
Device Independence and Extensibility in Gesture Recognition∗

Jacob Eisenstein, Shahram Ghandeharizadeh, Leana Golubchik,
Cyrus Shahabi, Donghui Yan, Roger Zimmermann

Department of Computer Science
University of Southern California

Los Angeles, CA 90089, USA

Abstract

Gesture recognition techniques often suffer from be-
ing highly device-dependent and hard to extend. If a
system is trained using data from a specific glove in-
put device, that system is typically unusable with any
other input device. The set of gestures that a system is
trained to recognize is typically not extensible, without
retraining the entire system. We propose a novel gesture
recognition framework to address these problems. This
framework is based on a multi-layered view of gesture
recognition. Only the lowest layer is device dependent;
it converts raw sensor values produced by the glove to
a glove-independent semantic description of the hand.
The higher layers of our framework can be reused across
gloves, and are easily extensible to include new gestures.
We have experimentally evaluated our framework and
found that it yields at least as good performance as con-
ventional techniques, while substantiating our claims of
device independence and extensibility.

1 Introduction

Gesture recognition offers a new medium for human-
computer interaction that can be both efficient and
highly intuitive. However, gesture recognition soft-
ware is still in its infancy. While many researchers
have documented methods for recognizing complex ges-
tures from instrumented gloves at high levels of accu-
racy [6, 8, 11, 13], these systems suffer from two notable
limitations: device dependence and lack of extensibility.

Conventional approaches to gesture recognition typi-
cally involve training a machine learning system to clas-
sify gestures based on sensor data. A variety of machine
learning techniques have been applied, including hid-
den Markov models [6, 8, 14], feedforward neural net-

∗This research is supported in part by NSF grants EEC-9529152
(IMSC ERC), and IIS-0091843 (SGER).

works [13], and recurrent neural networks [6, 10]. These
different approaches have a common feature: they all
treat gesture recognition as a one-step,single-layerpro-
cess, moving directly from the sensor values to the de-
tected gesture. Consequently, the properties of the spe-
cific input device used in training are built into the sys-
tem. For example, a system that was trained using a 22
sensor CyberGlove would almost certainly be of no use
with a 10 sensor DataGlove. The system expects 22 in-
puts, and would be unable to produce meaningful results
with the 10 inputs offered by the DataGlove.

Ideally, a gesture recognition system should be able
to work with a variety of input devices. As the number of
sensors is reduced, the performance might degrade, but
it should degrade gracefully. We call this propertydevice
independence, and it is the first significant advantage of
our approach.

In order to achieve device independence, we have
reconceptualized gesture recognition in terms of amulti-
layer framework. This involves generating a high-level,
device-independent description of the sensed object – in
this case, the human hand. Gesture recognition then pro-
ceeds from this description, independent of the charac-
teristics of any given input device.

Because our approach allows the gesture recognition
system to use a clean, semantic description of the hand,
rather than noisy sensor values, much simpler tech-
niques can be employed. It is not necessary to use any-
thing as complicated as a neural network; rather, simple
template matching is sufficient. Template matching pro-
vides a key advantage over more complex approaches: it
is easily extensible, simply by adding to the list of tem-
plates. To recognize a new gesture with a conventional
system, the entire set of gestures must be relearned. But
we will show experimentally that with our approach, it
is possible to add new gestures without relearning old
ones. These new gestures are recognized with nearly
the same accuracy as those in the original training set.
Thus,extensibilityis the second main advantage of our
approach.

1

In Section 2, we describe our multi-layer framework
in more detail. Section 3 presents our implementation
for the task of ASL fingerspelling recognition, which we
believe will generalize to other virtual reality applica-
tions. The results of an experimental evaluation of this
implementation are given in Section 4. Section 5 sur-
veys related work, and Section 6 presents brief conclu-
sions and future research directions.

2 A Multi-Layer Framework

Our proposed framework is based on a multi-level
representation of sensor data. It consists of the following
four levels:

1. Raw data: This is the lowest layer and contains
continuous streams of data emanating from a set
of sensors. We have addressed the analysis of this
general class of data in [4]. In this paper, we are
specifically concerned with data generated by the
sensors on a glove input device. A detailed descrip-
tion of the sensors included with the CyberGlove is
found in [7]. The data at this level is highly device-
dependent; each device may have a unique num-
ber of sensors, and the sensors may range over a
unique set of values. However, raw sensor data is
applicationindependent; no assumptions are made
about how the data will be used, or even what it de-
scribes. Conventional approaches to dealing with
streaming sensor data typically operate at exactly
this level. Consequently, these approaches are usu-
ally very difficult to adapt to new devices, and they
fail to take advantage of human knowledge about
the problem domain.

2. Postural Predicates: This level contains a set of
predicates that describe the posture of the hand. Ta-
ble 1 provides a list of the predicates to represent
the hand postures for ASL fingerspelling. A vector
of these predicates consisting of 37 boolean values
describes a general hand posture. For example, a
pointingposture is described by noting that the in-
dex finger is open, Open (indexfinger), while ev-
ery other finger is closed, Closed (thumb), Closed
(middle finger), etc. Each predicate describes a
single features of the overall posture – e.g., Closed
(index finger). In our pointing posture, five vector
values (corresponding to the aformentioned pred-
icates evaluate astrue), while the remaining ones
evaluate asfalse.

While we do not claim that Table 1 presents a com-
prehensive list that captures all possible postures,
we do show that these predicates can describe the

ASL alphabet. Preliminary research on other fin-
gerspelling systems suggests that this set of pred-
icates is general, and we plan to investigate its
generality in support of non-fingerspelling appli-
cations. To this end, we plan to apply this set of
predicates to a virtual reality application in future
research.

The postural predicates are derived directly from
the lower level of raw sensor data. This process is
described in more detail later in Section 3.2. The
derivation of postural predicates from sensor data
is, by necessity, device-dependent. However, it is
application-independent, if our postural predicates
are indeed general over a range of applications.

Once postural predicates are extracted from the
sensor data, device-independent applications can
be implemented using this higher level of repre-
sentation. Thus, our multi-layered approach pro-
vides for the sound software engineering practice
of modular reuse. Some modules can be reused
across multiple devices, while others can be reused
across multiple applications.

3. Temporal Predicates: Our work thus far has mainly
focused on postural predicates. Here, we assume
the ASL alphabet as our working data set where
most signs arestatic and do not require any hand
motion (and hence have no temporal aspect). The
extension of the framework to temporal signs is part
of our future work.

4. Gestural Templates: This layer contains a set of
templates, each of which corresponds to a whole
hand gesture. Postures contain no temporal infor-
mation; a gesture may contain temporal informa-
tion, although this is not required. A gesture is a
description of the changing posture and position of
the hand over time. An example of a gesture is a
hand with a pointing index finger moving in a cir-
cular trajectory with a repetitive cycle.

Gestures are described astemplatesbecause they
are represented as a vector of postural and tempo-
ral predicates. In order to classify an observed hand
motion as a given gesture, the postural and tempo-
ral predicates should match the gestural template.
This might be an approximate match; in our ASL
application, we simply choose the gestural template
that is the closest match to the observed data (see
Section 3.1.1 for details).

3 Implementation

Figure 1 shows the two key modules of our imple-
mentation: 1) a set of predicate recognizers, and 2) a

2

Name Definition Applicability Number of
predicates

Open (X) Indicates that finger X is extended parallel to the palm. Any finger, and the thumb 5
Closed (X) Indicates that finger X is closed with the palm. Note that the

openandclosedpredicates are mutually exclusive, but they
are not complete. A finger may neither entirely open, nor
closed.

Any finger, and the thumb 5

Touching-thumb (X) Indicates that finger X is touching the thumb. Any finger other than the thumb 4
Grasping (X) Indicates that finger is grasping something with the thumb.Any finger other than the thumb 4
Split (X, Y) Indicates that adjacent fingers X and Y are spread apart from

each other.
Any adjacent pair of fingers, and
the index finger and the thumb.

4

Crossing (X, Y) Indicates that finger X is crossing over finger Y, with Y closer
to the palm than X.

Applies to any two fingers, but
finger crossings that are very
difficult (e.g. pinky over index
finger) are not included.

14

Palm-facing-in () Indicates that the palm is facing the signer, rather than the
recipient of the signs.

Applies to the whole hand. 1

Table 1. Postural Predicates

Alphabet Set of predicates (corresponding to a
template)

A Closed (F1, F2, F3, F4)
B Open (F1, F2, F3, F4), Closed (T)
C Grasping F1, F2, F3, F4 (1in, 0 degrees)
D Open (F1), Touching-thumb (F2, F3)
G Open (F1), Closed (F2, F3, F4), Cross-

ing (T, F2), Palm-facing-in()
T Closed (F2, F3, F4), Crossing (T, F2),

Crossing (F1, T)

Table 2. Some ASL Fingerspelling Tem-
plates

template matcher. The predicate recognizers convert
raw sensor data to a vector of predicates. The tem-
plate matcher then identifies the nearest gestural tem-
plate. The template matcher is assisted by two other
components: aconfidencevector, and a probabilistic
context. We will first describe how these components
work together to detect ASL signs. Next, Section 3.2
describes how the system is trained.

3.1 ASL Sign Detection

This section explains how the system moves from
sensor data to the vector of predicates. We then describe
the basic template matching technique, and show how it
can be augmented with context and the confidence vec-
tor.

3.1.1 Predicate Recognizers

The predicate recognizers use traditional gesture recog-
nition methods to evaluate each postural predicate from
a subset of the sensor data. In this case, we imple-
mented the predicate recognizers as feedforward neu-
ral networks; we have explored other approaches in the
past [3]. Each predicate recognizer need not consider
data from the entire set of sensors. Rather, the sensors
are mapped as input to the predicate recognizers manu-
ally, using human knowledge of which sensors are likely
to be relevant to each predicate. For example, the pred-
icate Crossing (T, F1) receives input only from the sen-
sors on the thumb and index finger. By mapping only
those sensors that are relevant to each predicate rec-
ognizer, human knowledge can be brought to bear to
dramatically improve both the efficiency and accuracy
of training. Table 1 shows the six predicate types and
the thirty-seven predicates required to describe a single
handshape.

To perform recognition of these thirty-seven postu-
ral predicates, we employ thirty-seven individual neural
networks (see Figure 1). Each neural net consumes be-
tween 4 and 10 sensor values, includes ten hidden nodes,
and produces either a zero or a one as output, denoting
the logical valence of its predicate. The outputted pred-
icates are then collated together into a vector, which is
fed as input to a template matcher.

3.1.2 Template Matching

The gesture recognizers for a specific application, such
as ASL, are realized using these postural predicates.
Since these gesture recognizers manipulate high-level
semanticdata rather than low-level sensor values, it be-

3

"G"

Template
Matching

A

B
C

...

0.1

0.15

0.24

0.05

0.12

0.3 0.04

0.2

0.15

A
B

G
...

...

...

...

01111000000000000000000000000000000000

00000011110000000000000000000000000000

00111010000000000000000010000000000000

0.7 0.95 0.88 0.73 0.92 0.61 0.7...

Templates

Dictionary

Conf Vector

Figure 1. A Multi-Layer Framework to De-
tect Static ASL Signs

comes possible to employ simpler and more extensible
approaches. Our system performs gesture recognition
by simple template matching on the detected vector of
postural predicates. Template matching can be extended
by simply adding to the set of pre-existing templates. In
addition, this template matching component can be used
across many different gloves (see Section 4).

The template matcher works by computing the Eu-
clidean distance between the observed predicate vector
and every known template. The template that is found
to be the shortest distance from the observed predicate
vector is selected. Mathematically, for a perceived pred-
icate vectorv, we want to find the gesture templatei that
minimizesdi,v, which is the Euclidean distance between
the two vectors.

di,v =
∑

0≤p<P

|i[p] − v[p]| (1)

P is equal to the total number of predicates; in our
applicationP = 37. Sections 3.1.2 and 3.1.3 will aug-
ment this equation with context and confidence to im-
prove performance.

Table 2 shows the true predicates in the template for
several of the static signs in the ASL fingerspelling al-
phabet. For a complete list of the predicates for every
fingerspelling sign in ASL, see [2]. They were deter-
mined by consulting an ASL textbook. Since the mean-

ing of each predicates is entirely straightforward, con-
structing the templates is not expected to be a signifi-
cant bottleneck to the usage or extension of our system.
We believe that manually specifying new templates is far
easier than finding additional training data and retraining
a neural network.

3.1.3 Confidence

Ideally, each predicate recognizer performs perfectly;
failing that, we would at least like to see all of the pred-
icate recognizers perform equally well. In reality, this is
not the case. For example, the Closed(T) predicate rec-
ognizer might correctly classify every test case, while
the Crossing(T, F1) predicate recognizer might produce
results no better than chance. To treat these two predi-
cate recognizers equally would be a mistake; we should
apply more weight to the data from the Closed(T) rec-
ognizer, and ignore data from the Crossing(T, F1) rec-
ognizer. To achieve this, we construct a vectork, with
confidenceratings between 0 and 1 for every predicate
recognizer. The template matcher uses the confidence
vector by factoring it into the distance metric:

di,v =
∑

0≤p<P

k[p]|i[p] − v[p]| (2)

For example, suppose the predicate recognizers re-
turn the vector “0110”, and the two closest templates
are “1110” and “0111”. Suppose that it is known that
the first predicate recognizer (first bit) is only as good as
chance, with a confidence rating of 0.1, but the 4th pred-
icate recognizer (fourth bit) is rated with a confidence of
0.9. In this case, it is very likely that the fourth bit is
indeed zero, while the value of the first bit is uncertain.
Equation 2 uses this information, and selects “1110” as
the appropriate template.

3.1.4 Context

Language users typically follow known patterns, rather
than producing letters or words at random. Using con-
text, the system constrains the space of possible utter-
ances to improve performance. Context also reduces the
effect of noise on the data, and can act as a tie-breaker
between two templates that are equally close to the ob-
served predicate vector.

We incorporate context into our application using an
n-gram letter model [9, 16]. An n-gram is a probabilis-
tic model of sequences of symbols, which we can use
to predict the next symbol. For example, suppose that
we are using trigrams (n = 3), and we know that the
current context is “q”: we are at the beginning of the
word, and the first letter is q. Our trigram model will tell

4

us that the trigram “qu” is far more probable than any
other trigram, given this context. Thus, we can form a
strong expectation that the next letter will be “u”. Even
if noisy data obscures the recognition, the context com-
ponent can help us make the correct identification.

Context is represented by a vectorc, which includes
the recent history of signs produced by the user. The size
of c is equal to the size of the n-gram minus one; if tri-
grams are used, thenc stores a two-element history. We
then use the n-gram probabilities to find theconditional
probability that each possible letter follows the letters in
the context. The conditional probability of some letteri,
given the contextc, is denoted byP (i|c).

We now have to factor this probability into our origi-
nal equation. Recall that originally we chose the gesture
templatei that minimizesdi,v for an observed predicate
vectorv. This is the same thing as choosing the gesture
templatei that maximizes1/di,v. We can include the
conditional probability of each gesture in the equation
by instead maximizing:

P (i|c)
(

1
di,v

)n

(3)

By varyingn, we can control the extent to which con-
text influences the gesture recognition. Asn approaches
zero, the(1/di,v)n term approaches 1, and the condi-
tional probability becomes more important. Asn goes
to infinity, the(1/di,v)n term becomes more significant,
overwhelming the conditional probability and dominat-
ing the calculation. This tradeoff is quantified in detail
in [2].

3.2 Training

The training phase impacts two components of the
system: 1) each of the 37 predicate recognizers, and 2)
the confidence vector. We describe each in turn.

3.2.1 Training the Gesture Recognizers

Figure 2 shows how the predicate recognizers are
trained. During training, the system is presented with
a set of example inputs, and the corresponding expected
output templates. While the sensor values are passed
along to the appropriate predicate recognizers, the ex-
pected output is passed to the list of gesture templates.
The appropriate template is selected; for example, if the
expected output is a “G,” then the template “0110...1” is
selected. The output of the ith predicate recognizer must
match the ith element in the template vector. In our ex-
ample, the output of the 2nd predicate must be a “1.” If
they do not match then the expected value is returned

Figure 2. Training of Spatial Sign Detector

to the predicate recognizer and it is trained using a con-
ventional error backpropagation method for feedforward
neural networks [1, 12].

While the use of thirty-seven individual neural net-
works might appear computationally expensive, the
small size of each network makes the cost of this ap-
proach similar to that of traditional techniques. The
average predicate recognizer has six inputs, ten hidden
nodes, and one output, for a total of6∗10+10∗1 = 70
weights that must be updated during training. With 37
networks, a total of37 ∗ 70 = 2590 weights must be
updated. A traditional approach, employing a single
large neural network to recognize ASL signs directly
from raw sensor data, would require 22 inputs (one for
each sensor), and 24 outputs (one for each static sign).
In our experiments, we found that 25 hidden nodes
yielded the best performance for the traditional single-
network approach. Thus, this approach still requires that
22 ∗ 25 + 25 ∗ 24 = 1150 weights be updated. Even
though we use thirty-seven networks instead of one, our
approach is only a little more than two times as costly as
the conventional technique. We believe that the benefits
of device-independence and extensibility, which will be
quantified later, more than justify this additional cost. At
most, 3000 iterations are required to train each gesture
recognizer, but convergence often occurs sooner. The
entire process requires less than twenty minutes on a 1
GHz Pentium 4, running Linux, with 512 MB of mem-
ory.

3.2.2 Setting the Confidence Vector

As described in Section 3.1.2, the confidence vector
maintains a set of ratings on performance of each pred-

5

icate recognizer. These ratings range between 0 and 1,
and they control the extent to which each predicate rec-
ognizer influences the final outcome. In order to deter-
mine the ratings in the confidence vector, 20% of the
training data is withheld from training. This data is
called the “tuning set”, and it is used to compute the
confidence vector.

As in training, we evaluate each predicate recognizer
based on the sensor data and the expected output. How-
ever, instead of performing any additional training, we
simply record its performance. It is critical that we
use data not present in the training set, since this gives
an indication of whether the predicate recognizers can
generalize to examples outside of the training data. In
this way, the confidence vector helps us account for and
deal withoverfitting, a serious problem in many machine
learning applications.

Let a[i] represent the accuracy of theith predicate
recognizer on the tuning set. All predicate recognizers
evaluate to either 1 or 0; consequently, ifa[i] = 0.5, then
the predicate recognizer is only performing at chance. In
this case, our confidence rating should be zero, since the
predicate recognizer is no better than flipping a coin. On
the other hand, ifa[i] = 1, then the predicate recognizer
is performing perfectly, and a confidence rating of one
should be assigned. All of this can be quantified in the
following equation:

k[i] = 2(a[i] − 0.5)+ (4)

The superscript “+” indicates that the term in paren-
theses can never go below zero; if it does, it is set to
exactly zero, i.e.(a[i]− 0.5)+ = max(a[i]− 0.5, 0). A
coefficient of two is applied in order to normalize confi-
dence rating to a range between 0 and 1.

4 Experimental Results

We have evaluated our approach in the domain of
ASL fingerspelling. Specifically, we focus on static
signs and use the twenty-four letters which do not con-
tain temporal characteristics – Z and J are omitted. Ex-
tending our system to handle spatio-temporal gestures
is the subject of future work. Our evaluation pro-
ceeds along three dimensions: performance, device-
independence, and extensibility. We will show that
our approach achieves at least comparable performance
to a conventional approach, while providing a level of
device-independence and extensibility that are well be-
yond the capabilities of any known conventional system.

4.1 Performance

Performance can be evaluated on two dimensions:
speed, and accuracy. Although our system is substan-
tially more complex than many of other approaches to
this problem, gesture recognition is still quite fast. Using
the same computer hardware described in Section 3.2.1,
out system recognizes more than 600 gestures per sec-
ond. This is faster than the polling rate of our glove
device, and we believe that it is certainly fast enough for
use in an interactive system.

In order to evaluate the accuracy of our system, we
a conventional feedforward neural network as a base-
line for comparison. This neural network consumes all
twenty-two raw sensor values as input, includes twenty-
five hidden nodes, and has twenty-four output nodes.
The letter corresponding to the maximally activated out-
put node is considered to be the output. This baseline
approach is very similar to the approach used in [13].

Many experiments used the same individual signers
in the test set as those who were used to train the sys-
tem ([6] is an exception). Our testing methodology is
substantially more rigorous, because we have attempted
to achievesigner independence. Specifically, out of six-
teen signers in our dataset, twelve were used in training,
and four were used in testing. Moreover, we performed
only the most cursory calibration, taking less than thirty
seconds for each signer. To achieve confidence in our re-
sults, we performed ten separate experiments, with dif-
ferent, randomly chosen test and training sets in each.
The results reported below are the averages over the ten
experiments. In a commercial application, developers
would be free to choose a training set that yielded max-
imum performance, but we constructed our training sets
randomly to ensure the integrity of our experiments.

We use only a bigram model for context; this im-
proved accuracy by roughly 10%. We also experimented
with a trigram model, but found that it yielded only a
marginal improvement beyond the bigram, and required
significantly more time to evaluate the system.

Since the baseline approach could not take advantage
of context, we compared our approach both with and
without context against the baseline. We tested all sys-
tems by simulating each user signing every word in the
English dictionary. The results are shown in the first line
of Table 3. With the help of a bigram context, our system
strongly outperformed the baseline. Without the bigram
context, our system was slightly better than the baseline.
This validates our claim that our approach performs as
well as the baseline.

6

System Baseline Multilayered Multilayered
Context no yes no

CyberGlove 22 58.9% 67.4% 58.6%
CyberGlove 18 59.2% 65.5% 54.0%
DataGlove 16 57.8% 59.4% 51.2%
DataGlove 10 45.2% 40.5% 32.3%
TCAS 8 24.1% 38.6% 31.5%
DataGlove 5 20.1% 25.2% 8.3%

Table 3. Accuracy Results for the Six
Gloves with n = 2.

4.2 Device Independence

To show that our framework supports device indepen-
dence, we tested our system on six different glove input
devices. The predicate recognizers and confidence vec-
tor were retrained for each device; the template matcher
and context modules were reused. The first glove,Cy-
berGlove 22, is a real glove used in our lab and the
other five gloves are real gloves that are simulated by re-
moving sensors from the data files produced by the first
glove. All six gloves are described in [17]; their relevant
details are as follows. The details of all six gloves are as
follows.

1. CyberGlove 22.A 22 sensor glove, with a sensor
for every joint in the human hand.

2. CyberGlove 18.Omits the distal (outermost) joints
in each finger. The thumb has no distal joint.

3. DataGlove 16.Omits the distal joints, and the wrist
flexion and abduction sensors.

4. DataGlove 10.Two sensors per finger and thumb.
Omits distal joints, wrist flexion and abduction,
palm arch, thumb roll, and abduction between fin-
gers.

5. TCAS Glove 8.One sensor per finger and thumb,
plus thumb roll and palm arch.

6. DataGlove 5.One sensor per finger and thumb.

Whereas the baseline neural network had to be entirely
retrained for each glove, our system only retrained the
low-level gesture recognizers and the confidence vector.
Even under these conditions, our system performs at or
near the same level as the baseline on nearly every glove.

4.3 Extensibility

To demonstrate the extensibility of our system, we
conducted the following experiment. We removed let-
ters from the training data when the gesture recognizers

were being trained, and then later added their templates
to the library. The goal is to determine whether our sys-
tem could be extended to recognize these new templates,
even though they were not in the training set of the ges-
ture recognizers. We successively removed every letter
from the training set, one at a time, and then tested the
accuracy on that letter. We found that the average accu-
racy across all twenty-four letters was 92% as good as
when the letters were included in the training set. This
shows that performance degrades only marginally on
new templates that were not part of the training set, and
suggests that it is indeed possible to extend the system
with new signs and maintain adequate performance.

5 Related Work

Glove-based gesture recognition has been explored
in a number of studies. In an early study, Murakami
and Taguchi [10] used recurrent neural networks to de-
tect signs from Japanese Sign Language. Newby used
a “sum of squares” template matching approach to rec-
ognizing ASL signs, which is very similar to our tem-
plate matching component [11]. This system does seem
to have met the criterion of extensibility, although this
is not mentioned explicitly; the method was chosen be-
cause of its fast execution time. More recent studies in
gesture recognition has focused on hidden Markov mod-
els, which have produced highly accurate systems capa-
ble of handling dynamic gestures [6, 8, 14].

The idea of device independence in virtual reality ap-
plications has been addressed in a number of studies.
One such study, by Faisstnauer et al., describes the Map-
per [5], which eases the integration of new devices into
virtual reality applications. This study does not tackle
the specific issue of gesture recognition, but instead pro-
vides a high level software engineering framework for
handling heterogeneous devices.

More closely related to our own work is that of Su
and Furuta [15]. They propose a “logical hand device”
that is in fact a semantic representation of hand posture,
similar to our own set of postural predicates. This was
done with the express purpose of achieving device in-
dependence, but to our knowledge it was never imple-
mented. Our research can be viewed as an implementa-
tion and experimental validation of these ideas.

6 Conclusion and Future Research

The experimental results described here are prelimi-
nary evidence that our system does indeed achieve our
two goals of device independence and extensibility. We
would like to make further experiments along these
lines. Regarding the claim of device independence, we

7

would like to test our system with other real gloves,
rather than merely simulating them. As for the exten-
sibility claim, we would like to show that our predicate
recognizers, trained on ASL data, can actually support
entirely different sign languages, such as Japanese or
Russian Sign Language. Ultimately, we would like to
go even further, and show that we can support applica-
tions outside of sign language altogether, such as virtual
reality.

Since we have focused only on postural predicates,
our predicate recognizers use feedforward neural
networks, which we believe are well-suited to this task.
We hope that the same basic framework can be applied
to temporal predicates, perhaps using recurrent neural
networks or hidden Markov models for the predicate
recognizers. The questions of how to build these
temporal predicate recognizers, and how to incorporate
them into our existing framework are clearly crucial
next steps towards creating a useful system.

Acknowledgements
We thank Yong Zeng for preparing the figures, and

for his assistance with the experimental evaluation of the
system.

References

[1] C. M. Bishop.Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, UK, 1995.

[2] J. Eisenstein, S. Ghandeharizadeh, L. Golubchik,
C. Shahabi, D. Yan, and R. Zimmermann. Multi-layer
gesture recognition: An experimental evaluation. Tech-
nical Report 02-766, University of Southern California
Department of Computer Science, 2002.

[3] J. Eisenstein, S. Ghandeharizadeh, L. Huang, C. Sha-
habi, G. Shanbhag, and R. Zimmermann. Analysis of
clustering techniques to detect hand signs. InProceed-
ings of the 2001 International Symposium on Intelligent
Mulimedia, Video and Speech Processing, Hong Kong,
May 2001.

[4] J. Eisenstein, S. Ghandeharizadeh, C. Shahabi,
G. Shanbhag, and R. Zimmermann. Alternative
representations and abstractions for moving sensors
databases. InProceedings of the Tenth Interna-
tional Conference on Information and Knowledge
Management (CIKM), Atlanta, GA, November 5-10,
2001.

[5] C. Faisstnauer, D. Schmalstieg, and Z. Szalavári.
Device-independent navigation and interaction in vir-
tual environments. InProceedings of the VRST Ad-
junct Workshop on Computer Graphics, Taipei, Taiwan,
November 5-6, 1998.

[6] G. Fang, W. Gao, X. Chen, C. Wang, and J. Ma. Signer-
independent continuous sign language recognition based
on SRN/HMM. InProceedings of the IEEE ICCV Work-
shop on Recognition, Analysis, and Tracking of Faces

and Gestures in Real-Time, pages 90–95, Vancouver,
BC, Canada, July 2001.

[7] Immersion Corporation, San Jose, CA.CyberGlove Ref-
erence Manual, 1998.

[8] R.-H. Liang and M. Ouhyoung. A sign language recog-
nition system using hidden markov model and context
sensitive search. InProceedings of the ACM Symposium
on Virtual Reality Software and Technology (VRST’96),
pages 59–66, Hong Kong, June 1996.

[9] C. D. Manning and H. Schutze.Foundations of Statis-
tical Natural Language Processing. MIT Press, Cam-
bridge, MA, 2000.

[10] K. Murakami and H. Taguchi. Gesture recognition
using recurrent neural networks. InProceedings of
the Conference on Human Factors and Computing Sys-
tems (CHI’91), pages 237–242, New Orleans, Louisiana,
1991.

[11] G. B. Newby. Gesture recognition based upon statistical
similarity. Presence, 3(3):236–243, 1994.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, 1:318–362, 1986.

[13] R. Salomon and J. Weissmann. Gesture recognition for
virtual reality applications using data glove and neural
networks. InProceedings of IEEE International Joint
Conference on Neural Networks, Washington, DC, 1999.

[14] T. Starner and A. Pentland. Visual recognition of ameri-
can sign language using hidden markov models. InPro-
ceedings of the International Workshop on Automatic
Face and Gesture Recognition, pages 189–194, Z̈urich,
1995.

[15] S. A. Su and R. Furuta. A logical hand device in virtual
environments. InProceedings of the ACM Conference
on Virtual Reality Software and Technology (VRST’94),
pages 33–42, Singapore, August 23-26, 1994.

[16] C. Y. Suen. N-gram statistics for natural language un-
derstanding and text processing.IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-
1(2):164–172, April 1979.

[17] C. Youngblut, R. E. Johnson, S. H. Nash, R. A. Wien-
claw, and C. A. Will. Review of virtual environment in-
terface technology. Technical Report IDA Paper P-3186,
Log: H96-001239, Institute for Defense Analysis, 1996.

8

