Certificate Chain Discovery in SPKI/SDSI

Dwaine Clarke*
Jean-Emile Elien?
Carl Ellison?
Matt Fredette’
Alexander Morcos’
Ronald L. Rivest/

September 13, 2001

Abstract

SPKI/SDSI is a novel public-key infrastructure em-
phasizing naming, groups, ease-of-use, and flexible
authorization. To access a protected resource, a
client must present to the server a proof that the
client is authorized; this proof takes the form of a
“certificate chain” proving that the client’s public key
is in one of the groups on the resource’s ACL, or that
the client’s public key has been delegated authority
(in one or more stages) from a key in one of the groups
on the resource’s ACL.

While finding such a chain can be nontrivial, due
to the flexible naming and delegation capabilities of
SPKI/SDSI certificates, we present a practical and ef-
ficient algorithm for this problem of “certificate chain
discovery.” We also present a tight worst-case bound
on its running time, which is polynomial in the length

*(Note: authors are listed alphabetically.) Room 226, MIT
Lab for Computer Science, 200 Technology Square, Cambridge
MA 02139 declarke@theory.lcs.mit.edu

TMicrosoft, One Microsoft Way, Redmond, WA 98052,
hbm@alum.mit.edu

Intel Corporation, 2111 NE 25th Ave, Hillsboro OR 97124,
carl.m.ellison@intel.com

§aQuery, 100 Fellsway West,
fredette@alum.mit.edu

T Tower Research Capital, 377 Broadway 11th Floor, New
York, NY 10013, morcos@alum.mit.edu

lRoom 324, MIT Lab for Computer Science, 200 Technol-
ogy Square, Cambridge MA 02139, rivest@mit.edu

Somerville MA 02145,

of its input.

We also present an extension of our algorithm that

is capable of handling “threshold subjects,” where
several principals are required to co-sign a request to
access a protected resource.
Keywords: certificate, certificate chain, certifi-
cate chain discovery, public-key infrastructure, PKI,
SPKI, SDSI, naming, local names, authorization, del-
egation, threshold subjects.

1 INTRODUCTION

1 Introduction

This paper studies the problem of “certificate chain
discovery” within the SPKI/SDST (“s-p-k-i/sudsy”)
public-key infrastructure.

The problem addressed here is a fundamental one.
Any security mechanism should be able to answer the
basic authorization question, “Is principal X autho-
rized to do Y?” The difficulty of answering this ques-
tion depends primarily on the expressiveness of lan-
guage used to make elementary security assertions.

If the language used to make security assertions is
too flexible, then the authorization question may be
undecidable. Harrison, Ruzzo, and Ullman [18] give
such an undecidability result for a general protection
system based on the access matrix model. (Speaking
strictly, their undecidability result is about the more
general question of safety rather than just authoriza-
tion per se.)

On the other hand, Jones, Lipton, and Snyder [21]
give an efficient (linear time) algorithm for deciding
the authorization question in the take-grant model.

More recently, Blaze, Feigenbaum, and Strauss [6]
show that “compliance checking” (their term for an-
swering the authorization question) in their Policy-
Maker model is in general undecidable, and that it re-
mains NP-hard even when restricted in several natu-
ral ways. They also give a polynomial-time algorithm
for a special case of their problem. The PolicyMaker
scheme has evolved into their “KeyNote” trust man-
agement system [5].

We believe that SPKI/SDSI provides an elegant
and simple framework for naming and authorization
in a distributed environment. Its conceptual frame-
work is natural and easy to understand; it is expres-
sive enough for a large range of applications.

The basic point of the current paper is that the
expressive power of SPKI/SDSI does not come at the
expense of computational difficulty. We demonstrate
here that there is an efficient algorithm for answering
the authorization question within SPKI/SDSI.

We imagine the following typical scenario. A client
(say, Alice) makes a request to access a resource
which (unknown to her) is protected. The server
replies that access can only be granted if Alice can
prove that she is a member of one of the groups G4,

G2, or G3. That is, the access-control list (ACL)
for the protected resource specifies that access may
only be granted to members of those groups. Alice
has a collection of certificates that she may use in
her proof. She finds a first certificate C'; that states
that all members of group H are members of group
G5, and another certificate Cy that states that she
(actually, her public key) is a member of group H.
The sequence (C7,C>) is a “certificate chain” prov-
ing that she may access the protected resource. She
sends this sequence to the server, signs her request
to the protected resource with her private key, and
gains access.

Informally the technical problem is the following:
given an access-control list for a protected resource,
and a collection of SPKI/SDSI certificates, determine
whether a given principal or set of principals, repre-
sented by their public keys, is authorized to access
the protected resource. Because of the way that cer-
tificates can be chained in SPKI/SDSI, the problem
is non-trivial; the fact that a polynomial-time algo-
rithm exists for this problem is interesting.

The current paper is self-contained but brief, and
the reader is encouraged to consult the references for
additional background and motivation.

Section 2 gives a brief historical synopsis of the
evolution of SPKI/SDSI.

The paper begins by treating the SPKI/SDSI nam-
ing subsystem. Section 3 introduces SPKI/SDSI
names and gives our favorite representation of name
certificates: as “rewrite rules” for transforming one
string or certificate into another. Section 4 gives a
simple graph-theoretic algorithm for evaluating the
meaning of a SPKI/SDSI name in the absence of “ex-
tended” names. The case for extended names is made
in Section 5, where it is shown how extended names
can increase ease-of-use and modularity.

Section 6 then shows how two certificates can
be composed to yield another one. This certificate
composition operation is the fundamental “inference
rule” of SPKI/SDSI. An efficient algorithm for com-
puting the “name-reduction closure” of a given set
of certificates is then described, proved correct, and
analyzed.

Section 7 introduces authorization certificates, or
“auth certs,” and shows how they can also be repre-

2 SPKI/SDSI HISTORY

sented as rewrite rules.

Section 8 gives an overview of the general cer-
tificate chain discovery problem, by way of a spe-
cific example. Section 9 then gives the details of
our certificate-chain discovery algorithm, including
an analysis of its running time.

Finally, Section 10 discusses how the certificate-
chain discovery algorithm can be extended to han-
dle “threshold subjects,” where more than one party
must sign an access request in order for it to be hon-
ored.

We assume the reader has a basic familiarity with
public-key cryptography and digital signatures (see
for example Menezes et al.[25]), although the details
of particular signature schemes are not important
here. For convenience and brevity, we say that a
message was signed by a public key K; when we re-
ally mean that it was signed by the secret key whose
corresponding public key is Kj.

2 SPKI/SDSI History

In 1996 Lampson and Rivest[28]
new public-key infrastructure, called “a Simple
Distributed Security Infrastructure,” abbreviated
“SDSI” , and pronounced “sudsy.” Its most interest-
ing feature is probably its decentralized name space.
In SDSI, the owner of each public key can create a
local name space relative to that key. These name
spaces can be linked together in a flexible and pow-
erful manner to enable chains of authorization and
define groups of authorized principals.

Concurrently, Carl Ellison, Bill Frantz, Brian
Thomas, Tatu Ylonen and others developed a “Sim-
ple Public Key Infrastructure,” or “SPKI” pro-
nounced “s-p-k-i”, which emphasized exceptional
simplicity of design and a flexible means of specifying
authorizations.

The SDSI and SPKI efforts were both motivated in
part by the perceived complexity of the X.509 public-
key infrastructure, and also by its perceived lack of
power and flexibility.

In 1997 the SDSI and SPKI efforts were merged;
the resulting synthesis has been called “SPKI/SDSI.”
Sometimes, for brevity, it has been called just “SPKI”

proposed a

or just “SDSL,” but the reference is now always to the
merged design.

A SPKI working group of the IETF was formed in
1996 that has continued to refine the design[20]. Var-
ious RFC’s and Internet drafts[10, 12, 13, 14] docu-
ment this work. Two web sites [27, 11] give further
pointers to work on SPKI/SDSI.

Several MIT EECS Master’s theses [16, 26, 9, 8, 24]
have studied various algorithmic and implementation
aspects of SPKI/SDSI. Of most relevance is Jean-
Emile Elien’s master’s thesis[9], which focuses on
the certificate chain discovery problem and gives an
early version of the algorithm presented in this pa-
per. Elien’s thesis is especially recommended read-
ing for further background and discussion both of
SPKI/SDSI in general and the certificate chain dis-
covery problem in particular. The algorithm pre-
sented here is an extension of the one presented in
his thesis.

SDSI’s naming scheme has generated some interest
in its own right; for example, Abadi[l] has studied
SDSI’s naming scheme in some detail.

Halpern and van der Meyden [17] have also studied
SDSI’s naming scheme. They critique Abadi’s treat-
ment, and have produced a Logic of Local Name Con-
tainment and an associated semantics that explicates
the operation of SDSI’s local names, based on treat-
ing (as we also do) the meaning of a name as a set of
keys, and treating a name certificate as asserting an
inclusion relationship between two such sets.

Howell and Kotz [19] model SDSI’s naming scheme
within the framework of the Logic of Authentication
due to Abadi, Lampson, and others [2, 22], with par-
ticular emphasis on the possible advantages and dan-
gers of various proposed extensions to SDSI.

Li [23] shows how to interpret SPKI/SDSI’s lo-
cal names (including authorization certifications and
threshold subjects) using logic programs and proves
that his interpretation is equivalent to the original
SPKI/SDSI definitions; he also shows how to inter-
pret local names as distributed roles.

We note that the terminology used here may differ
in small respects from that used in other SPKI/SDSI
documentation; we do not expect this to cause the
reader any difficulties.

3 SPKI/SDSI NAMES

3 SPKI/SDSI Names

We begin with a description of naming within
SPKI/SDSI, leaving authorization for later. We do
this for several reasons:

e The naming scheme within SPKI/SDSI is a fas-
cinating object of study in its own right, with
great flexibility and interesting computational
problems.

e The SPKI/SDSI naming scheme is orthogonal to
and conceptually separable from the authoriza-
tion scheme.

e It will be easier to understand the issues arising
in the full SPKI/SDSI scheme once the naming
subsystem is fully understood.

In SPKI/SDSI there is a local name space asso-
ciated with every public key. There are no global
names in SPKI/SDSI. (The first version of SDSI [28]
did have global names; these were eliminated in the
merger of SDSI with SPKI.) A local name is a pair
consisting of a public key and an arbitrary identifier.

A public key can sign statements (certificates)
binding one of its local names to a value. Values can
be specified indirectly in terms of other names, so the
name spaces can become linked and interdependent
in a flexible and powerful manner.

3.1

In SPKI/SDSI, all principals are represented by their
public keys. A principal is an individual, process, or
active entity whose messages are distinctively recog-
nizable because they are digitally signed by the public
key that represents them. It is convenient to say that
the principal is its public key.

Keys.

Definition 1 We let K denote the set of public
keys.

We typically use K, K4, Kg,K', K1, K>, ... to de-
note specific public keys. We omit discussion of the
corresponding secret keys. In particular, as noted
earlier, when we say that a message was signed by

key K;, we mean that it was signed by the secret key
whose corresponding public key is Kj;.

In practice, a key is represented by a data struc-
ture that specifies the algorithm name (e.g. RSA with
MD?5 hashing and OAEP formatting) and the associ-
ated parameters (e.g. modulus n = 3871099...8763
and exponent e = 17). In this paper we use meta-
symbols such as K; to stand for such data structures.

3.2 Identifiers.

Because the most important function of a name is to
serve as a mnemonic handle for some human user, it
is important that users be able to create names rather
freely using well-chosen identifiers.

Definition 2 An identifier is a word over some
given standard alphabet. We let A denote the set of
all possible identifiers.

Our examples use specific identifiers such as
A,B,Alice,Bob,..., usually in typewriter font.

3.3 Local
spaces.

names and local name

Each (public) key has its own associated local name
space; there is no global name space or even a hier-
archy of name spaces. SPKI/SDSI does not require a
“root” or “root key”; it can be built “bottom-up” in
a distributed manner from a collection of local name
spaces.

Definition 3 A local name is a sequence of length
two consisting of a key K followed by a single iden-
tifier.

Example. Typical local names might be “K Alice”
or “K project-team.” Here K represents an actual
public key.

Notation 1 We say that the local name “K A” be-
longs to the local name space of key K. We let Nz,
denote the set of all local names, and let N[, (K) de-
note the local name space of key K.

3 SPKI/SDSI NAMES

The original SDSI syntax for the local name “K A”
was “K’s A”; the use of the possessive syntax em-
phasizes that this local name belongs to K’s names-
pace. While this syntax is appropriately suggestive,
we stick to the simpler syntax “K A” in this paper.

Local names in different name spaces are unrelated
to each other, even if they use the same identifier. Lo-
cal names may be chosen in an arbitrary manner. In
one local name space the identifiers might be peo-
ple’s names, in another name space identifiers might
be nicknames, social security numbers, phone num-
bers, IP addresses, credit-card numbers, organiza-
tional role names, committee names, or group names.
The owner of the public key can decide arbitrarily
what conventions he wishes to use when assigning
names.

There are many reasons to use local names:

e To provide a convenient user-friendly handle for
referring to another principal. For example, it
is much simpler to refer to “Bob” than to refer
to the Bob’s specific public key “RSA-MD5 with
parameters n = 3549...413 and e = 17”.

e To provide a level of abstraction that separates
the name one uses to refer to the principal from
the keys the principal uses, since the latter may
change. If Bob changes his key, no certificates
that refer to Bob’s key by a local name need
to change; only those certificates that give his
actual public key need to be updated.

e To allow another party to provide the de-
sired definition, by having one name defined
in terms of a name defined by another party.
For example, Alice can define her “MIT” in
terms of VeriSign’s “Massachusetts Institute
of Technology”.

e To have a name that refers to a collec-
tion (or group) of principals. Bob can con-
veniently define groups for various purposes;
for example he may define groups “friends”,
“personnel-committee”, “EECS-faculty”, or
“sysadmins”.

e To have a name that can be used as an
binary attribute—by defining the group

5
of principals that possess that attribute.
The state of California might define
groups “age-over-21", “state-employee”,
“registered-voter-for-2000", or
“welfare-recipient”.

3.4 Extended names, names, and

terms.

SPKI/SDSI has “extended names” as well as local
names. (These are called “compound names” by
Li [23].)

Definition 4 An extended name is a sequence con-
sisting of a key followed by two or more identifiers.

A name is thus either a local name or an extended
name. Extended names expand the expressive power
of SPKI/SDSI, but do not have separate definitions;
their meaning is defined in terms of the meaning of
related local names.

Example. Typical extended
names might be “K Alice mother”,
“K microsoft engineering windows project-mgr’,
or “K MIT EECS personnel-committee”.

(In the syntax of SDSI 1.0, the first extended name
would be represented as K’s Alice’s mother.)

Notation 2 We let N denote the set of all extended
names. We let N' = Ny U Ng denote the set of all
names. We let Ng(K) denote the set of extended
names beginning with key K, and let N'(K), which
we call the name space of key K, denote the set of
all names (local or extended) beginning with key K.

The SPKI/SDSI “expressions” that we will be deal-
ing with will be called terms; intuitively, a term is
something that may have a value. In SPKI/SDSI
values are always sets of keys.

Definition 5 We say that a term is either a key or
We let T = K UN denote the set of all

a name.
terms.

Section 5 discusses extended names in more detail,
and describes their benefits.

3 SPKI/SDSI NAMES

3.5 Certificates.

SPKI/SDSI has two types of certificates, or “certs”:
name certs, which provide a definition for a local
name, and authorization certs, or auth certs, which
confer authorization on a key or a name.

Compared to X.509 public-key infrastructure
schemes [15], our name cert is comparable to an “ID
certificate,” and to some forms of “attribute certifi-
cates”, while our auth cert is comparable to an “at-
tribute certificate” that conveys authorization. How-
ever, the details and semantics differ significantly,
and the reader should not interpret these comments
as more than a very crude approximation.

We defer further discussion of auth certs until Sec-
tion 7, in order to focus for now on naming and name
certificates within SPKI/SDSIL

3.6 Name Certificates.

A name cert provides a definition of a local name
(e.g. K 1) belonging to the issuer’s (e.g. K’s) local
name space. Only key K may issue (that is, sign)
certificates for names in the local name space N, (K).
A name cert C is a signed four-tuple (K,A,S,V):

e The issuer K is a public key; the certificate is
signed by K.

e The identifier A (together with the issuer) de-
termines the local name “K A” that is being de-
fined; this name belongs to the local name space
N1(K) of key K. We emphasize that name certs
only define local names (with one identifier); ex-
tended names are never defined directly, only in-
directly.

e The subject S is a term in 7. Intuitively, the
subject S specifies an new additional meaning
for the local name “K A”.

e The wvalidity specification V provides additional
information allowing anyone to ascertain if the
certificate is currently valid, beyond the obvi-
ous verification of the certificate signature. Nor-
mally, the validity specification takes the form of
a validity period (¢1,%2): the cert is valid from

time #; to time tq, inclusive. Sometimes, the va-
lidity specification takes the form of an on-line
check to be performed. Certificates that are not
currently valid can be ignored, so for this paper
we presume that all certificates considered are
currently valid, and we do not explicitly men-
tion or discuss validity specifications further.

3.7 Valuation function.

We shall be concerned with the walue of various
terms. (Recall that a term is a key or a name.) In
SPKI/SDSI, these values are sets of public keys (pos-
sibly the empty set). The value of a term T is defined
relative to a set C of certificates.

Notation 3 Welet Ve (T) denote the value of a term
T with respect to a set C of certificates. When C may
be understood from context, we may use the simpler
notation V(T). The value of a term is a set of public
keys, possibly empty.

3.8 Value of a key.

A public key is the simplest kind of a SPKI/SDSI
term—it is a constant expression evaluating to itself
(as a singleton set).

Definition 6 We define
Ve(K) = {K}

for any public key K and any set C of certificates.

3.9 Value of a local name.

A local name has a value that is a set of public keys;
this value may be the empty set, a set containing a
single key, or a set containing many keys. This value
is determined by one or more name certificates.

A local name, such as K Alice , need not have
the same meaning as the local name K’ Alice when
K # K'; the owner of key K may define K Alice
however he wishes, while the owner of key K' may
similarly but independently define K’ Alice in an
arbitrary manner.

3 SPKI/SDSI NAMES

A name cert C = (K,A,S,V) (intuitively, defining
local name K A in terms of subject .S) should be un-
derstood as a signed statement by the issuer asserting
that

V(K 4) 2 V() ; (1)

that is, every key in the value V(S) of subject S is
also a key in the value V(K A) of local name K A.

One name certificate does not invalidate others for
the same local name; their effect is cumulative. That
is why the above equation says V(K A) D V(S) and
not V(K A) = V(S); each additional name cert for
K A may add new elements to V(K A). A local name
in SPKI/SDSI may thus, without any special fanfare,
represent a group of public keys.

We note that the semantics of SDSI local names
provided by Halpern and van der Meyden [17] is very
similar to our treatment here of the meaning of local
names as sets of keys.

Value of an extended name.

Although a name certificate C' = (K,A,S,V) has
the explicit function of providing a definition for the
local name K A, it also, as we now show, gives mean-
ing to related extended names.

Conversely, we may need to utilize the meaning of
an extended name in order to interpret a local name.
If the subject S of a name certificate is an extended
name, then it is necessary to have a definition for the
value V() in order to interpret equation (1).

The value of an extended name is implied by the
values of various related local names as follows.

Definition 7 The walue of an extended name
KA 4y ... 4, is defined recursively for n > 2 as:

V(KA 4y .. 4,) ={K" : K" € V(K'4,)
for some K' € V(KA 14> ... Ap—1)} .

(2)

An equivalent definition is:

U

K'cV(KA)

V(KAAy ... A,) = V(K'AA3...4,) . (3)

Example. Let Ky denote the MIT public key,
K, denote the EECS public key, and let K> denote

Rivest’s public key. Then

V(K EECS rivest) V(K rivest)
{K>} .

S V(Ko EECS) and K, €

2
2

assuming that K
V(K rivest).

Having taken the necessary step of showing how ex-
tended names acquire a meaning in a straightforward
manner from the meanings of related local names,
we now make precise our definition of the value of a
term T

Definition 8 We define Ve (T') for any term T to be
the smallest set of public keys that is consistent with
any constraints of the form of equations (1) and (2)
implied by the name certificates in C.

Figure 1 gives a typical example; it presents a set
C of name certs and gives V¢ (T') for various terms 7.

We note that SPKI/SDSI has no “negative certs”;
you can not issue a cert to remove some key from a
group.

One can also think of V(K A) as the set of keys
that may “speak for” that name—see Lampson et
al.[22] for a definition of “speaks for.” Any privileges
or authorizations that have been given to the name
are given to each key in its group. (See Howell and
Kotz [19] for an expanded discussion of the relation-
ship between SPKI/SDSI names and the “speaks for”
relation, and see Halpern and van der Meyden [17] for
a contrary view.)

3.10 Name Certs as Rewrite Rules

Here we explain how to represent a name certificate
as a “rewrite rule” operating on strings of symbols.
The symbols used are keys and identifiers. A rewrite
rule allows one to replace a given sequence of symbols
with another.

Rewrite rules are expressive enough to represent
both the definitions given by name certs and the del-
egations expressed by auth certs.

By starting with a given name and performing
rewrites in all possible ways (using a given set of cer-
tificates), one can determine the value of a name.
One can use a similar procedure to find out which

5 EXTENDED NAMES

keys are authorized to perform a given action, as we
shall see in Section 9.

Our representation of name certs as rewrite rules
suppresses the validity specification. This omission
is justified, since in practice as noted above any cer-
tificates that are not currently valid will be set aside
initially, and ignored thereafter.

We represent a name certificate C = (K, A,S,V)
as the rewrite rule:

KA— S.
We may also write the syntax of a name rule as:

KA— T

(as in a rule for a context-free grammar, where any
key in K may be followed by any identifier in A, etc.)
or even

Ny —T.

3.11 A Typical Example

Figure 1 gives an example of a set of name certs and
the values of the names it defines.

4 A Simple Case: No Extended
Names

In this section we show that it is easy to find the
value of a term given a collection of SPKI/SDSI name
certs that have no extended names as subjects, that
is, when every subject is either just a key or a local
name. In practice we expect that many or most cer-
tificates will be of this form. In Section 9 we give an
efficient algorithm for the general case.

The problem we are concerned with here is the
problem of evaluating the meaning V¢ (T') of a term T,
given a set of certificates C that contain local names
but no extended names.

Without loss of generality, we assume that 7" is a
local name appearing in some certificate in C. (If T
is a key K, or if T' does not appear in the certificates
at all, then the problem is trivial. In the first case
Ve(K) = {K}; in the second case Ve (T) = 0.)

The following simple algorithm solves our problem:

e Create a directed graph G = (V, E) by creating
a vertex v for each local name or key appearing
in C, and an edge from vertex L to vertex R if C
contains a name cert of the form:

L—R

See, for example, Figure 2, which illustrates the
graph G arising from the subset of certificates of
Figure 1 that contain no extended names.

e Then
Ve(T)={K: (K € K) A (T = K)}

where T — K means that there is a directed
path from T to K in G.

The reason this algorithm works is that when there
are no extended names present, there is no need to
consider any names outside of those already present
in the input set of certificates. Thus we need merely
to trace dependencies between the local names and
keys appearing in the input. When extended names
are present, this reasoning no longer applies, as we
shall see.

The running time of our algorithm above to find
the meaning of a single term T is linear in the
size of the input set C of certificates when the sec-
ond step above is implemented using an efficient
graph-searching algorithm such as depth-first search
or breadth-first search. (See Cormen et al. [7] for
details.) The same algorithm and running time ap-
plies for the simpler problem of determining whether
a given K is a member of V¢ (T') for a given term T'.

5 Extended names

Given the simplicity of the previous algorithm, one
can reasonably ask: “why bother with extended
names at all?” Although, as we shall see, extended
names can be handled efficiently, it is nonetheless fair
to ask if they are worth the extra bother.

For some applications it may indeed be the case
that extended names are not really needed, and that
by constraining certificates to have only keys or lo-
cal names as subjects one can simplify things a bit

5 EXTENDED NAMES

Name certs issued by Alice:

KiBob — Kp (4)
K, Carol — Kp CarolJones (5)
K4 Ted — Kpg CarolJones Ted (6)
K4 friends —» K4 Bob (7)
K, friends — K4 Carol (8)
K, friends — K4 Ted (9)
K4 friends — K4 Bob my-friends (10)
Name certs issued by Bob:

Kp Alice — Kgu (11)
Kp CarolJones — K¢ (12)
Kp Frank — Kp (13)
Kp my-friends — Kp Alice (14)
Kp my-friends — Kp Frank (15)

Name certs issued by Carol:
Ko Ted — Kr (16)

Alice issues a name cert (4) binding her local name “K4 Bob” to Bob’s key Kp. She defines her
local name “K4 Carol” indirectly in terms of Bob’s local name “Kp CarolJones” with cert (5).
In (6) she defines her local name “K 4 Ted” with an extended name “Kp CarolJones Ted”, linking
through both Bob and Carol’s local name spaces (via certificates (12) and (16)). In (7)—(9) she
defines the group “K 4 friends” to include Bob, Carol, and Ted, and in (10) she includes everyone
in Bob’s group “my-friends” in her group “friends”.

In (11)—(13) Bob gives symbolic names “Alice”, “CarolJones”, and “Frank” to Alice’s key K4,
Carol’s key K¢, and Frank’s key K, respectively. In (14)—(15) he defines his group “my-friends”
to include Alice’s and Frank’s keys.

In (16) Carol defines her local name “Ted” to refer to Ted’s key K.

It follows that:

V(K4 Bob) = {Kg} (17)
V(K4 Carol) = {Kc¢} (18)
V(K4 Ted) = {Kr} (19)

V(K4 friends) = {Kp,K¢,Kr,Ka,Kr} (20)
V(Kp Alice) = {K.} (21)
V(Kp CarolJones) = {K¢} (22)
V(Kp Frank) = {Kp} (23)
V(Kp my-friends) = {Ka,Kr} (24)
V(Ko Ted) = {Krp} (25)

Figure 1: A typical example of name certs.

5 EXTENDED NAMES 10

K4 friends K 4 Bob

Kpg

K4 Ted

K4 Carol

Kp CarolJones —— K¢

Kp my-friends Kp Alice ———— Ky4
Kp Frank ———— Kp
K¢ Ted — Kr

Figure 2: The graph corresponding to the certificates of Figure 1, except for the certificates (6) and (10)
which have extended names as subjects. Each key and local name appearing in the certificates corresponds
to a vertex, each certificate corresponds to an edge.

6 COMPOSITION OF CERTS

without paying too severe a penalty in terms of ex-
pressive power. The system so implemented would
be a proper subset of standard SPKI/SDSI.

As an example, consider the certificate set in Fig-
ure 1. Certificates (6):

K4 Ted — Kp CarolJones Ted
and (10):
K4 friends — K4 Bob my-friends

are the only certificates that have extended names as
subjects. These could conceivably be rewritten as:

K4 Ted — K¢ Ted
and:
K4 friends — Kp my-friends .

Yet we would argue that such a style is awkward
and exhibits poor modularity. What if Bob or Carol
should change their public keys? It would make more
sense, from a human-engineering point of view, to
have no keys, other than the issuer’s own key, ap-
pearing in local names. From this viewpoint, certifi-
cates (5) and (6), which have local names beginning
with Bob’s key, should instead be rewritten with even
longer extended names as subjects:

K4 Carol —» K4 Bob CarolJones
K4q4 Ted — K4 Bob CarolJones Ted

so that these certificates do not need to be re-issued
should Bob change his key. (Of course, Bob needs to
re-issue his certificates using the same naming con-
ventions...)

Along the same lines, it is simpler to expect some-
one to write a symbolic ACL entry of the form:

K4 VeriSign IBM Research DonCoppersmith

than to have the actual public key of IBM’s research
division wired into the ACL entry.

Similarly, it is simpler to write a symbolic ACL
entry of the form:

K4 MIT faculty secretary

11

than to spell out one ACL entry of the form
Kr secretary

for each key K of an MIT faculty member (assuming
that the faculty can be persuaded to use the name
“secretary” in a standard way).

Thus, we strongly endorse using extended names
whenever possible to improve modularity and sim-
plify the writing of ACL’s.

In the next sections we see how to efficiently handle
a set of certificates with extended names. This turns
out to be an interesting problem, since the simple
graph-theoretic model used above is no longer ade-
quate. Instead, we will need to return to our view of
certificates as “rewrite rules.”

6 Composition of certs

In this section we define how a cert can be used to
rewrite a string, or to rewrite another cert. This lat-
ter operation is also called the composition of certs
(also called composition of rules), and is the funda-
mental operation of SPKI/SDSI.

In this section we define a “string” to be a term;
later on when we are dealing with auth certs we shall
expand this definition slightly.

6.1

Definition 9 Suppose that S is a string, that C =
L — R is a rewrite rule, and that L is a prefiz
of S: that is, S = LX for some (possibly empty)
sequence X. Then we define S o C to be the string
S'" = RX. We say say that we have rewritten the
string S according to the rule C' to obtain S'.

Using a cert to rewrite a string.

Example.

(K 4 Bob my-friends)o (K4 Bob — Kp) =
(Kp my-friends)

6.2 Using one cert to rewrite another
(composition).

We can also apply a rule Cy to rewrite another rule
C1 to obtain C35 = C4 o C5, by using C3 to rewrite

6 COMPOSITION OF CERTS

the subject (right-hand side) of C.

Definition 10 Suppose Ci is a rule of the form
Li— R,

and suppose Cs is a rule of the form
L, — Ry,

where Ly is a prefiz of Ry. That is, Ry = Ly X for
some (possibly empty) string X. Then we define the
composition of rules C3 = C; o Cs as

03 = Cl 002
= L1 — (Rl o C'Q)
= Li — RX .

We say that we have rewritten C; (using C2) to ob-
tain C3. If Ly is not a prefix of Ry then Cp o Cy is
undefined.

As an example, we can compose the following name
certs:

K,y friends — K4 Bobmy-friends
K4qBob — Kp

to obtain the name cert:
K4 friends — Kp my-friends .

That is, if K4 says that one definition of her name
“friends” is the name “K4 Bob my-friends”, and
K4 says that one possible definition of her name
“Bob” is Kpg, then one definition of K4’s name
“friends” is “Kp my-friends”.

Definition 11 We say that certs C1 = (L1 — Ry)
and Co = (Ly — R») are compatible if their com-
position Cy o Cy is defined, that is, if Ly is a prefix
of Ry. (More precisely, if Cy o Cy is defined, we say
that Cy is left-compatible with Cs, and that Cs is
right-compatible with C;.)

The definition implies C} is (left-)compatible with
C5 in the special case that Ly = R;. Note that the
definition of compatibility really applies to the or-
dered pair (Cy,Cs), since Cy o Co may be defined (so
that C; and C» are compatible), but C2 o C'y may be
undefined (so that Cy and C; and not compatible).
Thus the need for the more refined notions of left-
and right-compatibility.

12

6.3 Properties of composition of certs.

The important point about the composition of certs
is that composition is the only “rule of inference”
needed for reasoning within SPKI/SDSI. Someone
holding valid certs C; and C3 may infer C3 = C'y 0 Cs
and treat it as a valid cert having the same status as
any valid cert that had been actually issued. (As well
shall see, these statements remain true even when we
add authorization certs to the picture.)

We note that composition is not associative. For
example, if

C1 (K1 A— K> B C)
02 = (K2 B— K3)
03 = (K3 C— K4) s

then (Cl e} CQ) o 03 = (K1 A — K4), whereas 01 e}
(C5 0 C3) is undefined because (Cs o C3) is undefined.
However, it is easy to show that (C; o C) o C3 is
defined whenever C o (Cs o C3) is defined, and that
these expressions have equal values when both are
defined, so we may omit parentheses when desired

and assume that “o” is left-associative:

CroCyoCs---Ch=(-((CLoCy)oCs)---Ch) .

We also note that in the composition C3 = C; 0y
where Cy and Cs were both issued (and not inferred),
it may be the case that C; was issued before C5 or
the reverse. For example, Bob (controlling key Kp)
may have issued the name cert

Kp CarolJones — K¢

either before or after Alice (controlling key K 4) issues
the name cert

K4 Carol — Kpg CarolJones

that specifies her name “Carol” in terms of Bob’s
name “CarolJones”. This gives SPKI/SDSI a cer-
tain flexibility lacked by PKI systems that require a
key to be created before it can be referred to.

6.4 Closure of a set of certs.

The notion of the closure of a set of certificates is
fundamental; the closure contains all certs that can
be derived by composition from the given set of certs.

6 COMPOSITION OF CERTS

Definition 12 IfC is a set of certificates, we define
the set CT, called the (transitive) closure of C, as the
smallest set of certificates that includes C as a subset
and that is closed under composition of certificates.

Informally, the closure C* contains all certificates
that can be inferred from C using any finite number
of compositions.

The closure CT need not be a finite set, even if C
is finite. For example,

{(KA—KAMNT ={(KA—KAA):i>2}.

While the set C™ need not be finite, each rule in
C* has a finite-length derivation from the certificates
in C.

As we shall see in Theorems 1 and 2, the closure
can be easily used to define the value of any term
appearing in the given set of certificates.

We shall next define a finite subset of the closure,
called the “name-reduction closure,” that is easy to
compute, and just as useful.

6.5 Reducing certificates.

Given the utility of the closure, as seen above, it is of
interest to compute it efficiently, if possible. But since
the closure is potentially infinite, to be efficient we
need to compute just the relevant parts of it quickly.

This subsection defines the name-reduction closure
C# (i.e. “C-sharp”) of a set of certificates C. The
name-reduction closure is a finite subset of Ct, and
can be computed quickly. Intuitively, computing C#
only performs compositions that are useful to com-
pute the value V(S) of each subject S.

Definition 13 We say that a cert C = (L — R) is
reducing if |L| > |R|, where | X| denotes the length of
sequence X .

A reducing cert can only be a name cert of the
form:

KA — K.

Fact 1 If Cy = (L — Ry) is an arbitrary certifi-
cate, and Cy = (Ly — R») is a (right-)compatible

13

reducing certificate, then Cs = C10Cy = (L; — R3)
satisfies

|B1| > |Rs] -
That is, rewriting Cy with a reducing certificate Cy

gives a new certificate Cs with a strictly shorter right-
hand side.

For example, composing the cert:

K Alice — K VeriSign MIT AliceSmith (26)

with the reducing certificate
K VeriSign — K,
yields the reduced certificate
K Alice — K, MIT AliceSmith
which has a shorter right-hand side than (26).

6.6 Name-reduction closure

Definition 14 If C is a set of certificates, then the
name-reduction closure C# of C is defined to be the
smallest set of certificates containing C and closed un-
der “name-reduction” (rewriting with reducing certifi-
cates). That is, if C# contains a certificate Cy and it
also contains a (right-)compatible reducing certificate
Cs>, then C# must also contain Cy o Cs.

Thus, to compute the name-reduction closure, we
only perform rewritings that cause a reduction in
the length of the right-hand side, until no more such
rewritings can be done. This is clearly a finite pro-
cess. More precisely, our algorithm for computing the
name-reduction closure is the following:

Name-reduction closure algorithm:

1. Initialize C' to be the input set C of certificates.

2. AslongasC’ contains two compatible certificates
C1 and C5 such that Cs is a reducing certificate
and Cp o Cs is not yet in C’, add Cy o Cs to C'.

3. Return C’ as the computed value of C#.

To illustrate the operation of this algorithm, Fig-
ure 3 shows the closure and name-reduction closure
of the certificates from Figure 1.

Before studying the running time of this algorithm,
we examine some of the properties of C#.

6 COMPOSITION OF CERTS 14

The name-reduction closure C# of the certificates in Figure 1 includes those certificates as well as
the following;:

K4 Carol — K¢ (5) 0 (12) = (27)
KiTed — K¢ Ted (6)0(12) = (28)
KiTed — Kr (28) 0 (16) = (29)

K, friends — Kp (7)o (4) = (30)
K, friends — K¢ (8)0(27) = (31)
Ky friends — Krp (9)0(29) = (32)
K4 friends — Kp my-friends (10) o (4) = (33)
Kp my-friends — Ky (14)o (11) = (34)
Kp my-friends — Krp (15) 0 (13) = (35)
Ky friends — Ky (33) 0 (34) = (36)
K, friends — Kp (33) 0 (35) = (37)

All of the preceding certs are also in the closure C*. The following certs are in CT but not in the
name-reduction closure C#, since (14) and (15) are not reducing certs:

K, friends — Kp Alice (33) 0 (14) = (38)
K4 friends — Kp Frank (33) o (15) = (39)

Figure 3: The closure and name-reduction closure of the example of Figure 1. The derivation of each
certificate is given on the right. For example, certificate (27) is obtained by composing certificates (5)
and (12).

6 COMPOSITION OF CERTS

6.6.1 Properties of the name-reduction clo-

sure.

The importance of the name-reduction closure of a
set, of certificates is given by the following theorems,
which shows that the name-reduction closure explic-
itly computes the values of terms appearing on the
right-hand side of the input certificates.

Theorem 1 Suppose that C is a set of certificates,
and that
C=(L—R)

is a name cert in C. Then, for any key K € V¢(R),
the certificate
L —K

is a cert in C#.

Proof: (See Elien’s thesis [9] for an earlier version
of this theorem and proof.)

If R is a key, it must be the key K, and the theorem
is trivial. So assume that R is not a key. Let K be
any key in V¢ (R), and suppose that

CioCyo0---0(C), (40)

is a shortest possible certificate chain whose result is
(L — K), where all of the certificates are from C#.
Such a chain must exist if K € V¢(R), since C C C*.

If n = 1 we are done, so assume that n > 1.

Note that if n > 1, then C; is not reducing, since
there would be no (right-)compatible certificates Cs
(no name certificates have just a key as their left-hand
side). Similarly, C,, must be a reducing certificate,
since the right-hand side R,, of C}, is just the key K.

Let C; be the last non-reducing certificate in the
chain; thus i < n and C;;1 must be reducing. There-
fore the right-hand side R; of C; must satisfy |R;| > 2,
and so C; and C;y1 must be compatible. Therefore
C; 0 Cyyq is well defined, and an element of C#. This
implies that the certificate chain (40) is not shortest
possible, a contradiction. Therefore n = 1 and we
are done. |

The natural converse of this theorem also holds.

Theorem 2 Suppose that C is a set of certificates,
and that
C=(L —K)

15

is a cert in C#. Then there exists a cert
C'=(L — R)
in C such that K € V¢(R).

Proof: If C = Ci0(C50...0(C),, then it follows easily
from the definitions and the fact that C# C C* that
C} is the desired certificate C'. |}

6.6.2 Running time of the name-reduction
closure algorithm.

Since the name-reduction closure algorithm is the
most critical portion of our certificate-chain discov-
ery algorithm, we carefully analyze its running time
in this section.

We believe that this algorithm is very practical,
and that it will be exceptionally effective in practice.

In this subsection, we give a polynomial bound on
the running time of the name-reduction closure algo-
rithm.

We first give a worst-case bound on the running
time, and show that it is tight. We then show that
some realistic constraints on the input set of certifi-
cates make the running time of the algorithm much
better. The algorithm does not change; it just runs
faster when the input is not pathological.

Worst-case running time

Let C be the input set of certificates. Suppose that
C contains n certificates, and that ! is the length of
the longest subject in any input certificate.

The first step in our analysis is to note that the
maximum number of new certificates that can be pro-
duced during name-reduction closure is O(n?l). (We
recall that “O-notation” is used for stating worst-case
upper bounds to within an unspecified constant fac-
tor; the actual number of new certificates produced
in a particular instance may often be substantially
less than this worst-case upper bound.)

We prove the bound as follows. A typical input
certificate of the form

can be rewritten by reducing certificates to produce
new certificates only of the form

L — KjAkAk+1 Am

6 COMPOSITION OF CERTS

for some j and k. That is, the subject of the resulting
certificate consists of some key K; followed by some
suffix of the subject of the input certificate. Since
the choice of the starting input certificate, the choice
of j, and the length of the suffix are arbitrary, the
bound follows.

To see that this bound is tight to within constant
factors, consider the following “worst-case” set of cer-
tificates:

KC — KyA'B; for0<j <n, (41)
KyA — K; for0<i<n, (42)
KiA — K(it1) mod nA for 0 <i < n, (43)
where A! denotes [consecutive occurrences of A.

Name reduction yields all rules of the form
KC — K;A"B;

for0<i<n,0<k<I and 0 <j <n,as well as
all reducing rules of the form

KlA—>K]
for0<i<nand 0<j<n.

Theorem 3 The running time of name reduction
closure on an input set of n certificates, where [is
the length of the longest subject in any input certifi-
cate, is O(n3l).

Proof: There are O(n?l) certificates produced. The
number of reducing certificates in C' that are (right-
)compatible with any given certificate is O(n): these
reducing certificates all have the same issuer and
identifier, but have different keys as subjects. Thus
for each (input or derived) certificate there is work
O(n) to do. This yields our bound of O(n?l) on the
total work performed. (There are some data struc-
ture details required to make this actually work out,
but they are relatively straightforward, such as hash-
ing rules by their left-hand sides, or by the key and
first symbol of their right-hand sides, etc.) ||}

Unambiguous sets of certificates

In practice, we expect that an input set of cer-
tificates will not be as pathological as the input set
(41)—(43) above. For example, in practice we expect
that an input set of certificates will be unambiguous.

16

Definition 15 A set C of certificates is said to be
unambiguous if any certificate C' in CT is expressible
in at most one way as the result of a certificate chain
Cio0C50---0Cy, containing only certificates in C.

Example. If the certificates (43) are removed from
the input set (41)—(43), the certificate set becomes
unambiguous, but still generates O(n2l) certificates.

Theorem 4 The running time of name reduction
closure on an unambiguous input set C of certificates
is proportional to |C# , the total number of certifi-
cates in the name-reduction closure of C.

Proof: No certificate in C# is produced more than
once, by the definition of unambiguity. [

The running time of our algorithm on an unam-
biguous set C of input certificates C, where [is the
length of the longest subject in any input certificate,
is thus O(n?l) (since there are only O(n?l) certificates
produced), a dramatic improvement of the O(n?l)
bound for the general case.

We expect even better behavior in practice, as we
feel that it will often be the case that |C#| is propor-
tional to |C|, so that the running time of our algo-
rithm will be linear.

6.7 Production of certificate chain

From the computation of the name-reduction closure,
we can derive a chain of certificates that demon-
strates explicitly how any given certificate is indeed
in the closure. The process of reconstructing a certifi-
cate chain is primarily one of just working backwards
through the computation.

For example, using the certificates of Figures 1
and 3, we have that

(38) = (33) o (14) = (10) o (4) o (14) ,

so the desired certificate chain is just the sequence of
certificates (10), (4), (14) .

However, there is one issue that needs to be ad-
dressed, which is the representation of the certificate
chain itself. There are two plausible choices for the
format of a certificate chain: a linear format and a
compressed format. Because the compressed format

7 AUTH CERTS.

may be exponentially more compact than the linear
format, and because it is just as easy to create and
process as the linear format, we recommend the com-
pressed format.

The linear format outputs the certificates from C
in an order

017027"-7Ct

such that
02010020"'°Ct

where C' is the desired derived certificate.

The problem with this format is that the length
t of the certificate chain may be exponential in the
size n of the input certificate set.

Example. Consider the following set of certificates:

KD — K,A,
KiA; — K;1A4;1B;
KoB; — K;_1A;1C;
KoC; — K
Kody — K

where 1 < ¢ < n. Then the length of the certificate
chain proving that

KD — Ky (44)
is 2"*t2 — 2, by induction. However, this chain is
highly repetitious, and can be represented much more
compactly, as we now see.

Thus, it is of interest to have a compact format for
certificate chains that will be of polynomial size. The
following “compressed” format works. Assume that

Ci,...,C, are the input certificates.
Cn+1 Ci1 o Ch
Cn+2 CiQ o C’j2

Cn+3 = Ci3 ° st

CTH-t = Cit ° Cjt

Here each i, and each j; is an integer in the range 1
ton + k — 1. In the compressed format the output
is a sequence of lines, where each line shows how a

17

new certificate can be derived by composing two pre-
viously input or derived certificates. The final cer-
tificate is the desired certificate. This format is the
same as that given in Figures 1 and 3.

The size of the compressed format is always poly-
nomial in the size of the input (indeed, it is at most
|C#]). The compressed format is easy to produce
and easy to check. See Elien’s thesis [9] for some
implementation details. This representation is never
longer than the linear format, and may be exponen-
tially shorter.

The compressed form is the most logical one to
use—it reflects the process we use to do the chain dis-
covery. The linear form is thus unnatural but forced
by requiring someone to use just original (verifiable)
certificates. The compressed form lets us use derived
rules.

We thus recommend the use of the compressed for-
mat for efficiency’s sake; there is no reason why a
polynomial-time computation should have to work
for exponential time to produce its output, as it might
have to do for the linear format.

7 Auth Certs.

Now that we have mastered SPKI/SDSI naming, we
turn our attention to authorization certificates, or
“auth certs,” and see how to adapt our previous al-
gorithms to handle an input set of certificates that
contains both name and auth certs.

We will see how to represent auth certs as rewrite
rules in such a way that the composition of certs
remains well-defined and satisfies all of the desired
properties (including delegation control).

Our final algorithm for determining authorization
and computing certificate chains is then a combina-
tion of name-reduction closure and a graph-theoretic
algorithm resembling that of Section 4.

The function of an auth cert is to grant or delegate
a specific authorization from the issuer to the subject.
An auth cert C is a signed five-tuple (K, S,d,T,V):

e The issuer K is a public key, which signs the
cert. The issuer is the one granting a specific
authorization.

7 AUTH CERTS.

e The subject S is a term in 7. The public keys
in V(S) are receiving the grant of authorization.

e The delegation bit d, if true, grants each key in
V(S) permission to further delegate to others the
authorization it is receiving via this certificate.

e The authorization specification or authorization
tag T specifies the specific permission or permis-
sions being granted. For example, it may specify
the right to access a particular web site, read a
certain file, or login to a particular machine.

e The wvalidity specification for an auth cert is the
same as that for a name cert.

For example, we might have an auth cert specify-
ing:

e K is the public key of Bill Gates. Bill Gates is
the principal granting the authorization.

e Sis “K 4 accounting”, where K 4 is the public
key of Aardvark Accounting Corporation. The
set of public keys in V(K 4 accounting) is re-
ceiving the authorization.

e d = 1; any recipient of this authorization can fur-
ther delegate this permission (by issuing another
authorization cert).

e the authorization tag
T = ‘‘read 2000-tax-return’’ specifies
what operations are authorized by this auth
cert.

One auth certificate does not invalidate others;
their effect is cumulative. (Again, there are no “neg-
ative auth certs”; a permission granted is good until
one of the relevant certs expires or becomes invalid.)

SPKI/SDSI auth certs integrate smoothly with
SPKI/SDSI name certs; the name certs are used
to give useful symbolic names to individual keys or
groups of keys, and the auth certs can be used to
authorize those keys or groups of keys for specific op-
erations.

We digress for just a moment to talk about autho-
rization tags. The syntax and details of authorization
tags are not important to us here; we refer the reader

18

to the relevant documents [11, 13, 14, 12]. We note
the following important points about authorization
tags:

e An authorization tag can be viewed as a repre-
sentation of the the set of requests it authorizes.

e Given two authorization tags, it is simple for
anyone to form an authorization tag that rep-
resents the intersection of the sets of requests
the input tags authorize.

e The semantics of a request and of authorization
tags are otherwise up to the owner of each pro-
tected resource.

To illustrate the second point, the authorization tag

(tag (ftp (* set read write)

(* prefix //www.mit.edu/classes/)))

might authorize ftp read and write access to any
file in the “classes” directory on the www.mit.edu
server, while the authorization tag

(tag (ftp read (* prefix //www.mit.edu/)))

allows ftp read access to any file on the same server.
The intersection of these two tags is the tag

(tag (ftp read

(* prefix //www.mit.edu/classes/)))

When authorization certificates are composed, their
authentication tags are intersected, so that the result
represents only those rights that are authorized by
both original certificates.

7.1 Access-control lists.

In a security system with discretionary access con-
trol each protected resource has an associated access-
control list, or ACL, describing which principals have
which permissions to access the resource.

The ease with which SPKI/SDSI allows one to de-
scribe groups of principals can make the writing of
ACL’s rather simple and straightforward. The ACL
might typically list a single SPKI/SDSI group and its

7 AUTH CERTS.

associated permissions. In some cases several groups
might be listed, each with associated permissions.

Although the ACL may seem to be a new kind of
data object, it can most naturally be interpreted as a
convenient representation of one or more auth certs.
We now describe this interpretation.

The issuer of an auth cert in an ACL is the owner
of the protected resource. In SPKI/SDSI the special
term “Self” is used to designate the key of the owner
of the resource, although the owner’s key could of
course be used directly.

The subject of an auth cert in an ACL denotes
recipients of the permission. More precisely, if S is
the subject of an ACL auth cert, then any request
for access to the protected resource that is signed by
a key K in V(S) will be honored (assuming that the
request matches that authorization tag as well).

Furthermore, if an ACL auth cert Self — S had
the delegation bit turned on, then any auth cert is-
sued by K € V(S) for the protected resource can be
treated as if it were an original ACL auth cert is-
sued by Self. (However, K can not grant access to
resources to which it itself does not have access, and
it may use auth certs to pass on only a subset of the
access rights it has itself.)

7.2 Auth certs as rewrite rules

In this section we see how to represent an auth cert
as a rewrite rule, so that we may compose auth
certs with each other, or with name certs, in a
way that precisely models the desired semantics of
SPKI/SDSI. To accomplish this, we add to the auth
rewrite rules special “ticket” symbols whose presence
enforces the desired behavior.

Definition 16 The special “ticket” symbols are
“” (“a live ticket”) or “@” (“a dead ticket”).
The meta-symbol “[z]” may be used to represent a
“zombie” ticket that may be either live or dead.

A ticket may be thought of as a convenient arti-
fice to represent a particular authority or permission.
(Elien [9] used the “turnstile” symbol “4” instead.)
Tickets ensure that the composition of certs will have
the desired behavior, as we shall see. For the purpose

19

of our rewrite rules, however, a ticket is just a sym-
bol, different than any key or identifier. (Behind the
scenes, the ticket represent both the delegation bit
and the authorization tag.)

The ticket “” is considered to be “live” —it rep-
resents a permission obtained with the delegation bit
turned on, so it can be further delegated. The ticket
“@” is considered to be “dead”—it represents a per-
mission obtained with the delegation bit turned off,
so it can not be delegated further.

To represent a ticket that may be either live or
dead, we use the meta-symbol ‘{z]’, the “zombie
ticket.” The zombie ticket does not actually appear
in rewrite rules, but is used when discussing a rewrite
rule having a ticket which may be either live or dead.

Definition 17 A string is either a term or a term
followed by a ticket.

Examples of strings.

Ka
Kg[0]
Kp Alice friends
K 4 MIT EECS faculty

We can now represent an auth certificate C =
(K,S,d, T, V) as a rewrite rule. If the delegation bit
d is on, allowing propagation, we have the rewrite

rule:
K—>S.

If the delegation bit d is off, so that delegation is
forbidden, we have the rewrite rule:

K—>S@.

These two forms can be encompassed by one:

K—>S.

The ticket on the left of an auth rewrite rule is always
live. The ticket on the right is live if the delegation
bit d of the auth cert is on (i.e. 1), otherwise the
ticket is dead.

Such an auth cert can be interpreted as “K gives
permission to S” (with the delegation bit turned on

7 AUTH CERTS.

or off, according to whether the ticket on the right is
live or dead).

In particular, an ACL entry is represented by a
rewrite rule of the form:

Self [1] — S [z]

where the subject S is some term.

7.3 Why auth rules have tickets.

We can now see why auth certs are represented as
rewrite rules with tickets. The presence of the tick-
ets prevents the auth cert from being inappropriately
used in a composition as a name cert. For example,
it is not correct, according to the SPKI/SDSI compo-
sition rules, to compose the following name and auth
certs:

KyC — KpC
KB — KBD

to obtain
KsC—KpDC.

Were the tickets not used, this might erroneously be
considered a legal composition. With tickets, the two
certs are not compatible. This restriction is consis-
tent with the viewpoint that the purpose of an auth
cert is to grant permission, and not to rewrite names.
Only name certs can be used to rewrite names.

We now extend our previous discussion of the com-
position of name certs to consider the general com-
position of two certificates, where either one or both
may be auth certs. Our definition of composition
is unchanged. (This statement is true when we view
certs as rewrite rules; behind the scenes, however, au-
thorization tags are intersected when rules are com-
posed. But we can ignore this detail here, since if
two auth certs have tags authorizing a given request,
then the intersection of those tags will also honor the
given request.)

We note the following properties of the composition
03 = 01 o CQ:

1. The type of C3, as an auth or name cert, is the
same as the type of C;. (Rewriting can not cre-
ate or destroy tickets.)

20

o

If C5 is an auth cert, then Ly, = R;.

b

If C; is a name cert, then so is C5. (Equivalently,
if C5 is an auth cert, then so is C.)

4. If Ry contains a dead ticket, then C> must be a
name cert.

To illustrate the second point: two auth certs can
be composed, if the subject of the first auth cert is
the same as the issuer of the second: composing

Kal1] — Kg|1]

KB—>KC
KA—)Kc.

7.4 How tickets enforce delegation
control.

with

yields

It similarly follows that the distinction between a live
ticket “’ and a dead ticket “@” represents and
supports the SPKI/SDSI rules on delegation. A rule
having a dead ticket on the right can only be rewrit-
ten by name certs, not by auth certs, whereas a rule
having a live ticket on the right may be rewritten by
either name certs or auth certs; effectively authority
may be further delegated using auth certs. Thus, the
presence of tickets enforces the SPKI/SDSI rules on
delegation.

7.5 Using closure to define which keys
are authorized.

The closure CT of a set C of certificates is well-defined
even if C contains auth certs. This closure intuitively
captures all of the relevant inferences regarding which
keys are authorized.

For example, suppose that the given set C of certifi-
cates includes the certificate C' = (Self — R[z]);
such a certificate may have been obtained from the
ACL for a given resource.

Then every certificate C' = (Self — K [z)
in CT that has a key K in its right-hand side and
that is obtainable by iteratively rewriting C' using

8 ILLUSTRATION OF THE CERTIFICATE-CHAIN DISCOVERY PROBLEM 21

certificates in C specifies a key K that is authorized
using a certificate chain beginning with the certificate
C.

As before, we can not work directly with CT, as
it is (potentially) infinite. We work instead with
the name-reduction closure C# (which is still well-
defined) and make appropriate modifications and ex-
tensions.

The following theorem is similar to Theorem 1, and
derives a key property for the name-reduction closure
of a general set of certificates. Note that Theorem 1
remains valid even if C contains auth certs as well as
name certs.

Theorem 5 If

C=(K[1]— S[z)

is an auth cert in C, then

K[1]— K'[Z]

is a cert in C* for every K' € Ve(S). (Here the two
zombies must represent the same ticket.)

Proof: Essentially the same argument holds here as
for Theorem 1. |}

8 Illustration of the certificate-
chain discovery problem

A typical instance of the problem we solve in this pa-
per arises as follows. A user Alice tries to access
some protected resource X. The guardian or ref-
erence monitor for X denies her access, since Alice
has not demonstrated that she is authorized to ac-
cess X. The denial is accompanied by a copy of the
ACL for X: a set of auth certs that authorize access
for certain keys or names. (If the ACL is itself is pro-
tected, Alice can invoke the entire process recursively
in order to access the ACL.)

Alice must then use the certs in the ACL, together
with certs she already possesses, to prove that she
is authorized. She repeats her request, including a
“certificate chain” demonstrating that her public key
is authorized for X, and signs her request with (the
secret key corresponding to) her public key.

As an example, suppose that the ACL for X con-
tains the certs:

Self — K engineering
Self — Ky finance

and that Alice possesses the following certificates,
among others:

K, finance — K, accounting (47)
K, accounting — K Bob (48)
K; Bob — K, (49)

K»[1] — KsAlice[0] (50)

K3 Alice — K4 (51)

The ACL (certs (45) and (46)) gives permission to
engineering and finance, as defined by Ky. Name
cert (47) states that accounting as defined by K;
is part of finance as defined by K,. Name cert
(48) states that Bob as defined by K; is part of
accounting as defined by K;. Name cert (49), issued
by K7, states that one of Bob’s public keys is Ks.

Auth cert (50), issued by Bob’s key Ko, gives per-
mission to Alice, as defined by K3. Here Bob, as a
member of accounting, is passing on his permission
to his friend Alice. This is permitted because the
previous auth cert (46) had the delegation bit turned
on, represented by the live ticket.

Finally, name cert (51), issued by K3, defines
Alice to include the public key Kjy.

Alice can include the “certificate chain”

(46)(47)(48)(49)(50)(51)

in her subsequent request to access X, which she also
signs with her public key K4. The guardian for X can
examine the certificate chain to conclude that Alice
is indeed authorized.

The problem addressed in this paper is the prob-
lem of constructing a suitable certificate chain, given
a collection of certificates. Some of the certificates
correspond to the ACL (and are issued by “Self”),
and some of the certificates belong to the user (or
can be obtained by the user).

This problem bears a superficial resemblance to the
problem of finding a path in a graph from “Self” to

9 OUR CERTIFICATE-CHAIN DISCOVERY ALGORITHM 22

the user’s public key, where each certificate corre-
sponds to a single directed edge. The nodes of such a
graph correspond to the names and keys occurring in
the certificates. In simple examples such as the one
above where there are no extended names, such an
approach actually works fine, as noted in Section 4.

In other examples this simple graph-theoretic ap-
proach fails, because name certs can interact to pro-
duce new names not previously appearing in any cer-
tificate. For example, the two certificates:

Self — Ko MIT faculty secretary
Ko MIT — Kj

can be composed to yield the new certificate:

Self — K5 faculty secretary ,

but “K5 faculty secretary” may be a new name
not appearing previously in any of the original certs.

9 Our certificate-chain discov-
ery algorithm

In this section we present our algorithm for certificate
chain discovery. It takes as input:

e an initial set C of certificates,
e an authorization that is desired, and

e 3 public key K, for which it is desired to prove
that authorization.

The proof to be produced consists of a chain of
certificates that allow one to derive “K,[z]" from

“Self ”; that is, the proof consists of the derivation
of the certificate Self | 1| — K, [z].

It is worth digressing for a moment to discuss the
question of where the set C of certificates comes from.
Our working assumption is that the requestor (e.g.
Alice) uses the set of certificates already in her pos-
session. If that set is sufficient to prove her autho-
rization, then our algorithm will find a proof of au-
thorization and Alice is happy. If Alice’s set of certifi-
cates does not imply the desired authorization, then

Alice will be frustrated in her attempt to access the
desired resource, since no suitable proof of authoriza-
tion will be found by our algorithm (since none exists
based on her certificate set). In this case, Alice may
need to intervene personally to obtain sufficient addi-
tional certificates. For example, if Alice is frustrated
in attempting to access her hospital medical records,
she may naturally need to ask the hospital to issue
her a certificate authorizing such access. Of course,
if access to certificates is itself controlled, then the
problem becomes much more complicated (we do not
address such complexities here).

One could consider a distributed scenario where
the input set of certificates resides on a variety of
servers throughout the Internet. An algorithm based
on depth-first search for this version of the problem
has been presented by Ajmani in his Master’s the-
sis [3]; it is however incomplete (it is not guaranteed
to find a proof even if one exists). Aura [4] presents a
related two-way distributed search algorithm for the
case we discuss above in Section 4 when there are no
extended names. We do not consider the distributed
chain-discovery scenario or the problem of obtaining
the relevant certs in a distributed environment fur-
ther here, but it is a promising direction for future
research.

We return to the presentation of our algorithm, as-
suming that a suitable auxiliary procedure has been
used to obtain the input set of certificates. Our algo-
rithm has the following steps.

1. Remove useless certificates.

e Remove from C any certificate that is not
currently valid, or which fails a required on-
line check. That is, remove a certificate C'
from C if the validity specification V' of C
shows that the certificate is invalid.

e Similarly, remove from C any auth cert C'
whose authorization tag T is not equal to,
or does not include, the desired authoriza-
tion. These certs are of no use in trying to
derive the desired certificate chain.

2. Name reduction. Compute the name-reduction
closure C# of C.

10 THRESHOLD SUBJECTS

Recall that C# includes, for each auth certificate

K—>S

in C, where S is a name, a certificate of the form

K[1]— K'[4],
for each key K’ € V¢(S).

3. Remove all names and name certs. Let ('
be C# with all name certificates removed and
all auth certs removed that do not have just
a single key as their subject. The only certs
remaining have the form:

Ki—>Kj

(where K; may be “Self”).

(52)

4. Remove useless auth certs. Let C"” be C’ after
removing all certs of the form (52) having K; #
K, and a dead ticket on the right; such certs are
useless for finding the desired certificate chain.

5. Use depth-first search (DFS) to find a path.
Set up a graph with one vertex for each key,
and an edge from K; to K if there is an auth
certificate C in C" of the form (52).

Use depth-first search to determine if there is a
path from Self to K, . If not, terminate with
failure.

6. Reconstruct the certificate chain. From the
information computed in the previous steps, out-
put the desired certificate chain.

We now give some details in the following subsec-
tions.

9.1 Using Depth-First-Search to find

a path

After name and name cert elimination, we work with
all certificates (original or derived) of the form (52)
for various i and j. There are at most n? such cer-
tificates, since there are at most n keys appearing
as issuer and n keys occurring in the subjects of the

23

original set of n rules. Another bound on the num-
ber of such certificates is of course |C# |; this may be
considerably less than O(n?).

We wish to find if there is a path from Self (a
particular distinguished key) to K, (the user’s key).

This graph problem can be solved by depth-first
search in time proportional to the number of certifi-
cates of the form (52) that we are working with [7].

9.2 Running-time analysis

The running time of the certificate-chain discovery
algorithm is bounded by the size |C#| of the name
reduction closure C# computed in step 2. As derived
in Section 6.6.2, this running time is bounded above
O(n?l) for a general set, of n certificates with subjects
having length at most /. However, the running time
improves to O(|C#|) which is bounded by O(n?l) if
the certficate set C is unambiguous.

This completes our presentation of the basic cer-
tificate chain discovery algorithm and its analysis.

10 Threshold subjects

We now extend our algorithm to handle threshold
subjects in auth certs. Threshold subjects can be
used to specify a requirement that “k out of m” keys
must sign a request in order that the request should
be honored. (More precisely, the public keys signing
the request must belong to k out of m groups; there
may be fewer than k keys signing the request if some
keys belong to more than one of the m groups.) The
scenario is otherwise much as before: a set of parties
Alicey, Alices, ..., Alice, attempt to determine if they
are authorized if they collectively sign an access re-
quest, based on a set of certificates that may contain
auth certs with threshold subjects.

Definition 18 A threshold subject is an expression
of the form
0r(S1,52,-..,Sm)

where 1 < k < m and where each S; is a term or
another threshold subject.

10 THRESHOLD SUBJECTS

Here k is the threshold value; at least k of the m
subjects must sign an access request.

A threshold subject may appear only as a subject
in an authorization cert; it may not appear in a name
cert. (The reason that a threshold subject may not
appear in a name cert is that a name cert is used
to define a name as a set of public keys; if a name
cert could have a threshold subject as a subject then
the notion of the value of a name would have to be
generalized from a set of keys to a set of sets of keys,
which would almost surely be too convoluted to be
usable in practice.)

As an example of a threshold subject, consider the
following certificate:

Self — 6y(Ky mit faculty,

Ky intel researcher,

Ky Alice)

This certificate requires that keys representing at
least two of the three names sign an access request;
equivalently with two of the three groups (MIT fac-
ulty, Intel researcher, or Alice) represented. (If Alice
is an MIT faculty member, then her signature alone
is good enough; otherwise two keys must be used to
sign the request.)

Our previous algorithm can be adapted to handle
threshold subjects; this technique follows closely the
algorithm presented by Elien[9].

As noted, there is now not just a single signer K,
on the request, but a set K, of signers; we want to
determine if this set of signers is authorized.

The procedure is as follows.

(53)

1. Rewrite threshold subjects. Rewrite each
auth cert with a threshold subject so that the
threshold subject contains no names. This is
done by introducing new dummy placeholder
keys at each position in the threshold subject.
For example, the auth cert (53) could be
rewritten as

Self | 1] — 62(K201, K202, K203)

where Kog1, Ko92 Kop3 represent new public keys
that do not appear elsewhere in the set of cer-
tificates.

(54)

24

2. Preserve semantics by adding new auth certs.

Add additional auth certs so to preserve the
semantics of the original (now rewritten) auth
cert. In this example we would add the certs:

Kso1 — Ko mit faculty

Kooo — Ky intel researcher

Koo3 — Ky Alice

(If the original auth certificate had a dead ticket
instead of a live one on the right-hand side, then
these certificates would also have dead tickets on
their right-hand sides.)

3. Eliminate names and name certs.
Temporarily set aside the rewritten auth
certs of the form (54), so that we have a
set of certs containing no threshold subjects
whatsoever. We now apply steps 1-3 of our
standard algorithm of Section 9 to eliminate
all names and name certs. Adding back the
threshold certs originally set aside, we now have
just a set of auth certs, each of which has as a
subject either a key or a threshold subject on a
list of keys.

4. Remove useless auth certs. Remove any auth
cert whose right-hand side is “K; @” where K
is not a member of the set K, of keys that may
participate in this access request.

5. Label all keys. Label each key in K, as
“marked”; label all others as “unmarked”.

6. Propagate labels. Until no more progress can
be made, iterate the following:

o If the key K is marked, and there is an
auth cert K; — K [z], then mark K.

e If there is an auth cert of the form

Ki|l|— 0x(Ku, Ko, ..., Kim)

where at least k£ of the keys
Kil; KZ'Q, Ce 7Kim are marked, then
mark K;.

REFERENCES

7. Finish. A certificate chain is found if Self is now
marked.

With a bit of care, this algorithm can be imple-
mented as a modified DFS algorithm running in lin-
ear time; the running time of this modified algorithm
is unchanged in the worst case (if we let n denote the
number of subjects appearing in the input set of cer-
tificates collectively), since it is linear in the number
of vertices and edges of the graph.

The output format of the certificate chain needs to
be extended slightly to handle the threshold subjects.
We leave this detail to the SPKI/SDSI standards doc-
uments.

11 Conclusions

We have presented an efficient algorithm for com-
puting certificate chains for SPKI/SDSI. Thus,
SPKI/SDSI has an efficient procedure for answer-
ing the fundamental question, “Is A authorized to
do X?7”. While SPKI/SDSI is very expressive, its ex-
pressiveness does not come at the price of intractabil-
ity; sets of SPKI/SDSI certificates are easy to work
with.

Acknowledgments
We thank DARPA (contract DABT63-96-C-0018)
and NASA for their support.

References

[1] Martin Abadi. On SDSI’s linked local name spaces.
Journal of Computer Security, 6(1-2):3-21, 1998.

[2] Martin Abadi, Michael Burrows, Butler Lampson,
and Gordon Plotkin. A calculus for access control
in distributed systems. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):706-734,
September 1993.

A trusted execution platform
Master’s thesis,

[3] Sameer Ajmani.
for multiparty computation.

EECS Department, MIT, September 2000. See
http://www.pmg.lcs.mit.edu/~ajmani
/projects.html#thesis.

[4] Tuomas Aura. Fast access control decisions
from delegation certificate databases. In

[5]

[7]

[10]

[11]

[13]

25

Proc. 3rd Australasian Conference on Infor-
mation Security and Privacy ACISP 98, vol-
ume 1438 of LNCS, pages 284-295, Brisbane,
Australia, July 1998. Springer Verlag. See
http://www.tcs.hut.fi/Publications/papers
/aura/aura-acisp98-abstract.html.

Matt Blaze, Joan Feigenbaum, and Angelos D.
Keromytis. KeyNote: Trust management for public-
key infrastructures. In Proc. Cambridge 1998 Secu-
rity Protocols International Workshop, pages 59-63,
1998. See also IETF RFC 2704.

Matt Blaze, Joan Feigenbaum, and Martin Strauss.
Compliance checking in the PolicyMaker trust man-
agement system. In Ray Hirschfeld, editor, Proc.
Second International Conf. on Financial Cryptogra-
phy, FC ’98, pages 254-274. Springer, 1998.
Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. MIT
Press/McGraw-Hill, 1990.

Gillian Elcock. Web-based user interface for
a Simple Distributed Security Infrastructure
(SDSI). Master’s thesis, EECS Dept., Mas-
sachusetts Institute of Technology, June 1997. See
http://theory.lcs.mit.edu/"cis/theses/
elcock-masters.ps.

Jean-Emile Elien. Certificate discovery using
SPKI/SDSI 2.0 certificates. Master’s thesis, EECS
Dept; Massachusetts Institute of Technology, May
1998. See http://theory.lcs.mit.edu/"cis/
theses/elien-masters.pdf.

Carl M. Ellison. RFC 2692: SPKI require-
ments. The Internet Society, September 1999. See
ftp://ftp.isi.edu/in-notes/rfc2692.txt.

Carl M. Ellison. SPKI/SDSI
certificate documentation. See
http://world.std.com/“cme/html/spki.html.,
2001.

Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian Thomas, and Tatu Ylo-
nen. RFC 2693: SPKI Certificate Theory.
The Internet Society, September 1999. See
ftp://ftp.isi.edu/in-notes/rfc2693.txt.

Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian Thomas, and Tatu
Ylonen. Simple Public Key Certificate.
The Internet Society, March 1998. See
http://www.clark.net/pub/cme/spki.txt; This is
draft-ietf-spki-cert-structure-05.txt.

REFERENCES

[14]

[16]

[17]

[20]

[23]

Carl M. Ellison, Bill Frantz, Butler Lampson, Ron
Rivest, Brian Thomas, and Tatu Ylonen. SPKI
Ezamples. The Internet Society, March 1998. See
http://www.clark.net/pub/cme/examples. txt;
This is draft-ietf-spki-cert-examples-01.txt.

Warwick Ford and Michael S. Baum. Secure Elec-
tronic Commerce: Building the Infrastructure for
Digital Signatures and Encryption. Prentice-Hall,
1997.

Matthew H. Fredette. An implementation of
SDSI-the Simple Distributed Security Infrastruc-
ture. Master’s thesis, EECS Dept., Mas-
sachusetts Institute of Technology, May 1997. See
http://theory.lcs.mit.edu/"cis/theses/
fredette-masters.ps.

Joseph Y. Halpern and Ron van der Mey-

den. A logic for SDSI's linked local name
spaces. In Proceedings 12th IEEE Com-
puter Society Security Foundations Workshop

(CSFW-12), pages 111-122, 1999. Available at:
http://www.cs.cornell.edu/home/halpern/
abstract.html#conf110.

M. Harrison, W. Ruzzo, and J. Ullman. Protection
in operating systems. Communications of the ACM,
19(8), 1976.

Jon Howell and David Kotz. A formal seman-
tics for spki. In Proceedings of the Sizth Euro-
pean Symposium on Research in Computer Secu-
rity (ESORICS 2000), pages 140-158, 2000. Lec-
ture Notes in Computer Science #1895, Available at:
http://www.cs.dartmouth.edu/" jonh/research/
delegation/esorics-abs.pdf.

Sim-
See

Internet Engineering Task Force.
ple Public Key Infrastructure (spki).
http://www.ietf.org/html.charters/
spki-charter.html., 1997.

A. K. Jones, R. J. Lipton, and L. Snyder. A linear
time algorithm for deciding security. In Proc. FOCS
76, pages 33-41. IEEE, 1976.

Butler Lampson, Martin Abadi, Michael Burrows, ,
and Edward Wobber. Authentication in distributed
systems: Theory and practice. TOCS, 10(4):265—
310, November 1992.

Ninghui Li. Local names in SPKI/SDSI. In Pro-
ceedings of the 13th IEEE Computer Security Foun-
dations Workshop (CSFW-18), pages 2-15. IEEE
Computer Society Press, 2000.

[24]

[27]

[28]

26

Andrew J. Maywah. An implementation of
a secure web client using SPKI/SDSI certifi-
cates. Master’s thesis, EECS Dept; Mas-
sachusetts Institute of Technology, June 2000. See
http://theory.lcs.mit.edu/"cis/
theses/maywah-masters.ps.

Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

Alexander Morcos. A Java implementation
of Simple Distributed Security Infrastruc-
ture. Master’s thesis, EECS Dept., Mas-
sachusetts Institute of Technology, May 1998.

See http://theory.lcs.mit.edu/"cis/theses/
morcos-masters.ps.

Ronald L. Rivest. Cryptography and Informa-
tion Security Group Research Project: A Sim-
ple Distributed Security Infrastructure (SDSI).
See http://theory.lcs.mit.edu/"cis/sdsi.html.,
1996.

Ronald L. Rivest and Butler Lampson. SDSI-a
simple distributed security infrastructure. See
http://theory.lcs.mit.edu/ rivest/sdsil0.ps.,
August 1996.

