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Symmetry - old concept, already known to Greek natural philosophy  

Group theory: mathematical theory, developed in 19th century  

Application to physics in the 1920’s : Bethe 1929, Wigner 1931,  

Kohlrausch 1935  
Why apply group theory in 
physics?  

“It is often hard or even impossible to obtain a 
solution to the Schrödinger equation - however, a 
large part of qualitative results can be obtained by 
group theory. Almost all the rules of spectroscopy 
follow from the symmetry of a problem” E.Wigner, 
1931  
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Outline

If you come up with a symmetry-
related problem from your own 
work, bring it in and we can discuss 
it  (time permitting)



 

At the end of this week, having followed the course, you should be 
able to

• determine the point group of a solid object such as a molecule or  a 
crystalline unit cell or the space group  of a translational periodic pattern

• determine the symmetry properties (in terms of irreducible representations) 
of 

! tensorial properties of solids and derive those tensor elements which are 
“zero by symmetry” 

!  atomic wave functions in a crystal field
!  molecular orbital wave functions
!  molecular vibrational wave functions 
!  Bloch waves in a periodic solid

• derive symmetry selection rules for vibrational (infrared, Raman) and 
electronic (Vis-UV, photoemission) transition matrix elements

• identify molecular orbital and electronic band degeneracies and apply the 
“no-crossing-rule”

• and much more...

What we do not cover here is the Complete Nuclear Permutation Inversion Group - 
see book by P. R. Bunker and Per Jensen: Fundamentals of Molecular Symmetry,IOP 
Publishing, Bristol, 2004 (ISBN 0-7503-0941-5). However, given the successful 
mastering of the material discussed in this block course you should be able to extend 
your knowledge to this topic

example of a wallpaper group; 
applies to surface problems

 

Material about symmetry on the Internet

Character tables:    http://symmetry.jacobs-university.de/

The platonic solids: http://www.csd.uwo.ca/~morey/archimedean.html

Wallpaper groups:   http://www.clarku.edu/~djoyce/wallpaper/seventeen.html

Point group symmetries: http://www.staff.ncl.ac.uk/j.p.goss/symmetry/index.html

Students Online Resources of the book by  Atkins & de Paula: “Physical Chemistry”, 8e at 
http://www.oup.com/uk/orc/bin/9780198700722/01student/tables/tables_for_group_theory.pdf

Other symmetry-related links:  http://www.staff.ncl.ac.uk/j.p.goss/symmetry/links.html



 

application: vibrational transitions in metal clusters

Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase 
Ph. Gruene, D. M. Rayner, B. Redlich,3 A. F. G. van der Meer, J. T. Lyon, G. Meijer, A. Fielicke, Science 
329, 5889 (2008)

Photoelectron spectroscopy and quantum 
mechanical calculations have shown that anionic 
Au20 ! is a pyramid and has Td symmetry. This 
structure has also been suggested to be the global 
minimum for neutral Au20 (14). The FIR-MPD 
spectrum we measured of the Au20Kr complex (Fig. 
2A) was very simple, with a dominant absorption at 
148 cm!1, which already pointed to a highly 
symmetric structure. The calculated spectrum of 
tetrahedral Au20 was in agreement with the 
experiment (Fig. 2C)... The strong absorption at 148 
cm!1 corresponds to a triply degenerate vibration (t2) 
in bare Au20 with Td symmetry. Theory predicts a 
truncated trigonal pyramid to be the minimum 
energy structure for neutral Au19 (27), for which the 
removal of a corner atom of the Au20 tetrahedron 
reduces the symmetry from Td to C3v. As a direct 
consequence, the degeneracy of the t2 vibration of 
Au20 is lifted, and this mode splits into a doubly 
degenerate vibration (e) and a nondegenerate 
vibration (a1) inAu19. This splitting was observed in 
the vibrational spectrum of neutral Au19 (Fig. 2)… 
The truncated pyramidal structure of Au19 can thus 
be inferred directly from the IR spectrum. 

 
from: Dresselhaus, Dresselhaus and Jorio, Group Theory - Application to the Physics of Condensed Matter Springer 
2008  (figure given without references)

application: band structure in solids, including spin-orbit coupling
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In general, the symmetry we aim to exploit is the symmetry of the Hamilton operator.  

Simple example: a solid in a gravitational field. Potential 
energy depends on the face on which the body rests: the 
higher the center of mass, the higher Epot  

a  
b  

c  

bc   ac    ab  

ab    bc   ac  

ab   ac    bc  

each level 2-fold 
degenerate (ab = ba)  

As the symmetry “increases” (what does that mean?), the number of 
degenerate energy levels increases  

a  

b  
c  a  

b  

c  

Epot

Symmetry and degeneracy



 

Why should we care about symmetry 
properties in physics and chemistry ?

• Think of an surface system, e.g. a nickel atom in a (111) surface. How 
should we classify the d orbitals of that atom ? 
dz2 etc.? 

• How should we classify molecular vibrations? In terms of their 
geometrical distortions?

• How can we classify electronic states in a molecular orbital?

 

1.1 Symmmetry elements and operations  

Here: operator instructs to  “rotate a body by 2!/3 
around a particular axis”  

Definition: A symmetry operation is an operation which brings an 
object into a new orientation which is equivalent to the old one.  

Example: molecule BF3(planar)  
Rotations by 120 degrees, 180 degrees,  
reflections.  

120oangle  

How many different symmetry operations 
can one apply to this molecule ?  

Operator gives instructions what to do: e.g.          
differentiate with respect to x  

1. Symmetry elements and point groups



3. Rotation around an  axis:          Symbol Cn
(here around z axis)

Nomenclature: Cn
m : apply a Cn rotation m times
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What kinds of symmetry operations are there? - Many! Permutation, 
rotation, inversion, charge, parity, time (CPT) reversal, ...   

1. Identity:        Symbol E

2. Reflection:      Symbol "
nomenclature: "’, "’’ etc, or "xy for reflection in the xy plane;                         
also "v for vertical, "h for horizontal, "d for dihedral

4. Improper rotation:         Symbol Sn 
(Reflection in mirror plane followed by rotation normal to mirror plane, (here 
around z axis))  

Nomenclature: Sn
m : apply a Sn rotation m times

5. Inversion:          Symbol i

Here: five spatial symmetry operations which leave one point in space fixed  (-> point group symmetry)  

Transformation matrix:                     = 
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Examples of objects with such symmetry elements



 

What does one need an improper axis of rotation for ?

! an object is chiral if it cannot be superimposed on its mirror image

! an object is chiral if it has no improper rotation axis

consider a chiral object - the human hand

need improper rotation also to fulfil group requirements: closure - see next section

Chirality Induction:

     chiral object           + achiral object

interact

Adaption of a flexible, achiral object
to the handedness of a chiral object –
the achiral object assumes a 
chiral conformation

(#mirror image)



 

  
A group in the mathematical sense is a set of elements {a,b,c} 
for which an operation ! is defined such that a third element 
is associated with any ordered pair (“multiplication”). This 
operation must satisfy four requirements (group axioms).  

1.2.1 Group axioms

1. Closure: the product of two elements is again an element of the group  

2. One of the elements of the group is the unit element, such that 
    E ! A = A ! E = A  

3. To each element A there is an inverse element A-1 such that 
    A ! A-1= A-1 ! A = E  

4. The associativity law holds:  A ! ( B ! C) = (A ! B) ! C  

Notice:  If the group members commute, i.e. A ! B = B ! A for all                
 group members, then the group is said to be Abelian.  

Number of elements in the group is called “order of the group”  h .  

1.2 Group concepts

 

  

a.) The set of all integers with addition as operation  
    (an infinite group).          E = 0       A-1 = -A  

b.) The set of all n x n matrices with nonvanishing determinants  

Operation is matrix multiplication, unit element is the unit 
matrix. Inverse of a matrix A is A-1  

c.) The set of symmetry operations E, C2, "xz, "yz  

1).The group is closed. This applies to any symmetry group,   
but it must be demonstrated by means of a multiplication 
table  

multiplication table

This object transforms 
into an equivalent spatial 
arrangement when E, C2,  
"xz, and "yz are applied 

E C2 "xz "yz  

E E C2 "xz "yz

C2 C2 E "yz "xz

"xz "xz "yz E C2

"yz "yz "xz C2 E

1.2.2. Examples of groups



 

But one can also say that the closure axiom is fulfilled since any of the 
products of symmetry operations transforms the object into an equivalent 
conformation  
2. There is a unit element  E, the identity  

3. There is an inverse to each element (see multiplication table)  

4. Associativity holds  

In the first part of the lecture course: operations that leave a point in space 
fixed -> “point groups”  

When including translations, glide planes and screw axes -> “space groups”  

1.2.3  Multiplication tables  

As seen above, group axioms can be tested by means of a 
multiplication table:  

Consider this set of matrices  

From Burns p. 23  
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The multiplication table is then:  
(try it out if you don’t believe it) 

Theorem: Every element of  
the group occurs only once in 
each row or column of the 
multiplication table.  

E A B C D F

E E A B C D F

A A B E F C D

B B E A D F C

C C D F E A B

D D F C B E A

F F C D A B E

Note: As the group is non-Abelian, the 
table does not have to be symmetric.



 

a.) Subgroup  

Defintion: The group S is a subgroup of the group G if all elements 
of S are in G, and if S satisfies the group axioms.  

It can be shown that the ratio of group orders s and g, g/s is an 
integer.  

b.) Conjugated elements  

Let A, B, and C be members of a group G  

Definition: A and B are conjugated, if they can be connected by a similarity transformation  

A = X-1B X ,       where X is also a member of the group.  

- Every element is conjugated with itself.  

- If A is conjugated with B, B is conjugated with A.  

- If A is conjugated with B and C, then B and C are also conjugated.  

1.2.4 Further group concepts

 

  

Ammonia NH3 
(not planar)  

C3 axis normal to 
paper plane  

Let X = C3, A = "v’ , B = "v’’  

H3  

H2  H1  "v’’  

"v’  

First, apply X                 then B                                then X-1  

This has the same effect as applying A  

H2  

H3  H1  "v’’  

H2  H3"v’’  

"v’  

So indeed     A = X-1 B  X  

N

H2  

H1  H3  "v’’  

H1  

H2  H3  "v’’  

Geometric illustration for a similarity 



 

c.) Classes of group elements  
Definition: Group elements that are conjugated to one another form a class.  

d.) Isomorphism  
Definition: Two groups are isomorphic if there is a 1:1 relation between their 
elements. Groups are identical in the mathematical sense.  

e.) Homomorphism  
Definition: Two groups are homomorphic if to one element of group G1 several 
elements of group G2 are associated.  

G1 =  {A1,           A2,            A3,...     }  

G2 = {B1, B2, B3, B4, B5, B6, B7, B8, B9,...     }  

Homomorphism preserves products, i.e. the multiplication table !  

Further reading: Serge Lang “Linear Algebra”,
                            Paul Halmos “Finite Dimensional Vector Spaces”

 

Homomorphism: an example

Example:   G1 = {+1,     -1}

                 G2 = {E, C2, "v’,"v’’ }

E C2 "v’ "v’’

E E C2 "v’ "v’’

C2 C2 E "v’’ "v’

"v’ "v’ "v’’ E C2

"v’’ "v’’ "v’ C2 E

1 1 -1 -1
1 1 1 -1 -1
1 1 1 -1 -1

-1 -1 -1 1 1
-1 -1 -1 1 1

Multiplication tables give identical results for elements connected by a homomorphism.



 

f.) Multiplication of groups  

Definition: The direct product of two groups which have only E in 

common is the group of products of elements Ai. •Bj. If the two groups 

have orders h and g, the direct product group has h•g elements.  

g.) Generator of a group  

Definition: The generators of a group are those elements from which all 

elements of a group can be derived. Example: G = {C6
1,C6

2, C6
3, C6

4, C6
5, C6

6 = 

E}. All elements can be derived form successive application of C6
1.  

 

1.3.1 The groups C1, Cs, Ci. 
C1 : element E(C1)
Cs : E and a mirror plane
Ci : E and an inversion centre (Ci)  

1.3.2 The groups Cn  

Contain E and a rotation by 2!/n. Cn generates Cn
2,Cn

3, Cn
n-1.  

Example: C2= {E,C2}      H2O2  

Chloro-bromo-fluoro-methane  

Phenol Cs  
1.3.3 The groups Sn  

Contain E and only an improper rotation by 2!/n. If there are 
other symmetry elements, the object does not belong to Sn.  

Example: 1,3,5,7 tetrafluorocyclooctatetraene      S4  

1.3 Classification of point groups (in Schoenflies notation)



 

1.3.4 The groups Cnv  (frequent !)  

Contain E, Cn and n mirror planes "v which all contain the Cn axis. 

v stands for vertical. The rotation axis 
corresponding to Cn with the largest n is always 
taken as vertical:
 Example: C2v= {E, C2, "v’, "v’’}  

1.3.5 The groups Cnh  

Contain E, Cnand a horizontal mirror plane. h stands for horizontal. The rotation 
axis corresponding to Cn with the largest n is always taken as vertical. For n even an 
inversion center exists.  

planar hydrogen peroxide   C2h  

Ammonia C3v  

 

1.3.6The groups Dn

 Groups contain E, Cnand n C’2axes normal to Cn  

1.3.7 The groups Dnd  

Groups contain E, Cn, n C’2axes normal to Cn, and n 

mirror planes "d which bisect the angles between 

the C2axes. If n is odd there is also an inversion 

center.  

1.3.8 The groups Dnh  

Groups contain E, Cn, n C’2axes normal to Cn, one 

horizontal mirror plane. For even n there is also an 
inversion center, and there are n/2 mirror planes "d 

which bisect the angles between the C’2axes, and n/2 

mirror planes that contain the C2’axes. For n odd 

there are n mirror planes that contain the C2 axes.  
Eclipsed ethane D3h  

Staggered ethane D3d  



 

  

1.3.9 The axial groups 
a) C$v         one   C$    axis     and $    "v    planes  

b) D$h         one   C$    axis and    $    "v    planes      and    $     C2   axes 

   

Example: carbon monoxide

Example: N2, H2

The special groups

heteronuclear diatomic molecule
and a cone

homonuclear diatomic molecule
and a uniform cylinder

 

  

   

1.3.10 The platonic solids. 

Plato describes them in his book “Timaios” and assigned 
them to his conception of the world 
Made from equilateral triangles, squares, and pentaeders 

a) Tetrahedron  

The special groups

In which molecule do you find tetrahedral bonding ?



 

b.) The cube  

 

d.) Dodecahedron Ih  

e.) Icosahedron  truncated 
icosahedron  

E
12 C5 axes
20 C3 axes
15 C2 axes
i
12 S10 axes
20 S6 axes
15 " planes
96

120 symmetry operations



 

Important point groups

A useful collection of information about point groups can be found at 
http://symmetry.jacobs-university.de/ and in the Students Online Resources of the book by 
Atkins & de Paula: “Physical Chemistry”, 8e at http://www.oup.com/uk/orc

 

No  
Groups C1, Cs, Ci  

Only an 
improper  

rotation axis?  
Groups Sn  

Yes  

Linear or  
special group?  Groups   

linear ?
Groups T,Td,O,Oh,Ih  

n C2axes  
normal to Cn?  

Yes  

Is there a  
!h?  

Yes  

Yes  

Groups Cn

Groups Dnd  

Groups Dnh  

Is there a  
!v?  Groups Cnv  

Is there a  

  

Is there a  
!v?  

Yes  

Yes  

C!v,D!h  

No

 Several axes n>2 ?  

Groups Cnh

No

No

Groups Dn  

Yes

No

Does the object 
have a rotation 

axis? 

Classification of objects in terms of their point group

!h?  

No No



 

  
2.1 An intuitive approach  

Aim:  a) Represent symmetry operations by matrices  
b) Find “irreducible representations”, i.e. matrices of lowest dimensions  

Definition:   A group of square matrices %(ai) is called a representation of 
a point group if there is an isomorphism or a homomorphism between the 
matrices %(ai) and the symmetry operations of the point group.  

2. Group representations

C3
1 C3

2

"v’ "v’’ "v’’’

One way to obtain matrix representation: Cartesian 
transformation matrices - we’ve done this before 
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matrix representations

One way to obtain matrix representation: Cartesian transformation matrices - 
we’ve done this before 

C3
1 C3

2

"v "v’ "v’’’

Transformation 
matrices for 
C3v:  
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matrices to represent symmetry operations example: group C2h

1 0 0
0 1 0
0 0 1
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x2 = x1 cos θ + y1 sin θ
y2 = -x1 sin θ + y1 cos θ

 

Transformation 
matrices for C3v:  
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The matrices appear in block-diagonal form: (2 x 2) and (1 x 1) matrices, since the 
(x,y) and z coordinate transform into themselves always in C3v.  



 

The matrices appear in block-diagonal form: (2 x 2) and (1 x 1) matrices, since the 
(x,y) and z coordinate transform into themselves always in C3v.  

Question: Are there more representations ? And more irreducible representations ?  

How many in all ?  

One can also take higher dimension representations: e.g. attach coordinates to each 
atom in a molecule:  

x1,y1,z1  

x2,y2,z2  
x3,y3,z3  

This is in fact the standard method for analysing 
normal mode symmetries in molecular vibrations 
(chapter 4).  

12 x 12
          =  

x1

y1

z1

.

.
z4

x1’

y1’
z1’
.
.
z4’

* =
x4,y4,z4  

H1  

H2  

H3  

O  

 

5  

1  

2  

3  4  

Apply C5
1 ,          i.e. rotation by 72° 

counterclockwise             

1  

2  

3  

4  5  
etc.  

This can be 
written as  

There is a similarity  
transformation with a matrix 
Q that can transform such 
matrices into block-diagonal 
form (no proof here!)  !
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We then have three sets of 
smaller matrices that each can 
represent the group members, 
since each will fulfill the 
multiplication table.  

similarity 
transform ->

! 

C5 '=Q
"1C5Q =

1 0 0 0 0
0 cos 2#

5
sin 2#

5
0 0

0 "sin 2#
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Another, simpler way to write 
down a representation matrix:

example: a 
(planar) pentagon



 

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

C52 C53

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

C51

representation matrices for other operations in C5

 

Each of the blocks serves as a representation of the symmetry operation since 
it obeys the multiplication table. In fact, for the group C5 these blocks are the 
irreducible representations. 
Question: is there a set of matrix representations of which the dimension can 
be no further reduced?                ->  Yes!         
(Important example: set of matrices consisting just of +1’s).  
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C5 '=Q
"1C5Q =
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0 cos 2#
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A quick run through matrix mathematics

Trace of a matrix: Tr ! = " ! ii   trace, als known as “character”  

Theorem: Similarity transforms leave the trace 
invariant  

Note: the rows and columns of a unitary matrix form a set of n 
orthogonal vectors. Unitary and Hermitian matrices can always 
be diagonalized through a similarity transformation.  

Definition: transpose matrix  ˜   % ji= % ij  

Definition: Hermitian matrix (self-adjunct):  % += %,    i.e.   Hij= H*ji  

Definition: Unitary matrix  % += % &1  

Definition: Adjunct matrix  % +=   % *  ˜   

 

Definition: Let a set of matrices  %(R ) be a representation of the 

symmetry operations R in the point group G . If there is a similarity 

transformation which converts the %(R ) into block-diagonal form, 

then the blocks %1, %2, ... are called irreducible representations if 

they cannot be further reduced.  

Why are irreducible representations important? We are going to 

see that basis functions, e.g. electronic or vibronic wave functions, 

can be classified in terms of irreducible representations. This 

classification then decides on interactions (e.g. hybridization), 

term splittings, transition matrix elements etc.  

in order to work on this, we need a number of central theorems ->



 

Theorem (GOT): Consider all inequivalent, irreducible, 
unitary representations %i(R ) of a group G = {R1, R2, ...}  

Then  

where i,j:   index of element of representation matrix 

mn,(op):     row and column of %i, (%j) 

h:     order of the group 

li       dimension of the irreducible representation 

'     Kronecker symbol  

2.2 The Great Orthogonality Theorem

 

  

C3
2=  

"’’v=  

Blue boxes: %1  

We will learn in a moment that there are three irreducible representations for the group C3v. 
The third one (%2) consists of the following “matrices” (without proof)  
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Irreducible representations for C3v
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     Red boxes: %3  



 

irreducible representation of C3v  

This table can be used to apply the GOT in detail

E C3
1 C3

2 !vʼ !vʼʼ !vʼʼʼ
1st irr. rep 1 1 1 1 1 1

2nd irr. rep 1 1 1 -1 -1 -1

3rd irr. rep

C3v E 2C3 3"v

#1 1  1 1

#2 1 1 -1

#3 2 -1 0

traces or characters

We write down a similar table for 
the traces (characters) of the 
representation matrices, grouped by 
classes of symmetry operations  

 

 
In order to understand the GOT, consider the following: vectors can be formed 

from the irreducible representations in group element space. This space is h-

dimensional (number of group elements), and its axes can be labelled by them.  

Vectors are characterized by three indices:   i         index of irred. rep.  

m,o    row of irred. rep.  

n,p    column of irred. rep.  

Then, according 
to the GOT:  

except for i=j, m=n, o=p  !

In an h-dimensional space there can only be h linearly independent 
vectors -> upper limit to number of matrix elements that all irr. 
reps. together can have:  

"li2  $ h  

A vector space model of the representations
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Example of C3v: Correspondence between certain subspaces of the domain on which 
we have constructed the matrix representations (i.e. R3), and certain irred. 
representations:  

The first irreducible representation  only affects the z coordinate, that means any 
length in x and y is conserved.
The third irreducible representation only affects the x and y coordinates. 
The (x,y) plane and the z coordinate are  not mixed by the irr. reps. 

Instead of using the irreducible  representation matrices we can often just use their 
characters - i.e. only handle numbers not matrices.  For the one-dimensional 
irreducible representations the character in fact is the matrix (of dimension 1).

Transformation 
matrices for C3v:  
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     Red boxes: %3  

 

Theorem: The number of irreducible representation is equal to the 
number of classes of group elements  

Theorem: A necessary and sufficient condition for the 
equivalence of two representations is that the characters are 
equal.  

Theorem: Let li be the dimension of the i-th irreducible 
representation of a group of order h. Then  

" li2  =  h  

e.g. in C3v: 12+ 12+ 22= 6 = h(C3v). There is always a unique solution. 
The character of the symmetry operation E (the identity), which is the 
unit matrix,  then gives the dimension of the irreducible 
representation.  



 

nomenclature

a)  Bethe: irr. reps just named 
%1,%2,%3...  ; (used in mathematical 
treatments, for simplicity

3-dimensional irr. reps  T  

2-dimensional irr. reps  E  

1-dimensional irr. reps  A,B  

Mulliken (widely used in chemistry, 
spectroscopy in general)  

Indices 1,2,3   no meaning  

‘ and ‘’ symmetric or antisymmetric with respect 
to a horizontal mirror plane "h 

g,u  gerade/ungerade with respect to inversion  

b) Bouckaert, Smoluchowski, Wigner 
(BSW) (used in solid state physics)  

%1,%15,%25,%25’ etc.  

Nomenclature:  

Example: irreducible representation A1g in point group D6h

A means 1-dimensional, index 1 has no meaning
g means functions transforming as A1g are even under inversion

Example: irreducible representation T1u: representation matrices are 3 
dimensional, and functions transforming as T1u are odd under inversion 

 

In the following, the symbol ( means     “take the trace of”  

Theorem: (Little orthogonality theorem, LOT)  When summing over all 
symmetry operations R of a group G, the system of characters of an 
irreducible representation is orthogonal

So for a test whether a representation is irreducible 
one can set i=j and carry out the summation   "v  

E  

C3  
%3  

%1  

%2  

and normalized to the order h of a group:

2.3 Theorems about irreducible representations  

C3v E 2C3 3"v

%1 1  1 1

%2 1 1 -1

%3 2 -1 0

! 

" # i R( )[ ]
R
$

*
" # j R( )[ ]   =   h%ij

example:



 

! 

" # i R( )[ ]
R
$

*
" # j R( )[ ]   =   h%ij

C3v 1E 2C3 3"v

%1 1  1 1

%2 1 1 -1

%3 2 -1 0

[1·2]·1 + [1·(-1)]·2] + [1·0]·3 = 0

example: %1, %3

 

  group symbol  

A useful collection of character tables can be found at  http://symmetry.jacobs-university.de/

A typical character table

3-dimensional irr. reps  T  

2-dimensional irr. reps  E  

1-dimensional irr. reps  A,B  

Mulliken notation for irr.reps  

Indices 1,2,3   no meaning  
‘ and ‘’ symmetric or antisymmetric with 
respect to a horizontal mirror plane "h g,u  
gerade/ungerade with respect to inversion  

characters  irr.reps
basis functions  

So the point group C4v has five 
classes of symmetry operations, 
hence five irreducible 
representations.
Four of them are one-
dimensional, one is two-
dimensional.

And these are their characters, i.e. the 
traces of the representation matrices



 

Example of nomenclature

 

 
We have seen how large dimensional representations can be obtained by considering spatial 
coordinates of atoms etc. Obviously we would like to find out how to decompose these into the 
constituent irreducible representations.  

ajis the number of times %j appears in %red. This theorem becomes clear if we look at 
the block-diagonal form of a representation matrix, and remember that the character 
of a matrix does not change upon a similarity transformation.  

Reduction of reducible representations

apply the “Little 
Orthogonality Theorem”

'jj!

j
j

jjj ahah !== " '#

Theorem:   The character of a reducible representation is the sum of the 
characters of the irreducible representations that make up the reducible 
representation:  

! 

" # red (R)[ ]  =  a j
j
$ " #(R)[ ]  

! 

" # j$ (R)[ ]
R
% * " #red (R)[ ]  =  

R
% a j" # j$(R)[ ]*

j
% " # j (R)[ ]  

! 

" # j$ (R)[ ]
R
% * " #red (R)[ ]  =  h a j& jj$

j
%  

Now we multiply        by                       : 

! 

 
j
" # $(R)[ ] *  



 

 

->  find out how many times an irreducible representation is contained in a reducible representation:  

Theorem:   A unique decomposition of a reducible 
representation into irred. reps. can be obtained from its 
characters  

In the matrix on the right hand side, %1 is 
contained twice ( aj(%1) = 2 ), %2 is also 
contained twice, and %3 is contained once.

Reduction of reducible representations

Thus:  
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" # j$ (R)[ ]
R
% * " #red (R)[ ]  =  h  a j  

! 

"1
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Reduction of reducible representations made easy though the internet

http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=603&option=4

type in the characters of the reducible representation that you are 
working on, and  get the resulting decomposition



 

reduction of representations: a worked example

C2v E C2 σv(xz) σv(xz)

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1
Γred 3 1 3 1

reduce Γred “by inspection”

Γred = 2A1 + B1

correctly, use formula

aA1 = 1/4([3·1·1 + 1·1·1 + 3·1·1 + 1·1·1] = 2
aA2 = 1/4([3·1·1 + 1·1·1 + 3·(-1)·1 + 1·(-1)·1] = 0
aB1 = 1/4([3·1·1 + 1·(-1)·1 + 3·1·1 + 1·(-1)·1] = 1
aB2 = 1/4([3·1·1 + 1·(-1)·1 + 3·(-1)·1 + 1·1·1] = 0

 

Exercises

1. Molecules with a mirror plane, a center of inversion, or an improper axis of 
rotation cannot be optically active (i.e. exhibit circular dichroism) – those 
that have not may be optically active. Which of the following molecules 
may be optically active?

!



 

2. Assign each molecule below to the proper point group

!

 

3.What group is obtained by adding to or deleting from each of the following groups the indicated 
symmetry operation? Use the character table.

C3 plus i S6 minus i D3d minus S6

C3v plus i Td plus i S4 plus i

C5v plus "h C3 plus S6 C3h minus S65

4. Decompose the following reducible representations of the point group D4:

D4 E 2C4 C2 2C2ʼ 2C2ʼʼ

Γ1 3 -1 -1 1 -1
Γ2 2 2 2 0 0
Γ3 8 0 0 0 0
Γ4 4 -2 0 -2 2



 

allene

 

5. What is the point group for each of the following substituted  
cyclobutanes? Assume that (idealized) C4H8 itself has D4h 
symmetry and that replacing an H by X or Y changes no other 
structure parameters.

!

X X

XX

X

X

X

XX X

X

Y

X XX

XX

XX

XX

X

X

X

X

a)

b)

c)

d)

e)

f)

g)

k)

h) l)


