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Abstract

Many existing approaches to collaborative filtering caritregihandle very large
datasets nor easily deal with users who have very few ratihg¢his paper we
present the Probabilistic Matrix Factorization (PMF) mioglkich scales linearly
with the number of observations and, more importantly, greng well on the
large, sparse, and very imbalanced Netflix dataset. Wedughktend the PMF
model to include an adaptive prior on the model parameteissapw how the
model capacity can be controlled automatically. Finallg imtroduce a con-
strained version of the PMF model that is based on the assomtpiit users who
have rated similar sets of movies are likely to have simitefgrences. The result-
ing model is able to generalize considerably better forsiagth very few ratings.
When the predictions of multiple PMF models are linearly bamed with the
predictions of Restricted Boltzmann Machines models, weese an error rate
of 0.8861, that is nearly 7% better than the score of Netfows system.

1 Introduction

One of the most popular approaches to collaborative figeisnbased on low-dimensional factor
models. The idea behind such models is that attitudes oefaetes of a user are determined by
a small number of unobserved factors. In a linear factor hi@daser’s preferences are modeled
by linearly combining item factor vectors using user-sfiecioefficients. For example, fav¥ users
andM movies, theV x M preference matrix is given by the product of aiy x D user coefficient
matrix UT and aD x M factor matrixV' [7]. Training such a model amounts to finding the best
rank-D approximation to the observed x M target matrixk under the given loss function.

A variety of probabilistic factor-based models has beeppsed recently [2, 3, 4]. All these models
can be viewed as graphical models in which hidden factomabéas have directed connections to
variables that represent user ratings. The major drawbfslal models is that exact inference is
intractable [12], which means that potentially slow or io@@te approximations are required for
computing the posterior distribution over hidden factorsuch models.

Low-rank approximations based on minimizing the sum-sediaistance can be found using Sin-
gular Value Decomposition (SVD). SVD finds the matfix= U7V of the given rank which min-
imizes the sum-squared distance to the target matriSince most real-world datasets are sparse,
most entries inRk will be missing. In those cases, the sum-squared distanoeniputed only for
the observed entries of the target matfix As shown by [9], this seemingly minor modification
results in a difficult non-convex optimization problem whicannot be solved using standard SVD
implementations.

Instead of constraining the rank of the approximation mafti= U7V, i.e. the number of factors,
[10] proposed penalizing the norms @fand V. Learning in this model, however, requires solv-
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Figure 1: The left panel shows the graphical model for Probabilistatii Factorization (PMF). The right
panel shows the graphical model for constrained PMF.

ing a sparse semi-definite program (SDP), making this apghrodeasible for datasets containing
millions of observations.

Many of the collaborative filtering algorithms mentionecbab have been applied to modelling
user ratings on the Netflix Prize dataset that contains 880 %ers, 17,770 movies, and over 100
million observations (user/movie/rating triples). Howewnone of these methods have proved to
be particularly successful for two reasons. First, nondefabove-mentioned approaches, except
for the matrix-factorization-based ones, scale well tgdadatasets. Second, most of the existing
algorithms have trouble making accurate predictions fersieho have very few ratings. Acommon
practice in the machine learning community is to remove sdirs with fewer than some minimal
number of ratings. Consequently, the results reported estdndard datasets, such as MovieLens
and EachMovie, then seem impressive because the most Witfases have been removed. For
example, the Netflix dataset is very imbalanced, with “igfrent” users rating less than 5 movies,
while “frequent” users rating over 10,000 movies. Howesérce the standardized test set includes
the complete range of users, the Netflix dataset providesca more realistic and useful benchmark
for collaborative filtering algorithms.

The goal of this paper is to present probabilistic algorghtirat scale linearly with the number of
observations and perform well on very sparse and imbaladatets, such as the Netflix dataset.
In Section 2 we present the Probabilistic Matrix Factoi@a{PMF) model that models the user
preference matrix as a product of two lower-rank user andiemmatrices. In Section 3, we extend
the PMF model to include adaptive priors over the movie arat fesature vectors and show how
these priors can be used to control model complexity auticaigt In Section 4 we introduce a
constrained version of the PMF model that is based on thergstsan that users who rate similar
sets of movies have similar preferences. In Section 5 wertép® experimental results that show
that PMF considerably outperforms standard SVD models. [g¢eshow that constrained PMF and
PMF with learnable priors improve model performance sigaiftly. Our results demonstrate that
constrained PMF is especially effective at making bettedjmtions for users with few ratings.

2 Probabilistic Matrix Factorization (PMF)

Suppose we hav&/ movies,N users, and integer rating values from 1A3. Let R;; represent
the rating of usei for movie j, U € RP>*N andV € RP*M pe latent user and movie feature
matrices, with column vector$; andV; representing user-specific and movie-specific latent featu
vectors respectively. Since model performance is meadwyemmputing the root mean squared
error (RMSE) on the test set we first adopt a probabilistiedinmodel with Gaussian observation
noise (see fig. 1, left panel). We define the conditionaliigtion over the observed ratings as
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'Real-valued ratings can be handled just as easily by the Isiddecribed in this paper.



whereN (z|u, o%) is the probability density function of the Gaussian disttibn with meary: and
variances?, andI;; is the indicator function that is equal to 1 if userated moviej and equal to
0 otherwise. We also place zero-mean spherical Gaussiars pti, 11] on user and movie feature
vectors:

N M
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The log of the posterior distribution over the user and méséures is given by
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where(C' is a constant that does not depend on the parameters. Maxintie log-posterior over
movie and user features with hyperparameters (i.e. therodisen noise variance and prior vari-
ances) kept fixed is equivalent to minimizing the sum-ofasqd-errors objective function with
guadratic regularization terms:
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where\y = o%/c}, Ay = o?/o%, and|| - ||%,., denotes the Frobenius norm. A local minimum
of the objective function given by Eqg. 4 can be found by perfioig gradient descent il andV'.
Note that this model can be viewed as a probabilistic exbensiithe SVD model, since if all ratings
have been observed, the objective given by Eq. 4 reduces t6\ID objective in the limit of prior
variances going to infinity.

In our experiments, instead of using a simple linear-Ganssiodel, which can make predictions
outside of the range of valid rating values, the dot prodetiieen user- and movie-specific feature
vectors is passed through the logistic functign) = 1/(1 + exp(—z)), which makes it possible to
bound the range of predictions
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We map the ratings, ..., K to the interval[0, 1] using the functiort(z) = (z — 1)/(K — 1), so
that the range of valid rating values matches the range dfigtiens our model makes. Minimizing
the objective function given above using steepest desakasttime linear in the number of obser-
vations. A simple implementation of this algorithm in Médtlallows us to make one sweep through
the entire Netflix dataset in less than an hour when the maegtirained has 30 factors.

3 Automatic Complexity Control for PMF Models

Capacity control is essential to making PMF models germraliell. Given sufficiently many fac-
tors, a PMF model can approximate any given matrix arbiyrarell. The simplest way to control
capacity of a PMF model is by changing the dimensionalityeattfire vectors. However, when the
dataset is unbalanced, i.e. the number of observatiorersigignificantly among different rows or
columns, this approach fails, since any single number dufeadimensions will be too high for
some feature vectors and too low for others. Regularizgggzameters such ag; and\y defined
above provide a more flexible approach to regularizationhdzs the simplest way to find suitable
values for these parameters is to consider a set of reasopataimeter values, train a model for each
setting of the parameters in the set, and choose the modegi¢hfarms best on the validation set.
The main drawback of this approach is that it is computatlgeapensive, since instead of training
a single model we have to train a multitude of models. We withg that the method proposed by



[6], originally applied to neural networks, can be used ttedaine suitable values for the regular-
ization parameters of a PMF model automatically withoutgigantly affecting the time needed to
train the model.

As shown above, the problem of approximating a matrix initheense by a product of two low-rank
matrices that are regularized by penalizing their Frobenrm can be viewed as MAP estimation
in a probabilistic model with spherical Gaussian priors lo@ tows of the low-rank matrices. The
complexity of the model is controlled by the hyperparansetéine noise variance? and the the
parameters of the priors{, ando? above). Introducing priors for the hyperparameters andimax
mizing the log-posterior of the model over both parametadsteyperparameters as suggested in [6]
allows model complexity to be controlled automaticallyd@en the training data. Using spherical
priors for user and movie feature vectors in this frameweddk to the standard form of PMF with
Ay and Ay chosen automatically. This approach to regularizatioomadlus to use methods that
are more sophisticated than the simple penalization of thbdhius norm of the feature matrices.
For example, we can use priors with diagonal or even full damge matrices as well as adjustable
means for the feature vectors. Mixture of Gaussians priansatso be handled quite easily.

In summary, we find a point estimate of parameters and hypampeters by maximizing the log-
posterior given by

Inp(U,V,0°, Oy, 0v|R) =lnp(R|U,V,0%) + Inp(U|Ov) + Inp(V|Ov)+
Inp(Oy) +Inp(OVv) + C, (6)

where©y and©y are the hyperparameters for the priors over user and moatarievectors re-
spectively and” is a constant that does not depend on the parameters or laypergters.

When the prior is Gaussian, the hyperparameters can beagpied closed form if the movie and
user feature vectors are kept fixed. So to simplify the legymie alternate between updating the
hyperparameters and updating the feature vectors usiegesteascent with the values of hyper-
parameters fixed. When the prior is a mixture of Gaussiamshyfperparameters can be updated
by performing a single step of EM. In all of our experimentswged improper priors for the hy-
perparameters, but it is easy to extend the closed form apdathandle conjugate priors for the
hyperparameters.

4 Constrained PMF

Once a PMF model has been fitted, users with very few ratinfshawe feature vectors that are
close to the prior mean, or the typical user, so the predicigdgs for those users will be close
to the movie average ratings. In this section we introducadititional way of constraining user-
specific feature vectors that has a strong effect on infretusers.

LetW € RP*M pe a latent similarity constraint matrix. We define the featector for usei as:

Zkle Lik Wi
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where! is the observed indicator matrix with; taking on value 1 if usei rated moviej and 0
otherwisé. Intuitively, thei*" column of thel’’ matrix captures the effect of a user having rated a
particular movie has on the prior mean of the user’s feataotor. As a result, users that have seen
the same (or similar) movies will have similar prior distritons for their feature vectors. Note that
Y; can be seen as the offset added to the mean of the prior disrikto get the feature vectdr;

for the user. In the unconstrained PMF modeg] andY; are equal because the prior mean is fixed
at zero (see fig. 1). We now define the conditional distributeer the observed ratings as

U =Y+ (7
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2If no rating information is available about some usdre. all entries off; vector are zero, the value of the
ratio in Eq. 7 is set to zero.



We further regularize the latent similarity constraint mafV’ by placing a zero-mean spherical
Gaussian prior on it

M
p(Wlow) = T[ N(Wi0, 03, T). ©)
k=1

As with the PMF model, maximizing the log-posterior is e@lé@nt to minimizing the sum-of-
squared errors function with quadratic regularizatiomtgr
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with Ay = 02/0%, Ay = ¢?/oi, and\w = o?/o%,. We can then perform gradient descent in
Y, V, andW to minimize the objective function given by Eq. 10. The antoofitime needed to
train the constrained PMF model, as it is the case for a sifAplE model, scales linearly with the
number of observations, which allows for a fast and simplplémentation. As we show in our
experimental results section, this model performs comalilg better than a simple unconstrained
PMF model, especially on infrequent users.

5 Experimental Results

5.1 Description of the Netflix Data

According to Netflix, the data were collected between Oatoh®98 and December, 2005 and
represent the distribution of all ratings Netflix obtainedtidg this period. The training dataset
consists of 100,480,507 ratings from 480,189 randomlysehpanonymous users on 17,770 movie
titles. As part of the training data, Netflix also providefidation data, containing 1,408,395 ratings.
In addition to the training and validation data, Netflix afsovides a test set containing 2,817,131
user/movie pairs with the ratings withheld. The pairs werlected from the most recent ratings
from a subset of the users in the training dataset. To recheeanintentional overfitting to the
test set that plagues many empirical comparisons in the imaddarning literature, performance
is assessed by submitting predicted ratings to Netflix wiem thost the root mean squared error
(RMSE) on an unknown half of the test set. As a baseline, Mgtftivided the test score of its own
system trained on the same data, which is 0.9514.

To provide additional insight into the performance of diffiet algorithms we created a smaller but
much sparser dataset from the Netflix data by randomly $e{&0,000 users and 1850 movies.
The toy dataset contains 1,082,982 training and 2,462atidid user/movie pairs. Over 50% of the
users in the training dataset have less than 10 ratings.

5.2 Details of Training

To speed-up the training, instead of performing batch legrve subdivided the Netflix data into
mini-batches of size 100,000 (user/movie/rating triplasd updated the feature vectors after each
mini-batch. After trying various values for the learningrand momentum and experimenting with
various values oD, we chose to use a learning rate of 0.005, and a momentum,atBis setting

of parameters worked well for all values bfwe have tried.

5.3 Results for PMF with Adaptive Priors

To evaluate the performance of PMF models with adaptiveprie used models with 10D features.
This dimensionality was chosen in order to demonstratedban when the dimensionality of fea-
tures is relatively low, SVD-like models can still overfitdthat there are some performance gains
to be had by regularizing such models automatically. We @egban SVD model, two fixed-prior
PMF models, and two PMF models with adaptive priors. The S\uidlehwas trained to minimize
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Figure 2:Left panel: Performance of SVD, PMF and PMF with adaptivenrs;iusing 10D feature vectors, on
the full Netflix validation data. Right panel: PerformandeS¥D, Probabilistic Matrix Factorization (PMF)
and constrained PMF, using 30D feature vectors, on theatadial data. The y-axis displays RMSE (root mean
squared error), and the x-axis shows the number of epoclpgsses, through the entire training dataset.

the sum-squared distance only to the observed entries datbet matrix. The feature vectors of
the SVD model were not regularized in any way. The two fixeidqPMF models differed in their
regularization parameters: one (PMF1) had = 0.01 and Ay, = 0.001, while the other (PMF2)
hadAy = 0.001 andAy = 0.0001. The first PMF model with adaptive priors (PMFA1) had Gaus-
sian priors with spherical covariance matrices on user aoderfeature vectors, while the second
model (PMFA2) had diagonal covariance matrices. In botlegabe adaptive priors had adjustable
means. Prior parameters and noise covariances were ugaftgedvery 10 and 100 feature matrix
updates respectively. The models were compared based &MBE& on the validation set.

The results of the comparison are shown on Figure 2 (leftlpaNete that the curve for the PMF
model with spherical covariances is not shown since it isiaity identical to the curve for the model
with diagonal covariances. Comparing models based on #estoRMSE achieved over the time of
training, we see that the SVD model does almost as well as tuerately regularized PMF model
(PMF2) (0.9258 vs. 0.9253) before overfitting badly towattis end of training. While PMF1
does not overfit, it clearly underfits since it reaches the EM$only 0.9430. The models with
adaptive priors clearly outperform the competing modelhjeving the RMSE of 0.9197 (diagonal
covariances) and 0.9204 (spherical covariances). Thes#issuggest that automatic regularization
through adaptive priors works well in practice. Moreover; preliminary results for models with
higher-dimensional feature vectors suggest that the gagrformance due to the use of adaptive
priors is likely to grow as the dimensionality of feature t@s increases. While the use of diagonal
covariance matrices did not lead to a significant improveroeer the spherical covariance matrices,
diagonal covariances might be well-suited for automdgiaagularizing the greedy version of the
PMF training algorithm, where feature vectors are learnegldimension at a time.

5.4 Results for Constrained PMF

For experiments involving constrained PMF models, we ugHd f@atures D = 30), since this
choice resulted in the best model performance on the validaet. Values ofD in the range
of [20,60] produce similar results. Performance results of SVD, PN eonstrained PMF on
the toy dataset are shown on Figure 3. The feature vectors in#ialized to the same values
across all three models. For both PMF and constrained PMFelsdde regularization parameters
were set to\y = Ay = Ay = Ay = 0.002. It is clear that the simple SVD model overfits
heavily. The constrained PMF model performs much bettercamderges considerably faster than
the unconstrained PMF model. Figure 3 (right panel) shoe®ffect of constraining user-specific
features on the predictions for infrequent users. Perfommaf the PMF model for a group of
users that have fewer than 5 ratings in the training datéseigually identical to that of the movie
average algorithm that always predicts the average ratirepch movie. The constrained PMF
model, however, performs considerably better on usersfeithratings. As the number of ratings
increases, both PMF and constrained PMF exhibit similafiopeance.
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each such group. Middle panel: Distribution of users in tiantng dataset. Right panel: Performance of
constrained PMF and constrained PMF that makes use of aticaddirated/unrated information obtained
from the test dataset.

One other interesting aspect of the constrained PMF motlgi®ven if we know only what movies
the user has rated, but do not know the values of the ratihgsnbdel can make better predictions
than the movie average model. For the toy dataset, we raiygamipled an additional 50,000 users,
and for each of the users compiled a list of movies the userdiad and then discarded the actual
ratings. The constrained PMF model achieved a RMSE of 1.058%0e validation set compared to
a RMSE of 1.0726 for the simple movie average model. This i@t strongly suggests that just
knowing which movies a user rated, but not the actual ratiogs still help us to model that user’s
preferences better.

Performance results on the full Netflix dataset are simdahe results on the toy dataset. For both
the PMF and constrained PMF models the regularization peterswere settdy = \y = Ay =
Aw = 0.001. Figure 2 (right panel) shows that constrained PMF sigmifigaoutperforms the
unconstrained PMF model, achieving a RMSB®016. A simple SVD achieves a RMSE of about
0.9280 and after about 10 epochs begins to overfit. Figurefédpénel) shows that the constrained
PMF model is able to generalize considerably better forausth very few ratings. Note that over
10% of users in the training dataset have fewer than 20 mtiAg the number of ratings increases,
the effect from the offset in Eq. 7 diminishes, and both PM# eonstrained PMF achieve similar
performance.

There is a more subtle source of information in the Netfliadat. Netflix tells us in advance which
user/movie pairs occur in the test set, so we have an additiategory: movies that were viewed
but for which the rating is unknown. This is a valuable sowtiaformation about users who occur
several times in the test set, especially if they only gaveallsnumber of ratings in the training set.



The constrained PMF model can easily take this informatido account. Figure 4 (right panel)
shows that this additional source of information furthepiroves model performance.

When we linearly combine the predictions of PMF, PMF with arieble prior, and constrained
PMF, we achieve an error rate of 0.8970 on test set When the predictions of multiple PMF
models are linearly combined with the predictions of ml&tiRBM models, recently introduced
by [8], we achieve an error rate of 0.8861, that is nearly 7%ebéhan the score of Netflix’s own
system.

6 Summary and Discussion

In this paper we presented Probabilistic Matrix Factorima{PMF) and its two derivatives: PMF
with a learnable prior and the constrained PMF. We also detnated that these models can be
efficiently trained and successfully applied to a large skettaontaining over 100 million user/movie
ratings.

Efficiency in training PMF models comes from finding only pioéstimates of model parameters
and hyperparameters, instead of inferring the full postetistribution over them. If we were to
take a fully Bayesian approach, we would put hyperpriors ¢ive hyperparameters and resort to
MCMC methods [5] to perform inference. This approach wowd@bmputationally more expensive.
Preliminary results, however, strongly suggest that & fBllyesian treatment of the presented PMF
models would lead to a significant increase in the model pexdace.
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