
DRAFT. A revised version will appear in NIPS 2007.

Probabilistic Matrix Factorization

Ruslan Salakhutdinov and Andriy Mnih
Department of Computer Science, University of Toronto

6 King’s College Rd, M5S 3G4, Canada
{rsalakhu,amnih}@cs.toronto.edu

Abstract

Many existing approaches to collaborative filtering can neither handle very large
datasets nor easily deal with users who have very few ratings. In this paper we
present the Probabilistic Matrix Factorization (PMF) model which scales linearly
with the number of observations and, more importantly, performs well on the
large, sparse, and very imbalanced Netflix dataset. We further extend the PMF
model to include an adaptive prior on the model parameters and show how the
model capacity can be controlled automatically. Finally, we introduce a con-
strained version of the PMF model that is based on the assumption that users who
have rated similar sets of movies are likely to have similar preferences. The result-
ing model is able to generalize considerably better for users with very few ratings.
When the predictions of multiple PMF models are linearly combined with the
predictions of Restricted Boltzmann Machines models, we achieve an error rate
of 0.8861, that is nearly 7% better than the score of Netflix’sown system.

1 Introduction

One of the most popular approaches to collaborative filtering is based on low-dimensional factor
models. The idea behind such models is that attitudes or preferences of a user are determined by
a small number of unobserved factors. In a linear factor model, a user’s preferences are modeled
by linearly combining item factor vectors using user-specific coefficients. For example, forN users
andM movies, theN ×M preference matrixR is given by the product of anN ×D user coefficient
matrix UT and aD × M factor matrixV [7]. Training such a model amounts to finding the best
rank-D approximation to the observedN × M target matrixR under the given loss function.

A variety of probabilistic factor-based models has been proposed recently [2, 3, 4]. All these models
can be viewed as graphical models in which hidden factor variables have directed connections to
variables that represent user ratings. The major drawback of such models is that exact inference is
intractable [12], which means that potentially slow or inaccurate approximations are required for
computing the posterior distribution over hidden factors in such models.

Low-rank approximations based on minimizing the sum-squared distance can be found using Sin-
gular Value Decomposition (SVD). SVD finds the matrixR̂ = UT V of the given rank which min-
imizes the sum-squared distance to the target matrixR. Since most real-world datasets are sparse,
most entries inR will be missing. In those cases, the sum-squared distance iscomputed only for
the observed entries of the target matrixR. As shown by [9], this seemingly minor modification
results in a difficult non-convex optimization problem which cannot be solved using standard SVD
implementations.

Instead of constraining the rank of the approximation matrix R̂ = UT V , i.e. the number of factors,
[10] proposed penalizing the norms ofU andV . Learning in this model, however, requires solv-

1

UV j i

R ij

j=1,...,M
i=1,...,N

Vσ Uσ

σ

iY

V j

R ij

j=1,...,M

U i iI

i=1,...,N

Vσ
Uσ

W

k=1,...,M

k

Wσ

σ

Figure 1: The left panel shows the graphical model for Probabilistic Matrix Factorization (PMF). The right
panel shows the graphical model for constrained PMF.

ing a sparse semi-definite program (SDP), making this approach infeasible for datasets containing
millions of observations.

Many of the collaborative filtering algorithms mentioned above have been applied to modelling
user ratings on the Netflix Prize dataset that contains 480,189 users, 17,770 movies, and over 100
million observations (user/movie/rating triples). However, none of these methods have proved to
be particularly successful for two reasons. First, none of the above-mentioned approaches, except
for the matrix-factorization-based ones, scale well to large datasets. Second, most of the existing
algorithms have trouble making accurate predictions for users who have very few ratings. A common
practice in the machine learning community is to remove all users with fewer than some minimal
number of ratings. Consequently, the results reported on the standard datasets, such as MovieLens
and EachMovie, then seem impressive because the most difficult cases have been removed. For
example, the Netflix dataset is very imbalanced, with “infrequent” users rating less than 5 movies,
while “frequent” users rating over 10,000 movies. However,since the standardized test set includes
the complete range of users, the Netflix dataset provides a much more realistic and useful benchmark
for collaborative filtering algorithms.

The goal of this paper is to present probabilistic algorithms that scale linearly with the number of
observations and perform well on very sparse and imbalanceddatasets, such as the Netflix dataset.
In Section 2 we present the Probabilistic Matrix Factorization (PMF) model that models the user
preference matrix as a product of two lower-rank user and movie matrices. In Section 3, we extend
the PMF model to include adaptive priors over the movie and user feature vectors and show how
these priors can be used to control model complexity automatically. In Section 4 we introduce a
constrained version of the PMF model that is based on the assumption that users who rate similar
sets of movies have similar preferences. In Section 5 we report the experimental results that show
that PMF considerably outperforms standard SVD models. We also show that constrained PMF and
PMF with learnable priors improve model performance significantly. Our results demonstrate that
constrained PMF is especially effective at making better predictions for users with few ratings.

2 Probabilistic Matrix Factorization (PMF)

Suppose we haveM movies,N users, and integer rating values from 1 toK1. Let Rij represent
the rating of useri for movie j, U ∈ RD×N andV ∈ RD×M be latent user and movie feature
matrices, with column vectorsUi andVj representing user-specific and movie-specific latent feature
vectors respectively. Since model performance is measuredby computing the root mean squared
error (RMSE) on the test set we first adopt a probabilistic linear model with Gaussian observation
noise (see fig. 1, left panel). We define the conditional distribution over the observed ratings as

p(R|U, V, σ2) =

N
∏

i=1

M
∏

j=1

[

N (Rij |U
T
i Vj , σ

2)

]Iij

, (1)

1Real-valued ratings can be handled just as easily by the models described in this paper.

2

whereN (x|µ, σ2) is the probability density function of the Gaussian distribution with meanµ and
varianceσ2, andIij is the indicator function that is equal to 1 if useri rated moviej and equal to
0 otherwise. We also place zero-mean spherical Gaussian priors [1, 11] on user and movie feature
vectors:

p(U |σ2

U) =

N
∏

i=1

N (Ui|0, σ2

UI), p(V |σ2

V) =

M
∏

j=1

N (Vj |0, σ2

V I). (2)

The log of the posterior distribution over the user and moviefeatures is given by

ln p(U, V |R, σ2, σ2

V , σ2

U) = −
1

2σ2

N
∑

i=1

M
∑

j=1

Iij(Rij − UT
i Vj)

2 −
1

2σ2

U

N
∑

i=1

UT
i Ui −

1

2σ2

V

M
∑

j=1

V T
j Vj

−
1

2









N
∑

i=1

M
∑

j=1

Iij



 lnσ2 + ND lnσ2

U + MD lnσ2

V



 + C, (3)

whereC is a constant that does not depend on the parameters. Maximizing the log-posterior over
movie and user features with hyperparameters (i.e. the observation noise variance and prior vari-
ances) kept fixed is equivalent to minimizing the sum-of-squared-errors objective function with
quadratic regularization terms:

E =
1

2

N
∑

i=1

M
∑

j=1

Iij

(

Rij − UT
i Vj

)2

+
λU

2

N
∑

i=1

‖ Ui ‖
2

Fro +
λV

2

M
∑

j=1

‖ Vj ‖2

Fro, (4)

whereλU = σ2/σ2

U , λV = σ2/σ2

V , and‖ · ‖2

Fro denotes the Frobenius norm. A local minimum
of the objective function given by Eq. 4 can be found by performing gradient descent inU andV .
Note that this model can be viewed as a probabilistic extension of the SVD model, since if all ratings
have been observed, the objective given by Eq. 4 reduces to the SVD objective in the limit of prior
variances going to infinity.

In our experiments, instead of using a simple linear-Gaussian model, which can make predictions
outside of the range of valid rating values, the dot product between user- and movie-specific feature
vectors is passed through the logistic functiong(x) = 1/(1+ exp(−x)), which makes it possible to
bound the range of predictions

p(R|U, V, σ2) =

N
∏

i=1

M
∏

j=1

[

N (Rij |g(UT
i Vj), σ

2)

]Iij

. (5)

We map the ratings1, ..., K to the interval[0, 1] using the functiont(x) = (x − 1)/(K − 1), so
that the range of valid rating values matches the range of predictions our model makes. Minimizing
the objective function given above using steepest descent takes time linear in the number of obser-
vations. A simple implementation of this algorithm in Matlab allows us to make one sweep through
the entire Netflix dataset in less than an hour when the model being trained has 30 factors.

3 Automatic Complexity Control for PMF Models

Capacity control is essential to making PMF models generalize well. Given sufficiently many fac-
tors, a PMF model can approximate any given matrix arbitrarily well. The simplest way to control
capacity of a PMF model is by changing the dimensionality of feature vectors. However, when the
dataset is unbalanced, i.e. the number of observations differs significantly among different rows or
columns, this approach fails, since any single number of feature dimensions will be too high for
some feature vectors and too low for others. Regularizationparameters such asλU andλV defined
above provide a more flexible approach to regularization. Perhaps the simplest way to find suitable
values for these parameters is to consider a set of reasonable parameter values, train a model for each
setting of the parameters in the set, and choose the model that performs best on the validation set.
The main drawback of this approach is that it is computationally expensive, since instead of training
a single model we have to train a multitude of models. We will show that the method proposed by

3

[6], originally applied to neural networks, can be used to determine suitable values for the regular-
ization parameters of a PMF model automatically without significantly affecting the time needed to
train the model.

As shown above, the problem of approximating a matrix in theL2 sense by a product of two low-rank
matrices that are regularized by penalizing their Frobenius norm can be viewed as MAP estimation
in a probabilistic model with spherical Gaussian priors on the rows of the low-rank matrices. The
complexity of the model is controlled by the hyperparameters: the noise varianceσ2 and the the
parameters of the priors (σ2

U andσ2

V above). Introducing priors for the hyperparameters and maxi-
mizing the log-posterior of the model over both parameters and hyperparameters as suggested in [6]
allows model complexity to be controlled automatically based on the training data. Using spherical
priors for user and movie feature vectors in this framework leads to the standard form of PMF with
λU andλV chosen automatically. This approach to regularization allows us to use methods that
are more sophisticated than the simple penalization of the Frobenius norm of the feature matrices.
For example, we can use priors with diagonal or even full covariance matrices as well as adjustable
means for the feature vectors. Mixture of Gaussians priors can also be handled quite easily.

In summary, we find a point estimate of parameters and hyperparameters by maximizing the log-
posterior given by

ln p(U, V, σ2, ΘU , ΘV |R) = ln p(R|U, V, σ2) + ln p(U |ΘU) + ln p(V |ΘV)+

ln p(ΘU) + ln p(ΘV) + C, (6)

whereΘU andΘV are the hyperparameters for the priors over user and movie feature vectors re-
spectively andC is a constant that does not depend on the parameters or hyperparameters.

When the prior is Gaussian, the hyperparameters can be updated in a closed form if the movie and
user feature vectors are kept fixed. So to simplify the learning we alternate between updating the
hyperparameters and updating the feature vectors using steepest ascent with the values of hyper-
parameters fixed. When the prior is a mixture of Gaussians, the hyperparameters can be updated
by performing a single step of EM. In all of our experiments weused improper priors for the hy-
perparameters, but it is easy to extend the closed form updates to handle conjugate priors for the
hyperparameters.

4 Constrained PMF

Once a PMF model has been fitted, users with very few ratings will have feature vectors that are
close to the prior mean, or the typical user, so the predictedratings for those users will be close
to the movie average ratings. In this section we introduce anadditional way of constraining user-
specific feature vectors that has a strong effect on infrequent users.

Let W ∈ RD×M be a latent similarity constraint matrix. We define the feature vector for useri as:

Ui = Yi +

∑M

k=1
IikWk

∑M

k=1
Iik

. (7)

whereI is the observed indicator matrix withIij taking on value 1 if useri rated moviej and 0
otherwise2. Intuitively, theith column of theW matrix captures the effect of a user having rated a
particular movie has on the prior mean of the user’s feature vector. As a result, users that have seen
the same (or similar) movies will have similar prior distributions for their feature vectors. Note that
Yi can be seen as the offset added to the mean of the prior distribution to get the feature vectorUi

for the useri. In the unconstrained PMF modelUi andYi are equal because the prior mean is fixed
at zero (see fig. 1). We now define the conditional distribution over the observed ratings as

p(R|Y, V, W, σ2) =

N
∏

i=1

M
∏

j=1

[

N (Rij |g
([

Yi +

∑M

k=1
IikWk

∑M

k=1
Iik

]T
Vj

)

, σ2)

]Iij

. (8)

2If no rating information is available about some useri, i.e. all entries ofIi vector are zero, the value of the
ratio in Eq. 7 is set to zero.

4

We further regularize the latent similarity constraint matrix W by placing a zero-mean spherical
Gaussian prior on it:

p(W |σW) =
M
∏

k=1

N (Wk|0, σ2

W I). (9)

As with the PMF model, maximizing the log-posterior is equivalent to minimizing the sum-of-
squared errors function with quadratic regularization terms:

E =
1

2

N
∑

i=1

M
∑

j=1

Iij

(

Rij − g
([

Yi +

∑M

k=1
IikWk

∑M

k=1
Iik

]T
Vj

))2

(10)

+
λY

2

N
∑

i=1

‖ Yi ‖
2

Fro +
λV

2

M
∑

j=1

‖ Vj ‖2

Fro +
λW

2

M
∑

k=1

‖ Wk ‖2

Fro,

with λY = σ2/σ2

Y , λV = σ2/σ2

V , andλW = σ2/σ2

W . We can then perform gradient descent in
Y , V , andW to minimize the objective function given by Eq. 10. The amount of time needed to
train the constrained PMF model, as it is the case for a simplePMF model, scales linearly with the
number of observations, which allows for a fast and simple implementation. As we show in our
experimental results section, this model performs considerably better than a simple unconstrained
PMF model, especially on infrequent users.

5 Experimental Results

5.1 Description of the Netflix Data

According to Netflix, the data were collected between October, 1998 and December, 2005 and
represent the distribution of all ratings Netflix obtained during this period. The training dataset
consists of 100,480,507 ratings from 480,189 randomly-chosen, anonymous users on 17,770 movie
titles. As part of the training data, Netflix also provides validation data, containing 1,408,395 ratings.
In addition to the training and validation data, Netflix alsoprovides a test set containing 2,817,131
user/movie pairs with the ratings withheld. The pairs were selected from the most recent ratings
from a subset of the users in the training dataset. To reduce the unintentional overfitting to the
test set that plagues many empirical comparisons in the machine learning literature, performance
is assessed by submitting predicted ratings to Netflix who then post the root mean squared error
(RMSE) on an unknown half of the test set. As a baseline, Netflix provided the test score of its own
system trained on the same data, which is 0.9514.

To provide additional insight into the performance of different algorithms we created a smaller but
much sparser dataset from the Netflix data by randomly selecting 50,000 users and 1850 movies.
The toy dataset contains 1,082,982 training and 2,462 validation user/movie pairs. Over 50% of the
users in the training dataset have less than 10 ratings.

5.2 Details of Training

To speed-up the training, instead of performing batch learning we subdivided the Netflix data into
mini-batches of size 100,000 (user/movie/rating triples), and updated the feature vectors after each
mini-batch. After trying various values for the learning rate and momentum and experimenting with
various values ofD, we chose to use a learning rate of 0.005, and a momentum of 0.9, as this setting
of parameters worked well for all values ofD we have tried.

5.3 Results for PMF with Adaptive Priors

To evaluate the performance of PMF models with adaptive priors we used models with 10D features.
This dimensionality was chosen in order to demonstrate thateven when the dimensionality of fea-
tures is relatively low, SVD-like models can still overfit and that there are some performance gains
to be had by regularizing such models automatically. We compared an SVD model, two fixed-prior
PMF models, and two PMF models with adaptive priors. The SVD model was trained to minimize

5

0 10 20 30 40 50 60 70 80 90 100
0.91

0.92

0.93

0.94

0.95

0.96

0.97

Epochs

R
M

S
E

PMF1

PMF2

Netflix
Baseline Score

SVD

PMFA1

0 5 10 15 20 25 30 35 40 45 50 55 60
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Epochs

R
M

S
E

PMF

Constrained
PMF

Netflix
Baseline Score

SVD

The Netflix Dataset10D 30D

Figure 2:Left panel: Performance of SVD, PMF and PMF with adaptive priors, using 10D feature vectors, on
the full Netflix validation data. Right panel: Performance of SVD, Probabilistic Matrix Factorization (PMF)
and constrained PMF, using 30D feature vectors, on the validation data. The y-axis displays RMSE (root mean
squared error), and the x-axis shows the number of epochs, orpasses, through the entire training dataset.

the sum-squared distance only to the observed entries of thetarget matrix. The feature vectors of
the SVD model were not regularized in any way. The two fixed-prior PMF models differed in their
regularization parameters: one (PMF1) hadλU = 0.01 andλV = 0.001, while the other (PMF2)
hadλU = 0.001 andλV = 0.0001. The first PMF model with adaptive priors (PMFA1) had Gaus-
sian priors with spherical covariance matrices on user and movie feature vectors, while the second
model (PMFA2) had diagonal covariance matrices. In both cases, the adaptive priors had adjustable
means. Prior parameters and noise covariances were updatedafter every 10 and 100 feature matrix
updates respectively. The models were compared based on theRMSE on the validation set.

The results of the comparison are shown on Figure 2 (left panel). Note that the curve for the PMF
model with spherical covariances is not shown since it is virtually identical to the curve for the model
with diagonal covariances. Comparing models based on the lowest RMSE achieved over the time of
training, we see that the SVD model does almost as well as the moderately regularized PMF model
(PMF2) (0.9258 vs. 0.9253) before overfitting badly towardsthe end of training. While PMF1
does not overfit, it clearly underfits since it reaches the RMSE of only 0.9430. The models with
adaptive priors clearly outperform the competing models, achieving the RMSE of 0.9197 (diagonal
covariances) and 0.9204 (spherical covariances). These results suggest that automatic regularization
through adaptive priors works well in practice. Moreover, our preliminary results for models with
higher-dimensional feature vectors suggest that the gap inperformance due to the use of adaptive
priors is likely to grow as the dimensionality of feature vectors increases. While the use of diagonal
covariance matrices did not lead to a significant improvement over the spherical covariance matrices,
diagonal covariances might be well-suited for automatically regularizing the greedy version of the
PMF training algorithm, where feature vectors are learned one dimension at a time.

5.4 Results for Constrained PMF

For experiments involving constrained PMF models, we used 30D features (D = 30), since this
choice resulted in the best model performance on the validation set. Values ofD in the range
of [20, 60] produce similar results. Performance results of SVD, PMF, and constrained PMF on
the toy dataset are shown on Figure 3. The feature vectors were initialized to the same values
across all three models. For both PMF and constrained PMF models the regularization parameters
were set toλU = λY = λV = λW = 0.002. It is clear that the simple SVD model overfits
heavily. The constrained PMF model performs much better andconverges considerably faster than
the unconstrained PMF model. Figure 3 (right panel) shows the effect of constraining user-specific
features on the predictions for infrequent users. Performance of the PMF model for a group of
users that have fewer than 5 ratings in the training datasetsis virtually identical to that of the movie
average algorithm that always predicts the average rating of each movie. The constrained PMF
model, however, performs considerably better on users withfew ratings. As the number of ratings
increases, both PMF and constrained PMF exhibit similar performance.

6

0 20 40 60 80 100 120 140 160 180 200
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

Epochs

R
M

S
E

PMF

Constrained
PMF

SVD

 1−5 6−10 11−20 21−40 41−80 81−160 >161
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Number of Observed Ratings

R
M

S
E PMF

Constrained
PMF

Movie Average

Toy Dataset

Figure 3:Left panel: Performance of SVD, Probabilistic Matrix Factorization (PMF) and constrained PMF on
the validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of
epochs, or passes, through the entire training dataset. Right panel: Performance of constrained PMF, PMF, and
movie average algorithm that always predicts the average rating of each movie. The users were grouped by the
number of observed ratings in the training data.

 1−5 6−10 11−20 21−40 41−80 81−160 161−320 321−640 >641
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Number of Observed Ratings

R
M

S
E

PMF

Constrained
PMF

Movie
Average

 1−5 6−10 11−20 21−40 41−80 81−160 161−320 321−640 >641
0

2

4

6

8

10

12

14

16

18

20

Number of Observed Ratings

U
se

rs
 (

%
)

0 5 10 15 20 25 30 35 40 45 50 55 60
0.9

0.902

0.904

0.906

0.908

0.91

0.912

0.914

0.916

0.918

0.92

Epochs

R
M

S
E

Constrained PMF
(using Test rated/unrated id)

Constrained
PMF

Figure 4:Left panel: Performance of constrained PMF, PMF and movie average algorithm that always predicts
the average rating of each movie. The users were grouped by the number of observed rating in the training data,
with the x-axis showing those groups, and the y-axis displaying RMSE on the full Netflix validation data for
each such group. Middle panel: Distribution of users in the training dataset. Right panel: Performance of
constrained PMF and constrained PMF that makes use of an additional rated/unrated information obtained
from the test dataset.

One other interesting aspect of the constrained PMF model isthat even if we know only what movies
the user has rated, but do not know the values of the ratings, the model can make better predictions
than the movie average model. For the toy dataset, we randomly sampled an additional 50,000 users,
and for each of the users compiled a list of movies the user hasrated and then discarded the actual
ratings. The constrained PMF model achieved a RMSE of 1.0510on the validation set compared to
a RMSE of 1.0726 for the simple movie average model. This experiment strongly suggests that just
knowing which movies a user rated, but not the actual ratings, can still help us to model that user’s
preferences better.

Performance results on the full Netflix dataset are similar to the results on the toy dataset. For both
the PMF and constrained PMF models the regularization parameters were set toλU = λY = λV =
λW = 0.001. Figure 2 (right panel) shows that constrained PMF significantly outperforms the
unconstrained PMF model, achieving a RMSE of0.9016. A simple SVD achieves a RMSE of about
0.9280 and after about 10 epochs begins to overfit. Figure 4 (left panel) shows that the constrained
PMF model is able to generalize considerably better for users with very few ratings. Note that over
10% of users in the training dataset have fewer than 20 ratings. As the number of ratings increases,
the effect from the offset in Eq. 7 diminishes, and both PMF and constrained PMF achieve similar
performance.

There is a more subtle source of information in the Netflix dataset. Netflix tells us in advance which
user/movie pairs occur in the test set, so we have an additional category: movies that were viewed
but for which the rating is unknown. This is a valuable sourceof information about users who occur
several times in the test set, especially if they only gave a small number of ratings in the training set.

7

The constrained PMF model can easily take this information into account. Figure 4 (right panel)
shows that this additional source of information further improves model performance.

When we linearly combine the predictions of PMF, PMF with a learnable prior, and constrained
PMF, we achieve an error rate of 0.8970 on thetest set. When the predictions of multiple PMF
models are linearly combined with the predictions of multiple RBM models, recently introduced
by [8], we achieve an error rate of 0.8861, that is nearly 7% better than the score of Netflix’s own
system.

6 Summary and Discussion

In this paper we presented Probabilistic Matrix Factorization (PMF) and its two derivatives: PMF
with a learnable prior and the constrained PMF. We also demonstrated that these models can be
efficiently trained and successfully applied to a large dataset containing over 100 million user/movie
ratings.

Efficiency in training PMF models comes from finding only point estimates of model parameters
and hyperparameters, instead of inferring the full posterior distribution over them. If we were to
take a fully Bayesian approach, we would put hyperpriors over the hyperparameters and resort to
MCMC methods [5] to perform inference. This approach would be computationally more expensive.
Preliminary results, however, strongly suggest that a fully Bayesian treatment of the presented PMF
models would lead to a significant increase in the model performance.

Acknowledgments

We thank Vinod Nair and Geoffrey Hinton for many helpful discussions. This research was sup-
ported by NSERC.

References

[1] Delbert Dueck and Brendan Frey. Probabilistic sparse matrix factorization. Technical Report PSI TR
2004-023, Dept. of Computer Science, University of Toronto, 2004.

[2] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of the 15th Conference on
Uncertainty in AI, pages 289–296, San Fransisco, California, 1999. Morgan Kaufmann.

[3] Benjamin Marlin. Modeling user rating profiles for collaborative filtering. In Sebastian Thrun,
Lawrence K. Saul, and Bernhard Schölkopf, editors,NIPS. MIT Press, 2003.

[4] Benjamin Marlin and Richard S. Zemel. The multiple multiplicative factor model for collaborative filter-
ing. In Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004), Banff,
Alberta, Canada, July 4-8, 2004. ACM, 2004.

[5] Radford M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report
CRG-TR-93-1, Department of Computer Science, University of Toronto, September 1993.

[6] S. J. Nowlan and G. E. Hinton. Simplifying neural networks by soft weight-sharing.Neural Computation,
4:473–493, 1992.

[7] Jason D. M. Rennie and Nathan Srebro. Fast maximum marginmatrix factorization for collaborative
prediction. In Luc De Raedt and Stefan Wrobel, editors,Machine Learning, Proceedings of the Twenty-
Second International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005, pages 713–719.
ACM, 2005.

[8] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted Boltzmann machines for collabo-
rative filtering. InMachine Learning, Proceedings of the Twenty-fourth International Conference (ICML
2004). ACM, 2007.

[9] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Tom Fawcett and Nina
Mishra, editors,Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003),
August 21-24, 2003, Washington, DC, USA, pages 720–727. AAAI Press, 2003.

[10] Nathan Srebro, Jason D. M. Rennie, and Tommi Jaakkola. Maximum-margin matrix factorization. In
Advances in Neural Information Processing Systems, 2004.

[11] Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component analysis. Technical
Report NCRG/97/010, Neural Computing Research Group, Aston University, September 1997.

[12] Max Welling, Michal Rosen-Zvi, and Geoffrey Hinton. Exponential family harmoniums with an applica-
tion to information retrieval. InNIPS 17, pages 1481–1488, Cambridge, MA, 2005. MIT Press.

8

