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Abstract 
 

When options and other derivatives are issued, the issuer seeks risk neutral positions. These 

positions are obtained through an analysis of the sensitivity of the derivative’s price w.r.t. the 

targeted parameters. Risk neutral positions acquire a time continuous price process as a good proxy 

to ensure more or less explicit hedging costs. This thesis describes what happens with the hedging 

costs if the price process is not continuous or if there is a discrete event (a jump) between time zero 

and maturity. We show how much the hedging cost increases and for which positions the issuers is 

most vulnerable, and how the profit and loss deviation increases for discontinuous processes. We 

document for the importance of no major jumps in the underlying time process, when hedging.  

 

 

 

 

 

 

 

  



3 
 

  



4 
 

Acknowledgments   
 

I would like to thank my supervisor at Royal Institute of Technology mathematical statistics, Prof. 

Boualem Djehiche, for fantastic feedback and guidance when lack of theory. And I would also thank 

my supervisors at Handelsbanken Capital Markets, Dr. Christer Berg, Patric af Ekenstam and Mattias 

Karlsson for an excellent feedback and guidance in the world of derivatives. 

Stockholm, January 2012 

Stefan Sandberg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

  



6 
 

Table of Contests 
 

Introduction........................................................................................................................................7 

Models ...............................................................................................................................................8 

Delta ...................................................................................................................................................9 

Vega ................................................................................................................................................. 10 

Other Greeks .................................................................................................................................... 11 

Change in Time Series ....................................................................................................................... 12 

Delta Hedging Cost ........................................................................................................................... 13 

Vega Hedging .................................................................................................................................... 14 

Empirical Data .................................................................................................................................. 15 

Parametric Data ................................................................................................................................ 16 

Volatility Surface ............................................................................................................................... 18 

The Price of Illiquidity ....................................................................................................................... 20 

The Price of Volatility ........................................................................................................................ 23 

The Price of Exotic Options ............................................................................................................... 24 

Future Topics .................................................................................................................................... 25 

References ........................................................................................................................................ 26 

 

  



7 
 

Introduction 
This thesis describes what happens if the continuous time process for a standard market in equities 

and options suddenly disappears or reduces heavily, from a derivative issuer perspective. Institutions 

that issue options under discontinuous time processes cannot rely on the pricing models. Simply 

because the used price models rely on a time continuous processes in the underlying market, which 

is important from a risk neutral perspective [1,4,5]. Every time a contract is issued, the issuer gets 

paid from the holder. The price of the contract is a fair price between the issuer and holder, and the 

cash is used to cover the cost for the issuer to be risk neutral [6].The definition of risk neutral simply 

are that the issuers have hedged them against further payments. The issuers always follow the 

fundamental parameters in the pricing model for then take a position in the underlying. 

So let us say an option expires deeply in-the-money (ITM) which means for the issuer to pay quite a 

bit of cash to the holder, and seems very costly for the issuer. But that does not need to be true. If 

the risk neutral positions had been made correct, the cash from the hedging will cover the cost of the 

deeply ITM expired option at delivery. But, let us draw this to the discontinuous time process case. 

The time continuous process in the underlying market suddenly drops heavily, this will create lager 

movements in the underlying market for each time process, i.e. larger movements for every risk 

neutral position, which is increasing the future costs. This is of course important to study, see how 

the profit and loss distribution changes when risk neutral positions are taken from time continuous 

processes to a discrete time process, so the issuer can put aside cash for these special events.  
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Models 
Before going any further and describing more deeply about the problem, a closer look into the basic 

theory is needed.  The examples are described from a plain vanilla option view. So the general model 

for pricing a plain vanilla option is by using Black-Scholes model for option pricing [4]. From the 

model it is possible to show the different risk neutral strategies. The value of a call option for an 

underlying stock or stock index is 

                                          
                   .                                          (1.1) 

The price of a corresponding put option is 

                                                                 
                

    ,                                 (1.2) 

 where d1 and d2 are 

                                                                     
   

 

 
     

  

 
      

     
 ,                                            (1.3) 

                                                      
   

 

 
     

  

 
      

     
             .                                              (1.4) 

For the equations above 

 N( ) is the cumulative distribution function of the standard normal distribution. 

 r is the annualized risk free interest rate and assumed constant. 

 S is the spot price of underlying asset. 

 K is the strike price. 

   is the implied volatility of the underlying asset and assumed time independent. 

 T-t is the time to maturity.  

 Q is the dividend yield. 

Now when the Black-Scholes model is introduced a further look at the risk management properties 

can be done, and we can introduce “The Greeks” [7]. The Greeks are important properties in risk 

management when someone buying or selling options, and they measures the sensitivity of the 

option value when the underlying parameters changes. The Greeks that are most important for an 

options issuer are delta and vega, which we will focus on. These two Greeks tell the option issuer to 

change the hedge position when the parameters change in the underlying, to accomplish a 

theoretical risk neutral stage.  
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Delta 
Delta measures the rate of change of the option value with regard to changes in underlying spot 

price. Delta is the first derivative with respect to the underling spot price. Delta is shown bellow 

            
  

  
 .                   (2.1) 

For a vanilla call option, one receives 

              ,                   (2.2) 

and for a vanilla put option 

                                             .                                             (2.3) 

If no dividends are paid, then one can exclude      .  

Let us first focus on a vanilla option. The delta in this case will be a value between 0 and 1 for a call 

option or between -1 and 0 for a put option. If an option has delta close or equal to 1, it equals that 

the option price behaves equal to the underlying asset. If an option has delta close or equal to -1, it 

equals that the option price behaves opposite as the underlying.  

The delta relationship between call and put options with respect on same underlying, strike price and 

time to maturity gives a value equal to 1 if one sums up the absolute delta values 

                                (2.4)   

This can be shown by the put-call parity, the call minus the put fold back a forward, which must has a 

delta of 1 if non-arbitrage condition is satisfied.   

Let us show a basic example when an option issuer obtain a risk neutral position by hedging delta. An 

institution has issued a vanilla call option and wants to be risk neutral against future possible 

payments. In the start the call option has a delta of 0.25, which tells the issuer to buy 0.25 underlying 

per issued call option to protect against the future payments. Under the time to maturity, the 

parameters change and of course the delta change. The issuer following continuous the exact delta 

position in the underlying to obtain an optimal delta hedge i.e. the delta neutral. If the institution 

issues put options the delta neutral position will be a negative number of underlings. Hence, the 

institution shorts the underlying to obtain the optimal delta hedge.  

Delta is not always a number between 0 and 1 for calls, or -1 and 0 for puts, even if there is a vanilla 

option pay-off structure. There are several exotic options whose pay-offs are equal or close to a 

vanilla pay-off function, but with other conditions to obtain the pay-off. The change of delta for an 

exotic option can be far faster than for the vanilla case. Let us look on a barrier option. 

A barrier option is a vanilla option that is split up in two options with same strike a maturity but with 

a barrier, knock-in and a knock-out barrier option. The knock-out enters always as a vanilla option 

and the knock-in always enter worthless. If the underlying spot price passes the barrier the knock-out 

become worthless and can never go back active. But the knock-in barrier option knocks-in to a vanilla 

option and become a vanilla option permanent. 



10 
 

The value of a knock-in and knock-out barrier option with same strike and time to maturity compare 

with the similar vanilla option is shown in equation (5.1) 

                                    .                                                                   (2.5) 

   is the value for the vanilla option,     is the value for the knock-in barrier option and    is the 

value for the knock-out barrier option. If one of the barriers becomes worthless the value of the 

active one must be equal to the vanilla or else the non-arbitrage argument is not satisfied.   

The delta for let us say the knock-in barrier option can be quite stationary and relative low for a spot 

price beyond the barrier, however if the underling spot price suddenly moves close to the barrier the 

delta can suddenly shifts from values about 0.4 to values like 3 or 4. The high values of delta is 

created because the pay-off function is not linear, there will be a Dirac pulse when the barrier is 

knocked.  If the delta can obtain higher values and rapid changes the hedging cost can accelerate 

quickly if the underlying market is not a time continuous process during the hedge. 

 

Vega 
The second presented Greek is vega. Vega measures the sensitivity of the option price, when 

volatility changes by one percent. Vega is the first derivative with respect on volatility. Vega is 

presented bellow 

             
  

  
 .                   (3.1) 

Vega is equal for both vanilla call and put options, one receives 

                                     ,                  (3.2) 

where 

         
 
 
  

 

   
 .                   (3.3) 

When issuers focus on vega, they get an idea of much the options value rise or falls when the 

volatility rise or falls 1%. The issued option has a specific vega, a vega that issuers need to hedge and 

is called vega hedging. The vega hedge is done by buying or selling similar options in the options 

market. Vega cannot be hedged from the underlying direct, only by similar options. If the vega hedge 

is not feasible or done correctly, higher losses are to be expect. 

Let us say a call option cost 10 and has a vega of 0.5, if then the volatility rises by 1% the option price 

will shift to 10.5. Similarly if the vega is -0.5 the option will then lose in value to 9.5 if the volatility 

rise by 1%, or gain 0.5 to 10.5 if the volatility drops 1%. Vega falls when the option gets closer to 

maturity, and has the highest value when the underlying spot price is equal to the strike price for a 

constant time point. 
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Other Greeks 
There are two other first order Greeks to introduce, theta and rho. Theta is the first derivative with 

respect on time, and is shown bellow 

       
  

  
 .                   (4.1) 

Theta shows the sensitivity of the option value to the passage of time, time decay. Issuers does not 

focus so much on theta because the cost of theta is quite expensive, which may not recompense at 

maturity.   

The forth first order Greek is rho. Rho is the first derivative with respect on the risk free rate, and is 

shown bellow 

      
  

  
 .                   (4.2) 

Rho shows the sensitivity of the option value with respect to the risk free interest rate falls or rises by 

1%.  Usually issuers do not hedge rho, because the changes are too small, only if there are extreme 

movements in the interest rate market, hedging rho is made. 

Of no major importance of hedging rho and theta, the examples and explanation of the two Greeks 

ends here. 

There are more Greeks than the four presented fist order. Usually higher ordered Greeks are not so 

interesting, simply because they tell only about the sensitivity of the sensitivity. But, there is one 

higher ordered Greek than will be used later on in the thesis, which is gamma. Gamma is a second 

ordered Greek, and is the derivative on delta with respect on the spot price. Gamma for a vanilla 

option is presented bellow 

                
  

  
  

   

   
  

         

    
 .                  (4.3) 

Gamma measures the rate of change on delta with respect to the underlying spot price. Gamma can 

be useful when talking about the fast changes in delta for especially exotic derivatives, whose 

behavior is more extreme than vanillas.  
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Change in Time Series 
The main focus is in when a normal market or a time continuous process suddenly transform into un- 

continuous time process, or the hedging process is not a time continuous processes. Let us suppose 

there is a stock on the exchange, Company A. Company A is one of the most liquid stocks on the 

exchange and therefore lots of vanilla options and different exotic options are available. Suppose the 

daily time series for Company A have a mean of 2500 shifts in the spot price per day. The figure of 

this example is shown in figure 1 bellow. 

 

Figure 1, 2500 shifts per a day for Company A. 

Company A is simulated in figure 1 with student’s t distribution of 4 degrees of freedom which equals 

an underlying volatility of 22.5 percent. The simulation represents 2500 daily shifts, and can be 

considered as a time continuous process. So for the delta hedging issuer this time series will not 

create any hedging costs problem due to the quite continuous shifts and of course Company A’s high 

liquidity. But let us draw this to the un-continuous time process case. The daily volume drops heavily 

and the daily shifts are now 99 percent lower than a normal, and there is not possible to make a time 

continuous delta hedge, is shown in figure 2. Figure 2 is created with similar time series as in figure 1, 

but instead with 99 percent lesser shifts. 
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Figure 2, 25 shifts per a day for Company A. 

Figure 2 shows when the issuer is not able to delta hedge the underlying asset frequently as figure 1, 

which of course increases the cost of the delta hedge. The hedging cost will only increases if the 

underlying time process is getting more discontinuous. 

But, there can also be that figure 2 illustrates the delta hedge process. That Company A’s time series 

in illiquid periods could have a time process as in figure 1, but the issuer is not able to follow every 

shift, because each shift represents a very low volume. If the issuer should follow each shift, the 

issuer may create a market impact that increases the hedging cost even more than the discontinuous 

delta hedge from figure 2 [2].  

 

Delta Hedging Cost 
The cost from the delta hedge is going to differ from event to event. Sometimes the issuer might gain 

and sometimes the issuer might lose. The importance is the shape of the profit and loss distribution, 

if the distribution has heavy tails it shows that the probability of a given expected profit and loss 

value is harder to estimate, and higher losses is more common.  This is going to be hard for the issuer 

to expect how much extra money to put aside which claims in illiquid periods. Before going any 

further with the importance of the distribution shape, an illustration of delta hedging a vanilla call 

option is illustrated in table 1 bellow 
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Current Day Day 0 Day 1 Day 2     Day n 

Sold Call Option +10 +10 +10     +10 

Delta Position 0.3 0.35 0.32     0.012 

Cash for Delta Zero -30 -36 -31.5     -1 

Delta Cost 0 1.3 0.5     -8.23 

Profit and Loss 10 11.3 10.5     1.77 

Table 1; Delta hedge from start to maturity.  

At day zero a vanilla call option is issued on Company A with a strike price of 110. Company A have a 

current spot price of 100 and the issuer gets 10 for the option which gives a profit and loss of 10, and 

the option has a delta of 0.3. The issuer then buys 0.3 underlying per issued option which is done 

from borrowed money from the institution, or it cloud be just a borrowed underlying from a fund. 

Then of course the fund wants an extra fee, but let us ignoring the possible fee. At day one, the 

underlying has increased in value which increased the delta to 0.35. The issuer needs to borrow more 

underlying, exactly an extra 0.05 underlying per issued option to be delta neutral. The issuer has 

done a gain due to the increase in underlying spot price, and the gain has increased the issuers’ cash 

desk for possible further payments at maturity, which illustrates in the profit and loss box. At day two 

the underlying spot price has fall and gives a lower delta than the day before. The issuer need to sell 

some underlying to compensate for the fall in delta. The probability of further payments at maturity 

has fall compare to the day before, which has of course decreases in the profit and loss box. And 

then it goes on to maturity. In this case the vanilla call option expire worthless and gives a profit of 

1.77. An important mention is that profit and loss includes the maturity payments, max(S-K, 0) if 

vanilla call option or max(K-S, 0) if vanilla put option.  

This is a basic example of delta hedging an option, but needs to be re-simulated with different time 

processes to acquire a profit and loss distribution.  A deeper illustration of this will be study in later 

chapters. 

 

Vega Hedging 
The second type of hedging is the vega hedge. Vega hedging refers to the hedge against the 

fluctuations in volatility. When an issuer hedge vega, it can only be done by buy or selling similar 

options. Here is important to mention that there is not just one market that issuers use in hedging. 

The delta hedge for instance, issuers usually hedge the instrument with the underlying direct, 

because it is general more liquid and time continuous processes in the equity market. Suppose an 

institution issues an option on Company A, the issuer here goes to use the delta hedge in the equity 

market, not in the options market. The issuer can of course delta hedge by buying or selling similar 

options.  

One important constraint when constructing the program is that the option market is frozen. The 

assumption is realistic, because the equity market compare to the options market is much more 

liquid and time continuous. Let us suppose the equity market average volume has dropped 95% or 

more, then of course the options market that is depending on the trade volume of equities, will also 

be affected in similar scale, and can therefore be consider as unavailable. The unavailable vega hedge 

will create an major impact on the profit and loss distribution and is shown in a later chapter. 
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Empirical Data 
Before one can start simulate different time processes, a time series of data sets has to be created. 

First and a normal thought are by using empirical data in the time process. Historical data on stocks 

or indexes many years back is not hard to find, and even public publisher can offer free data a couple 

years back.  

A problem is that one cannot select a period with un-continuous time processes in the empirical data 

sets because such periods have not exist in the equity market, by meaning “period” it refer to one 

week or longer. Next conclusion is if one can select time points in the series and create a realistic un-

continuous time series. Let us say an un-continuous simulation on Company A is wanted. The 

empirical data of Company A never had any periods with very low liquidity than one or two days 

together, so it is impossible to just pick-out periods and simulate them. But suppose there are several 

separate days on a period of six years historical data with very low liquidity. From here one can pick 

the twenty-five worst illiquid days and with bootstrapping randomly select them into an un-

continuous time process. It seems very nice, but it is only possible if the daily log-return is 

independent-identically-distributed (i.i.d). To check if the daily log-return is i.i.d, the six year data 

should look independent and equally distributed. A sample of the Swedish stock index OMXS30 log-

returns I shown in figure 4 bellow. 

 

Figure 4, OMXS30 log-returns during last six years. 

Figure 4 not seams so random and i.i.d, there are several parts where it does not look i.i.d. and one 

cannot even approximate this to i.i.d. Suppose there are time series of log-returns that can be 
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approximate as i.i.d. it may be periods when no major market events occurs, as the financial crisis 

and so on, is it smart to use them? 

Let us suppose there is possible to approximate the log-returns as i.i.d, one can now choose a 

spectrum of different illiquid days, and then simulate an un-continuous time process. Even this will 

not be perfect, as said above there are not so many days it is happens. For a 99 percent liquidity 

decrease some equities can generate up to thirty samples, but some generate bare one or two 

samples in eight years of historical data. Even if all stocks can generate thirty samples it is not going 

to get any good simulations, simply because the expected events has to be re-simulated at least 

couple of hundred times over again to generate a clear distribution. If there then are only twenty or 

thirty samples, the samples will be re-simulated over and over again, which create a jagged 

distribution with similar profit and losses. And a second problem is that some samples might come 

from crisis which means mostly days with heavily losses [3], and other might come from just boom 

cycle days with randomly low liquidity. If the issuer has a expected view of the market in the future 

and wants to simulate the ad-hoc event, it is not possible with the historical data because the 

samples are from the past.  With rather few samples, and data sets of past events, empirical data is 

not so reliable and a further look for other time series estimation is needed.  

 

Parametric Data 
Another approach is using parametric data. The parametric data is created from a distribution that 

fits for the stocks and stock-indexes. The parametric distribution can create infinity number of 

samples, and no re-simulations on similar samples will happen frequently, and the profit and loss 

distribution will have a smoother shape when using parametric data. Another advantage with 

parametric data is the possibility of choosing expected volatility and expected movements in the 

underlying. In the empirical case one has to rely on the historical data whatever future expectations, 

and is especially bad if one has quite different view of the future. If the issuer believes in high or low 

volatility or some expected market movements, one will not have any simulation problems. So far 

one can say that simulations with parametric data give the issuer more alternative and clearer 

results. 

The problem is to find a distribution that fits for most common equities and equity-indexes, a 

distribution that give realistic values in both low or high volatility for a thin or fat distribution. 

Student’s t-distribution has a structure that fits well for a random chosen equity or equity-indexes, in 

both low and high volatility. When using the Student’s t-distribution one has to give an input 

parameter of  ,   is the number of degrees of freedoms. A relationship between   and the 

variance is shown bellow 

                                       
 

   
 ,                                          (10.1) 

which gives                                                                     
   

    
 .                                                                  (10.2) 

If the simulator has an expected value of the underlying volatility on the underlying asset, by using 

equation (3.1) a value of   is given, and a distribution of log-returns is given. A graphic illustration of 

Student’s t-distribution with different values on   is shown in figure 5 bellow. 
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Figure 5, Student’s t-distribution on four different degrees of freedom. 

Figure 5 shows the Student’s t-distribution with one, two, five and infinity degrees of freedom. 

Normally equities or equity-indexes have between two and five degrees of freedoms, depending how 

volatile the underlying market is. 

So instead of using historical data the simulation program uses a parametric view. But this does not 

mean one can use historical data. The simulator can of course use both methods, but need to know 

the strengths and weakens of the two methods. A smart way before simulate an event with 

parametric data is by look on old illiquid data sets and combine the input with the future 

expectations. 
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Volatility Surface 
The volatility surface shows the relative expensive an option has compared to another option with 

different strikes and maturities. It simply says, different options have different implied volatilities, 

and it is the difference in implied volatility between the options that describes the relative expense. 

The reason why using volatility surfaces is because the Black-Scholes model is based on a log-normal 

distribution, and chapters above concluded that equities and equity-indexes does not have a log-

normal distribution. So instead of creating different distributions for different underlings, options 

issuers and traders use the Black-Scholes model with different volatilities for different options, and 

the volatility surface is then created [8]. The volatility surface will then “transform” on the log-normal 

distribution to the correct distribution of log-returns. The volatility surface is created by making a 

reverse calculation on the Black-Scholes model with respect on the volatility. By collecting current 

spot prices on an underlying, let us say Company A outstanding options, the implied volatilities is 

then generated. The implied volatilities with different strikes and maturities create the surface. 

Usually people talking about the volatility smile or volatility skew. The smile or skew is created by 

plotting options with similar maturity but with different strike prices. Figure 6 gives an illustration of 

this. 

 

Figure 6, Represent volatility skew or smile. 

Figure 6 describing the relative expenses between the strikes on Company A options with similar 

maturity. Or one could say the difference in demand for different strike prices with similar maturity.  

The longer time period to maturity the shape in figure 6 tends to look like a soft sloping line from left 

to right, the skew. And closer to maturity the more of a smile is created, as figure 6 start to show.  

The volatility surface is similar for both call and put options. That means a deeply ITM call option and 

a deeply OTM put option is priced relative much if there strikes and maturities are equal. The 

absolute prices between the call and put option will of course differ a lot.  

The claim that a call and put option with same strike and maturity is priced relative much, can be 

shown with the put-call parity bellow 
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                                   .                (11.1) 

Where p is the price of a put option and c is the price of a call option. Suppose the pbs and cbs are 

calculated put and call prices from the Black-Scholes model and that the pm and cm are the market 

spot prices on the options. And the put call parity holds of course for Black-Scholes model, and then 

the following must hold 

                                     ,                (11.2) 

and of course the arbitrage opportunities must also hold for the market spot prices, so that 

                                                                                      ,                                                    (11.3) 

subtracting equation (11.2) and equation (4.3), one gets 

                                     .                (11.4) 

Equation (11.4) shows that the pricing error when the Black-Scholes model is used to price a 

European put option it should be exactly the same as the pricing error it is used to price a European 

call option with the same strike price and maturity, and the claim is proved.  

The volatility surface is also important when the issuers hedging their outstanding options. In 

equation (2.1) one sees that the delta is depending on the implied volatility, an implied volatility that 

is used from the volatility surface. Suppose an issuer believes in an illiquid market near in the future 

and wants to simulate the profit and loss distribution. The issuer then uses the volatility surfaces that 

are generated recently from the options spot prices. However the implied volatilities are of course a 

belief in the future expectations. If the current market expectations are not similar with the 

simulated market events the volatility surface will not do an optimal delta hedge in the simulation, 

either if the simulations rely on empirical or parametric data. The volatility surface needs to be 

change so it fits for the simulated data samples. This is a hard problem to solve, create a realistic 

volatility surface which produce a realistic profit and loss distribution. To obtain this one has to 

change the volatility surface and compare the different results to find the optimal surface, which 

needs a powerful computer and time. But there are some shortcuts one can use. First of all if the 

simulated volatility is gather than the current underlying one, the whole volatility surface will shifts 

up, or down if the simulated volatility is lower. Then if the simulated market movements is bigger or 

lower than the expected, than the skew or smile will have steeper or flatter shape in the ends. These 

shortcuts will of course not give an exact delta hedge but it is still better than use the current 

volatility surface. 

A deeper look and testes has not been done for the change in volatility surface due to shortage of 

time and lack of computer power. A smaller review of the subject is described in the last chapter. 
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The Price of Illiquidity  
 Now a first look into simulated events and result can be done with the knowledge from chapters 

above, present how different events affect the profit and loss distribution. We will see the value of a 

continuous delta hedge, the value to operating in a perfect option market and to obtain a optimal 

vega hedge.  

Let us first look when an issuer hedging in a normal period, when the delta hedge is a continuous 

process and have possibility to hedge vega. Suppose Company A spot price is 100 and there is an 

issued vanilla call option with strike price of 120 and there are 60 days to maturity, and we expects 

an underlying volatility of 30 percent and an expected return of 130 at maturity. Company A have 

circa 2500 shifts per day with high volume in each shift which gives the issuer the possibility to follow 

each shift without any market impact [1, 2, 3]. The time continuous process would look like figure 1 

with 2500 daily shifts. By using Student’s t-distribution with number of degrees of freedom that gives 

a fitted underlying volatility for Company A, and re-simulated 1000 times to obtain a comprehensible 

profit and loss distribution. Figure 8 shows the result. 

 

Figure 8, Profit and loss for Company A’s vanilla call option from now to maturity. 

From figure 8 one sees a light tail distribution but more of a spike with thin and short tails. And also 

mean which is positive. This is of course what the issuer wants and wants to expect. High control of 

the expected profit and loss and a positive gain as result of the service that the institution supplies.  

But let us simulate the vanilla call option on Company A again with similar conditions as for figure 8 

but only with 25 possible delta hedges per day. Figure 9 shows the simulated event. 
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Figure 9, Profit and loss distribution for Company A’s vanilla call option from now to maturity. 

The difference between figures 8 and 9 is distinct. First, the mean or gain is lower in figure 9 and the 

tails reaches far more away in the profit and loss distribution. Hence, the issuer would now consider 

outstanding options would be worth it, or if the pricing models are correct. But one thing is self 

evident, weaker profitability and less control of the expected profitability. The profitability is going to 

decrease and the control of the profitability becomes harder to expect as the continuous delta hedge 

time process is more un-continuous.  

Let us look at the event when the issuer is not able to delta hedge at all, and does not have any 

earlier delta neutral positions. The simulated vanilla call option in figure 10 is equal as in figures 8 

and 9. And the vanilla call option was simulated with equivalent conditions as in figures 8 and 9 

except non delta hedging. Figure 10 is shown bellow 
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Figure 10, Shows the difference when no delta hedge is done. 

This is how the distribution would look like if there is no delta hedge at all. The mean is however 

quite similar as figure 8 and 9, but the shape of the distribution is devastating, 10 percent of the 

mass is a loss of 10 times the revenues or more. The importance of time continuous process in vital 

for the institutions when hedging their issues instruments when one studies figure 10. The simulated 

conditions are of course simulated so these outcomes would appear, but the simulated conditions 

are not by itself particular different or extreme for 60 days for a randomly underlying asset in 

OMXS30. 
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The Price of Volatility 
In chapter “Vega Hedging” one mention that the option market is considered not available, which 

makes the vega hedging not feasible and the impact should be obvious. Let us make a simulation 

with the option from figure 8, but with a higher simulated underlying volatility. This means the 

current value of the option should be to low due to our view of the future, and only higher cost is to 

expect. Figure 11 show the simulation. 

 

Figure 11, Similar conditions for the vanilla call option as in figure 8 but with higher underlying 

volatility.  

The difference between figure 8 and 11 is distinct. The profit is much lesser and the mean is actually 

negative now from before but with a quite similar shape of distribution. Overall one can say that the 

profit and loss distribution from figure 8 has only removed slightly to the left.  So a frozen option 

market will create an impact with higher losses if the underlying volatility raises relative the implied 

volatility when the instrument is issued. But there will probably be no visible difference in the 

variance.  
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The Price of Exotic Options 
The most important type of instruments when talking about the hedging cost is exotic options. As 

explained in earlier chapters exotic options can produce higher delta values than 1 and larger values 

for gamma than for vanilla options. A smaller demonstration when simulating an Up & In barrier 

option for un-continuous time processes will be shown graphic. Considered the following, an Up & In 

call barrier option is issued on Company A with a current spot price of 100 and the strike price at 120 

and 60 days to maturity with a barrier set to 130. Now consider one expects a future spot price of 

140 at maturity. This will give that the expected simulated spot price reaches the barrier and knocks-

in to a vanilla call option. The simulation also considered a time processes where only 5 delta hedges 

is possible per trading day with no market impact. Figure 12 show the simulated barrier option.  

 

Figure 12, Shows the profit and loss distribution of an Up & In barrier option. 

Figure 12 one will see that there are some positive gains roughly one third, but then there are some 

simulations that pass away to the far loss end. An important mention is that if the barrier option in 

figure 12 was simulated with time continuous processes and considered vega hedging and son on the 

shape if the distribution would look like as figure 8. Figure 12 compared with the above figures 8 to 

11 one can concluded that exotic options is a bigger problem in un-continuous time processes than 

vanilla options. But to compare it with the examples of vanilla options above is not alright, there are 

actually two different types of options even if the pay-off is similar. But the thought is to show the 

increasing hedging cost the exotics can accomplish and non symmetric shape of distributions. 
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Future Topics 
During the thesis, there were some topics that never been studied deep enough to achieve better 

results, due to lack of time and other circumstances. Two of them were the volatility surface and 

simulation time.  

The volatility surface was one of the bigger challenges that shown up during the thesis. When the 

future expectation in the simulation is different from the current, one will not receive the exact profit 

and loss distribution. Some shortcuts where introduced, but still it is not going to give a perfect 

match. A further project is to create a program that simulated different volatility surface and see 

which gives the best fits.  If the volatility surface is not accurate the calculated delta is not the 

optimal, however the changes may well not be the largest if the implied volatility does not rises to 

high, but it stills something to continue to work with.  

A second topic that came up to solve was the simulation time in the program, especially if one 

chooses to simulate all issued instruments, the simulation cloud take several days. If there is no 

possibility to use a powerful computer, a continue would be to find approximations to calculate the 

total hedging cost if there is no possibility to let the computer run for several day in a row. 
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