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Abstract. RNA-seq technology enables large-scale studies of allele-specific
expression (ASE), or the expression difference between maternal and
paternal alleles. Here, we study ASE in animals for which parental RNA-
seq data are available. While most methods for determining ASE rely on
read alignment, read alignment either leads to reference bias or requires
knowledge of genomic variants in each parental strain. When RNA-seq
data are available for both parental strains of a hybrid animal, it is
possible to infer ASE with minimal reference bias and without knowledge
of parental genomic variants. Our approach first uses parental RNA-seq
reads to discover maternal and paternal versions of transcript sequences.
Using these alternative transcript sequences as features, we estimate
abundance levels of transcripts in the hybrid animal using a modified
lasso linear regression model.
We tested our methods on synthetic data from the mouse transcriptome
and compared our results with those of Trinity, a state-of-the-art de
novo RNA-seq assembler. Our methods achieved high sensitivity and
specificity in both identifying expressed transcripts and transcripts ex-
hibiting ASE. We also ran our methods on real RNA-seq mouse data
from two F1 samples with wild-derived parental strains and were able
to validate known genes exhibiting ASE, as well as confirm the expected
maternal contribution ratios in all genes and genes on the X chromosome.
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1 Introduction

Recent advances in high-throughput RNA-seq technology have enabled the gen-
eration of massive amounts of data for investigation of the transcriptome. While
this offers exciting potential for studying known gene transcripts and discovering
new ones, it also necessitates new bioinformatic tools that can efficiently and
accurately analyze such data.

Current RNA-seq techniques generate short reads from RNA sequences at
high coverage, and the main challenge in RNA-seq analysis lies in reconstructing
transcripts and estimating their relative abundances from millions of short (35-
250 bp) read sequences. A common approach is to first map short reads onto
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a reference genome, and then estimate the abundance in each annotated gene
region. Such reference-alignment methods include TopHat [25], Cufflinks [27] and
Scripture [10], which use algorithms such as the Burrows-Wheeler transform [1]
to achieve fast read alignment. These methods are well established in the RNA-
seq community and there exist many auxiliary tools [25] [26] for downstream
analysis.

However, aligning reads to a reference genome has some disadvantages. First,
read alignment assumes samples are genetically similar to the reference genome,
and as a result, samples that deviate significantly from the reference frequently
have a large portion of unmapped reads. This bias favors mapping reads from
samples similar to the reference genome and is known as “reference bias.” Second,
alignment methods typically cannot resolve the origin of reads that map to
multiple locations in the genome, resulting in reads being arbitrarily mapped or
discarded from analysis. Suggested workarounds to the first problem of reference
bias involve creating new genome sequences, typically by incorporating known
variants, to use in place of the reference genome for read alignment [23]. How-
ever, this requires prior knowledge of genomic variants in the targeted RNA-seq
sample, which is sometimes difficult and expensive to obtain.

Another class of methods perform de novo assembly of transcriptomes using
De Bruijn graphs of k-mers from reads [7] [21]. These methods enable reconstruc-
tion of the transcriptome in species for which no reference genomic sequence is
available. While these methods offer the possibility of novel transcript discovery,
their de novo nature makes it difficult to map assembled subsequences back to
known annotated transcripts. Furthermore, estimation of transcript expression
levels in these methods is not straightforward and generally involves alignment
of assembled contigs to a reference genome [7] [21], which reintroduces the
possibility for reference bias.

Expression level estimation is particularly difficult for outbred diploid organ-
isms, since each expressed transcript may contain two different sets of alleles,
one from each parental haplotype. In some transcripts, one parental allele is
preferentially expressed over another, resulting in what is known as allele-specific
expression (ASE). It is often biologically interesting to identify genes and tran-
scripts exhibiting ASE, as well as estimate the relative expression levels of the
maternal and paternal alleles [8] [29]. Prior to the introduction of RNA-seq, ASE
studies often relied on microarray technology. Although microarrays are able to
identify genes exhibiting ASE, they generally examine a small number of genes,
with expression level estimates in highly relative terms [19] [22]. The abundance
of data from RNA-seq not only enables large-scale ASE studies incorporating
the entire transcriptome, but also provides several means for direct estimation
of more accurate expression levels, such as using alignment pile-up heights.

Current RNA-seq-based methods for analyzing ASE rely on reference tran-
scriptome alignment [23] [24], which is again subject to reference bias and re-
quires prior knowledge of genomic variants in the strains of interest. Reference
bias is particularly problematic in ASE analysis, since it can falsely enhance
relative expression in one parental strain over another.
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In the case where RNA-seq data of all three members of a mother-father-
child trio are available, we can utilize the RNA-seq data from the parental
strains and eliminate the need for prior knowledge of their genomic variants.
Here, we examine ASE in F1 mouse strains, which are first-generation offspring
of two distinct isogenic parental strains. We separately construct maternal and
paternal versions of transcripts using RNA-seq reads from the parental strains
and annotated reference transcripts, creating a set of candidate transcript se-
quences the F1 strain could express. We then estimate the expression level of each
candidate transcript in the F1 strain using a modified lasso regression model [11].
Lasso regression has been proposed by Li et al. [17] in the context of RNA-seq
isoform expression level estimation, but not in the context of estimating ASE
without reference alignment. We choose to use lasso regularization since it drives
parameters to zero, enabling us to effectively eliminate non-expressed isoforms
that have significant k-mer overlaps with expressed isoforms. We modify the
lasso penalty slightly to prefer assigning higher F1 expression levels in transcripts
with k-mers that appear frequently in the parental RNA-seq reads, due to the
assumption that most highly expressed genes in the parents should also be highly
expressed in the F1 strain.

We tested our methods on synthetic RNA-seq data from the wild-derived
mouse strains CAST/EiJ and PWK/PhJ, along with F1 offspring CASTxPWK,
with CAST/EiJ as the maternal strain and PWK/PhJ as the paternal strain. We
also tested on real RNA-seq data from a CAST/EiJ, PWK/PhJ, CASTxPWK
trio and a CAST/EiJ, WSB/EiJ, CASTxWSB trio, both using CAST/EiJ as
the maternal strain. The CAST/EiJ, PWK/PhJ, and WSB/EiJ mouse strains
are isogenic, and all three have well-annotated genomes that differ significantly
from each other and from the mouse reference sequence [30], which is largely
based on the C57BL/6J strain (NCBI37 [4]). CAST/EiJ and PWK/PhJ each
have a high variation rate of approximately one variant per 130 bp with respect
to the reference genome, and a slightly higher rate with respect to each other,
while WSB/EiJ is more similar to the reference genome with approximately one
variant per 375 bp. The genetic distance between these three strains make them
ideal candidates for studying ASE, since we expect a large percentage of reads
to contain distinguishing variants.

Table 1. Notation

y F1 k-mer profile. An n× 1 vector where yi indicates the number of times

the ith k-mer appears in the F1 sample
zM , zP maternal and paternal k-mer profiles
XM set of k-mer profiles of candidate transcripts from zM

XP set of k-mer profiles of candidate transcripts from zP

X an n×m matrix equal to [XM ∪XP ], where n is number of k-mers and m
is number of transcripts

xj k-mer profile of the jth candidate transcript

xi,j number of times the ith k-mer occurs in the jth candidate transcript

θj estimated expression level for the jth candidate transcript
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Fig. 1. Our pipeline for estimating allele-specific expression in F1 animals. (a) k-
mer profiles are created for the maternal, paternal, and F1 strains, using all available
RNA-seq reads from one sample of each strain. Each k-mer is also saved as its
reverse complement, since we do not know the directionality of the read. (b) De
Bruijn graphs are created for the maternal and paternal samples. Using annotated
reference transcripts and the parental De Bruijn graphs, we select candidate transcripts
which incorporate parental alleles from the De Bruijn graphs. (c) The k-mer profile
of the F1 sample, y, is then regressed onto the candidate parental transcripts,
{xM

1 ,x
M
2 , ...x

M
r } ∪ {xP

1 ,x
P
2 , ...x

P
s }, and we estimate the expression level θ of each

candidate transcript.
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2 Approach

In this section, we discuss the parameters and assumptions of our proposed
model and the underlying optimization problem.

2.1 Notation

Table (1) includes a description of the variables used in this paper. We denote
the k-mer profiles of maternal candidate transcripts, XM = {xM1 ,xM2 , ...xMr },
and the k-mer profiles of paternal candidate transcripts, XP = {xP1 ,xP2 , ...xPs },
jointly as X = XM∪XP , a matrix representing the k-mer profiles of all candidate
transcripts. Each candidate transcript k-mer profile is labeled as originating from
the maternal k-mer profile, the paternal k-mer profile, or both if there are no
differentiating variants between the parental k-mer profiles.

2.2 Regression model

We propose a modified lasso penalized regression model for estimating the abun-
dance of each candidate transcript, with the assumption that the F1’s k-mer
profile y can be expressed as a linear combination of its expressed transcripts
X = {x1, ...xj , ...xm} multiplied by their relative expression levels θj :

y =

m∑
j=1

θjxj . (1)

To filter out non-expressed transcripts and prevent overfitting, each candi-
date transcript is penalized by an l1-norm, parameterized by the regularization
parameter λ and the inverse of wj , where

wj = median


{zMi /xi,j ,∀xi,j > 0}, xj ∈ XM

{zPi /xi,j ,∀xi,j > 0}, xj ∈ XP

{(zMi + zPi )/xi,j ,∀xi,j > 0}, xj ∈ XP ∩XM

(2)

Therefore, transcripts that are expressed at a high level in the parental samples
are more likely to be expressed at a high level in the F1 sample as well. Our
objective function then becomes

argmin
θ

1

2

n∑
i=1

(yi −
m∑
j=1

θjxi,j)
2 + λ

m∑
j=1

θj
wj

subject to θj ≥ 0,∀j,

(3)

with each θj constrained to be nonnegative since they represent transcript ex-
pression levels.
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3 Methods

3.1 Synthetic data

We used the Flux Simulator [9] to create simulated reads from the CAST/EiJ,
PWK/PhJ, and CASTxPWK mouse genomes. We chose these two parental
strains because they are well-annotated strains that differ significantly from the
reference strain C57BL/6J and from each other. The transcript sequences for
CAST/EiJ and PWK/PhJ were created using Cufflinks’ gffread utility [27] with
genomes from the Wellcome Trust Institute [13] and transcript annotation from
the Ensembl Genome Database [3]. The positions from the reference transcript
annotation files were updated with positions to the CAST/EiJ and PWK/PhJ
genomes using MODtools [12].

We synthesized 10,000,000 100bp paired-end reads from both the CAST/EiJ
and the PWK/PhJ genomes to represent reads from a maternal CAST/EiJ
genome and a paternal PWK/EiJ genome. We specified the same set of 1000
transcripts with a positive number of expressed RNA molecules in both genomes.
In addition, we merged two sets of 5,000,000 separately synthesized reads from
both CAST/EiJ and PWK/PhJ to create a simulated F1 fastq file. From the
merged CAST/EiJ and PWK/PhJ versions of transcript sequences, the Flux
Simulator output 1156 unique transcripts sequences where at least 95% of the
sequence is covered by reads, and we define this set of 1156 transcript sequences,
representing 626 reference transcripts, as the truly expressed transcripts.

3.2 Real data

RNA from whole-brain tissues (excluding cerebellum) was extracted from 5 sam-
ples (CAST/EiJ female, PWK/PhJ male, WSB/EiJ male, CASTxPWK male
and CASTxWSB female) using the Illumina TruSeq RNA Sample Preparation
Kit v2. The barcoded cDNA from each sample was multiplexed across four
lanes and sequenced on an Illumina HiSeq 2000 to generate 100 bp paired-end
reads (2x100). This resulted in 2× 71, 291, 857 reads for the CAST/EiJ sample,
2 × 49, 877, 124 reads for the PWK/PhJ sample, 2 × 62, 712, 206 reads for the
WSB/EiJ sample, 2×77, 773, 220 reads for the CASTxPWK hybrid sample, and
2× 57, 386, 133 reads for the CASTxWSB hybrid sample. Note that the selected
samples were not true biological trios, but genetically equivalent. We also used
the same female CAST/EiJ sample as the maternal model for both F1 hybrids.

3.3 Selecting candidate transcripts

We used a greedy approach for selecting candidate transcript sequences from the
De Bruijn graphs of each parental k-mer profile. The k-mer size used for this
and subsequent analyses was 32 bp. For each of the 93,006 reference transcripts
provided by Ensembl [3], we match the reference transcript sequence to a path of
k-mers in the De Bruijn graph, allowing for a maximum number of 5 mismatches
within a sliding window of 25 bp, which is a sensible choice except in the case
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of unusually dense SNPs or indels. In the case of mismatches, we replace the
reference sequence with the sequence in the parental De Bruijn graph, thus
creating updated candidate transcript sequences which reflect variants in the
parental strains. If more than 80% of a transcript’s k-mers are found in the
De Bruijn graph, we consider it a candidate transcript. The k-mer profiles of
the selected candidate transcript sequences are then used as features in our
regularized regression model.

3.4 Coordinate descent

To optimize our objective function Eq. (3), we update θj using coordinate
descent:

θj =
max(

∑n
i=1 y

(−j)
i xi,j − λ

wj
, 0)

‖xj‖22
,where

y
(−j)
i = yi −

∑
k 6=j

θkxi,k.
(4)

Due to the high dimensional nature of our data (in real data, the number of k-
mers, n, is approximately 5×107, and the number of candidate transcripts, m, is
approximately 2× 104), updating each θj on every iteration becomes inefficient.
We therefore adapt the coordinate descent with a refined sweep algorithm as
described by Li and Osher [18], where we greedily select to update only the θj
that changes the most on every iteration. To save on computation per iteration,

we can let βj =
∑n
i=1 y

(−j)
i xi,j and precompute the matrix product XTy, so

that β can be updated at every iteration using only addition and a scalar-vector
multiplication. The algorithm is described in Eq. (5), and proof of its convergence
is provided by Li and Osher [18].

Initialize:

θ0 = 0

β0 = XTy

γ = diag(‖xj‖22)−XTX

Iterate until convergence:

θ∗ =
max(β − λ

w , 0)

‖xj‖22
j = argmax|θ∗ − θk|

Updates:

θk+1
j = θ∗j

βk+1 = βk + γj,:(θ
∗
j − θkj )

βk+1
j = βkj

(5)
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The coordinate descent algorithm terminates when the minimization ob-
jective Eq. (3) decreases by less than a threshold of 0.001 per iteration. For
computational efficiency, the value of our objective function Eq. (3) is evaluated
per τ iterations, where τ = 104 initially. We decrease τ as the objective increases,
until τ = 1 for the final iterations. This saves significant computation time since
the computation of the objective function contains a matrix multiplication and
the regular updates do not, and the convergence of the algorithm is not affected
as the updates are still being performed per iteration.

The lasso regularization parameter λ is chosen via 4-fold cross validation. It
is important to note that the value of λ depends on the mean observed values
for wj , so different values of λ could be chosen for each trio.

4 Results

We analyzed a synthetic data set to ascertain the sensitivity and specificity
of our estimation framework. We then applied our technique to two real data
sets and evaluated them based on their ability to recapitulate known biological
properties.

4.1 Synthetic data results

In our synthetic F1 sample, the Flux Simulator generated 1156 unique transcript
sequences from both the maternal and paternal haplotypes with positive expres-
sion levels, representing 626 reference transcripts. We identified 4517 candidate
parental transcript sequences from all reference mouse transcripts annotated by
Ensembl, 1055 of which were truly expressed, representing 598 out of 626 truly
expressed reference transcripts.

We selected the lasso regularization parameter λ to be 500 using 4-fold cross
validataion. We took θj = 0 to indicate transcript j was not expressed and
calculated the sensitivity and specificity of our method in identifying which
transcripts were expressed. For the chosen value of λ, we found the sensitivity
to be 0.9553 (598/626) and the specificity to be 0.9880 (91278/92385).

Of the correctly identified expressed transcripts, the true and estimated
expression levels had a Pearson correlation coefficient of 0.85, indicating high
positive correlation, as shown in Fig. (S1). To allow for comparison of relative
expression levels, we normalized both true and predicted expression levels to
have a mean value of 1 across all expressed transcripts. The mean absolute error
between true and predicted expression levels was 0.3128 for the chosen value of
λ. True positive rates, false positive rates, and mean absolute error of predicted
expression levels for different values of λ are summarized in Fig. (2).

Among the 598 correctly identified expressed transcripts, 544 had differen-
tiable paternal and maternal candidate sequences. Of these, 141 exhibited ASE,
as defined by having a maternal contribution ratio (maternal expression level
divided by total expression level) outside the range [0.4, 0.6]. Our model correctly
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Fig. 2. True positive rate vs. false positive rate for different values of λ. Each point is
colored by the mean absolute error between normalized true and estimated expression
levels for all transcripts correctly classified as expressed.

identified 109 transcripts exhibiting ASE and correctly rejected 293 transcripts
not exhibiting ASE, achieving a sensitivity of 0.77 and specificity of 0.73.

We compared our results with Trinity [7], since its de novo assembly methods
are able to separate maternal and paternal versions of transcripts better than
reference alignment-based methods.

To assemble candidate transcripts from the maternal and paternal strains,
we ran Trinity with its default parameters on the synthetic maternal CAST/EiJ
and paternal PWK/PhJ samples. Per Trinity’s downstream analysis guidelines,
we then aligned reads from the synthetic F1 sample to the assembled parental
transcript sequences using Bowtie [14] then estimated expression levels using
RSEM [16].

Trinity assembled 4215 transcript sequences from both parental strains. Fol-
lowing their guidelines to eliminate false positives, we retained 3336 transcript
sequences representing at least 1% of the per-component expression level. We
used a criterion of Levenshtein distance less than 10% of the true transcript
length to match annotated transcripts to the de novo transcripts sequences
reported by Trinity. With this criterion, only 110 out of 626 truly expressed
transcripts were present in the set of expressed transcripts found by Trinity. In
this set, the mean Levenshtein distance from each true transcript sequence to the
Trinity sequences was 0.12% of the true transcript length, with the maximum
distance being 2.6% of the true transcript length, suggesting our matching
criterion of 10% Levenshtein distance was generous.
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Out of the 110 assembled transcripts correctly identified, 81 had nonzero
expression levels, making the sensitivity for baseline expression detection 0.13.
However, of the 81 correctly identified transcripts, the Trinity-Bowtie-RSEM
pipeline produced a high correlation of 0.88 between true and estimated expres-
sion levels.

Of the 81 expressed transcripts correctly identified by Trinity, 63 originated
from reference transcripts with ASE. Trinity correctly identified 20 true positives
and 16 true negatives, with a sensitivity of 0.32 and specificity of 0.89.

4.2 Real data results

Table 2. Dimensions and Results from Real Data

CASTxPWK CASTxWSB

k-mers in merged trio k-mer profile 118,100,824 118,383,117
k-mers in candidate transcripts 42,688,910 52,715,089
k-mers in estimated expressed transcripts 42,482,315 52,162,586
candidate transcripts 23,585 29,155
estimated expressed transcripts 17,118 20,596
candidate genes 7,393 8,532
estimated expressed genes 7,148 8,242
expressed genes with isoforms from both parents 4,065 5,183

We applied our methods to a male CASTxPWK F1 sample and a female
CASTxWSB F1 sample. We first created De Bruijn graphs for a CAST/EiJ
female, a PWK/EiJ male, and a WSB/EiJ male, representing the parental De
Bruijn graphs of our two F1 samples. To eliminate erroneous reads in each
strain, we filtered k-mers appearing fewer than 5 times. Using Algorithm 2,
we selected 15,287 candidate transcripts from the CAST/EiJ De Bruijn graph,
9,852 candidate transcripts from the PWK/EiJ graph, and 16,023 candidate
transcripts from the WSB/EiJ graph. For each F1 sample, transcript sequences
without differentiating variants between the two parental strains were merged
into a single candidate transcript. This resulted in 23,585 candidate transcripts
for CASTxPWK and 29,155 candidate transcripts for CASTxWSB, representing
7,393 and 8,532 candidate genes, respectively.

The CAST/EiJ, PWK/EiJ and CASTxPWK trio had a merged k-mer profile
of 118,100,824 k-mers, 42,688,910 (36.1%) of which appeared in our candidate
transcripts. Similarly, the CAST/EiJ, WSB/EiJ and CASTxWSB trio had a
merged k-mer profile of 118,383,117 k-mers, 52,715,089 (44.5%) of which ap-
peared in its set of candidate transcripts. We verified most the k-mers in the F1
samples not appearing in candidate transcripts have few occurrences. The k-mers
with high profiles which do not appear in candidate transcripts are most likely
due to poly(A) tails, transcripts with dense variants in the parental strains, or
transcripts expressed by the F1 strain but not the parents, as shown in Fig. (S2)
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Using the penalty parameter λ = 104 for both F1 samples, our methods
found 17,118 non-zero θ values in the CASTxPWK sample and 20,596 non-zero
θ values in the CASTxWSB sample, corresponding to as many estimated ex-
pressed transcripts. This represented 7,148 of 7,393 and 8,242 of 8,532 estimated
expressed genes, respectively. These results are summarized in Table (2). We
estimated the expression level of each gene by summing the θ values for all
expressed isoforms, both maternal and paternal, of each gene.

To assess our ability to estimate ASE, we looked at the maternal contribution
ratio of all expressed genes with candidate isoforms from both parents and
differentiating variants between the two parents. Maternal contribution ratio of
a gene is defined as the ratio of the expression levels from all maternal isoforms
to the expression levels from both paternal and maternal isoforms of the gene.
The distribution of maternal contribution ratios for both F1 samples is shown in
Fig. (3). The median maternal contribution ratio for both the male CASTxPWK
sample and the female CASTxWSB sample is around 0.5, as expected. In the
male CASTxPWK sample, a higher number of genes are maternally expressed,
which is expected since genes on the X chromosome and mitochondria should
be maternally expressed in males. We verified several genes that are known to
exhibit ASE [8] [29] as having high maternal contribution ratios if maternally
expressed and low maternal contribution ratios if paternally expressed.

Fig. 3. Histogram of the maternal contribution ratios of all expressed genes with
candidate isoforms from both parental strains and containing differentiating variants
between the parental strains. On the bottom of each plot, several genes known to be
maternally expressed in literature are highlighted in red, and several genes known to
be paternally expressed are highlighted in blue.

In addition, we examined the maternal contribution ratios of all expressed
genes on the X chromosome with candidate isoforms from both parents and
differentiating variants between the parents. In the male CASTxPWK sample,
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Fig. 4. Histogram of the maternal contribution ratio of all expressed genes on the
X chromosome with candidate isoforms from both parental strains and containing
differentiating variants between the parental strains. In the male CASTxPWK sample,
the median maternal contribution ratio is 0.94. In the female CASTxWSB sample, the
median maternal contribution ratio is 0.68. Both are in the expected range of maternal
contribution ratio of X-chromosome genes in male and female animals, respectively.

we expect all genes on the X chromosome to be maternally expressed, since its
X chromosome is inherited from the maternal strain. In the female CASTxWSB
sample, we expect most genes on X to be expressed with a 0.6-0.7 maternal
contribution ratio due to a known maternal bias in X inactivation [28] [2]. As
expected, we found the median maternal contribution ratio to be 0.94 in the
male CASTxPWK sample and 0.68 in the female CASTxWSB sample. The
distributions of maternal contribution ratios of genes on the X chromosome are
plotted in Fig. (4).

4.3 Speed and Memory

We ran our methods on a single 1600 MHz processor on a machine with 32 GB
RAM. The De Bruijn graphs of our samples take up around 1GB of disk space.
The selection of candidate transcripts takes approximately 2-3 hours per parental
strain, and the coordinate descent algorithm converges after approximately 1 to
3 million iterations, which takes around 1-2 hours on our machine. We were able
to take advantage of the sparseness of our candidate transcript k-mer profile
matrix X by storing them as sparse matrices using the Scipy.sparse package.

5 Discussion

We have developed methods to estimate expression levels for maternal and pa-
ternal versions of transcripts from RNA-seq trio data. Our need for such methods
arose when we realized that although we have RNA-seq data of many biological
trios and wish to analyze ASE of F1 strains, current methods, both alignment-
based and de novo, do not include standard pipelines that take advantage of
available RNA-seq data from parental strains. Our model is able to exploit the
information from the maternal and paternal RNA-seq reads and build candidate
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transcripts that accurately reflect the F1 strain’s transcriptome, and it does so
without requiring a database of variants of the parental strains. Our proposed
methods still rely on the existence of an annotated reference transcriptome,
which is essential for making biologically meaningful observations.

Our methods performed well when compared to a Trinity-Bowtie-RSEM
pipeline, which incorporates a state-of-the-art de novo assembler and aligner.
We were able to achieve high sensitivity and specificity (0.9553 and 0.9883) in
detecting baseline expression of transcripts. Of the correctly identified expressed
transcripts, we were also able to correctly identify more transcripts exhibiting
ASE, with a sensitivity of 0.77, compared to Trinity’s low ASE sensitivity of 0.32.
The pipeline we used with Trinity also made use of parental RNA-seq data, since
we separately assembled transcript sequences from maternal and paternal reads,
then aligned the F1 reads to the entire set of assembled transcript sequences.
However, Trinity still had a low sensitivity of 0.13 for determining baseline
expression, since the main challenge we faced using Trinity was mapping the
assembled sequences back to known reference transcripts.

The dimensionality of our data can be large. In our real data, we have
approximately 5× 107 k-mers after filtering and tens of thousands of candidate
transcripts. Despite the high dimensionality of our k-mer space and transcripts
space, we were able to use a refined coordinate descent algorithm to efficiently
perform lasso regression. Although not implemented, we could also decrease our
k-mer space without affecting the solution by merging overlapping k-mers into
contigs.

Since our candidate transcripts are generated from annotated reference tran-
scripts, our methods do not currently assemble novel transcript sequences. How-
ever, it is possible to model the k-mer profiles of all novel transcripts as the
residual of our linear regression, and de novo assembly of the residual k-mers
could then generate sequences of novel transcripts. Another limitation of our
model lies in its inability to detect genes exhibiting overdominance, where the
expression level is high in the F1 animal but nonexistent in the parental strains.
This could be remedied by also selecting candidate transcripts from the F1 De
Bruijn graph itself to add to our feature space.

The strength of our methods lies in the ability to determine ASE directly from
RNA-seq data in diploid trios without prior knowledge of genomic variation in
the parental genomes. This straightforward regression approach is tolerant of
imbalanced read counts in different samples, as demonstrated by our reasonable
maternal contribution ratio distribution in the male CASTxPWK F1 sample
(Fig 3), despite the CAST/EiJ read count being nearly 1.5 times as high as the
PWK/EiJ read count. Our methods could even be extended to ascertain ASE
in any animal that is a hybrid of two or more isogenic ancestral genomes, such
as the recombinant inbred strains often used as genetic reference panels.
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A Supplemental Figures

Fig. S1. Predicted versus actual expression levels from synthetic data. Expression levels
were normalized to have a mean value of 1.The Pearson correlation coefficient is 0.85
among the 1055 correctly identified expressed transcript sequences.

Fig. S2. Stacked histogram of k-mers in the real CASTxPWK k-mer profile, sorted by
the number of times each k-mer appears in the F1 reads. K-mers appearing in candidate
transcripts are in red, and k-mers not appearing in candidate transcripts are in blue.
The majority of k-mers not appearing in candidate transcripts have low number of
occurrences, suggesting they are from lowly expressing genes or erroneous reads.


