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Abstract

An important question in neuroevolution is how to gain anaadsge from evolving neural network
topologies along with weights. We present a method, NeushBEon of Augmenting Topologies (NEAT)
that outperforms the best fixed-topology method on a chgiltenbenchmark reinforcement learning task.
We claim that the increased efficiency is due to (1) emplogimgincipled method of crossover of different
topologies, (2) protecting structural innovation usingaption, and (3) incrementally growing from mini-
mal structure. We test this claim through a series of abiagtoidies that demonstrate that each component
is necessary to the system as a whole and to each other. Veh#sris significantly faster learning. NEAT
is also an important contribution to GAs because it shows hidsvpossible for evolution to both optimize
and complexifisolutions simultaneously, offering the possibility of Bing increasingly complex solutions
over generations, and strengthening the analogy with gicéd evolution.

1 Introduction

Neuroevolution (NE), the artificial evolution of neural wetrks using genetic algorithms, has shown great
promise in complex reinforcement learning tasks (GomezMiikkulainen 1999; Gruau et al. 1996; Mo-
riarty and Miikkulainen 1997; Potter et al. 1995; Whitleyadt 1993). Neuroevolution searches through
the space of behaviors for a network that performs well atvargtask. This approach to solving com-
plex control problems represents an alternative to siedistechniques that attempt to estimate the utility
of particular actions in particular states of the world (Kdiag et al. 1996). NE is a promising approach
to solving reinforcement learning problems for severakoes. Past studies have shown NE to be faster
and more efficient than reinforcement learning methods sscAdaptive Heuristic Critic and Q-Learning
on single pole balancing and robot arm control (Moriarty 299 oriarty and Miikkulainen 1996). Because
NE searches for a behavior, it is effective in problems weétfgé state spaces. In addition, memory is eas-
ily represented through recurrent connections in neurtdoiks, making the method a natural choice for
learning non-Markovian tasks (Gomez and Miikkulainen 1999

In traditional NE approaches, a topology is chosen for thevivg networks before the experiment be-
gins. Usually, the network topology is a single hidden laylemeurons, with each hidden neuron connected
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to every network input and every network output. Evoluti@arghes the space of connection weights of
this fully-connected topology by allowing high-perforrgimetworks to reproduce. The weight space is
explored through the crossover of network weight vectord timough the mutation of single networks’
weights. Thus, the goal of fixed-topology NE is to optimize ttonnection weights that determine the
functionality of a network.

However, connection weights are not the only aspect of heetavorks that contribute to their behavior.
The topology, orstructure of neural networks also affects their functionality. Téadvas been a great deal
of interest in the evolution of both topologies and conrmtiiveights over the last decade (Angeline et al.
1993; Branke 1995; Gruau et al. 1996; Yao 1999). The basistiue however, remains: Can evolving
topologies along with weights provide an advantage ovelvevp weights on a fixed-topology? A fully
connected network can in principle approximate any cowtirsufunction (Cybenko 1989). So why waste
valuable effort permuting over different topologies?

The answers provided thus far are inconclusive. Some hayeedrthat network complexity can af-
fect the speed and accuracy of learning (Zhang and Muhleriti#93). Although this assertion is true for
backpropagation, backpropagation does not matter wheghtgeare being optimized by evolution andt
backpropagation. On sparse reinforcement problems, bag&gation does not even apply, since target
outputs are not known.

A persuasive argument for the evolution of both topology amights was put forward by Gruaet
al. (1996), who claimed that evolving structure saves the timsted by humans trying to decide on the
topology of networks for a particular NE problem. Althouglmast all fixed-topology NE systems use a
fully connected hidden layer, deciding how many hidden sade needed is a trial-and-error process. Gruau
et al. supported their argument by evolving the topology and wisigth an artificial neural network that
solved the hardest pole-balancing benchmark problem & éigwever, later results suggested that structure
was not necessary to solve the difficult problem. A fixed-togy method called Enforced Subpopulations
was able to solve the same problem 5 times faster simply bgirtiegy with a random number of hidden
neurons whenever it became stuck (Gomez and Miikkulain@9)9

This article aims to demonstrate the opposite conclusibdome right, evolving structure along with
connection weights can significantly enhance the perfoomarfi NE. We present a novel NE method called
NeuroEvolution of Augmenting Topologies (NEAT) that is dg®d to take advantage of structure as a way
of minimizing the dimensionality of the search space of @mion weights. If structure is evolved such
that topologies are minimized and grown incrementallyngigant gains in learning speed result. Improved
efficiency results from topologies being minimizésdtoughoutevolution, rather than only at the very end.

Evolving structure incrementally presents several tezdirghallenges: (1) Is there a genetic representa-
tion that allows disparate topologies to cross over in a nmgginl way? (2) How can topological innovation
that needs a few generations to be optimized be protectdthsd@ toes not disappear from the population
prematurely? (3) How can topologies be minimizbcbughout evolutiorwithout the need for a specially
contrived fitness function that measures complexity?

The NEAT method consists of solutions to each of these pnablas will be described below. The
method is validated on pole balancing tasks, where NEATopers$ 25 times faster than Cellular Encoding
and 5 times faster than ESP. The results show that strugarpawerful resource in NE when appropriately
utilized. NEAT is unique because structures become inorggsmore complex as they become more
optimal, strengthening the analogy between GAs and naguiition.



2 Background

Many systems have been developed over the last decade tiee doth neural network topologies and
weights (Angeline et al. 1993; Braun and Weisbrod 1993; Dptyand McGregor 1992; Fullmer and
Miikkulainen 1992; Gruau et al. 1996; Krishnan and Ciegi€l994; Lee and Kim 1996; Mandischer 1993;
Maniezzo 1994; Opitz and Shavlik 1997; Pujol and Poli 1998 ¥nd Liu 1996; Zhang and Muhlenbein
1993). These methods encompass a range of ideas about holodp@and Weight Evolving Artificial
Neural Networks (TWEANNS) should be implemented. In thistes, we address some of the ideas and
assumptions about the design of TWEANNS, and offer solstiorsome unsolved problems. Our goal is to
find how a neuroevolution method can use the evolution oflampoto increase its efficiency.

2.1 TWEANN Encoding

The question of how to encode networks using an efficienttgerepresentation must be addressed by all
TWEANNSs. We will discuss several prototypical represeintal schemes.

TWEANNS can be divided between those that use a direct engpdnd those that use an indirect one.
Direct encoding schemes, employed by most TWEANNS, spétitye genome every connection and node
that will appear in the phenotype (Angeline et al. 1993; Brand Weisbrod 1993; Dasgupta and McGregor
1992; Fullmer and Miikkulainen 1992; Krishnan and Ciedel994; Lee and Kim 1996; Maniezzo 1994;
Opitz and Shavlik 1997; Pujol and Poli 1998; Yao and Liu 19®6ang and Muhlenbein 1993). In contrast,
indirect encodings usually only specify rules for consting a phenotype (Gruau 1993; Mandischer 1993).
These rules can be layer specifications or growth rules girarell division. Indirect encoding allows a
more compact representation than direct encoding, be@uesg connection and node are not specified in
the genome, although they can be derived from it.

2.1.1 Binary Encoding

Direct encodings usually require simpler implementatitimsn indirect encodings. The simplest imple-
mentation is based on the traditional bit string repred@amaused by GAs. For example, Dasgupta and
McGregor (1992) use such an encoding in their method, cal®&8l (Structured Genetic Algorithm) where
a bit string represents the connection matrix of a netwoi®A $s notable for its simplicity, allowing it
to operate almost like a standard GA. However, there areraleimitations as well. First, the size of the
connectivity matrix is the square of the number of nodes.sTthe representation blows up for a large num-
ber of nodes. Second, because the size of the bit string nausiebsame for all organisms, the maximum
number of nodes (and hence connections as well) must berchgsehuman running the system, and if the
maximum is not sufficient, the experiment must be repeatbid;Tusing a linear string of bits to represent
a graph structure makes it difficult to ensure that crosseséyield useful combinations.

2.1.2 Graph Encoding

Because bit strings are not the most natural representatioretworks, most TWEANNSs use encodings that
represent graph structures more explicitly. Pujol and P@B7) use a dual representation scheme to allow
different kinds of crossover in their Parallel Distribut€énetic Programming (PDGP) system. The first
representation is a graph structure. The second is a lirmarge of node definitions specifying incoming
and outgoing connections. The idea is that different regregions are appropriate for different kinds of



operators. Subgraph-swapping crossovers and topologiaétions use the grid, while point crossovers
and connection parameter mutations use the linear refetgen

As in sGA, PDGP has a finite limit on the number of nodes in theraik, corresponding to the number
of nodes in the two-dimensional grid that represents thelgkeersion of the genome. PDGP uses graph
encoding so that subgraphs can be swapped in crossover.rapubgwapping is representative of a pre-
vailing philosophy in TWEANNS that subgraphs are functiomaits and therefore swapping them makes
sense because it preserves the structure of functional @oemps. However, we cannot be sure whether the
particular subgraphs being combined in PDGP are the righs$ ¢m create a functional offspring.

2.1.3 Non-mating

Because crossover of networks with different topologiasfoaquently lead to a loss of functionality, some
researchers have given up on crossover altogether in wbaliésl Evolutionary Programming (Yao and Liu
1996). Angelineet al. (1993) implemented a system called GNARL (GeNeralized Agition of Recurrent
Links), commenting that “the prospect of evolving connegist networks with crossover appears limited
in general.” Although GNARL uses a graph encoding, it is famentally different from PDGP in that it
sidesteps the issue of crossover entirely. GNARL demaestthat a TWEANN does not need crossover to
work, leaving the problem of demonstrating the advantagesossover to other methods.

2.1.4 Indirect Encoding

Gruau’s Cellular Encoding method (CE; Gruau 1993) is an ¢tarof a system that utilizes indirect en-
coding of network structures. In CE, genomes are progranitsewrin a specialized graph transformation
language. The transformations are motivated by natureanttiey specifycell divisions Different kinds

of connectivities can result from a division, so there aneesal kinds of cell divisions possible. A major
advantage of CE is that its genetic representations are acm@enes in CE can be reused multiple times
during the development of a network, each time requesting/lalivision at a different location. CE shows
that cell divisions can encode the development of netwaxk® fa single cell, much as organisms in nature
begin as a single cell that differentiates as it splits intrercells.

Although CE demonstrates that it is possible to evolve dmrakental systems, we chose direct encoding
for NEAT because, as Braun and Weisbrod (1993) argue, icidinecoding requires “more detailed knowl-
edge of genetic and neural mechanisms.” In other words usedadirect encodings do not map directly to
their phenotypes, they implicitly restrict the search te ¢hass of topologies to which they can be expanded.
For the sake of efficiency, we need to be sure that indireabdings do not restrict phenotype networks to
some suboptimal class of topologies. Further, experineesalts suggest that CE is not necessarily more
efficient than direct encoding methods. (Section 4.3.3).

We now turn to several specific problems with TWEANNS and edsglieach in turn.

2.2 Competing Conventions

One of the main problems for NE is tl@@mpeting Conventions Probleadso known as th@ermutations
Problem(Radcliffe 1993). Competing conventions means having rtttaa one way to express a solution
to a weight optimization problem with a neural network. Wiggmomes representing the same solution do
not have the same encoding, crossover is likely to produoceadad offspring.

Figure 1 depicts the problem for a simple 3-hidden-unit rekw The three hidden neuroas B, andC,
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Crossovers: [A,B,A] [C,B,C]
(both are missing information)

Figure 1: The competing conventions problem . The two networks compute the same exact function even
though their hidden units appear in a different order andrapgesented by different chromosomes, making them
incompatible for crossover. The figure shows that the twglsipoint recombinations are both missing one of the 3
main components of each solution. The depicted networksmise2 of the 6 possible permutations of hidden unit

orderings.

can represent the same general solutioB!ie= 6 different permutations. When one of these permutations
crosses over with another, critical information is likety be lost. For example, crossind, B, C] and

[C, B, A] can result inC, B, C], a representation that has lost one third of the informattiat both of the
parents had. In general, far hidden units, there are! functionally equivalent solutions. The problem
can be further complicated witttiffering conventions, i.e[A, B, C] and[D, B, E|], which share functional
interdependence oR.

An even more difficult form of competing conventions is prase TWEANNS, because TWEANN
networks can represent similar solutions using entireffedint topologies, or even genomes of different
sizes. Because TWEANNS do not satisfy strict constraintshenkinds of topologies they produce, pro-
posed solutions to the competing conventions problem fadfigr constrained topology networks such
as non-redundant genetic encoding (Thierens 1996) do my.aRadcliffe (1993) goes as far as calling
an integrated scheme combining connectivity and weigtdas‘ittoly Grail in this area.” Although some
TWEANNS such as PDGP (Pujol and Poli 1998) have attempteddceas the problem by assuming that
subnetworks represent functional units that can be reaoedbidifferent topologies may not be based on the
same subnetworks at all, in which case no meaningful cortibmaf substructures exists.

The main intuition behind NEAT originates from the fundart@mproblem with representing different
structures: their representations will not necessarilycmap. Sometimes, the genomes can have different
sizes. Other times, genes in the exact same position omahffehromosomes may be expressing completely
different traits. In addition, genes expressing the sami¢ tnay appear at different positions on different
chromosomes. How can these complications be resolved?

Nature faces a similar problem with gene alignment in sexeptoduction. Genomes in nature are
not of fixed-length either. Somewhere along the evolutiammfrsingle cells to more complex organisms,
new genes were added to the genomes in a process galfedamplificatior{Darnell and Doolittle 1986;
Watson et al. 1987). If new genes could just randomly in$eniniselves in positions on the genome without
any indication of which gene is which, life would never haueseeded, because the competing conventions
problem would decimate a huge chunk of offspring. There addéd be some way to keep crossover orderly,



so that theight genes could be crossed with the right genes.

Nature’s solution is based dromology two genes are homologous if they are alleles of the sante trai
In a process called synapsis, a special protein called Rees through and lines up homologous genes
between two genomes before crossover occurs (Radding 8382 and Alberts 1972). Actual homology
between neural networks cannot be easily ascertained bgtdinalysis (hence, the competing conventions
problem). The main insight in NEAT is that thestorical origin of two genes is direct evidence of homology
if the genes share the same origin. Thus, NEAT perfoantificial synapsisbased on historical markings,
allowing it to add new structure without losing track of wihigene is which over the course of a simulation.

2.3 Protecting Innovation with Speciation

In TWEANNS, innovation takes place by adding new structoredtworks through mutation. Frequently,
adding new structure initially causes the fitness of a néivio@decrease. For example, adding a new node
introduces a nonlinearity where there was none beforengdalnew connection can reduce fitness before its
weight has a chance to optimize. Itis unlikely that a new rd®nnection just happens to express a useful
function as soon as it is introduced. Some generations greresl to optimize the new structure and make
use of it. Unfortunately, because of the initial loss of fiseaused by the new structure, the innovation is
unlikely to survive in the population long enough to be optied. Thus, it is necessary to somehpketect
networks with structural innovations so they have a chaaeadke use of their new structure.

The GNARL system (Angeline et al. 1993) addresses the pmololieprotecting innovation by adding
nonfunctional structure. A node is added to a genome witaoyiconnections, in the hopes that in the future
some useful connections will develop. However, nonfumaticstructures may never end up connecting to
the functional network, adding extraneous parametersacdarch.

In nature, different structures tend to be in different spedhat compete in different niches. Thus,
innovation is implicitly protected within a niche. Similgrif networks with innovative structures could
be isolated into their own species, they would have a chamoptimize their structures before having to
compete with the population at large.

Speciation, also known asching has been studied in GAs, but is not usually applied to neviae
tion. Speciation is most commonly applied to multimodaldiion optimization (Mahfoud 1995), where a
function has multiple optima, and a GA with several specéessied to find those optima. Speciation has
also been applied in the cooperative coevolution of modsytatems of multiple solutions (Darwen and Yao
1996; Potter and De Jong 1995).

Speciation requires a compatibility function to tell whatliwo genomes should be in the same species
or not. It is difficult to formulate such a compatibility futlen between networks of different topologies,
which may be the reason why speciation has not been broughT WEANNS. The competing conventions
problem makes measuring compatibility particularly pesbhtic because networks that compute the same
function can appear very different.

However, because NEAT has a solution to the competing cdiovenproblem using historical informa-
tion about genes, the population in NEAT can easily be spatialWe useexplicit fithess sharingwhich
forces individuals with similar genomes to share their tpayoff (Goldberg and Richardson 1987). The
original implicit version of fitness sharing introduced bylkind (1975) grouped individuals by perfor-
mance similarity rather than genetic similarity. The egjplversion is appropriate for TWEANNS because
it allows grouping networks based to topology and weightfigpmations. The result of sharing fitness is
that the number of networks that can exist in the populatioa single fithess peak is limited by the size of
the peak. Therefore, the population divides into a numbepeties, each on a different peak, without the



threat of any one species taking over. Explicit fithess sigais well-suited for NEAT, because similarity
can easily be measured based on the historical informatidghe genes. Thus, innovations in NEAT are
protected in their own species.

2.4 Initial Populations and Topological Innovation

In many TWEANN systems the initial population is a colleatiof random topologies. Such a population
ensures topological diversity from the start. Howeverd@n initial populations turn out to produce many
problems for TWEANNS. For example, under many of the direciogling schemes, there is a chance that a
network will have no path from each of its inputs to is outpu@sich infeasible networks take time to weed
out of the population.

However, there is a more subtle and more serious problemstatting randomly. As our experiments
will confirm (Section 5.4), it is desirable to evolve mininmgilutions; that way, the number of parameters
that have to be searched is reduced. Starting out with rartdpoiogies does not lead to finding minimal
solutions, since the population starts out with many unse&gny nodes and connections already present.
None of these nodes or connections have had to withstangjle gvaluation, meaning there is no justifica-
tion for their configuration. Any minimization of networksounld have to be spent getting rid of apparatus
that should not have been there in the first place, and nothitiige process of recombining different topolo-
gies pushes towards such minimization. Since there is nesfitoost in creating larger networks, they will
dominate as long as they have high fitness.

One way to force minimal topologies is to incorporate netngze into the fithess function, and some
TWEANNS actually do this (Zhang and Muhlenbein 1993). Intsurethods, larger networks have their
fitnesses penalized. Although altering the fithess funatiotihis way can encourage smaller networks, it
is difficult to know how large the penalty should be for anytgalar network size, particularly because
different problems may have significantly different topgitzal requirements. Altering the fitness function is
ad hoc, and may cause evolution to perform differently thendesigner of the original unmodified fitness
function intended.

An alternative solution is for the neuroevolution methaklif to tend towards minimality. If the popu-
lation begins with no hidden nodes and grows structure osliy lbenefits the solution, there is no need for
ad hoc fitness modification to minimize networks. Therefstarting out with a minimal population and
growing structure from there is a design principle in NEAT.

By starting out minimally, NEAT ensures that the system cees for the solution in the lowest-
dimensional weight space possible over the coursallofenerations. Thus, the goal is not to minimize
only the final product, but alhtermediatenetworks along the way as well. This idea is they key to gaginin
an advantage from the evolution of topology: it allows us tnimize the search space, resulting in dramatic
performance gains. One reason current TWEANNS do not stanminimally is that without topological
diversity present in the initial population, topologicahbvations would not survive. The problem of pro-
tecting innovation is not addressed by these methods, smriet with major structural additions are likely
not to reproduce. Thus, speciating the population enaldesrg minimally in NEAT.

Starting out minimally is naturally appealing because clexify in nature develops over generations,
rather than being introduced at the beginning of evolutidsystem that starts out minimally and complex-
ifies its solutions over generations also strengthens thagy of evolutionary computation with natural
evolution.



Genome (Genotype)

Node [Node1 |Node2 |Node3 |[Node4 |Nodes
Genegsensor |Sensor |Sensor |[Hidden |Output

Connect.| In 1 In 2 In2 In3 In4 In5

Genes Out 4 Out 4 Out 5 Out 5 Out 5 Out 4
Weight 0.7 Weight-0.5 Weight 0.5 Weight 0.2 Weight 0.4 Weight 0.6
Enabled Enabled Dl SABLED Enabled Enabled Enabled
Innov 1 Innov 3 Innov 4 Innov 5 Innov 6 nnov 10

Network (Phenotyp

4

Figure 2:A genotype to phenotype mapping example A genotype is depicted that produces the shown phenotype.
There are 3 input nodes, one hidden, and one output nodej>andrmection definitions, one of which is recurrent.
The third gene is disabled, so the connection that it spsdifietween nodes 2 and 5) is not expressed in the phenotype.

2.5 An Integrated Scheme

The NEAT method, as described in detail in the next sectionsists of putting together the ideas above
into one system. The system employs a solution to the prololiecompeting conventions based on his-
torical markings, speciates the population in order to gmbtnnovation, and starts with a population of
minimal topologies in order to minimize the dimensionaliythe search space over every generation. Be-
cause topology is used to minimize the search space, NEAE gdiiciency from evolving neural network
structure.

3 NeuroEvolution of Augmenting Topologies (NEAT)

We begin the description of the NEAT neuroevolution systgmekplaining the genetic encoding used in
NEAT, and continue by describing the components that spadifiaddress each of the three problems of
TWEANNS.

3.1 Genetic Encoding

NEAT's genetic encoding scheme is designed to allow coardimg genes to be easily lined up when two
genomes cross over during mating. Genomes are linear epat®ns of network connectivity (figure 2).
Each genome includes a list obnnection genegach of which refers to twonode genebeing connected.
Node genes provide a list of inputs, hidden node, and outhatscan be connected. Each connection gene
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1|1 3 |4 5 6 1|1 3 |4 5 6| 7
1->42—->4|2—->53->54->5 N—>4|2—>42->53->54->5 3—>4
DIS DIS

Mutate Add Connection

4 —> 4
3 1

1| 3|4 5 6 1|1 3 |4 5 6| 8 9
1->4|2—>4{2->53—->54—->5| [1->4[2->4 2—|§5 3->5(4->53->4 6—>5

2

Mutate Add Node

4 *
3 1

Figure 3:The two types of structural mutation in NEAT. Both types, adding a connection and adding a node, are
illustrated with the connection genes of a network showrvalibeir phenotypes. The top number in each genome is
theinnovation numbeof that gene. The innovation numbers are historical markexsidentify the original historical
ancestor of each gene. New genes are assigned new incigdsgiger numbers. In adding a connection, a single new
connection gene is added to the end of the genome, and gieare#t available innovation number. In adding a new
node, the connection gene being split is disabled, and twocoanection genes are added to the end the genome. The
new node is between the two new connections. A new node geneépicted) representing this new node is added
to the genome as well.

specifies the in-node, the out-node, the weight of the cdimmecwhether or not the connection gene is
expressed (an enable bit), andianovation numberwhich allows finding corresponding genes (as will be
explained below).

Mutation in NEAT can change both connection weights and agtwtructures. Connection weights
mutate as in any NE system, with each connection either qiseduor not at each generation. Structural
mutations occur in two ways (figure 3). Each mutation expdhesize of the genome by adding gene(s). In
theadd connectiomnutation, a single new connection gene is added conneetingrieviously unconnected
nodes. In theadd nodemutation an existing connection is split and the new nodeeualavhere the old
connection used to be. The old connection is disabled andhemoconnections are added to the genome.
The new connection leading into the new node receives a weigh, and the new connection leading
out receives the same weight as the old connection. Thisadathadding nodes was chosen in order to
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minimize the initial effect of the mutation. The new nonkamigy in the connection changes the function

slightly, but new nodes can be immediately integrated ihtorietwork, as opposed to adding extraneous
structure that would have to be evolved into the network|&this way, because of speciation, the network
will have time to optimize and make use of its new structure.

Through mutation, the genomes in NEAT will gradually gegkr Genomes of varying sizes will result,
sometimes with different connections at the same positiofise most complex form of the competing
conventions problem, with numerous differing topologiesl aveight combinations, is an inevitable result
of allowing genomes to grow unbounded. How can NE cross owWierently-sized genomes in a sensible
way? The next section explains how NEAT addresses this @nabl

3.2 Tracking Genes through Historical Markings

There is unexploited information in evolution that tellsaxactly which genes match up with which genes
betweenany individuals in a topologically diverse population. Thatarmation is the historical origin of
each gene. Two genes with the same historical origin musesept the same structure (although possibly
with different weights), since they are both derived frora #ame ancestral gene of some point in the past.
Thus, all a system needs to do to know which genes line up witictwis to keep track of the historical
origin of every gene in the system.

Tracking the historical origins requires very little contation. Whenever a new gene appears (through
structural mutation), global innovation numbeis incremented and assigned to that gene. The innovation
numbers thus represent a chronology of the appearance gf gepe in the system. As an example, let us
say the two mutations in figure 3 occurred one after anothivdrsystem. The new connection gene created
in the first mutation is assigned the numt¥grand the two new connection genes added during the new
node mutation are assigned the numi®and9. In the future, whenever these genomes mate, the offspring
will inherit the same innovation numbers on each gene; iatiom numbers are never changed. Thus, the
historical origin of every gene in the system is known thitooigt evolution.

A possible problem is that the same structural innovatiolh receive different innovation numbers in
the same generation if it occurs by chance more than once.etwby keeping a list of the innovations
that occurred in the current generation, it is possible suemthat when the same structure arises more than
once through independent mutations in the same generatiah, identical mutation is assigned the same
innovation number. Thus, there is no resultant explosiommdvation numbers.

The historical markings give NEAT a powerful new capabijliffectively solving the problem of com-
peting conventions. The system now knows exactly which genatch up with which (figure 4). When
crossing over, the genes in both genomes with the same itioovaumbers are lined up. These genes are
calledmatchinggenes. Genes that do not match are eitlisjoint or excessdepending on whether they
occur within or outside the range of the other parent’s irtimn numbers. They represent structure that
is not present in the other genome. In composing the offgpgenes are randomly chosen from either
parent at matching genes, whereas all excess or disjoimtsgae always included from the more fit parent.
This way, historical markings allow NEAT to perform crossowsing linear genomes without the need for
expensive topological analysis.

By adding new genes to the population and sensibly matingrges representing different structures,
the system can form a population of diverse topologies. Hewset turns out that such a population on
its own cannot maintain topological innovations. Becauselker structures optimize faster than larger
structures, and adding nodes and connections usuallglipidecreases the fitness of the network, recently
augmented structures have little hope of surviving mora thi@e generation even though the innovations
they represent might be crucial towards solving the taskerlang run. The solution is to protect innovation
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Parentl Parent2

1|2 |a 5 6 1| 2 3 |4 6 7| s
1->4| 2->4| 2-55 | 3->5| 4->5| [ 1->4| 2->4| 3->4| 2-55| 4->5| 1->6| 6->4
DISAB DISAB DISAB
A
4
4 6
1 2 3 l 1 2 3
disjoint
1| 2 4 5 6
Parentli—sa|2->4 2-55| 3->5| 4->5
DISAB
b1 | 2 3| a 6 7| s
Parent_1_>4 2-54| 3->4| 2-55 4->5| 1->6| 6->4
DISAB DISAB
disjoint €XCESS EXCess
: 1| 2 3|4 5 | s 7| s
Offspring ;41 554 | 3754|2255 | 35| 4-55 | 1-56| 6-54
DISAB DISAB
A
4
6
1 20 3

Figure 4: Matching up genomes for different network topologies usingnnovation numbers. Although Parent

1 and Parent 2 look different, their innovation numbers yghat the top of each gene) tell us which genes match up
with which. Even without any topological analysis, a newsture that combines the overlapping parts of the two
parents as well as their different parts can be created. hfagagenes are inherited randomly, whereas disjoint genes
(those that do not match in the middle) and excess genes(thasdo not match in the end) are inherited from the
more fit parent. In this case, equal fithesses are assumditk gisjoint and excess genes are also inherited randomly.

by speciating the population, as explained in the next@ecti

3.3 Protecting Innovation through Speciation

Speciating the population allows organisms to compete guilynwithin their own niches instead of with
the population at large. This way, topological innovatians protected in a new niche where they have time
to optimize their structure through competition within thiehe. The idea is to divide the population into
species such that similar topologies are in the same spethés task appears to be a topology matching
problem. However, it again turns out that historical magsioffer an efficient solution.

The number of excess and disjoint genes between a pair ohgens a natural measure of their com-
patibility distance. The more disjoint two genomes are,l&ss evolutionary history they share, and thus
the less compatible they are. Therefore, we can measurethpatibility distance) of different structures
in NEAT as a simple linear combination of the number of exdégsand disjoint (D) genes, as well as the
average weight differences of matching geriéd (including disabled genes:

=+ 2 ey W (1)



The coefficientsgy, co, andes, allow us to adjust the importance of the three factors, &eddctorV, the
number of genes in the larger genome, normalizes for genomae s

The distance measureallows us to speciate using a compatibility thresh@d An ordered list of
species is maintained. In each generation, genomes arergedly placed into species. Each existing
species is represented by a random genome inside the sfreaigheprevious generationA given genome
g in the current generation is placed in the first species irctwvhiis compatible with the representative
genome of that species. This way, species do not ovérla.is not compatible with any existing species,
a new species is created wigtas its representative.

As the reproduction mechanism for NEAT, we wsalicit fithess sharindGoldberg and Richardson
1987), where organisms in the same species must share thesfitfi their niche. Thus, a species cannot
afford to become too big even if many of its organisms perforefl. Therefore, any one species is unlikely
to take over the entire population, which is crucial for sptsl evolution to work. The adjusted fitnegs
for organismi is calculated according to its distanéérom every other organism in the population:

ki
X1 5h(0(i, 7))

fi (2)

The sharing functiosh is set to0 when distancé(:, j) is above the thresholé}; otherwisesh(4(z, 7))
is set to 1 (Spears 1995). Thys;’_, sh(4(3, j)) reduces to the number of organisms in the same species as
organismi. This reduction is natural since species are already ckrstey compatibility using the threshold
d;. Every species is assigned a potentially different numbeffspring in proportion to the sum of adjusted
fitnessesf; of its member organisms. Species then reproduce by firstirediing the lowest performing
members from the population. The entire population is trepiaced by the offspring of the remaining
organisms in each speciés.

The net effect of speciating the population is that topalafjinnovation is protected. The final goal
of the system, then, is to perform the search for a soluticaeffadently as possible. This goal is achieved
through minimizing the dimensionality of the search space.

3.4 Minimizing Dimensionality through Incremental Growth from Minimal Structure

As discussed in section 2.4, TWEANNS typically start withiaitial population of random topologies
in order to introduce diversity from the outset. In contfadEAT biases the search towards minimal-
dimensional spaces by starting out withuaiform population of networks with zero hidden nodes (i.e.
all inputs connect directly to outputs). New structure isaduced incrementally as structural mutations
occur, and only those structures survive that are found tadadul through fithess evaluations. In other
words, the structural elaborations that occur in NEAT amgaghk justified. Since the population starts
minimally, the dimensionality of the search space is migidi, and NEAT is always searching through
fewer dimensions than other TWEANNS and fixed-topology N&eaws. Minimizing dimensionality gives
NEAT a performance advantage compared to other approaabes|l be discussed next.

It is also possible to determine the compatibility of a gergnwith a species by using the average compatibility gfwith
every genome in a speciesbut in practice only comparing to the first genomes iis sufficient, and takes constant time.

2In rare cases when the fitness of the entire population dagspoove for more than 20 generations, only the top two i
are allowed to reproduce, refocusing the search into the promising spaces.
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4 Performance Evaluations

We evaluate the system’s performance in order to answer t@stipns: (1) Can NEAT evolve the necessary
structures? (2) Can NEAT find solutions more efficiently thaher neuroevolution systems? The first
guestion establishes that topology building indeed happeNEAT in a reliable way, meaning that NEAT
will grow new structure to cope with problems that require Ror this reason, NEAT is applied to the
problem of building an XOR network. Although this task is pim it requires growing hidden units, and
therefore serves as a simple test for the method.

The second question is answered in the course of succgssieeé difficult pole balancing tasks, where
the objective is to balance two poles attached to a cart byingathe cart in appropriate directions to
keep the pole from falling. Pole balancing is a good benchntask because there are many different
systems available for comparison. The most difficult problef balancing two poles without velocity
information, a non-Markovian task, provides very strongdewce that evolving augmenting topologies is
not only interesting for its capacity to find structures, isualso efficient in difficult control tasks.

4.1 Parameter Settings

The same experimental settings are used in all experimérdg; were not tuned specifically for any par-
ticular problem. The one exception is the hardest pole loalgnproblem (Double pole, no velocities, or
DPNV) where a larger population size was used to match thbgther systems in this task. Because some
of NEAT’s system parameters are sensitive to populatios, siz altered them accordingly.

All experiments except DPNV which had a population of 1,08@dia population of 150 NEAT net-
works. The coefficients for measuring compatibility were= 1.0, co = 1.0, andes = 0.4. With DPNV, c3
was increased 8.0 in order to allow for finer distinctions between species baseweight differences (the
larger population has room for more species). In all experits,d; = 3.0, except in DPNV where it wa&0,
to make room for the larger weight significance coefficientIf the maximum fitness of a species did not
improve in 15 generations, the networks in the stagnantispe&gere not allowed to reproduce. There was
an 80% chance of a genome having its connection weights eatizit which case each weight had a 90%
chance of being uniformly perturbed and a 10% chance of lbessgned a new random value. (The system
is tolerant to frequent mutations because of the protetjmciation provides.) In each generation, 25%
of offspring resulted from mutation without crossover. Tihierspecies mating rate was 0.001. In smaller
populations, the probability of adding a new node was 0.@Btha probability of a new link mutation was
0.05. In the larger population, the probability of addingeavrlink was 0.3, because a larger population
can tolerate a larger number of prospective species andegriegoological diversity. We used a modified
sigmoidal transfer functiony(z) = 1+e%49w at all nodes. The steepened sigmoid allows more fine tuning
at extreme activations. It is optimized to be close to lindaning its steepest ascent between activations
—0.5 and0.5. Small variations in parameter values produce roughly\edeint experiment results.

4.2 \Verification: Evolving XORs

Because XOR is not linearly separable, a neural networkiregjhidden units to solve it. The two inputs
must be combined at some hidden unit, as opposed to only autpet node, because there is no function
over a linear combination of the inputs that can separatenfhés into the proper classes. These structural
requirements make XOR suitable for testing NEAT’s abilityevolve structure. For example, NEAT's
method for adding new nodes might be too destructive to allew nodes to get into the population. Or,
it could find a local champion with a wrong kind of connectivthat dominates the population so much
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Phenotype of all genomes in initial populatiop Phenotype of smallest possible so|ution
(No hidden nodes)
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Figure 5:Initial Phenotype and Optimal XOR. Figure (a) shows the phenotype given to the entire initigiydation.
Notice that there are no hidden nodes. In NEAT, a bias is a timtean connect to any node other than inputs. Figure
(b) shows an optimal solution with only 1 hidden node. (A natewithout hidden nodes cannot compute XOR.) The
bias connections are not always needed depending on thi#osglall other connections are necessary. The optimal
(1 hidden node) solution was found in 22 of 100 runs. The aesmlution had 2.35 hidden nodes with a standard
deviation of 1.11 nodes.

that the systems fails to evolve the proper connectivityird;imaybe the changing structure renders past
connection weight values obsolete. If so, the algorithm ldidave trouble enlarging topologies that are
already largely specialized. This experiment is meant tmstihat NEAT is not impeded by such potential
obstacles, but can grow structure efficiently and condiistevhen needed.

To compute fitness, the distance of the output from the coeeswer was summed for all four input
patterns. The result of this error was subtracted from 4 abtifgher fithess would reflect better network
structure. The resulting number was squared to give priampaily more fithess the closer a network was to
a solution.

The initial generation consisted of networks with no hiddeits (Figure 5a). The networks had 2 inputs,
1 bias unit, and 1 output. The bias unit is an input that is géaset tol.0. There were three connection
genes in each genome in the initial population. Two genesexrd the inputs to the output, and one
connected the bias to the output. Each connection geneveglcairandom connection weight.

On 100 runs, the first experiment shows that the NEAT systeds fanstructure for XOR in an average
of 32 generations (4,755 networks evaluated, std 2,553)a¥@rage a solution network had 2.35 hidden
nodes and 7.48 non-disabled connection genes. The numbedes and connections is close to optimal
considering that the smallest possible network has a shidtien unit (Figure 5b). NEAT is very consistent
in finding a solution. It did not fail once in 100 simulatiori&he worst performance took 13,459 evaluations,
or about 90 generations (compared to 32 generations ong®)erd he standard deviation for number of
nodes used in a solution was 1.11, meaning NEAT very comsigtased 1 or 2 hidden nodes to build an
XOR network.

The XOR problem has been used to demonstrate performana@fas prior TWEANN algorithms.
Unfortunately, quantitative performance comparisongdifieult in this domain because the methodologies
vary widely across experiments. For example, several nastieoolve network topologies using a separate
hill climbing algorithm for weight optimization.(Yao anch§1995; Zhang and Muhlenbein 1993), Although
the PDGP method evolves weights in addition to topologtesciudes a post-processing module that spends
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additional generations pruning networks after a solutiag &lready been found (Pujol and Poli 1998). sGA,
like NEAT, evolves both topologies and weights and does net-prune; however, the reported results do
not include the average number of generations necessawy $oftution (Dasgupta and McGregor 1992).
Above all, to the best of our knowledge, all previous methagiglied to XOR evolution limit the size of a
genome. In contrast, NEAT puts no limit on the size or comipfexf networks evolved for this problem.

Itis clear that NEAT solves the XOR problem without troubielan doing so keeps the topology small.
However, XOR is not a good benchmark for performance corapas because it is such a simple task.
Therefore, having established NEAT’s ability to consi#iiervolve structure, let us turn to how it compares
with other methods at more interesting and difficult prokdem

4.3 Pole Balancing as a Benchmark Task

There are many control learning tasks where the techniquetoged in NEAT can make a difference. Many
of these potential applications, like robot navigation amg playing, present problems without known
solutions. We use the pole balancing domain for comparisgatse it is a known benchmark in the
literature, which makes it possible to demonstrate thectifeness of NEAT compared to others. It is
also a good surrogate for real problems, in part because lpadncing in factis a real task, and also

because the difficulty can be adjusted. Earlier comparisegr® done with a single pole (Moriarty and
Miikkulainen 1996), but this version of the task has becoomwdasy for modern methods. Balancing two
poles simultaneously is on the other hand challenging dméorgall current methods.

Therefore, we demonstrate the advantage of evolving sirei¢chrough double pole balancing experi-
ments. Two poles are connected to a moving cart by a hingetendedural network must apply force to
the cart to keep the poles balanced for as long as possitieuwtiggoing beyond the boundaries of the track.
The system state is defined by the cart positigrefd velocity §), the first pole’s positiond;) and angular
velocity (6;), and the second pole’s positiof,] and angular velocityég). Control is possible because the
poles have different lengths and therefore respond diftiréo control inputs.

Standard reinforcement learning methods have also bedieapp this task (Anderson 1989; Pendrith
1994). However, we limit the comparisons in this paper to N&hods for two reasons: (1) The focus is on
developing and demonstrating better performance on exglreural networks and (2) NE methods in this
comparison have been shown superior to reinforcementifepmethods elsewhere (Moriarty and Miikku-
lainen 1996). Thus, the question here is whether evolvingtire can lead to greater NE performance.

4.3.1 Pole Balancing Comparisons

We set up the pole balancing experiments as described byalddll991) and Gomez and Miikkulainen
(1999). The Runge-Kutta fourth-order method was used tdeément the dynamics of the system, with a
step size of 0.01s. All state variables were scale@-th0, 1.0] before being fed to the network. Networks
output a force every 0.02 seconds betwgei0, 10]N. The poles were 0.1m and 1.0m long. The initial
position of the long pole wab’> and the short pole was upright; the track was 4.8 meters long.

Two versions of the double pole balancing task are used: atlewslocity inputs included and an-
other without velocity information. The first task is Markam and allows comparing to many different
systems. Taking away velocity information makes the taskerddficult because the network must estimate
an internal state in lieu of velocity, which requires reemtrconnections.

On the double pole balancing with velocity (DPV) problem, NNEs compared to published results
from four other NE systems. The first two represent standaglilation-based approaches . Saravanan
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| Method | Evaluations | Generations| No. Nets]

Ev. Programming 307,200 150 2048
Conventional NE 80,000 800 100
SANE 12,600 63 200
ESP 3,800 19 200
NEAT 3,600 24 150

Table 1: Double Pole Balancing with Velocity Information. Evolutionary programming results were obtained
by Saravanan and Fogel (1995). Conventional neuroevolgtida was reported by Wieland (1991). SANE and ESP
results were reported by Gomez and Miikkulainen (1999). NE&sults are averaged over 120 experiments. All other
results are averages over 50 runs. The standard deviatidghdd\NEAT evaluations is 2,704 evaluations. Although
standard deviations for other methods were not reporteek issume similar variances, all differences are staistic
significant p < 0.001), except that between NEAT and ESP.

and Fogel (1995) used Evolutionary Programming, whiclesatintirely on mutation of connection weights,
while Wieland (1991) used both mating and mutation. Thesgtwo systems, SANE (Moriarty and Miik-
kulainen 1996) and ESP (Gomez and Miikkulainen 1999), ebpopulations of neurons and a population
of network blueprints that specifies how to build networkanirthe neurons that are assembled into fixed-
topology networks for evaluation. The topologies are fixedduse the individual neurons are always placed
into predesignated slots in the neural networks they comp8ANE maintains a single population of neu-
rons. ESP improves over SANE by maintaining a separate ptipuolfor each hidden neuron position in
the complete network. To our knowledge, the results of E®Rler best achieved so far in this task.

On the double pole balancing without velocity problem (DBNNEAT is compared to the only two
systems that have been demonstrated able to solve the tellita€CEncoding [CE; Gruast al., 1996], and
ESP. The success of CE was first attributed to its ability thevstructures. However, ESP, a fixed-topology
NE system, was able to complete the task five times fastergibyprestarting with a random number of
hidden nodes whenever it got stuck. Our experiments widragit to show that evolution of structure can
lead to better performance if done right.

4.3.2 Double Pole Balancing with Velocities

The criteria for success on this task was keeping both paksbed for 100,000 time steps (30 minutes of
simulated time). A pole was considered balanced betweean8@6 degrees from vertical. Fitness on this
task was measured as the number of time steps that both pofesned balanced.

Table 1 shows that NEAT takes the fewest evaluations to cet@his task, although the difference
between NEAT and ESP is not statistically significant. Thedixopology NE systems evolved networks
with 10 hidden nodes, while NEAT'’s solutions always usedveein 0 and 4 hidden nodes. Thus, itis clear
that NEAT’s minimization of dimensionality is working onighproblem. The result is important because it
shows that NEAT performs as well as ESP while finding more matisolutions.

4.3.3 Double Pole Balancing Without Velocities

Gruauet al. (1996) introduced a special fithess function for this probte prevent the system from solving
the task simply by moving the cart back and forth quickly tefxe¢he poles wiggling in the air. (Such a
solution would not require computing the missing velositjeBecause both CE and ESP were evaluated
using this special fitness function, NEAT uses it on this @shkvell. The fithess penalizes oscillations. Itis
the sum of two fithess component functiorisand f2, such thatF’ = 0.1f; + 0.9 f,. The two functions are
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| Method | Evaluations| Generalization| No. Nets|

CE 840,000 300 16,384
ESP 169,466 289 1,000
NEAT 33,184 286 1,000

Table 2: Double Pole Balancing without Velocity Information (DPNV). CE is Cellular Encoding of Gruaat

al. (1996). ESP is Enforced Subpopulations of Gomez and Miikgin (1999). All results are averages over 20
simulations. The standard deviation for NEAT is 21,790 eatibns. Assuming similar variances for CE and ESP, alll
differences in number of evaluations are significank{ 0.001). The generalization results are out of 625 cases in
each simulation, and are not significantly different.

defined over 1000 time steps:
f1 = t/1000, (3)

0 if t < 100, @
f2= 0.1 ________ otherwise. 4
> imes00 (I |1 |+16%1+163 1)

where t is the number of time steps the poles remain balanoedgdthe 1,000 total time steps. The
denominator in (4) represents the sum of offsets from certtrof the cart and the long pole. It is computed
by summing the absolute value of the state variables reptiegethe cart and long pole positions and
velocities. Thus, by minimizing these offsets (dampingilzgmons), the system can maximize fitness.
Because of this fitness function, swinging the poles is pee@d| forcing the system to internally compute
the hidden state variables.

Under Gruawet al’s criteria for a solution, the champion of each generat®otested on generalization
to make sure it is robust. This test takes a lot more time tharitness test, which is why it is applied only
to the champion. In addition to balancing both poles for @00,time steps, the winning controller must
balance both poles from 625 different initial states, eacHf000 times steps. The number of successes is
called thegeneralization performance of the solutiom order to count as a solution, a network needs to
generalize to at least 200 of the 625 initial states. Eaat state is chosen by giving each state variable
(i.e. z, &, 61, andd;) each of the values 0.05, 0.25, 0.5, 0.75, 0.95 scaled tatigerof the input variable
(5% = 625). At each generation, NEAT performs the generalization ¢esthe champion of the highest-
performing species that improved since the last generation

Table 2 shows that NEAT is the fastest system on this chaligrngsk. NEAT takes 25 times fewer eval-
uations than Gruau'’s original benchmark, showing that thg iw which structure is evolved has significant
impact on performance. NEAT is also 5 times faster than ElSRymg that structure evolution can indeed
perform better than evolution of fixed topologies. There wassignificant difference in the ability of any
of the 3 methods to generalize.

Why is NEAT so much faster than ESP on the more difficult taskemvthere was not much difference
in the easier task? The reason is that in the task withoutitiels, ESP needed to restart an average of 4.06
times per solution while NEAT never needed to restart. Ifads are factored out, the systems perform at
similar rates. The best characterization of the differaadbat NEAT is more reliable at avoiding deception.
NEAT evolves many different structures simultaneously iifecent species, each representing a space of
different dimensionality. Thus, NEAT is always trying madifferent ways to solve the problem at once, so
itis less likely to get stuck.

The experimental results demonstrate both that NEAT catvewsiructure when necessary, and that
NEAT gains a significant performance advantage from doing\We now turn to understanding how the
system works, and whether it indeed solves the three prabieith evolving a population of diverse topolo-
gies raised in the introduction.
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5 Analysis of NEAT

We have argued that NEAT's performance is due to historicalkings, speciation, and incremental growth
from minimal structure. In order to verify the contributiaf each component, we performed a series of
ablations. In addition, we introduce a new species visatitin technique in order to better understand the
dynamics of the system.

Ablations are meant to establish that each component of NEAEcessary for its performance. For
example, it is possible that growth from minimal structusendt really important; maybe the rest of the
system, speciation and historical markings, is sufficientNEAT’s optimal performance. This hypothesis
will be checked by ablating both growth and starting from imial structure from the system. On the
other hand, perhaps the situation is the opposite, andatatbuys nothing: protecting innovation might
not be as important as we have argued. This hypothesis witheeked by ablating speciation from the
system. Finally, we claimed that NEAT is able to make use ofsover even though genomes in NEAT
have different sizes. This point is more controversial tihamght seem. For example, Angelie¢al. (1993)
claimed that crossover in TWEANNSs does more harm than goaslwilV check this hypothesis by ablating
crossover from the system.

The reason why we do not ablate historical markings direistlthat without historical markings the
system would be a conventional NE system. Historical makiare the basis of every function in NEAT:
Speciation uses a compatibility operator that is based stoti¢cal markings, and crossover would not be
possible without them. All other system components can ksed systematically.

5.1 Ablations Setup

Ablations can have a significant detrimental effect on pertnce, potentially to the point where the system
cannot solve the task at all. Therefore, we used double Edémbingwith velocities as the task for ablation
studies. The task is complex enough to be interesting, yletst too hard, so that ablated systems work as
well. Thus, it is possible to compare the ablated versiorth@bEystem to the unablated system.

All settings were the same as in the double pole balancing walocities experiment. Results are
averages over 20 runs, except nonmating and full NEAT, whiehaverages over 120 runs (nonmating
NEAT was fast enough to allow many runs).

5.2 Ablations Results

Method Evaluations | Failure Rate
No-Growth NEAT (Fixed-Topologies) 30,239 80%
Non-speciated NEAT 25,600 25%
Initial Random NEAT 23,033 5%
Nonmating NEAT 5,557 0
Full NEAT 3,600 0

Table 3: NEAT Ablations Summary. The table compares the average number of evaluations fduticsoin the
double pole balancing with velocities task. Each ablateadb to a weaker algorithm, showing that each component
iS necessary.

Table 3 shows the results of all the ablations, in terms ofeye evaluations required to find a solution.
Averages exclude trials that failed to find a solutior j800 generations. A failure rate denotes how often
such failures occurred for each ablation. The main resutas the system performs significantly worse

18



(p < 0.001) for every ablation. We will explain how each ablation wasfpened and then interpret the
results.

5.3 No-Growth Ablation

Since populations in NEAT start out with no hidden nodes pdjmemoving growth from the system would
disable NEAT by barring hidden nodes from all networks. NEteyns where structures are fixed start with
a fully-connected hidden layer of neurons (Wieland 1991her€fore, to make the experiment fair, the
no-growth ablation was also allowed to start with a fullyrnected hidden layer. Every genome specified
10 hidden units like the fixed topology methods in this tas&ré8anan and Fogel 1995; Wieland 1991).
Without growth, the system was only able to use weight diffiees to speciate the population. Given 1,000
generations to find a solution, the ablated system couldfordya solution 20% of the time! When it did find

a solution, it took 8.5 times more evaluations than full NE£Tearly, speciation and historical markings
alone do not account for full NEAT’s performance.

5.4 Initial Random Ablation

TWEANNS other than NEAT typically start with a random popida (Angeline et al. 1993; Gruau et al.
1996; Yao 1999). The structures in these systems can silt §n most cases up to some bound). It is still
possible that although growth is necessary, starting natijnis not.

We examined this question by starting evolution with randopologies as in other TWEANNS. Each
network in the initial population received between 1 and iddlen neurons with random connectivity (as
implemented by Pujol and Poli (1997)). The result is thatimm-starting NEAT was 7 times slower than
full NEAT on average. The random-starting system also daitefind a solution within 1000 generations
5% of the time. The result suggests that starting randomigefoNE to search higher-dimensional spaces
than necessary, thereby wasting time. If topologies aredw,ghey should start out as small as possible.

5.5 Non-Speciated Ablation

We have argued that speciation is important because itgsotenovation and allows search to proceed
in many different spaces simultaneously. To test this claipeciation should be ablated from the system.
However, if this is done and nothing else is changed in théesysno structural innovations can survive,

causing all networks to be stuck in minimal form.

To make the speciation ablation more meaningful, the necigped NEAT must be started with an
initial random population. This way, a variety of structsiexist in the population from the beginning, and
speciation is not necessary to attain structural diversibe resulting non-speciated NEAT was able to find
solutions, although it failed in 25% of the attempts. Whefoitnd a solution, it was 7 times slower on
average than full NEAT.

The reason for the dramatic slowdown is that without spexiathe population quickly converges on
whatever topology happens to initially perform best. Traut of diversity is drained immediately (within
10 generations). On average, this initially best-perfaigniopology has about 5 hidden nodes. Thus, the
population tends to converge to a relatively high-dimenaicgearch space, even though the smaller networks
in the initial population would have optimized faster. Tineadler networks just do not get a chance because
being small offers no immediate advantage in the initiadlgdom weight space. Of course, once in a while
small networks are found that perform well, allowing a siatto be found more quickly. Whether or not
such networks are found early on accounts for the large atdrdkeviation of 41,704 evaluations.
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Figure 6:Dependencies among NEAT componentsStrong interdependencies can be identified among the elifter
components of NEAT.

The result shows that growth without speciation is not sigfficto account for NEAT'’s performance. For
growth to succeed, it requires speciation, because spmtigives different structures a chance to optimize
in their own niches.

5.6 Nonmating NEAT

For the last ablation, we removed mating from NEAT. This tiblatests the claim that crossover is a useful
technique in TWEANNS. If NEAT’s method of crossover workisem NEAT should perform significantly
better with mating and mutation than with mutation alone.

A total of 120 simulations were run with crossover disabletld! other settings the same as before. It
took on average 5,557 evaluations to find a solution withaatimg, compared to 3,600 with mating enabled.
The difference is statistically significant & 0.001). Thus, it is clear that matindoescontribute when it is
done right. However, the nonmating version of NEAT is sigjrsficantly faster than the other ablations.

5.7 Ablation Conclusions

An important conclusion is that all of the parts of NEAT wodgether (figure 6). None of the system can
work without historical markings because all of NEAT's fionis utilize historical markings. If growth from
minimal structure is removed, speciation can no longer NEAT find spaces with minimal dimensionality.

If speciation is removed, growth from minimal structuresmat proceed because structural innovations do
not survive. When the system starts with a population of samtbpologies without speciation, the system
quickly converges onto a hon-minimal topology that justges to be one of the best networks in the initial
population. Thus, each component is necessary to make NEAL w

5.8 Visualizing Speciation

The ablation studies demonstrate that speciation is a s&gepart of the overall system. To understand
how innovation takes place in NEAT, it is important to undansl the dynamics of speciation. How many
species form over the course of a run? How often do new spadss? How often do species die? How
large do the species get? We answer these questions byidgipeciation visually over time.

Figure 7 depicts a typical run of the double pole balancintdywelocities task. In this run, the task took
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Figure 7:Visualizing speciation during a run of the double pole balaring with velocity information task.. Two
species begin to close in on a solution soon after the 20targéaon. Around the same time, some of the oldest species

become extinct.

29 generations to complete, which is slightly above averfgthe visualization, successive generations are
shown from top to bottom. Species are depicted horizonfallyeach generation, with the width of each
species proportional to its size during the correspondiagegation. Species are divided from each other
by white lines, and new species always arrive on the rightlleade. A species becomes bright when the
fitness of its most fit member is one standard deviation abdlowentean fitness of the run, indicating that the
species is a highly promising one. A species becomes veghtonwhen it is two standard deviations above
the mean, suggesting that the species is very close to amolUuthus, it is possible to follow any species
from its inception to the end of the run.

Figure 7 shows that the initial minimal topology species Wasonly species in the population until the
5th generation. Recall that species are computed by themsyastcording to a compatibility distance metric,
indicating that before generation 7, all organisms wer&é@antly compatible to be grouped into a single
species. The visualization shows how the initial specieislksh dramatically in order to make room for the
new species.

A few species can be observed becoming extinct during thms Wihen a species becomes extinct, we
see a white triangle between the generation it expired amahéitt generation. Thus, in this run, the initial
species finally became extinct at the 19th generation ditarksng for a long time. It was unable to compete
with newer, more innovative species. The second speciegpeaa in the population met a similar fate in
the 19th generation.

In the 21st generation a structural mutation in the secddesb surviving species connected the long
pole angle sensor to a hidden node that had previously ordn lbennected to the cart position sensor.
This gave networks in the species the new capability to coetfiese observations, leading to a significant
boost in fithness (and brightening of the species in figure g ifinovative species subsequently expanded,
but did not take over the population. Nearly simultanequsiythe 22nd generation, a younger species
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also made its own useful connection, this time between the glole velocity sensor and long pole angle
sensor, leading to its own subsequent expansion. In theg&8thration, this same species made a pivotal
connection between the cart position and its already askednl method for comparing short pole velocity
to long pole angle. This innovation was enough to solve tloblpm within one generation of additional
weight mutations. In the final generation, the winning speevas 11 generations old and included 38 neural
networks out of the population of 150.

Most of the species that did not come close to a solution wedvihe run even though they fell signif-
icantly behind around the 21st generation. This obsematiomportant, because it visually demonstrates
that innovation is indeed being protected. The winning isedoes not take over the entire population.

Ablation studies confirm the interdependence of all of NEsSAJdmponents, and the speciation visualiza-
tion offer a means of visualizing the dynamics of the systéfa.now turn to a discussion of the advantages
and shortcomings of the method and its future potential.

6 Discussion and Future Work

NEAT presents several advances in the evolution of neutatargs. Through historical markings, NEAT
offers a solution to the problem of competing conventiona population of diverse topologies. NEAT also
demonstrates that a meaningful metric for comparing ansteting similar networks easily derives from the
availability of historical information in the populatiosuch that costly topological analysis is not necessary
to speciate or mate networks. Our ablation studies confierhifpothesis that starting with a population
of minimal topologies is advantageous. Finally, perforoemcomparisons suggest that the evolution of
structure can be used to gain efficiency over the evolutidixefl topologies.

A parallel can be drawn between structure evolution in NEA@ ancremental evolution (Gomez and
Miikkulainen 1997; Wieland 1991). Incremental evolutiand method used to train a system to solve
harder tasks than it normally could by training it on incrertadly more challenging tasks. NE is likely
to get stuck on a local optimum when attempting to solve thrddratask directly. However, after solving
the easier version of the task first, the population is likelybe in a part of fithess space closer to the
solution to the harder task, allowing it to avoid local opimAdding structure to a solution is analogous
to taking a solution to an easy task as the starting point ¥otveng the solution to a harder task. The
network structure before the addition is optimized in a lodenensional space. When structure is added,
the network increments into a more complex space where ltéady close to the solution. The difference
between the incrementality of adding structure and genecaémental evolution is that adding structure is
automaticin NEAT whereas a sequence of progressively harder tasksresghuman design.

A key insight behind NEAT is that it isot the ultimate structure of the solution that really mattérs,
rather the structure of all the intermediate solutions gltre way to finding the solution. The connectivity
of every intermediate solution represents a parameteresfiat evolution must optimize, and the more
connections there are, the more parameters need to be ppdimiTherefore, if the amount of structure
can be minimized throughout evolution, so can the dimemditynof the spaces being explored, leading
to significant performance gains. Figure 8 illustrates ttieaatage of evolving minimal structures with a
picture of an elegant solution to the DPNV task.

In order to minimize structure throughout evolution, NEATciementally elaborates structure in a
stochastic manner from a minimal starting point. Becausspetiation, useful elaborations survive even
if they are initially detrimental. Thus, NEAT strengthert® tanalogy between GAs and natural evolution
by not only performing the optimizing function of evolutiohut also acomplexifyingfunction, allowing
solutions to become incrementally more complex at the sameds they become more optimal.
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Figure 8: A NEAT solution to the DPNV problem. This clever solution works by taking the derivative of the

difference in pole angles. Using the recurrent connectigtself, the single hidden node determines whether thespole
are falling away or towards each other. This solution alloastrolling the system without computing the velocities of

each pole separately. Without evolving structure, it wdugddifficult to discover such subtle and compact solutions.
Starting minimally makes discovering such compact sohgimore likely.

It is this complexifying function that makes NEAT unique amgdGAs. Although GAs have been pro-
posed where bit string chromosomes can increase in lengéiimtely (Harvey 1993), NEAT goes beyond
a gradual uniform growth in genome size. While Harvey’s rodtlincreases the size of a chromosome
incrementally across the entire population, NEAT simwdtausly searches ovelifferent landscapes, all
complexifying in different ways.

Such speciated search of incrementally increasing contplefers a possibly powerful new approach
to the problem of competitive coevolution. In competitiveegolution increasingly sophisticated strategies
are evolved by allowing networks in a population to compejairast each other. The hope is that an “arms
race” will force the opponents to continuously evolve sigis better than the strategies of other networks
in the population. This method is useful because it can predigh-level strategies and tactics without
the need for an expert player to teach the system. Idealgtesgfies should becomes more sophisticated as
evolution progresses. However, evolution tends to find thmlkest solutions that can win, meaning that
strategies oscillate between different idiosyncratic yeinteresting variations (Darwen 1996; Rosin and
Belew 1997).

We hypothesize that once competitive coevolution comeaygo a dominant strategy, it cannot be im-
proved upon, because it takes the entire set of connectiaghtwealues to represent the strategy. Altering
the weights means altering the strategy, rather than Imgildpon and complexifying the strategy. Thus,
if a new strategy is to take hold, it must win by beidigferentthan the previous dominant strategy, rather
than by beingmore sophisticatedin contrast, NEAT can evolve increasingly more sophistidsstrategies
continuously, because as soon as the population convergasnew dominant strategy, new connections
and new nodes can be added to the current strategy. Newustruneans newexpressive spader elabo-
rating on the existing strategy, rather than replacing it. Thus, &pproach allowsontinuous coevolutign
i.e. nonconvergent innovation on dominant strategies.diiiteon, because different strategies in different
species are protected, there will be multiple dominant amdicually more complex strategies.
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In addition to continuous coevolution, the evolution ofisture should allow the integration of separate
expert neural networks. For example, suppose one neunrabrietan “kick” a ball towards the goal from
any position on a field, and another network that can drilieediall around the field without losing control.
Neither of these two networks alone can play soccer. Howéwee could somehow combine their expertise
into one, perhaps we could get a soccer player out. Combihiese controllers is not a simple matter of
processing both their outputs. Just because a robot capledind shoot does not mean it knowkereto
dribble orwhento shoot. Both shooting and dribbling affect each other at W¢here you dribble affects
how easy your shot is, and shooting forces a robot to stoblindp. In order to optimally combine the
two skills, the hidden nodes of the two networks must shai@nmation so that the new combined expert
can make intelligent decisions and combine the two skifisctifrely. We hypothesize that NEAT has the
capability of searching for the right interconnectionsvibstn two distinct networks to create an integrated
supernetwork that takes advantage of the expertise of lttomponent networks.

Finally, we would like to establish a characterization ofaNEAT is best suited for. The experimental
results show the difference between ESP and NEAT is significdnigher on the hardest pole balancing
task. This result implies that evolving diverse topologeparticularly suited for problems where other
methods are likely to get stuck. Such problems may be desgptieaning local optima have large basins of
attraction compared to global optima, and the global opamessignificantly different from the local optima
(Goldberg 1989). Because NEAT can always add more strudituie not necessarily trapped even if the
current weights of a networks represent a local optimum e space. By adding additional structure,
NEAT adds new dimensions to weight space, thereby openimptgntial new avenues for escape. We plan
to test NEAT on problems with varying fitness landscapes tadgmetter idea of the kinds of problems the
method tackles best.

7 Conclusion

The main conclusion is that NEAT is a powerful method forfeilly evolving neural networks. NEAT
demonstrates that evolving topology along with weights bammade a major advantage. Experimental
comparisons verify that such evolution is several timesargfficient than the neuroevolution methods
so far. Ablation studies show that historical markings,t@ction of innovation through speciation, and
incremental growth from minimal structure all work togethe produce a system that is capable of evolving
solutions of minimal complexity. NEAT strengthens the aiggl between GAs and natural evolution by both
optimizingand complexifyingolutions simultaneously. We believe that the capacitptomexify solutions
over the course of evolution offers the possibility of cantbus competitive coevolution and evolution of
combinations of experts in the future.
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