or contracts toPCOP 9enerated 41,046 regression test cases. We ran the

guide generation. Across all libraries, unguided generation€Sulting test suite using Sun 1.6 beta and a second time us-

created 1,326 violation-inducing test cases. Out of these.

ing IBM 1.5. A total of 25 test cases failed on Sun 1.6, and
REDUCE reported 60 test cases, all of which pointed to dis- /> €St cases failed on IBM 1.5. On inspection, 44 out of
tinct errors (58 in the .NET libraries, and 2 in the Java li-

the 98 test cases revealed inconsistencies that uncovered 12
braries). Undirected generation did not find any errors in

distinct errors in the implementations (other inconsistencies
java.util or javax.xml, and was unable to create the sequencd €1ected different implementations of a permissive specifi-
that uncovered the infinite loop in System.Xml (to confirm

cation). See Appendix A for the specific inconsistencies.
that this was not due simply to an unlucky random seed, we Al distributed JDKs must pass an extensive compli-
ran RANDOOP multiple times using different seeds; undi- ance test suitehftps:/jjck.dev.java.net/ , regret-
rected generation never found the bug). tably not available to the public nor to us). Nevertheless,
JCrasher [3] is an independent implementation of undi- RANDOOP was able to find errors undiscovered by that

rected random test generation whose goal is to uncover exSUite- Internally, IBM extensively uses comparisons against
ceptional behavior that points to an error. JCrasher ran-the Sun JDK during testing, but they estimate that it will

domly generates tests, then removes tests that throw ex!@ke 100 person-years to complete that comparative test-

ceptions not considered by JCrasher to be potentially fault-iN9 [13]. A tool like RANDOOP could provide some au-
revealing. We used JCrasher to generate test cases for thigmated support in that process. _
Java libraries. JCrasher takes as input a list of classes to test e have notyet compared the effectiveness of feedback-
and a “depth” parameter that limits the number of method directed generation against more systematic techniques for
calls it chains together. We ran JCrasher with maximum régression testing. Such a comparison is worthwhile and is
possible depth. part of our future work.

JCrasher ran for 639 seconds, created a total of 598 fail-
ing test cases, of which 3 were error-revealing and revealed® Related Work
one distinct error (using the same counting methodology as . . o)
in Section 3.2.1). Jcrasher created many redundant and il- _Automatic testinput generation is an active research area

legal inputs that could be detected using feedback-directedith @ rich literature. We focus on input generation tech-
heuristics. See Appendix A for a detailed description of the Ndues that create method sequences.
test cases.

Recent work has introduced a new tool, Check 'n’ Crash Input space representation. Techniques that generate
[4], that improves JCrasher by replacing its random gener-method sequences must first describe what a method se-

ation by constraint solving. It would be interesting to com- quence is. Despite the apparent simplicity of such a task,

previous representations are not expressive enough to dereceivers of a method call, and prune sequences that create
scribe all method sequences that can be created for a set ad redundant receiver. ARDOOP performs state matching
classes. on values other than the receiver and introduces the finer-
Rostra [28] and Symstra [29] internally use Henkel and grained concept of a sequence that creates some redundant
Diwan’s term-basedrepresentation [16, 27]. For exam- and some nonredundant objects (using a boolean flag for

ple, the termpop(push(s,i).state) is equivalent to each object in the sequence). Only sequences that create
the sequence.push(i); s.pop() . This representation nothing but redundant objects are discarded. Rostra and
cannot express reuse of an object (aliasing): the sequencdPF do not favor repetition or use contracts during gener-

Foo f = new Foo(); f.equals(f) is not expressible ation to prune illegal sequences or create oracles. Rostra is

as a term. The representation also cannot express mutaevaluated on a set of 11 small programs (34—1000 LOC),
tion of an object via a method that mutates its parame-and JPF’s sequence generation techniques were evaluated
ter: the sequenckist | = new ArrayList(); ...; on 4 data structures; neither tool found errors in the tested
Collections.shuffle(l); l.add(2) is not express- programs.
ible as a term. While not explicitly stated, JCrasher [3]and An alternative to the bounded exhaustive exploration
Eclat [22] follow an equivalent representation and thus suf- is symbolic execution; this technique has been imple-
fer from the same lack of expressiveness. mented in tools like Symstra [29], XRT [11], JPF[24],
]) and jCUTE [23]. Symbolic execution executes method se-

Random testing. Random testing [13] has been used 0 quences with symbolic input parameters, builds path con-
find errors in many applications; a partial list includes Unix siraints on the parameters, and solves the constraints to cre-
utilities [18], Windows GUI applications [9], Haskell pro- gte actual test inputs with concrete parameters.
grams [2], and Java programs [3, 22, 21]. Check-n-Crash [4] uses creates abstract constraints over

JCrasher [3] creates test inputs by using a “parameteriyn s that cause exceptional behavior, and uses a constraint
graph” to find method calls whose return values can servegq|yer to derive concrete test inputs that exhibit the behav-
as input parameters. ARDOOP does not explicitly cre- jor DSD [5] augments Check-n-Crash with a dynamic anal-
ate a parameter graph; instead it uses a component Se;}sis to filter out illegal input parameters.
of previously-created sequences to find input parameters. o .
RANDOOP creates fewer redundant and illegal inputs be- COMbining random and systematic. Ferguson and Ko-
cause it discards component sequences that create redufi€! [8] Proposed an input generation technique that begins
dant objects or throw exceptions. JCrasher creates everPY €xeécuting the program under test with a random input,

input from scratch and does not use execution feedback. and systematically modifies the input so that it follows a
Another feedback-directed test generation tool is different path. Recent work by Godefroid et al [10, 23] ex-
Eclat [22] (developed by two authors of this paper). Like plores concolic test_lng, a symboI_|c executlon approach that
RANDOOP, Eclat creates tests that are likely to expose er- INt€grates random input generationaNboor s closer to
rors by performing random generation augmented by auto-the other side of the random-systematic spectrum: it is pri-

matic pruning based on execution results. Eclat prunes seMarily a random input generator, but uses techniques that

quences that appear to be illegal because they make the prdMPOS€ Some systematization in the search to make it more
gram behave differently than a set of correct training runs, &fféctive. Our approach and more systematic approaches

The previous work focused on automatic classification of 'ePresent different tradeoffs of completeness and scalabil-
tests in the absence of an oracle. ity, and thus complement each other.

. The present work preserjts an orthogona_l set Of,teCh'Comparing random and systematic. Theoretical studies
niques that focus on generating a set of behaworalIy-dlversehawe shown that random testing is as effective as more sys-

test inputs, including state matching to prune redundant Ob'tematic techniques such as partition testing [14, 19]. How-

jects, repetition to generate low-likelihood sequences, or- g0 the Jiterature contains relatively few empirical com-
acles based on API contracts that can be extended by the i < ¢ ondom testing and systematic testing. Fer-

user, and regression oracles that capture the behavior of uson and Korel compared basic block coverage achieved

program when run on the glene.rated INPUANROOP does by inputs generated using their chaining technique versus
not require a correct execution in order to generate new te3t§andomly generated inputs [8]. Marinov et al. [17] com-

(Eclat does). _The p“?se"“ _vvork compares random testmgpared mutant killing rate achieved by a set of exhaustively-

with systematic techniques implemented in JPF. generated test inputs with a randomly-selected subset of in-
Systematic testing. Many techniques have been proposed puts. Visser et al. [26] compared basic block and a form

to systematically explore method sequences [28, 4, 29, 11 of predicate coverage achieved by model checking, sym-
23, 5, 26]. Bounded exhaustive generation has been im-bolic execution, and random testing. In all three studies,

plemented in tools like Rostra [28] and JPF [26]. JPF and undirected random testing achieved less coverage or killed
Rostra share the use of state matching on objects that aréewer mutants than the systematic techniques.

In previous work [6], we compared Eclat's random gen- [11] W. Grieskamp, N. Tillmann, C. Campbell, W. Schulte, and
eration and classification techniques [22] with Symclat, a
symbolic version of Eclat. We conjectured that random gen-
eration may benefit from using repetition; this was the mo-
tivation for implementing repetition in RVDOOP.

5

Feedback-directed random testing scales to large SYS114]

Conclusion

tems, quickly finds errors in heavily-tested, widely-

deployed applications, and achieves behavioral coverage om15] A. Hartman. Personal communication, July 2006.
par with systematic techniques.

Groce

erator. Going the other way, our notion of exploration us-

ing a component set, or state matching when the universe[ls]
contains more than one object, could be translated into the
exhaustive testing domain. Combining random and system-
atic approaches can result in techniques that retain the begtig)

of each approach.

Acknowledgments. We thank Willem Visser for sharing

his subject programs, experimental framework, and answer-

ing questions about JPF.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

B

(10]

T. Ball. A theory of predicate-complete test coverage and
generation. IlFMCO, pages 1-22, 2004.

K. Claessen and J. Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs.I®FP, pages 268—
279, Sept. 2000.

C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Jav@oftware: Practice and Experience
34(11):1025-1050, Sept. 2004.

C. Csallner and Y. Smaragdakis. Check 'n’ Crash: Com-
bining static checking and testing. IBSE pages 422-431,
May 2005.

C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid
analysis tool for bug finding. IISSTA pages 245254, July
2006.

M. d’Amorim, C. Pacheco, D. Marinov, T. Xie, and M. D.

M. Veanes. Action machines — towards a framework for
model composition, exploration and conformance testing
based on symbolic computation. @SIC 2005: Quality
Software International Conferenc8ept. 2005.

A. Groce and W. Visser. Heuristics for model checking Java
programs.STTT 6(4):260-276, 2004.

D. Hamlet. Random testing. IBncyclopedia of Software
Engineering John Wiley and Sons, 1994.

D. Hamlet and R. Taylor. Partition testing does not inspire
confidencelEEE TSE 16(12):1402—-1411, Dec. 1990.

[16] J. Henkel and A. Diwan. Discovering algebraic specifica-
The exchange of ideas between the random and system-
atic approaches could benefit both communities.
et al. propose structural heuristics [12] to guide a model [17]
checker; the heuristics might also help a random test gen-

tions from Java classes. BCOOR pages 431-456, July
2003.

D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Ri-
nard. An evaluation of exhaustive testing for data structures.
Technical Report MIT/LCS/TR-921, MIT Lab for Computer
Science, Sept. 2003.

B. P. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of UNIX utilities. CACM 33(12):32-44, Dec.
1990.

S. Ntafos. On random and partition testing.|85TA pages
42-48, Mar. 1998.

[20] J. Offutt and R. H. Untch. Mutation 2000: Uniting the or-

thogonal. InMutation 2000: Mutation Testing in the Twen-
tieth and the Twenty First Centurigsages 45-55, San Jose,
CA, Oct. 2000.

C. Oriat. Jartege: A tool for random generation of unit tests
for Java classes. IQ0SA/SOQUApages 242-256, Sept.
2005.

C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. ECOOR, pages 504-527,
July 2005.

K. Sen and G. Agha. CUTE and jCUTE: Concaolic unit test-
ing and explicit path model-checking tools. @AV, pages
419-423, Aug. 2006.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programsASE 10(2):203-232, 2003.

[25] W. Visser, C. S. Rsareanu, and S. Khurshid. Test input gen-

eration with Java PathFinder. IBSTA pages 97-107, July
2004.

26] W. Visser, C. S. Bsaareanu, and R. Pahek. Test input gen-

eration for Java containers using state matchingISBTA
pages 37-48, July 2006.

Ernst. An empirical comparison of automated generation and [27] T- Xie. Personal communication, Aug. 2006.

classification techniques for object-oriented unit testing.
ASE Sept. 2006.

J. W. Duran and S. C. Ntafos. An evaluation of random test-
ing. IEEE TSE 10(4):438-444, July 1984.

R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generatiotACM TOSEM 5(1):63—-86, Jan.
1996.

J. E. Forrester and B. P. Miller. An empirical study of the ro-
bustness of Windows NT applications using random testing.
In 4th USENIX Windows System Symposipages 5968,
Seattle, WA, USA, Aug. 2000.

P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed auto-
mated random testing. IALDI, June 2005.

10

In [28] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for

detecting redundant object-oriented unit testsA8E pages
196-205, Nov. 2004.

[29] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:

A framework for generating object-oriented unit tests using
symbolic execution. ITACAS pages 365-381, Apr. 2005.

A Experiment Details considered erroneous operation, and corrected if found. Given

))]] o thatnull was never passed as an argument, such exceptions, if
This appendix contains more detailed descriptions of the ex- present, represent more serious errors.

periments from Section 3 and examples of the errors that we dis- As mentioned in Section 3.2.1,ARDo0P led us to discover
covered when using RNDOOP. nonterminating behavior in System.Xml: when executing a se-
quence representing a legal use of the library, the last method call
went into an infinite loop. When we reported this error, it was
Below are examples of the errors that we found when running assigned the highest priority ranking (it can render unusable an

A.1 Contract Violations: RanDOOP

RANDOOP 0N the 14 libraries from Section 3.2.1. application that uses the library in a legal manner) and was fixed
almost immediately.
A.1.1 JDKlibraries A.2 Contract Violations: Ranpoor with no

Eight methods inCollections (synchronizedMap , syn- feedback heuristics

chronizedSortedMap , unmodifiableMap , unmodifiable- Below are examples of the errors thaa®00P was able or
SortedMap , synchronizedSet , synchronizedSortedSet unable to reveal when running with feedback heuristics turned off.
unmodifiableSet , andunmodifiableSortedSet) create col-
lections that returfalse ons.equals(s) . These eight classes e Undirected generation did not find any errors in java.util and
shared some code, and together they revealed four distinct errors. ~ javax.xml: it did not create an input complex enough to ex-

The methodsXMLGregorianCalendar .toString() and pose the violation oéquals by eight methods irCollec-
XMLGregorianCalendar .hashCode() crash because they do tions , and did not create a test input that causashCode
not handle cases where some fields hold legal corner-case values. ortoString to throw an exception foxMLGregorianCa-

lendar .
A.1.2 Jakarta Commons libraries e Unguided generatiowasable to generate the test cases that
))] reveal the two errors imath . This is not surprising, because

In math (2 errors), a matrix class has a field that holds the matrix the errors manifest themselves immediately after a call to a
dgta. One of the constructors leaves the figld null, which i; alegal, public constructor. On the other hand, it was not able to dis-
distinct state—a number of the methods implement special cases cover thejava.utli errors that feedback-directed genera-
if the field is null. The check is omitted frommashCode . The tion discovered when testing tleellections library.

second error imath is similar. Incollections (2 error), an it-

erator initialized with zero elements (which is legal, according to ~ ® With undirected generation,ADOOP was unable to create

the sequence that uncovered the infinite loop in System.Xml.

the documentation) throws NullPointerException when its h hat th il !
next() method is invoked. The other 3 errors actually exposed To confirm that this was not dug simply to an un gcky ran-
errors injava.uti , which was tested indirectly because the col- dom seed, we ran A\DOOP multiple times using different

seeds, both for feedback-directed generation and for undi-
rected generation. Feedback-directesNROOP always ex-
posed the error, and undirected®oo0P never did.

lections classes use functionality from that library.

The Jakarta Commons libraries are not as extensively docu-
mented as the JDK and .NET framework. We did not count as
error-revealing test cases that appeared to us as indicative of probA |3 JCrasher
lems in the library (or its design) but where the code in question
lacked documentation. In Section 3.2.3, we describe our use of JCrasher to generate

Most of the test cases thataARDooP generated for the Com- test cases for the Java libraries. JCrasher takes as input a list of
mons libraries were not error-revealing. The main reason was thatclasses to test and a “depth” parameter that limits the number of
many classes in the libraries require specific sequences of methodnethod calls it chains together. We ran JCrasher with depth 3
calls to operate properly, and random generation created many in{for the libraries of Figure 6, depths greater than 3 produced re-
valid sequences. For example, most of the iterators implementedsults identical to depth 3). JCrasher ran for 639 seconds; it spent
in collections declare a parameterless constructor, but an iter- the majority of its time (577 seconds) generating test cases for

ator thus constructed must be followed by a calidtCollect- java.util. JCrasher created a total of 598 failing test cases. We
ion(Collection) that specifies the collection to iterate over. used the same methodology to label error-revealing JCrasher test
Until this call is made, the iterator will not function, and it will cases as for our tools. Out of the 598 failing test cases generated
throw an exception of typ#&lullPointerException if next() by JCrasher, 3 were error-revealing, and they revealed one distinct
or hasNext() is invoked. RANDOOP reported many contract vi- error. The error is one thatARDooP did not find, not because a
olations due to incorrect use of these constructors. limitation in its grammar of tests (the test case is easily expressible

as a sequence) but because the random generation process did not
happen to construct the specific input.

JCrasher generated 595 non-error-revealing test cases. Fig-
For the .NET libraries, we used the .NET design guidelines for ure 8 shows the types of exceptions that it reported. About
class library developers, which state that public library methods half (332) were test cases that threw EBagalArgument-
should never throw null-reference or index-out-of-range excep- Exception when given an illegal argument. 166 test cases
tions. For System.Xml, we confirmed with the test team that this threw aNullPointerException but the exception was caused
guideline is followed and that such exceptional behavior is tested, because the valueull was explicitly given as an input to a

A.1.3 .NET framework libraries

11

Figure 8. Exception types that JCrasher reported.
bers reported is the number of test cases that JCrasher reported _ _ .
as potentially error-revealing due to an exception of the given A.4.1 Example inconsistencies: Sun 1.6

type. All exceptions are from packag®va.lang
MissingResourceException which is injava.util

except for

lllegalArgumentException 332 the current time (re-running to remove nondeterministic behavior
NullPointerException 166 could be easily automated). After running the test suite ten times,
NumberFormatException 2 a total of 7098 test cases were discarded due to nondeterministic
NegativeArraySizeException 3 behavior. _ _
ClassCastException 6 We found errors not only |_n Sun _1.6 and IBM 1.5, but also in
MissingResourceException 8 Sun 1.5. For example, one inconsistency _between IBM 1.5 and
. Sun 1.5 revealed an error in Sun 1.5, despite the fact that the test
ArraylndexOutOfBoundsException 77 case failed on IBM 1.5.
RuntimeException 1 Below we show some of the test cases that reveal inconsisten-
lllegalAccessError 1 cies between the JDK implementations. These are test cases that,
IndexOutOfBoundsException 2 when executed on Sun 1.6 or IBM 1.5, result in an assertion viola-

tion or error.

The following test cases fail when executed on Sun 1.6 (note that
the failures can point to errors in either implementation, not nec-
essarily Sun 1.6). We have formatted the test cases (and in some
cases, changed variables names) for readability. We have anno-

method that expected a non-null parameter. The rest of the
test cases were illegal uses of the libraries. For example, 2
NumberFormatException S were thrown because JCrasher at-

tempted to parse a number from a string that does not representy,,ot junit framework.;

behavior.

a number; NegativeArraySizeException s were thrown be- . o

cause JCrasher passed a negative argument that is used to seiblic class MustangFailsThis extends TestCase {

an array’s size; &lassCastException s were thrown because public static void testl() throws Exception {

the wrong type of argument was passediriaylndexOutOf- java.util.Scanner sc = new java.util.Scanner("xxx");

f ; ; String s = sc.findInLine(Pattern.compile(™));
BoundsException s were thrown because a negative index was /l'Sun JDK 15 fails this assertion: findinLine

passed as a parameter that indexed into an array; etc. (Note that // returns null, not ", when a pattern matches

in the .NET libraries, the specification says that a public method /I a zero-length string at the end of the input.

that throws an exception of typedexOutOfRangeException) assertEquals(™, s);

is erroneous operation. The .NET guidelines requiegal-

ArgumentException instead. This is not the case for the Java Public S‘f_‘lﬁé void tef:tzl() éh"’""i Exception {

libraries, and RNDOOP does not report out-of-bounds exceptions Jav:'un;'w Tagv‘;{,'jﬁ_érigoﬁ;nccmendar(looa 1, 1);

as violations.) The test cases reported by JCrasher that threw java.uti.Date d1 = cl.getTime();

out-of-bounds exceptions were cases of illegal parameters being ?/lgﬁfig’é‘di‘%);thmws a ClassCastException;

passed. Il this is a regression from Sun JDK 1.5.
dl.after(d1);

A.4 Ranpoorp with Regression Oracles
public void test3() throws Throwable {

T_his section provides more details about the experiments from java.utilBitSet var0 = new java.util.BitSet():
Section 3.3 that use A&NDOOP to generate regression test cases int varl4 = var0.size();
for the Java JDK assertEquals(64, varl4);
) . java.lang.Object varl3 = var0.clone();
We generated tests for 309 classes in thea.sql |, int varl5 = var0.size();
java.uti , javatext , javabeans , java.math assertEquals(64, varl5);
java.security , javalang , and javax.xml packages.

We selected these packages because execution of large amounts public void test4() throws Throwable {

; java.util.GregorianCalendar varl9 = new java.util
of randomly generated code works best for classes which do not GregorianCalendar(2006, 3. 6);

perform many GUI and I/O operations. java.util.Date var20 = varl9.getGregorianChange();
The three implementations of the JDK that we used were Sun int var21 = var20.getDate();

1.5 (J2SE build 1.5.0-b64), Sun 1.6 beta 2 (J2SE build 1.6.0- , 2SSertEquals(ia, var2ly

beta2-b74), and IBM 1.5 (J2SE build pxi32devifx-20060124, JCL

20060120a). public void test5() throws Throwable {
. . double var5 = java.lang.StrictMath.acos(0.0);
We ran RRNDOOP on Sun 1.5 with the option that creates re- float varé = ((javalang.Double)vars).floatvalue();

gression oracles. The outcome of this was a test suite containing int varl0 = ((ava.lang.Float)var6)

: .compareTo((java.lang.Float)(float) 10.0);
41,046 regr_es_5|_on test c_ases. To f_actor out test cases that cap_tured java.utilDate varl8 = new java.utiDate(l, 1, -1):
non-deterministic behavior of the library, we ran the test resulting int varl9 = varl8.getYear();

suite 10 times, and used a script to remove test cases that did not J'ava-Util-Gregotr_iagCalef)darc \1?”2;‘0 (=100
. new java.util.GregorianCalenaar f
consistently fail or pass—these test inputs typically included non- (intvar1o,

tated some of the test cases with comments describing the failing

deterministic method calls, e.g. calls whose result depended on (intyvar19);

12

java.lang.String var21 = var20.toString();
assertEquals(“java.util. GregorianCalendar[time"

+

"=?,areFieldsSet=false,areAllFiel"

+ "dsSet=false,lenient=true,zone=su"

"n.util.calendar.Zonelnfo[id=\"Am"
"erica/New_York\",offset=-1800000"
"0,dstSavings=3600000,useDaylight"
"=true,transitions=235,lastRule=j"
"ava.util.SimpleTimeZone[id=Ameri"
"ca/New_York,offset=-18000000,dst"
"Savings=3600000,useDaylight=true"

" startYear=0,startMode=3,startMo"
"nth=3,startDay=1,startDayOfWeek="
"1,startTime=7200000,startTimeMod"
"e=0,endMode=2,endMonth=9,endDay="
"-1,endDayOfWeek=1,endTime=720000"
"0,endTimeMode=0]],firstDayOfWeek"
"=1,minimalDaysInFirstWeek=1,ERA="
"?,YEAR=100,MONTH=-1, WEEK_OF_YEAR"
"=?, WEEK_OF_MONTH=?,DAY_OF_MONTH="
"1,DAY_OF_YEAR=?,DAY_OF_WEEK=?,DA"
"Y_OF_WEEK_IN_MONTH=?,AM_PM=? HOU"
"R=?,HOUR_OF_DAY=0,MINUTE=0,SECON"
"D=0,MILLISECOND=?,ZONE_OFFSET=?,"

B S S S S S S S S S S N T e

"DST_OFFSET=?]", var21);
}

public void test6() throws Throwable {
java.util. TreeSet var0 = new java.util.TreeSet();
java.text.ParsePosition varll =
new java.text.ParsePosition(100);
/Il Sun 1.6 throws ClassCastException
/I when executing next method.
/I Reveals error in Sun 1.5 and IBM 1.5:
/I they should also throw
/I an exception, but do not.
boolean varl5 = var0.contains(varll);

}

public void test7() throws Throwable {

javax.xml.datatype.DatatypeFactory varl =
javax.xml.datatype.DatatypeFactory.newlinstance();

javax.xml.datatype.Duration varl7 =
varl.newDurationYearMonth(100L);

java.util.Date var23 = new java.util.Date(100L);

long var24 = varl7.getTimelnMillis(var23);

assertEquals(100L, var24);

public void test8() throws Throwable {
javax.xml.datatype.DatatypeFactory varl =
javax.xml.datatype.DatatypeFactory.newlnstance();
javax.xml.datatype.Duration varl7 =
varl.newDurationYearMonth(100L);
int var20 = varl7.getSign();
assertEquals((int) 1, var20);

public void test9() throws Throwable {
javax.xml.datatype.DatatypeFactory varl =
javax.xml.datatype.DatatypeFactory.newlnstance();
javax.xml.datatype.Duration varl7 =
varl.newDurationYearMonth(100L);
java.lang.String varl9 = varl7.toString();
assertEquals("PT0.100S", varl9);

}

public void test10() throws Throwable {
java.util.GregorianCalendar varQ0 =

new java.util.GregorianCalendar();

java.util. TimeZone varl = var0.getTimeZone();
java.util.Date var2 = var0.getGregorianChange();
int var3 = var2.getSeconds();
int var4 = var2.getHours();
java.lang.String var5 = var2.toString();
assertEquals((int) 0, var3);
assertEquals((int) 19, var4);
assertEquals("Sun Oct 24 19:00:00 EST 1582", varb);

13

public void test11l() throws Throwable {
javax.xml.datatype.DatatypeFactory varl =
javax.xml.datatype.DatatypeFactory.newlinstance();
long varl9 = java.util.Date.UTC(100, 100,

100, 10, 100,

javax.xml.datatype.Duration var20 =
varl.newDurationYearMonth((long)var19);
java.lang.String var22 = var20.toString();
assertEquals("P14099DT11H40M0.000S",
(java.lang.String)var22);

}
public void test12() throws Throwable {
javax.xml.datatype.DatatypeFactory varl =
javax.xml.datatype.DatatypeFactory.newinstance();
long varé = java.lang.Double.doubleToLongBits(10.0);
javax.xml.datatype.Duration var7 =
varl.newDurationDayTime((long)var6);
int var8 = var7.getMonths();
assertEquals((int) 0, (int)(java.lang.Integer)var8);

}
public void test13() throws Throwable {
javax.xml.datatype.DatatypeFactory varl =

javax.xml.datatype.DatatypeFactory.newlinstance();
long varl9 = java.util.Date.UTC(100, 100,
100, 10, 100, 0);
javax.xml.datatype.Duration var20 =
varl.newDurationYearMonth((long)var19);
int var22 = var20.getYears();
assertEquals((int) 0, (int)(java.lang.Integer)var22);

}

A.4.2 Example inconsistencies: IBM 1.5

The following test cases fail when executed on IBM 1.5 (note that
the failures can point to errors in either implementation, not nec-
essarily IBM 1.5). As before, we have formatted the test cases for
readability and annotated some of them with comments.

import junit.framework.*;
public class IBMFailsThis extends TestCase {

public static void testl4() throws Exception {
javax.xml.datatype.DatatypeFactory df
= javax.xml.datatype
.DatatypeFactory.newlnstance();
javax.xml.datatype.XMLGregorianCalendar xgc
= df.newXMLGregorianCalendarTime(0, 0, 12, 0);
xgc.setFractionalSecond(new java.math.BigDecimal(0.8));
/I IBM JDK 1.5 fails this assertion; it inserts
/I an extra 0 between the 12 and the .8, which
/I 'is not a valid W3C XML Schema 1.0 time.
assertEquals("00:00:12.80000000000000004440892"
+ "09850062616169452667236328125Z2",
xgc.toString());

public static void test15() {

javax.xml.datatype.DatatypeFactory df =
javax.xml.datatype.DatatypeFactory
.newlInstance();

javax.xml.datatype.XMLGregorianCalendar xgc =
df.newXMLGregorianCalendarTime(0,10,0,0);

xgc.setDay(1);

xgc.reset();

/I Fails on IBM 1.5, which returns

/I DataTypeConstant.FIELD_UNDEFINED.

/I Reveals error in both Sun 1.5/1.6:

/I they should not return O.

assertEquals(0, xgc.getDay());

public static void test16() {
javax.xml.parsers.DocumentBuilderFactory dbf =

javax.xml.parsers
.DocumentBuidlerFactory.newlnstance();

javax.xml.parsers.DocumentBuilder db =
dbf.newlnstance();

Exception exception = null;

try {

} catch (Exception e) { exception = e; }
assertNotNull(e);
/I Fails on IBM 1.5, which throws
/I SAXParseException.
/I Reveals error in IBM 1.5: it should
/I also throw SAXParseException,
/I not a MalformedURLException.
assertEquals(java.net.MalformedURLEXxception.class,
e.getClass());
}

public static void testl7() {
java.math.BigDecimal negOne =
new java.math.BigDecimal(-1.0);
java.math.BigDecimal one =
negOne.divideTolntegralValue(negOne);
java.math.Biginteger unscaled =
one.unscaledValue();
/I Fails on IBM 1.5, which returns 1000000
/I instead of 1.
/I Reveals error in IBM 1.5:
/I it should return 1.
assertEquals("1", unscaled.toString());

public void test18() throws Throwable {
java.math.BigDecimal var3 =
java.math.BigDecimal.valueOf(-1L, 10);
java.math.BigDecimal varll =
java.math.BigDecimal.valueOf(-1L, 10);
java.math.RoundingMode varl6 =
java.math.RoundingMode.valueOf(0);
java.math.BigDecimal varl7 =
var3.divide(varll, -1, varl6);
int varl8 = varl7.intValue();
java.math.MathContext var20 =
new java.math.MathContext(var18);
}

public void test19() throws Throwable {
java.math.BigDecimal var3 =
java.math.BigDecimal.valueOf(-1L, 10);
java.math.BigDecimal varll =
java.math.BigDecimal.valueOf(-1L, 10);
java.math.RoundingMode varl6 =
java.math.RoundingMode.valueOf(0);
java.math.BigDecimal varl7 =
var3.divide(varll, -1, varl6);
double varl8 = varl7.doubleValue();
assertEquals(10.0, varl8);
}

public void test20() throws Throwable {
java.math.BigDecimal var3 =
java.math.BigDecimal.valueOf(-1L, 10);
java.math.BigDecimal varll =
java.math.BigDecimal.valueOf(-1L, 10);
java.math.RoundingMode varl6 =
java.math.RoundingMode.valueOf(0);
java.math.BigDecimal varl7 =
var3.divide(varll, -1, varl6);
java.math.BigDecimal varl8 =
varl7.negate();
java.lang.String varl9 =
varl8.toEngineeringString();
assertEquals("-10", varl9);

public void test21() throws Throwable {
javax.xml.datatype.DatatypeFactory varl =
javax.xml.datatype
.DatatypeFactory.newlnstance();
javax.xml.datatype.Duration var24 =

14

varl.newDurationDayTime(-1L);
java.beans.beancontext
.BeanContextServicesSupport var25f =
new java.beans.beancontext
.BeanContextServicesSupport();
boolean var26 =

var24.equals((java.lang.Object)var25);

}

public void test22() throws Throwable {
java.math.BigDecimal varl =
new java.math.BigDecimal(1);
java.math.BigDecimal var8 =
new java.math.BigDecimal(-1.0);
java.math.BigDecimal varll =
varl.remainder((java.math.BigDecimal)var8);
byte varl2 = varll.byteValueExact();
}

public void test23() throws Throwable {
javax.xml.transform.TransformerFactory varl =
javax.xml.transform.TransformerFactory.newlInstance();
javax.xml.transform.Transformer var2 =
varl.newTransformer();
var2.reset();

}

public void test24() throws Throwable {
java.util.Vector var5 = new java.util.Vector();
boolean threwCorrectException = false;
try {
int var26 = varb5.lastindexOf(false, 0);
} catch (Throwable e) {
threwCorrectException =
(java.lang.IndexOutOfBoundsException.class)
.equals(e.getClass());

assertTrue("code should throw the exception”
+ "java.lang.IndexOutOfBoundsException”,
threwCorrectException);

