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Semantic Web Standard in Cloud Computing 
Malini Siva, A. Poobalan

Abstract - CLOUD computing is an emerging paradigm in the 

IT and data processing communities. Enterprises utilize cloud 

computing service to outsource data maintenance, which can 

result in significant financial benefits. Businesses store and 

access data at remote locations in the “cloud.” As the 

popularity of cloud computing grows, the service providers’ 

face ever increasing challenges. They have to maintain huge 

quantities of heterogenous data while providing efficient 

information retrieval. Thus, the key emphasis for cloud 

computing solutions is scalability and query efficiency. At the 

same time semantic web is also an emerging area to augment 

human reasoning. Resource Description Framework (RDF) 

which is semantic web technology that can be utilized to build 

efficient and scalable systems for Cloud Computing. A 

framework that can be built using Hadoop to store and 

retrieve large numbers of RDF triples by exploiting the cloud 

computing paradigm.  To determine the Hadoop jobs, and 

present an algorithm to generate query plan, whose worst case 

cost is bounded, based on a greedy approach to answer a 

SPARQL Protocol and RDF Query Language (SPARQL) 

query. In the project, Hadoop’s Map/Reduce framework is 

used to answer the queries. the results show that it can store 

large RDF graphs in Hadoop clusters built with cheap 
commodity class hardware.  

Index Terms – Cloud Computing, Hadoop, Map/Reduce, RDF 

I.  INTRODUCTION 

Semantic web technologies are being developed to 

present data in standardized way such that such data can be 

retrieved and understood by both human and machine. 

Historically, WebPages are published in plain html files 

which are not suitable for reasoning. Instead, the machine 

treats these html files as a bag of keywords. Researchers are 
developing Semantic web technologies that have been 

standardized to address such inadequacies. The most 

prominent standards are Resource Description Framework 

(RDF) and SPARQL Protocol and RDF Query Language 

(SPARQL). RDF is the standard for storing and 

representing data and SPARQL is a query language to 

retrieve data from an RDF store. Cloud Computing systems 

can utilize the power of these Semantic web technologies to 

provide the user with capability to efficiently store and 

retrieve data for data intensive applications. 
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The main disadvantage with distributed systems is 

that they are optimized for relational data. They may not 

perform well for RDF data, especially because RDF data 

are sets of triples6 (an ordered tuple of three components 

called subject, predicate, and object, respectively) which 

form  large directed graphs. In an SPARQL query, any 

number of triple patterns (TPs) can join on a single 
variable8 which makes a relational database query plan 

complex. Performance and scalability will remain a 

challenging issue due to the fact that these systems are 

optimized for relational data schemata and transactional 

database usage. 

Hadoop is a distributed file system where files can be saved 

with replication. In addition, it also contains an 

implementation of the Map/Reduce [6] programming 

model, a functional programming model which is suitable 

for the parallel processing of large amounts of data.  

Our contributions are as follows: 
1. We design a storage scheme to store RDF data in Hadoop 

distributed file system (HDFS10). 

2. We propose an algorithm that is guaranteed to provide a 

query plan whose cost is bounded by the log of the total  

number of variables in the given SPARQL query. It uses 

summary statistics for estimating join selectivity to break 

ties. 

3. We build a framework which is highly scalable and fault 

tolerant and supports data intensive query processing. 

The remainder of this paper is organized as 

follows: in Section II, we investigate related work. In 
Section III, we discuss our system architecture. In Section 

IV, we discuss how we answer an SPARQL query. In 

Section V, we present the results of our experiments. 

Finally, in Section VI, we draw some conclusions. 

II. RELATED WORKS 

Google uses Map/Reduce for web indexing, data 

storage, and social networking [5]. Yahoo! uses 

Map/Reduce extensively in its data analysis tasks]. IBM has 

successfully experimented with a scale-up scale-out search 

framework using Map/Reduce technology. In [3], 

researchers reported an interesting idea of combining 

Map/Reduce with existing relational database techniques. 
These works differ from our research in that we use 

Map/Reduce for semantic web technologies. 

SHARD is an RDF triple store using the Hadoop 

Cloudera distribution.  This project shows initial results 

demonstrating Hadoop’s ability to improve scalability for 
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RDF data sets. However, SHARD stores its data only in a 
triple store schema. It currently does no query planning or 

reordering, and its query processor will not minimize the 

number of Hadoop jobs. Jena [1] is a semantic web 

framework for Jena. Jena is limited to a triple store schema. 

In other words, all data are stored in a single three-column 

table. Jena has very poor query performance for large data 

sets. BigOWLIM [2] is among the fastest and most scalable 

semantic web frameworks available. However, it is not as 

scalable as our framework and requires very high end and 

costly machines. RDF-3X [4] is considered the fastest 

existing semantic web repository. However, RDF-3X’s 

performance degrades exponentially for unbound queries, 
and queries with even simple joins if the selectivity factor is 

low.  

 

III. PROPOSED ARCHITECTURE 

 

Fig. 1. The system architecture. 

 

We have three subcomponents for data generation 

and preprocessing. We convert RDF/XML to N-Triples 

serialization format using our N-Triples Converter 

component. The Predicate Split (PS) component takes the 

N-Triples data and splits it into predicate files. The 

predicate files are then fed into the Predicate Object Split 

(POS) component which splits the predicate files into 

smaller files based on the type of objects. These steps are 
described in Sections B, C, and D. 

Our Map/Reduce framework has three 

subcomponents in it. It takes the SPARQL query from the 

user and passes  it to the Input Selector  and Plan Generator. 

This component selects the input files, by using our 

algorithm, decides how many Map/Reduce jobs are needed, 

and passes the information to the Join Executer component 

which runs the jobs using Map/Reduce framework. It then 

relays the query answer from Hadoop to the user. 

 

 

 
 

A. Data Generation and Storage 

For our experiments, we use the LUBM [7] data set. It is a 
benchmark data set designed to enable researchers to 

evaluate a semantic web repository’s performance . The 

LUBM data generator generates data in RDF/XML 

serialization format. This format is not suitable for our 

purpose because we store data in HDFS as flat files and so 

to retrieve even a single triple, we would need to parse the 

entire file. Therefore, we convert the data to N-Triples to 

store the data, because with that format, we have a complete 

RDF triple (Subject, Predicate, and Object) in one line of a 

file, which is very convenient to use with Map/Reduce jobs. 

The processing steps to go through to get the data into our 
intended format are described in following sections. 

B. File Organization 

We do not store the data in a single file because, in 
Hadoop and Map/Reduce Framework, a file is the smallest 

unit of input to a Map/Reduce job and, in the absence of 

caching; a file is always read from the disk. If we have all 

the data in one file, the whole file will be input to jobs for 

each query. Instead, we divide the data into multiple 

smaller files. The splitting is done in two steps which we 

discuss in the following sections. 

 

C. Predicate Split 

In the first step, we divide the data according to 

the predicates. This division immediately enables us to cut 

down the search space for any SPARQL query which does 
not have a variable predicate. For such a query, we can just 

pick a file for each predicate and run the query on those 

files only. For simplicity, we name the files with predicates, 

e.g., all the triples containing a predicate p1:pred go into a 

file named p1-pred. However, in case we have a variable 

predicate in a triple pattern and if we cannot determine the 

type of the object, we have to consider all files. If we can 

determine the type of the object, then we consider all files 

having that type of object.  

 

D.  Predicate Object Split 

Split Using Explicit Type Information of Object 

In the next step, we work with the explicit type 

information in the rdf_type file. The predicate rdf:type is 

used in RDF to denote that a resource is an instance of a 

class. The rdf_type file is first divided into as many files as 

the number of distinct objects the rdf:type predicate has. 

For example, if in the ontology, the leaves of the class 

hierarchy are c1; c2; . . . ; cn, then we will create files for 
each of these leaves and the file names will be like type_c1, 

type_c2; . . . , type_cn. Please note that the object values c1; 

c2; . . . ; cn are no longer needed to be stored within the file 

as they can be easily retrieved from the file name. This 

further reduces the amount of space needed to store the 

data. We generate such a file for each distinct object value 

of the predicate rdf:type. 
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Split Using Implicit Type Information of Object  

We divide the remaining predicate files according to the 

type of the objects. Not all the objects are URIs, some are 

literals. The literals remain in the file named by the 

predicate: no further processing is required for them. The 

type information of a URI object is not mentioned in these 

files but they can be retrieved from the type_* files. The 

URI objects move into their respective file named as 
predicate_type. For example, if a triple has the predicate p 

and the type of the URI object is ci, then the subject and 

object appear in one line in the file p_ci. To do this split, we 

need to join a predicate file with the type_* files to retrieve 

the type information. 

 

IV. MAP/REDUCE FRAME WORK 

In this section, we discuss how we answer 

SPARQL queries in our Map/Reduce framework 

component. Section 4.1 discusses our algorithm to select 

input files for answering the query. Section 4.2 talks about 

cost estimation needed to generate a plan to answer an 
SPARQL query. It introduces few terms which we use in 

the following discussions. The following section introduces 

the heuristics-based model we use in practice. Section C 

presents our heuristics-based greedy algorithm to generate a 

query plan which uses the cost model. We face tie 

situations in order to generate a plan in some cases and 

Section D talks about how we handle these special cases. 

Section D shows how we implement a join in a Hadoop 

Map/Reduce job by working through an example query. 

 

A.  Input Files Selection 

Before determining the jobs, we select the files that need 

to be inputted to the jobs. We have some query rewriting 

capability which we apply at this step of query processing. 

We take the query submitted by the user and iterate over the 

triple patterns. We may encounter the following cases: 

1. In a triple pattern, if the predicate is variable, we select 

all the files as input to the jobs and terminate the iteration. 

2. If the predicate is rdf:type and the object is concrete, 
we select the type file having that particular type. 

3. If the predicate is rdf:type and the object is variable, 

then if the type of the variable is defined by another triple 

pattern, we select the type file having that particular type. 

Otherwise, we select all type files. 

4. If the predicate is not rdf:type and the object is 

variable, then we need to determine if the type of the 

object is specified by another triple pattern in the query. 

In this case, we can rewrite the query eliminate some 

joins. 

5. If the predicate is not rdf:type and the object is 
concrete, then we select all files for that predicate. 

 

B. Cost Estimation for Query Processing 

We run Hadoop jobs to answer an SPARQL query. 

In this section, we discuss how we estimate the cost of a 

job.  

 

Heuristic Model 
We observe that there is significant overhead for 

running a job in Hadoop. Therefore, if we minimize the 

number of jobs to answer a query, we get the fastest plan. 

The overhead is incurred by several disk I/O and network 

transfers that are integral part of any Hadoop job. When a 

job is submitted to Hadoop cluster, at least the following set 

of actions take place: 

1. The Executable file is transferred from client machine to 

Hadoop JobTracker.18 

2. The JobTracker decides which TaskTrackers19 will 
execute the job. 

3. The Executable file is distributed to the TaskTrackers 

over the network. 

4. Map processes start by reading data from HDFS. 

5. Map outputs are written to discs. 

6. Map outputs are read from discs, shuffled (transferred 

over the network to TaskTrackers which would run Reduce 

processes), sorted, and written to discs. 

7. Reduce processes start by reading the input from the 

discs. 

8. Reduce outputs are written to discs. 

These disk operations and network transfers are 
expensive operations even for a small amount of data. For 

example, in our experiments, we observed that the overhead 

incurred by one job is almost equivalent to reading a billion 

triples. The reason is that in every job, the output of the 

map process is always sorted before feeding the reduce 

processes. This sorting is unavoidable even if it is not 

needed by the user. Therefore, it would be less costly to 

process several hundred million more triples in n jobs, 

rather than processing several hundred million less triples in 

n+ 1 jobs. 

 

C. Query Plan Generation 

In this section, first we define the query plan 

generation problem, and show that generating the best (i.e., 

least cost) query plan for the practical model (Section 4.2.1) 

is computationally expensive. Then, we will present a 

heuristic and a greedy approach to generate an approximate 

solution to generate the best plan. 

 

Computational Complexity of  Reduced plan 

It can be shown that generating the least cost query 

plan is computationally expensive, since the search space is 

exponentially large. At first, we formulate the problem, and 

then show its complexity. 

Problem formulation. We formulate Reduced plan 

as a search problem. Let G = (V,E) be a weighted directed 

graph, where each vertex vi € V represents a state of the 

triple patterns, and each edge ei =(vi1 , vi2) € E represents a 

job that makes a transition from state vi1 to state vi2 . v0 is 
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the initial state, where no joins have been performed, i.e., 
the given query. Also, vgoal is the goal state, which 

represents a state of the triple pattern where all joins have 

been performed. The problem is to find the shortest 

weighted path from v0 to vgoal. 

Fig. 2. The (partial) graph for the running example 

query with the initial state and all states adjacent to it. 

Running Example 

SELECT ?V,?X,?Y,?Z WHERE{ 

?X rdf:type ub:GraduateStudent 

?Y rdf:type ub:University 

?Z ?V ub:Department 

?X ub:memberOf ?Z 
?X ub:undergraduateDegreeFrom ?Y} 

For example, in our running example query, the 

initial state v0 = {X, Y, Z, XY, XZ},and the goal state, vgoal 

=Φ, i.e., no more triple patterns left. Suppose the first job 

(job1) performs join(X, XY, XZ). Then, the resultant triple 

patterns (new state) would be v1 ={Y, Z, YZ}, and job1 

would be represented by the edge (v0, v1). The weight of 

edge (v0, v1) is the cost of job1 = cost(job1), where cost is 

the given cost function.  Fig. 2 shows the partial graph for 

the example query. 

Search space size. Given a graph G=(V,E), 
Dijkstra’s shortest path algorithm can find the shortest path 

from a source to all other nodes in O(|V | log |V| + |E| ) 

time. However, for Reduced plan, it can be shown that in 

the worst case, |V| - 2K, where K is the total number of 

joining variables in the given query. Therefore, the number 

of vertices in the graph is exponential, leading to an 

exponential search problem.  

 The worst case complexity of the Reduced plan 

problem is exponential in K, the number of joining 

variables in the given query. 

 
 

D. Reduced plan Problem and Approximate 

Solution 

In the Reduced plan problem, we assume 
uniform cost for all jobs. Although this relaxation does 

not reduce the search space, the problem is reduced to 
finding a job plan having the minimum number of jobs.  

 

Algorithm 1. Reduce plan (Query Q)  

1: Q Remove_non-joining_variables(Q) 

2: while Q≠Empty do 

3:   J1  // Total number of jobs 

4:   U={u1,…,uk}  All varibales sorted in  
   //non-decreasing order of their E-counts 

5:   JobjEmpty // List of join operations in the 
      // current job 

6:  tmpEmpty // Temporaily stores resultant 
     //triple patterns 

7:  for i=1 to K do 

8:    if Can-Eliminate(Q,ui)=true then  
       //complete or partial elimination possible 

9:       tmptmp  Join-result (TP(Q,ui)) 

10:      QQ-TP(Q,ui) 

11:      JobjJobj  join(TP(Q,ui)) 

12:   end if 
13:  end for 

14:  QQ  tmp 

15:  J  J + 1 
16: end while 

17: return { Job1,….,Jobj-1} 
Description of Algorithm 1. The algorithm starts 

by removing all the non-joining variables from the query Q. 

In our running example, Q = {X,Y,VZ,XY,XZ}, and 

removing the non-joining variable V makes Q ={X,Y, 

Z,XY,XZ}. In the while loop, the job plan is generated, 

starting from Job1. In line 4, we sort the variables according 

to their E-count. The sorted variables are: U = {Y,Z,X}, 

since Y, and Z have E-count = 1, and X has E-count = 2. 

For each job, the list of join operations is stored in the 
variable JobJ , where Jis the ID of the current job. Also, a 

temporary variable tmp is used to store the resultant triples 

of the joins to be performed in the current job (line 6). In 

the for loop, each variable is checked to see if the variable 

can be completely or partially eliminated (line 8). If yes, we 

store the join result in the temporary variable (line 9), 

update Q (line 10), and add this join to the current job (line 

11). 

 

E.  Map/Reduce Join Execution 

In this section, we discuss how we implement the joins 
needed to answer SPARQL queries using Map/Reduce 

framework of Hadoop. Algorithm 1 determines the 

number of jobs required to answer a query. It returns an 

ordered set of jobs. Each job has associated input 

information. The Job Handler component of our 

Map/Reduce framework runs the jobs in the sequence 

they appear in the ordered set. The output file of one job 

is the input of the next. The output file of the last job has 

the answer to the query. 

LUBM Query 2 shows the usage to illustrate the 

way we do a join using map and reduce methods. The query 
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has six triple patterns and nine joins between them on the 

variables X, Y , and Z. Our input selection algorithm selects 

files type_GraduateStudent, type_University, 

type_Department, all files having the prefix memberOf, all 

files having the prefix subOrganizationOf, and all files 

having the prefix underGraduateDegreeFrom as the input to 

the jobs needed to answer the query. 

V. RESULTS 

In this section, we present the benchmark data sets 

with which we experimented. 

 

A.  Data Sets 

In our experiments with SPARQL query 
processing, we use two synthetic data sets: LUBM [7] and 

SP2B. The LUBM data set generates data about universities 

by using an ontology. It has 14 standard queries. Some of 

the queries require inference to answer. The LUBM data set 

is very good for both inference and scalability testing. For 

all LUBM data sets, we used the default seed. The SP2B 

data set is good for scalability testing with complex queries 
and data access patterns. It has 16 queries most of which 

have complex structures. 

VI. CONCLUSIONS 

We have presented a framework capable of 

handling enormous amount of RDF data. Since our 

framework is based on Hadoop, which is a distributed and 

highly fault tolerant system, it inherits these two properties 

automatically. The framework is highly scalable. To 

increase capacity of our system, all that needs to be done is 

to add new nodes to the Hadoop cluster. We have proposed 

a schema to store RDF data, an algorithm to determine a 
query processing plan, whose worst case is bounded, to 

answer an SPARQL query and a simplified cost model to 

be used by the algorithm. 
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