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Abstract
In cloud-computing systems, network-bandwidth guaran-
tees have been shown to improve predictability of applica-
tion performance and cost [1, 28]. Most previous work on
cloud-bandwidth guarantees has assumed that cloud ten-
ants know what bandwidth guarantees they want [1, 17].
However, as we show in this work, application bandwidth
demands can be complex and time-varying, and many
tenants might lack sufficient information to request a guar-
antee that is well-matched to their needs, which can lead
to over-provisioning (and thus reduced cost-efficiency) or
under-provisioning (and thus poor user experience).

We analyze traffic traces gathered over six months from
an HP Cloud Services datacenter, finding that application
bandwidth consumption is both time-varying and spatially
inhomogeneous. This variability makes it hard to predict
requirements. To solve this problem, we develop a predic-
tion algorithm usable by a cloud provider to suggest an
appropriate bandwidth guarantee to a tenant. With tenant
VM placement using these predictive guarantees, we find
that the inter-rack network utilization in certain datacenter
topologies can be more than doubled.

1 INTRODUCTION

This paper introduces predictive guarantees, a new ab-
straction for bandwidth guarantees in cloud networks. A
provider of predictive guarantees observes traffic along
the network paths between virtual machines (VMs), and
uses those observations to predict the data rate require-
ments over a future time interval. The cloud provider can
offer a tenant a guarantee based on this prediction.

Why should clouds offer bandwidth guarantees, and
why should they use predictive guarantees in particu-
lar? Cloud computing infrastructures, especially public
“Infrastructure-as-a-Service” (IaaS) clouds, such as those
offered by Amazon, HP, Google, Microsoft, and others,
are being used not just by small companies, but also by
large enterprises. For distributed applications involving
significant inter-node communication, such as in [1], [23],

and [24], current cloud systems fail to offer even basic
network performance guarantees; this inhibits cloud use
by enterprises that must provide service-level agreements.

Others have proposed mechanisms to support cloud
bandwidth guarantees (see §2); with few exceptions, these
works assume that tenants know what guarantee they want,
and require the tenants to explicitly specify bandwidth
requirements, or to request a specific set of network re-
sources [1, 17]. But do cloud customers really know their
network requirements? Application bandwidth demands
can be complex and time-varying, and not all application
owners accurately know their bandwidth demands. A
tenant’s lack of accurate knowledge about its future band-
width demands can lead to over- or under-provisioning.

For many (but not all) cloud applications, future band-
width requirements are in fact predictable. In this paper,
we use network traces from HP Cloud Services [11] to
demonstrate that tenant bandwidth demands can be time-
varying and spatially inhomogeneous, but can also be
predicted, based on automated inference from their previ-
ous history.

We argue that predictive guarantees provide a better
abstraction than prior approaches, for three reasons. First,
the predictive guarantee abstraction is simpler for the ten-
ant, because the provider automatically predicts a suitable
guarantee and presents it to the tenant.

Second, the predictive guarantee abstraction supports
time- and space-varying demands. Prior approaches typi-
cally offer bandwidth guarantees that are static in at least
one of those respects, but these approaches do not capture
general cloud applications. For example, we expect tem-
poral variation for user-facing applications with diurnally-
varying workloads, and spatial variation in VM-to-VM
traffic for applications such as three-tier services.

Third, the predictive guarantee abstraction easily sup-
ports fine-grained guarantees. By generating guarantees
automatically, rather than requiring the tenant to specify
them, we can feasibly support a different guarantee on
each VM-to-VM directed path, and for relatively short
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time intervals. Fine-grained guarantees are potentially
more efficient than coarser-grained guarantees, because
they allow the provider to pack more tenants into the same
infrastructure.

Recent research has addressed these issues in part.
For example, Oktopus [1] supports a limited form of
spatial variation; Proteus [28] supports a limited form
of temporal-variation prediction. But no prior work,
to our knowledge, has offered a comprehensive frame-
work for cloud customers and providers to agree on ef-
ficient network-bandwidth guarantees, for applications
with time-varying and space-varying traffic demands.

We place predictive guarantees in the concrete context
of Cicada1, a system that implements predictive guaran-
tees. Cicada observes a tenant’s past network usage to
predict its future network usage, and acts on its predic-
tions by offering predictive guarantees to the customer,
as well as by placing (or migrating) VMs to increase
utilization and improve load balancing in the provider’s
network. Cicada is therefore beneficial to both the cloud
provider and cloud tenants. More details about Cicada
are available in [15].

2 RELATED WORK

Throughout, we use the following definitions. A provider
refers to an entity offering a public cloud (IaaS) service.
A customer is an entity paying for use of the public cloud.
We distinguish between customer and tenant, as tenant
has a specific meaning in OpenStack [20]: operationally,
a collection of VMs that communicate with each other. A
single customer may be responsible for multiple tenants.
Finally, application refers to software run by a tenant; a
tenant may run multiple applications at once.

Recent research has proposed various forms of cloud
network guarantees. Oktopus supports a two-stage “vir-
tual oversubscribed cluster” (VOC) model [1], intended
to match a typical application pattern in which clusters
of VMs require high intra-cluster bandwidth and lower
inter-cluster bandwidth. VOC is a hierarchical generaliza-
tion of the hose model [5]; the standard hose model, as
used in MPLS, specifies for each node its total ingress and
egress bandwidths. The finer-grained pipe model specifies
bandwidth values between each pair of VMs. CloudMir-
ror allows tenants to specific a tenant abstraction graph,
which reflects the structure of the application itself [17].
Cicada supports any of these models, and unlike these
systems, does not require the tenant to specify network
demands up front.

The Proteus system [28] profiles specific MapReduce
jobs at a fine time scale, to exploit the predictable phased
behavior of these jobs. It supports a “temporally inter-
leaved virtual cluster” model, in which multiple MapRe-

1Thanks to Dave Levin, Cicada is an acronym: Cicada Infers Cloud
Application Demands Automatically.

duce jobs are scheduled so that their network-intensive
phases do not interfere with each other. Proteus assumes
uniform all-to-all hose-model bandwidth requirements
during network-intensive phases, although each such
phase can run at a different predicted bandwidth. Pro-
teus (and other related work [13, 19]) does not generalize
to a broad range of enterprise applications as Cicada does.

Hajjat et al. [9] describe a technique to decide which
application components to place in a cloud datacenter,
for hybrid enterprises where some components remain in
a private datacenter. Their technique tries to minimize
the traffic between the private and cloud datacenters, and
hence recognizes that inter-component traffic demands
are spatially non-uniform. In contrast to Cicada, they do
not consider time-varying traffic nor how to predict it, and
they focus primarily on the consequences of wide-area
traffic, rather than intra-datacenter traffic.

Cicada does not focus on the problem of enforcing
guarantees [8, 16, 22, 25] nor the tradeoff between guar-
antees and fairness [21]. Though these issues would arise
for a provider using Cicada, they can be addressed with
any of the above techniques.

3 THE DESIGN OF CICADA

The goal of Cicada is to free tenants from choosing
between under-provisioning for peak periods, or over-
paying for unused bandwidth. Predictive guarantees per-
mit a provider and tenant to agree on a guarantee that
varies in time and/or space. The tenant can get the net-
work service it needs at a good price, while the provider
can avoid allocating unneeded bandwidth and can amor-
tize its infrastructure across more tenants.

3.1 An Overview of Cicada
Cicada has several components, corresponding to the
steps in Figure 1. After determining whether to admit
a tenant—taking CPU, memory, and network resources
into account—and making an initial placement (steps 1
and 2), Cicada measures the tenant’s traffic (step 3), and
delivers a time series of traffic matrices to a logically
centralized controller. The controller uses these measure-
ments to predict future bandwidth requirements (step 4).
In most cases, Cicada converts a bandwidth prediction
into an offered guarantee for some future interval. Cus-
tomers may choose to accept or reject Cicada’s predictive
guarantees (step 5). Because Cicada collects measure-
ment data continually, it can make new predictions and
offer new guarantees throughout the lifetime of the tenant.

Cicada interacts with other aspects of the provider’s
infrastructure and control system. The provider needs to
rate-limit the tenant’s traffic to ensure that no tenant un-
dermines the guarantees sold to other customers. We dis-
tinguish between guarantees and limits. If the provider’s
limit is larger than the corresponding guarantee, tenants
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Figure 1: Cicada’s architecture.

can exploit best-effort bandwidth beyond their guarantees.
A provider may wish to place VMs based on their

associated bandwidth guarantees, to improve network
utilization. We describe a VM placement method in §6.
The provider could also migrate VMs to increase the
number of guarantees that the network can support [6].

3.2 Assumptions
In order to make predictions, Cicada needs to gather suffi-
cient data about a tenant’s behavior. Based on our eval-
uation, Cicada may need at least an hour or two of data
before it can offer useful predictions.

Any shared resource that provides guarantees must in-
clude an admission control mechanism, to avoid making
infeasible guarantees. We assume that Cicada will in-
corporate network admission control using an existing
mechanism [1, 12, 14]. We also assume that the cloud
provider has a method to enforce guarantees, such as [21].

3.3 Measurement Collection
Cicada collects a time series of traffic matrices for each
tenant, either passively, by collecting NetFlow or sFlow
data at switches within the network, or by using an agent
that runs in the hypervisor of each machine. We would
like to base predictions on offered load, but when the
provider imposes rate limits, we risk underestimating peak
loads that exceed those limits, and thus under-predicting
future traffic. We can detect when a VM’s traffic is rate-
limited via packet drops, so these underestimates can be
detected, too, although not precisely quantified. Currently,
Cicada does not account for this potential error.

3.4 Prediction Model
Some applications, such as backup or database ingestion,
require bulk bandwidth, and need guarantees that the
average bandwidth over a period of H hours will meet
their needs (e.g., a guarantee that two VMs will be able
to transfer 3.6Gbit in an hour, but not necessarily at a
constant rate of 1Mbit/s). Other applications, such as user-
facing systems, require guarantees for peak bandwidth
over much shorter intervals (e.g., a guarantee that two
VMs will be able to transfer at a rate of 1Mbit/s for the
next hour).

Cicada’s predictions describe the maximum bandwidth
expected during any averaging interval δ during a given
time interval H. If δ = H, the prediction is for the band-
width requirement averaged over H hours, but for an in-
teractive application, δ might be just a few milliseconds.

Note that the predictive guarantees offered by Cicada
are limited by any caps set by the provider; thus, a pro-
posed guarantee might be lower than suggested by the
prediction algorithm.

A predictive guarantee entails some risk of either under-
provisioning or over-provisioning, and different tenants
will have different tolerances for these risks, typically
expressed as a percentile (e.g., the tenant wants sufficient
bandwidth for 99.99% of the 10-second intervals). Ci-
cada’s prediction algorithm also recognizes conditions
under which the prediction is unreliable, in which case
Cicada does not propose a guarantee for a tenant.

3.5 Recovering from Faulty Predictions
Cicada’s prediction algorithm may make faulty predic-
tions because of inherent limitations or insufficient prior
information. Because Cicada continually collects mea-
surements, it can detect when its current guarantee is
inappropriate for the tenant’s current network load.

When Cicada detects a faulty prediction, it can take one
of many actions: stick to the existing guarantee, propose
a new guarantee, upgrade the tenant to a higher, more
expensive guarantee, etc. How and whether to upgrade
guarantees, as well as what to do if Cicada over-predicts,
is a pricing-policy decision, and outside our scope. We
note, however, that typical System Level Agreements
(SLAs) include penalty clauses, in which the provider
agrees to remit some or all of the customer’s payment if
the SLA is not met.

4 MEASUREMENT RESULTS

We designed Cicada under the assumption that the traffic
from cloud tenants is predictable, but in ways that are not
captured by existing models. Before building Cicada, we
collected data from HP Cloud Services, to analyze the
spatial and temporal variability of its tenants’ traffic.

4.1 Data
We have collected sFlow [27] data from HP Cloud Ser-
vices, which we refer to as the HPCS dataset. Our dataset
consists of about six months of samples from 71 Top-of-
Rack (ToR) switches. Each ToR switch connects to either
48 servers via 1GbE NICs, or 16 servers via 10GbE NICs.
In total, the data represents about 1360 servers, spanning
several availability zones. This dataset differs from those
in previous work—such as [2, 3, 7]—in that it captures
VM-to-VM traffic patterns.
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Figure 2: Variation in the HPCS dataset.

We aggregate the data over five-minute intervals, to
produce datapoints of the form 〈timestamp, source, des-
tination, number of bytes transferred from source to des-
tination〉. We keep only the datapoints where both the
source and destination are private IPs of virtual machines,
and thus all our datapoints represent traffic within the data-
center. Making predictions about traffic traveling outside
the datacenter or between datacenters is a challenging
task, which we do not address in this work.

Under the agreement by which we obtained this data,
we are unable to reveal information such as the total num-
ber of tenants, the number of VMs per tenant, or the
growth rates for these values.

4.2 Spatial and Temporal Variability
To quantify spatial variability, we compare the observed
tenants to a static, all-to-all tenant. This tenant is the easi-
est to make predictions for: every intra-tenant connection
sends the same amount of data at a constant rate. Let Fi j
be the fraction of this tenant’s traffic sent from V Mi to
V M j. For this “ideal” all-to-all tenant, all of these values
are equal; every VM sends the same amount of data to
every other VM. As another example, consider a bimodal
tenant with some pairs that never converse and others that
converse equally. Let k = n/2. Each VM communicates
with k VMs, and sends 1/k of its traffic; hence half of the
F values are 1/k, and the other half are zero.

For each tenant in the HPCS dataset, we calculate the
distribution of its F values, and plot the coefficient of
variation in Figure 2. The median cov value is 1.732,
which suggests nontrivial overall spatial variation (for
contrast, the cov of our ideal tenant is zero, and the cov
of our bimodal tenant is one2).

To quantify temporal variability, we first pick a time
interval H. For each consecutive H-hour interval, we cal-
culate the sum of the total number of bytes sent between
each pair p of VMs, which gives us a distribution Tp of
bandwidth totals. We then compute the coefficient of vari-
ation for this distribution, covp. The temporal variation
for a tenant is the weighted sum of these values. The
weight for covp is the bandwidth used by pair p, to reflect
the notion that tenants where only one small flow changes
over time are less temporally-variable than those where
one large flow changes over time.

2For the bimodal tenant, µ = 1/2k and σ =
√

1/n ∑
n
i=1(1/2k)2 = 1/2k.

For each tenant in the HPCS dataset, we calculate its
temporal variation value, and plot the CDF in Figure 2.
As with spatial variation, most tenants have high temporal
variability. This variability decreases as we increase the
time interval H, but we see variability at all time scales.

These results indicate that a rigid model is insufficient
for making traffic predictions. Given the high spatial
cov values in Figure 2, a less strict but not entirely gen-
eral model such as VOC [1] may not be sufficient either.
Furthermore, the high temporal variation values indicate
that static models cannot accurately represent the traffic
patterns of the tenants in the HPCS dataset.

5 CICADA’S TRAFFIC PREDICTION METHOD

Much work has been done on predicting traffic matrices
from noisy measurements such as link-load data [26, 29].
In these scenarios, prediction approaches such as Kalman
filters and Hidden Markov Models—which try to estimate
true values from noisy samples—are appropriate. Cicada,
however, knows the exact traffic matrices observed in past
epochs; its problem is to predict a future traffic matrix.

Cicada’s prediction algorithm adapts Herbster and War-
muth’s “tracking the best expert” idea [10], which has
been successfully adapted before in wireless power-saving
and energy reduction contexts [4, 18]. To predict the traf-
fic matrix for epoch n+1, we use all previously observed
traffic matrices, M1, . . . ,Mn (below, we show that data
from the distant past can be pruned away without affect-
ing accuracy). In such a matrix, the entry in row i and
column j specifies the number of bytes that VM i sent to
VM j in the corresponding epoch (for predicting average
bandwidth) or the maximum observed over a δ -length
interval (for peak bandwidth).

The algorithm assigns each of the previous matrices a
weight as part of a linear combination. The result of this
combination is the prediction for Mn+1. Over time, these
weights get updated; the higher the weight of a previous
matrix, the more important that matrix is for prediction.
In the HPCS dataset, we found that the 12 most recent
hours of traffic are weighted heavily, and there is also a
spike at 24 hours earlier. Weights are vanishingly small
prior to this. Thus, at least in our dataset, one does not
need weeks’ worth of data to make reliable predictions.

We refer the reader to [15] for a full description of our
prediction algorithm, including the method for updating
the weights, as well as an evaluation against a VOC-style
prediction algorithm [1]. To summarize those results, Ci-
cada’s prediction method decreases the median relative
error by 90% compared to VOC when predicting either
average or peak bandwidth. Cicada also makes predic-
tions quickly. In the HPCS dataset, the mean prediction
speed is under 10 msec in all but one case (under 25 msec
in all cases).
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Algorithm 1 Cicada’s VM placement algorithm
1: P = set of VM pairs, in descending order of their

bandwidth predictions
2: for (src,dst) ∈ P do
3: if resources aren’t available to place (src,dst)

then
4: revert reservation
5: return False
6: A = All available paths
7: if src or dst has already been placed then
8: restrict A to paths including the appropriate end-

point
9: Place (src,dst) on the path in A with the most

available bandwidth

6 EVALUATION

Although Cicada’s predictive guarantees allow cloud
providers to decrease wasted bandwidth, it is not clear
that these providers treat wasted intra-rack and inter-rack
bandwidth equally. Inter-rack bandwidth may cost more,
and even if intra-rack bandwidth is free, over-allocating
network resources on one rack can prevent other tenants
from being placed on the same rack.

To determine whether wasted bandwidth is intra- or
inter-rack, we need a VM-placement algorithm. For VOC,
we use the placement algorithm detailed in [1], which
tries to place clusters on the smallest subtree that will
contain them. For Cicada, we developed a greedy place-
ment algorithm, detailed in Algorithm 1. This algorithm
is similar in spirit to VOC’s placement algorithm; Ci-
cada’s algorithm tries to place the most-used VM pairs
on the highest-bandwidth paths, which in a typical dat-
acenter corresponds to placing them on the same rack,
and then the same subtree. However, since Cicada uses
fine-grained, pipe-model predictions, it has the potential
to allocate more flexibly; VMs that do not transfer data to
one another need not be placed on the same subtree, even
if they belong to the same tenant.

We compare Cicada’s placement algorithm against
VOC’s on a simulated physical infrastructure with 71
racks with 16 servers each, 10 VM slots per server, and
(10G/Op)Gbps inter-rack links, where Op is the physical
oversubscription factor. For each algorithm, we select a
random tenant, and use the ground truth data to determine
this tenant’s bandwidth needs for a random hour of its ac-
tivity, and place its VMs. We repeat this process until 99%
of the VM slots are filled. Using the ground-truth data
allows us to compare the placement algorithms explicitly,
without conflating this comparison with prediction errors.
To get a sense of what would happen with more network-
intensive tenants, we also evaluated scenarios where each
VM-pair’s relative bandwidth use was multiplied by a
constant bandwidth factor (1×, 25×, or 250×).

Figure 3 shows how the available inter-rack
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Figure 3: Inter-rack bandwidth available after placement.

bandwidth—what remains unallocated after the VMs are
placed—varies with Op, the physical oversubscription
factor. In all cases, Cicada’s placement algorithm leaves
more inter-rack bandwidth available. When Op is greater
than two, both algorithms perform comparably, since this
is a constrained environment with little bandwidth avail-
able overall. However, with lower over-subscription fac-
tors, Cicada’s algorithm leaves more than twice as much
bandwidth available, suggesting that it uses network re-
sources more efficiently in this setting.

Over-provisioning reduces the value of our improved
placement, but it does not remove the need for better guar-
antees. Even on an over-provisioned network, a tenant
whose guarantee is too low for its needs may suffer if its
VM placement is unlucky. A “full bisection bandwidth”
network is only that under optimal routing; bad routing
decisions or bad placement can still waste bandwidth.

7 CONCLUSION

This paper described the rationale for predictive guar-
antees in cloud networks, and the design of Cicada, a
system that provides this abstraction to tenants. Cicada
provides fine-grained, temporally- and spatially-varying
guarantees without requiring the clients to specify their
demands explicitly. We outlined a prediction algorithm
where the prediction for a future epoch is a weighted lin-
ear combination of past observations, with the weights
updated and learned online in an automatic way. Using
traces from HP Cloud Services, we showed that the fine-
grained structure of predictive guarantees can be used by
a cloud provider to improve network utilization in certain
datacenter topologies.
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