
A Data Transformation System for Biological Data Sources *

P. Buneman, S.B. Davidson, K. Hart, C. Overton
Dept. of Computer and Information Science & Dept. of Genetics

University of Pennsylvania, Philadelphia, PA 19104

L. Wong
Real World Computing Partnership Novel Function, Institute of Systems Science Laboratory

Heng Mui Keng Terrace, Singapore 0511

Email: {peter,susan,coverton}@central.cis.upenn.edu, khart@saul.cis.upenn.edu, limsoon@iss.nus.sg

Abstract

Scientific data of importance to biologists in the Hu-
mitn Genome Project resides not only in conventional
da.tabases, but in structured files maintained in a num-
ber of different formats (e.g. ASN.1 a.nd ACE) as well
a.s sequence analysis packages (e.g. BLAST and FASTA).
These formats and packages contain a number of data
types not found in conventional databases, such as lists
and variants, and may be deeply nested. We present in
this paper techniques for querying and transforming such
data, and illustrate their use in a prototype system de-
veloped in conjunction with the Human Genome Center
for Chromosome 22. We also describe optimizations per-
formed by the system, a crucial issue for bulk data.

1 Introduction

The goal of the Human Genome Project (HGP) is to
sequence the 24 distinct chromosomes comprising the
human genome. Much of the information associated
with the HGP resides not in conventional databases,
but in files that have been formatted according
t,o a variety of conventions. These formats have
been adopted in preference to database management

*This research was supported in part by DOE DE-FGO2-94-
ER-61923 Sub 1, NSF BIR94-02292 PRIME, AR0 AASERT
DAAH04.93-G0129, and ARPA N00014-94-1-1086.

Permission to copy without fee all or part of this material
i.5 granted provided that the copies are not made OT distributed
fov direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, OT to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Switzerland 1995

systems for several reasons. First, the data is complex
and not easy to represent in a relational DBMS.
Typical structures include sequential data (lists) and
deeply nested record structures. This complexity
would argue for the use of object-oriented database
systems, but t(hese have not met with success because
of the constant need for database restructuring [13].
For example, each time a new experimental technique
is discovered, new data structures are needed to
record details peculiar to that technique. Second,
formatted files are easily accessed from languages
such as Fortran and C, and a number of useful
software programs exist that work with these files.
Third, the files and associated retrieval packages are
available for a variety of platforms.

For example, ACE is an extremely popular data for-
mat within the HGP, and has been designed to inter-
act easily with C. Its data model is tree-structure, and
allows complex nested types. Many of the schemas
that have been developed around it are very intuitive,
and easy to understand. A number of sophisticated
display and analysis packages have also been devel-
oped for ACE, and are available on machines ranging
from Sun workstations to Macintosh laptops.

Another popular data format within the HGP is
ASN.l (Abstract Syntax Notation) [22], which con-
sists of a syntax for types and a prescription of how
data conforming to an ASN.l type is to be physically
represented in a sequential file or data stream. It
was originally intended as the format for data trans-
port between the top layers of the OS1 architecture,
but is now being used by the National Center for
Biotechnology Information (NCBI) for storing one of
the most comprehensive repositories of biological se-

158

quence information.

Below we show the specification of an ASN.l type
for t,he Publication entity in GenBank, one of the
databases maintained by NCBI:

Publications =

{[title: string,

authors: {II [name: string,initial: string] ID,

journal: <uncontrolled: string,

controlled: cmedline-jta: string,

% Medline journal title abbreviation
iso-jta: string,

% IS0 journal title abbreviation
journal-title: string,

% Full journal title
issn: string>>

% ISSN number
volume: string,

issue: string,

year: int,

pages: string,

abstract: string,

keywd: {string}]}

Rat,her than use ASN.l syntax for specifying this
type, we have used notation that is close to that of
high-level programming languages.

It should be noted that these types can be arbitrarily
nest#ed. The variant or “tagged union” is frequently
used in this and other formats. Its use can be seen
in the example above where journal is either an
abbreviated journal name (also a variant type), or
t,he name of the person who performed the data entry
(an informal review process).

/

list
set

record

variant

Notation ASN.l
terminology

TP

sequence of
r set of

Vl : Tl) ..,I, :T,l sequence
(labeled fields)

<I 1 :q,...,ln :-fn> choice
(tagged union)

Query languages associated with data formats are
typically very limited. For example, GenBank is

accessed t,hrough an information retrieval package
called Entrez, which simply selects ASN.l values
through pre-computed indexes; no pruning or field
selection from values can be performed. Effective
query mechanisms for such data, however, must not
only be able to extract data, but transform data from
one format to another. The ability to transform
data is not only necessary for manipulating data
for storage in archival databases, hut for structuring
data so that it can be used by other software such
as graphical user interfaces and sequence homology
packages. Data. transformation is also necessary for
data integration, in which data from several different
sources is integrated into a common format,. This is a
crucial problem within the HGP since as data sources
proliferate, data of interest to scientists is no longer
isolated in one or two central data repositories but
may be spread across several sources.

We therefore describe in this paper techniques for
querying and transforming data that is maintained
in these formats as well as data maintained in
conventional databases, and illustrate their use on
problems arising within the HGP. It should be noted
that while our examples deal mainly with ASN.l, the
techniques work equally well with a large number
of data formats we have studied, including ACE,
FASTA, GCG and EMBL as well as object-oriented
databases.

The rest of this paper is organized as follows. In
Section 2, we describe our model and query language
CPL. In Section 3, we give the architecture of a
prototype system for querying data formats and
databases, and describe how it is currently being
used in the Informatics Group of the Center for
Chromosome 22 at the University of Pennsylvania.
Query optimization is then discussed in Section 4. A
brief comparison with other approaches can be found
in Section 5.

2 CPL: A Query Language for
Collection types

The language CPL (Collection Programming Lan-
guage) is based on a type system that allows arbi-
trary nesting of the collection types - set, bag and
list - together with record and variant types. The

159

types are given by the syntax

r := boo1 1 int (string 1 . .) {T} 1 {IrD 1

(11~11) 1 <I1 : q,. .) 1, : m> I CIl : 5-1,. . . ,l, : TnT,l

Here, boo1 I int I string] are the (built-in) base
t,ypes. The other types are all constructors and build
new types from existing types. C/i : ri, . , d, : T,]
constructs record types from the types ~1,. . . , r,.
tlr : rr, . . , I, : Tn> constructs variant types from
the types ~1,. . , r,. {T}, (17D, and (I]T]D respectively
construct set, bag, and list types from the type T. An
exa.mple of this type system, Publication, was given in
the introduction.

Da.ta formats also have a syntax for values. Such
a synt.a.x is available in CPL as the subset of the
language that explicitly constructs values: [bi =
e1, f 1 - e,] for records; 4 = e> for variants, “, n -
{cl . . e,} for sets; and similarly for multisets and
list,s. For example, a fragment of data conforming to
t,he Publication type is

{ [title= “Structure of the human perforin gene”,

authors={(([name= “Lichtenheld” ,initial= “MG”] ,

[name= “Podack” ,initial= “ER”] ID,

journal=<controlled=<medline-jta=”J Immunol”>>,

volume= “143” ,

issue= “12”,

year=1989,

pages=“4267-4274”)

abstract=“We have cloned the human perforin

(Pl) gene....“,

keywd= { “Amino Acid Sequence”, “Base Sequence”,

“Exons” , “Genes, Structural” }I.. .}

This example shows just the first publication record
in a set of such records. It is an easy matter to
t,ranslate from ASN.l syntax into this format as it
is for a. variety of other data models. By treating a
rela.tion as a set of records, it is also straightforward
to represent a relational database in this format.
In fact, the type system of CPL (which is slightly
larger than the description given here) allows us to
express most common data formats including those
t,hat contain object identity, which is briefly discussed
Ia.ter. Arrays are also common in data formats, and

while they can be expressed as lists, the task of
finding the right primitives for array manipulation
is an area of current research [12, 181. We should
also remark here tha.t we do not, in general, represent
whole databases in this format; it is used for data
exchange between the query language of a DBMS
or the application programming interface of a data
format.

The language CPL. The syntax of CPL resembles,
very roughly, that of relational calculus. However
there are important differences that make it possible
to deal with the richer variety of types we have
mentioned and to allow function definition within the
language. The important synta.ctic unit of CPL is the
comprehension, which can be used with a variety of
collection types.

As an example of a comprehension, this is a simple
CPL query that extracts the title and authors from
a database DB of the type Publication

{[title = p.title, authors = p.authorsl I \p <- DB}

Note the use of \p to introduce the variable p. The
effect of \p <- DB is to bind p to each element of the
set DB. The use of explicit variable binding is needed
if we are to use database queries in conjunction with
function definition or pattern matching as in the
example below, which is equivalent to the one above.
Note that the ellipsis “. . .” matches any remaining
fields in the DB record.

{[title = t, authors = al)

[title = \t, authors = \a, . . .I <- DB}

Also, the following queries are equivalent:

{[title = t, authors = al I

[title = \t, authors = \a, year = \y, . .I <- DB,
y = 1988)

{[title = t, authors = al 1

[title = \t, authors = \a, year = 1988, . . .I <- DB}

Apart from the fact that the queries above return
a nested structure, they can be readily expressed in
relational calculus. The following queries perform
simple restructuring:

160

{[title = t, keyword = k] 1

[title = \t, keywd = \kk, .I <- DB, \k <- kk}

{[keyword = k, titles = {x.titlel \x <- DB,

k <- x.keywd }I)

\y <- DB, \k <- y.keywd }

The first query “flattens” the nested relation; the sec-
ond restructures it so that the database becomes a
database of keywords with associated titles. Oper-
at,ions such as these can be expressed in nested re-
lat#ional algebra. and in certain object-oriented query
langua.ges. The strength of CPL is that it has more
generaJ collection types, allows function definition
aud can also exploit variants, which may be used in
pa.t,t#ern matching:

{[name = n, title = t 11

[title = \t, journal = <uncontrolled = \n>, . . 1

<- DB }

This gives us the names of “uncontrolled” journals
t,ogether with their titles. The pattern <uncontrolled

= \n> matches only uncontrolled journals and, when
it, does, binds the variable n to the name.

The syntax of functions is given by \z=+e, where e is
a,n expression that may contain the variable 2. We
can give this fun&ion (or any other CPL expression)
a name with the syntax define f == e which causes
.f to act, a.s synonym for the expression e. Thus, the
tit,les of papers of a given author can be expressed as
the function

define papers-of ==

\x *{pi \p <- DB, x <- p.authors}

Note that x <- p.authors matches elements of a list
&her than elements of a set.

Pat,tern matching may also be used in function
definition, using a vertical bar “1” to separate
patt,erns:

define jname ==

<uncontrolled = \s> JS

1 <controlled = <medline-jta = \s>> JS

(<controlled = <iso-jta = \s>> =FS

) <controlled = <journal-title = \s>> JS

1 <controlled = <issn = \s>> JS

At the risk of some confusion and loss of information,
this function finds the identifier or title of a journal.
We may use this function in an expression such as

{ [title=t, name =jname(v)l I

[titIe=\t, journal = \v, . .I <- DB)

which gives us another example of transforming into
a relational database format. A more sophisticated
transformation could preserve the tag information
from the variant structure in an additional attribute
of the relation.

These examples illustrate part of the expressive power
of CPL. A more detailed description of the language is
given in [7]. An important property of comprehension
syntax is that it is derived from a more powerful
programming paradigm on collection types, that of
structural recursion [6, 51. This more general form
of computation on collections allows the expression
of aggregate functions such as summation, as well
as functions such as transitive closure, that cannot
be expressed through comprehensions alone. The
advantage of using comprehensions is that they have
a well-understood set of transformation rules [42, 38,
371 that generalize many of the known optimizations
of relational query languages to work for this richer
type system.

Object Identity. While ASN.l illustrates the com-
plex types typically found in HGP databases, other
databases and data formats such as ACE also make
explicit use of object, identity. For pverying databases
with object identity the type system of CPL is ex-
tended with a reference type and the language ex-
tended to include a dereferencing operation and a
reference pattern. Note that this does not give the
language the power to create or update references.
For creating object-oriented databases, some systems
such as ACEDB have a text format for describing

161

a whole database in which the object identifiers are
explicit values. We can generate such files with the
existing machinery of CPL by applying the appropri-
a.te output reformatting routines. For object-oriented
databases that do not have this “bulk load” ability, it
is usually an easy matter to make CPL generate the
text of a program in native OODB code that calls the
appropriate constructors to populate the database.

3 Prototype System and Application
in the HGP

Recently, an interesting list of queries thought to be
“impossible” in the HGP, primarily due to the lack of
tools for querying, integrating and transforming data
sources, was published in [9]. An example of one of
t,hese queries follows:

Find information on the known DNA sequences on
human chromosome 22, as well as information on
h,omologous sequences from other organisms.

Answering this query requires access to two distinct
data sources, GDB and GenBank; furthermore, to
produce the correct groupings for this query the
answer has to be printed as a nested relation. GDB
[27] is a Sybase relational database located at Johns
Hopkins University, and is a central repository of
information on physical and genetic maps of all
human chromosomes. GenBank [21] is an ASN.l data
source maintained by NCBI, and is accessed through
the information retrieval system Entrez. It is located
at the National Library of Medicine in Bethesda,
MD, and is one of four international repositories for
nucleic acid sequence data. To answer this query,
GDB is accessed for information about the GenBank
identifiers of DNA sequences known to be within
the chromosomal region of interest (in this case, the
whole of chromosome 22). GenBank is queried to
retrieve the sequence entries along with precomputed
links to homologous sequences (i.e., sequences with
significant similarity to the original). Only links to
non-human organisms are selected. Other queries in
the report also required access to these and other data
sources, as well as software systems such as those for
sequence analysis (e.g. BLAST and FASTA).

Using CPL, we have developed a prototype system for

Select a qtogeneticband interval on chromosome 22 (valid bands are listed).

Figure 1: Sample View Interface

querying, integrating and transforming data sources
within the HGP. Since our intended users are not
database experts, we have paid careful attention
to developing “multidatabase user-views” of the
available biological data sources. Multidatabase
user-views are not simple integrations of underlying
databases (as discussed, for example, in [33, 23, 3,
32]), but represent generalized intended uses of the
collection of underlying data sources and frequently
involve restructuring data from several sources to
some desired format. These user-views are frequently
parameterized and programmed with special purpose
GUIs such as the one shown in Figure 1, an interface
which generalizes the sample DOE query given earlier
by allowing users to specify a chromosome and band
region of interest.’ Underlying this simple interface is
a CPL function which is executed using the specified
parameters.

The overall architecture of the system is shown
in Figure 2. CPL is implemented on top of an
extensible query system called Kleisli2, which is
written entirely in ML [19]. Routines within Kleisli
manage optimization, query evaluation, and I/O from
remote and local data sources. Once registered in

IThis executable screen is available via Mosaic using
http://agave.humgen.upenn.edu/cgi-bin/cpl/mapsearchl.html.

‘The system is named after the mathematician H. Kleisli,
who discovered a natural transformation between monads.
This transformation plays a central role in the manipulation
of sets, multisets and lists in our system.

162

Figure 2: Accessing Biomedical Databases

Kleisli, the data drivers perform the task of logging
into a specific data source, sending queries in the
native form for that source, returning results to
Kleisli in internal Kleisli value syntax, and logging
out from the data source when the CPL session
terminates. For example, a query against the
form in Figure 1 would generate a query request
to the Sybase driver, which would in turn access
GDB and transform the resulting relation into an
internal Kleisli data value; the result of this would
then generate input requests to the ASN.l driver,
which would then access GenBank and transform the
resulting ASN.l data value into an internal Kleisli
data value. Because communication with the drivers
is facilitated through UNIX pipes, drivers can be
written in any language; we have used C, perl, and
Prolog. In addition, a flexible printing routine in CPL
allows data to be converted to a variety of formats
for use in displaying (e.g. HTML) or reading into
another programming language (e.g. perl).

Kleisli has two interfaces: the application program-
ming interface and the compiler interface. The appli-
cation programming interface consists of ML modules
implementing the data types supported in the model
described in the previous section, as well as for token
streams and functions. Token streams are important
for passing data between CPL and the underlying
data sources, and provide Kleisli the mechanisms for
laziness, pipelining and fast response. The compiler
interface supports the rapid construction of query
languages, as we have done for CPL in the present
protot,ype, and contains modules which provide sup-

port for compiler/interpreter construction activities.

To give an idea of how drivers are used from within
CPL, we show two queries accessing GDB (Sybase)
and GenBank (ASN.l). These will then be used to
implement the sample DOE query.

Querying a Sybase Database. Once a Sybase
driver has been registered, driver functions can be
used as primitives in CPL to access any relational
Sybase database. For example, the following CPL
code opens a session with GDB, and defines a func-
tion Loci22 which ships an SQL query to GDB. We
shall shortly see how the rather complex SQL query
is actually generated from CPL by the optimizer in
Kleisli .

define GDB ==

Open-Sybase([server=“GDB” ,user= “cbil” ,

password= “bogus” 1);

define Loci22 ==

GDB([query=

“select locus-symbol, genbank-ref

from locus, object-genbank-ref, locus-cyto-location

where locus.locus-id = locus-cyto-location-id

and locus.locus-id = object-genbank-eref.object-id

and object-class-key = 1
and lot-cyto-chrom-num = ‘22’ “1);

In this example, the user has completely specified the
query in SQL. However, Kleisli understands how to
move selections, projections as well as joins from CPL
into Sybase queries. Using an SQL-template function
GDB-Tab as follows

define GDB-Tab == \Table +

GDB([query=“select * from ” ^ Table 1);

(- denotes string concatenation) the previous query
could have been written entirely within CPL:

define Loci22 == {[locus-symbol= x, genbank-ref= yl)
[locus-symbol=\x,locus-id=\a, .I

<- GDB-Tab(“locus”),

163

Cgenbank-ref=\y,object-id=a,object-class-keyzl, . .]

<- GDB-Tab(“object-genbank-eref”),

Clocxyto-chrom_num=“22”, locus-cyto-location-id=a,

1 <- GDB-Tab(“I ecus-cyto-location”)};

The opt,imizer migrates not only all selections and
projections to the Sybase server, but also moves the
local joins to joins on the server where pre-computed
indexes and table statistics may be exploited. Thus,
a.lthough the second version of Loci22 appears to send
t*hree queries to the Sybase server and perform the
join within CPL, the optimizer would reconstruct it
as in the first version, resulting in a single SQL query
being shipped.

Querying an ASN.l Database. The ASN.l
driver for Entrez [al, 221 is significantly more compli-
cated than the Sybase server because there is no real
query la.nguage interface for ASN.l. While Entrez
queries allow the selection of a complex value from
a.11 ASN.l source, they do not allow any pruning or
field selection from that value. For example, if the
value were a. set of tuples (a relation), there would
be no way to project over certain fields. Although
such pruning could be done to an ASN.l value after
it has been retrieved into the CPL environment, we
are able to minimize the cost of parsing and copying
ASN. 1 values by pruning at the level of the ASN.l
driver. For this purpose, we have developed a path
extraction syntax that allows for a terse description of
successive record projections, variant selections, and
rxtract,ions of elements from collection.

The selection of ASN.l va.lues from Entrez is accom-
plished through pre-computed indexes in the style of
information retrieval systems. For the ASN.l driver,
a. simple syntax that uses boolean combinations of
index-value pairs is used.

To illustrate use of the ASN.l driver functions,
suppose we want the following information:

Retrieve equivalent identijiers corresponding to the
acression number M81409.

define GenBank ==

Open-ASN([server= “NCBI” ,

user= “cbil” , password= “bogus” I);

define ASN-IDS == \accession 3

GenBank(Cdb=“na” ,

select= “accession ” L accession,

path=“Seq-entry.seq.id..giim”, args=L] 1);
ASN-IDs(“M81409”);

The driver responds to the ASN-IDs(“M81409”) query
by sending the index lookup select= “accession M81409”

to the nucleic acid division in Entrez (db= “na” - this
division contains GenBank), which returns the en-
tries with accession number M81409. The path ex-
pression is applied during the parse so that only the
ASN.l sequence IDS are returned. In this query, the
path expression specifies two projections (.seq.id) on
the root type Seq-entry, followed by a variant extrac-
tion for each element in the resulting set (_ .giim). The
CPL type specification Seq-entry: Cseq: [id:{<giim: int,

. . >}, . ..I.. .I shows the nested types that are en-
countered by this traversal, where the ellipsis “. .”
matches unspecified remaining fields.

As with the Sybase driver, the optimizer migrates
projections on ASN.l data from CPL to Entrez.
Although general rewrite rules for the translation of
CPL queries to path expressions are not available, we
are currently investigating type inferencing for path
expressions in order to provide such a translation.

Revisiting the “Impossible” DOE Query. We
are now in a position to put the pieces together and
answer the DOE query given in the introduction to
this section. Loci22 returns accession numbers for
known DNA sequences on chromosome 22. ASN-

IDS returns ASN. 1 sequence ids for given accession
numbers. To find homologous sequences for these
ASN.l entries, we use pre-computed similarity links
which are available in Entrez via the function NA-

Links. NA-Links takes an ASN.l sequence identifier
and returns a set of records describing linked entries.
The final solution to our query can then expressed
using these functions as:

{ [locus=locus, homologs=NA-Links(uid)] 1 \locus <-

Loci22, \uid <- ASN-IDs(locus.genbank-ref)

Note that the query itself is quite simple, and that
most of the effort was spent figuring out where the
relevant data was stored.

164

4 Query Optimization

Crucial to the success of Kleisli for large scale
integration of remote data sources is the ability to
perform optimizations. Optimization of queries is
done entirely at compile time using rewrite rules3.
The benefit of this approach is that it is easily
extensible; new rules can be specified by the designer
of the system and grouped into rule sets along wit,h
an indication of how they are to be applied, eg.
bottom-up or top-down with respect to the tree of
s&expressions and how many iterations of a rule set
should be applied in what order.

Monadic Optimizations. The core of optimiza-
t,ions in Kleisli is based on rewrite rules derived from
t-he equational theory of monads on which CPL is
based. This is similar to relational systems, in which
ma.ny of the optimizations are based on rewrite rules
for the relational algebra, the theoretical basis for re-
lational query languages. Once submitted to Kleisli,
a CPL query is translated into an abstract syntax lan-
gua.ge in the monad algebra NRC to which the rewrite
rules can be applied. The monad rewrite rules are ini-
t,ially applied until a normal form is reached; this is
guaranteed to terminate in a finite number of steps
because the rewrite rules are strongly normalizing.

NRC is very similar to CPL, except that it does not
use pattern matching and uses the U{el 1 \X <- ez}
construct instead of the comprehension construct of
CPL. The meaning of U{el 1 \X <- es} is the set
formed by taking the union of the sets el[ol/z],
e1 [o,,/x] where (01, . , on} is the set e2. Compre-
hensions in CPL can be translated into this con-
st,ruct, of NRC using three simple identities due to
Wa.dler [39] as follows: translate {e 1 } to {e},
{e 1 \Z <- e’, A} to U{ {e I A} I \X <- e’}, and
{e 1 e’,A} to if e’ then {e I A} else {}. The last
case occurs when e’ is not of the form \x <- e”, i.e.
it, is a boolean expression.

Details of the monad rewrite rules are beyond the
scope of this paper (see [42]). We provide only a few
of them below. However, the important thing to no-
t,ice is that they generalize many known optimizations
for relational algebra to complex objects.

“Run-time optimizations are currently under investigation.

Rl:

R2:

R3:

R4:

U{el I \x <- Me2 I \Y <- e3))

- U{U{el I \x <- e2) I \Y <- e3).

Vert.ical loop fusion is an optimization which
combines two loops into one to reduce the amount
of intermediate data. It is applicable when
the first loop is a producer and the second
loop is a consumer. Rule Rl implements this
optimization.

In comprehension syntax this is
{e 1 Al,\x <-- {e’ I A},A,}
-+ {e[e’/xl I AI, A, &&‘/~I)

equivalent to:

However, Al, AZ, and A are each irregular
sequences of filter and generator expressions,
making the comprehension form of this rule messy
to program. On the other hand, Rule Rl is
trivial to program. This is one of the reasons that
the first step in our implementation of CPL is to
tra.nslate it to NRC.

U{el I \x <- eIl U We2 I \x <-- e1
crf U{el U e2 I \x <- e)
Horizontal loop fusion is a.nother optimization
that combines two loops into one. It is applicable
when there are two indepedent loops over the
same set, where instead of doing the first loop
and then the second loop in a process requiring
the set to be traversed twice, both loops are
performed simultaneously. Rule R2 implements
this optimization. It applies to sets and multisets,
but not to lists.

U{ifp(y) then el else ez I \X <- e}

-Ytifp(y)then U{el j\x <-e} else U{ez I \x <- e)

Filter promotion is an optimization that moves a
filter test p(y) 1 c oser to the generator \y <- e’ of
y. It corresponds to migrating a piece of invariant
code out of a loop. Rule R3 implements this
optimization.

[l=e,...].l+e

This rule corresponds to the traditional database
optimizat,ion that reduces the number of columns
in intermediate data. For example, applying Rule
Rl followed by Rule R4 to
U{{XJlI I

\x <- U{{ C/l = f(Y), 12 = g(y)] 1 I \Y <- RI)
gives us
W(Y) I \Y <- RI.

165

The t#gpe of rewriting illustrated above allowed us to
push projections, selections, and joins from queries
specified entirely in CPL to the Sybase driver in
t,he previous section. In fact, it can be proved [42]
that our optimizer is able to push any subquery not
involving nested relations and not using powerful
opera.tors to the server.

Optimizing Joins. Other optimizations in Kleisli
involve introducing new operators rather than merely
rewriting expressions within NRC and are hence
called “non-monadic” optimizations. The most
import8ant of these are dedicated to improving the
performance of joins across data sources, that is, joins
t,hat cannot be moved to database servers and must
be performed locally. To do this, two join operators
ha.ve been added as additional primitives to the basic
Kleisli system: the blocked nested-loop join [16], and
the indexed blocked-nested-loop join where indices
are built on-the-fly (this is a variation of the hashed-
loop join of [‘LO]). The join rule-set is dedicated to
recognizing under what conditions to apply which
join operator. For example, the indexed join can be
used only if equality tests in the join condition can be
turned into index keys. Both operators have a good
balance of memory consumption, response time, and
total t#ime behaviors.

As the system is fully compositional, the inner
relation in a join can sometimes be a subquery. To
avoid recomputation, we have therefore introduced
an operator t80 cache the result of a subquery on
disk. Rules t,o recognize when the result of an inner
subquery can be cached check that the subquery
doesn’t depend on the outer relation.

Several of the rules for join optimizations require
statistics about the size of files, and can therefore
only be used when such statistics are available. We
have found it problematic to obtain such statistics on
the fly from remote sites, and are currently extending
the system to use statically stored statistics from
commonly used data sources.

Laziness, Latency, and Concurrency. The eval-
uat,ion mechanism of Kleisli is basically eager, with
rules used to introduce a limited amount of laziness

in strategic places to minimize memory consumption
and reduce response time. This strategy is the op-
posite of fully lazy systems which execute lazily by
default and rely on sophisticated strictness analysis
to bring in eagerness to improve performance [2, 41.
As an example of how lazy evaluation is introduced
into our system, consider the nested-loop query

{(xv YI \x <- DB, \Y <- S(x))

Note that y is instantiated to members of the set
obtained by applying S to x and is thus dependent
on x. Although full evaluation of the query will
require instantiating all x and y, each (x, y) pair in
the result can be assembled by retrieving a single
element x from DB and single element from the set
S(x). Where possible, the Kleisli optimizer will lazily
retrieve elements from DB and lazily evaluate the
function S in order to generate initial output quickly,
and minimize storage of intermediate results such as
the instantiations of x and y. This mechanism is
primarily used when DB and S(x) are derived from
external data sources.

Equally important is the ability to introduce paral-
lelism to improve response time. Consider again the
nested-loop query above, and suppose S is a function
that sends x as a request to some remote database
and then returns the reply. Rather than sequentially
sending values of x to S, we should be able to exploit
the fact that many data servers can handle several re-
quests simultanenously. Similarly, while our system is
waiting for a response from S, it has enough resources
to send a new request to S and process the reply to
its previous request simultaneously. We have there-
fore introduced a primitive that retrieves elements
from a collection in parallel and returns the union of
the results, and implement it by building pre-emptive
thread scheduling into our system using Concurrent
ML [30]. Again, rules are introduced to recognize
when a function accessing a remote database appears
in an inner loop.

In introducing such parallelism, we must be careful
of two things: First, the server S may only be able
to handle a limited number of requests at a time,
say five. In this case, we should send five values
of x at a time to avoid overwhelming the server.
Secondly, each concurrent thread requires resources
(such as memory) to be allocated if their output are

166

not consumed quickly enough. Therefore, techniques tally. A greater than two-fold improvement has been
to’ automatically adjust the level of concurrency obtained over the plain Remy projection; a full de-
hased on the capability of servers and on resource scription of the Remy technique and our improvement
availability are being developed [43]. can be found in [41].

Optimizing Projections. We also improve the
speed of record projection by exploiting homogeneity.
Consider the innocent-looking query below:

{ Cname=n, age=a, sex=s] 1 Cname=\n, age=\a, .]

<- DBl, [name= n, sex=\s,. . .] <- DB2)

This query essentially joins DBl and DB2. However,
we have to compile it with only the knowledge that
DBl has a name field and an age field, and that DB2
has a. name field and a sex field. We do not know
what are in these fields and we do not know what
ot,her fields are present.

Since we cannot compile queries using traditional
techniques, which require precise knowledge of types
to calculate field offsets at compile time, we have
adopted a technique due to Remy[29] (which is
related to the extendible technique of Fagin[ll]). His
t,echnique is to represent a record as a pair consisting
of a. pointer to a directory and an array. The array
keeps the values of the fields of the record. The
direct,ory is used to generate the right index into the
array given a field name. All records having the same

fields share the same directory.

The t,echnique works across systems based on para-
metric polymorphism [25, etc.] and systems based on
subtype polymorphism [8, etc.]. However, not every
system needs this kind of generality in record pro-
jection. In particular, relational databases have ho-
mogeneous sets. In this case, it is possible to take
a.dvantage of homogeneity to speed up record projec-
tion. To do so, we note that Remy record projection
consists of two steps. The first step is the computa-
tion of an offset based on field name and the magic
number associated with a Remy directory. The sec-
ond step uses the offset to index into a Remy record
to retrieve the value of the required field. If the set we
are mapping over is homogeneous, then all its records
share the same Remy directory. Therefore, we can
compute the offset only for the first record and this
offset can be reused for the remaining records. Our
system is able to perform this optimization automati-

5 Conclusions

Issues of integrating databases are not new, and
have been dealt with extensively in the computer
science literature [36, 35, 17, 24, 40, etc.]. The chief
distinction between our approach and these is the
complexity of data types that we model and query,
and the ability to transform between complex types.
Although the model in [l] encompasses many of the
types we consider (sets, records and variants), the
transformations considered are limited and queries
are not supported. Our approach also contrasts with
that taken by [26] which has a very simple data model
and expresses types dynamically. When dealing with
biological data sources, static type information is
both available and useful in specifying and optimizing
transformations.

In the biological domain, the main integration efforts
have been either to produce centralized repositories
[31], provide indexed or hypertext links between
data sources [lo, 141, or GUIs to provide fixed
integrated access [28, 341. However, none of these
are supported by a query language which allows
data to be combined from multiple, heterogeneous
sources. The idea of using list comprehensions to
optimize Daplex queries over protein databases has
been studied in [15].

The system presented in this paper manipulates
complex data types, and is currently being used
in the Philadelphia Center for Chromosome 22 for
querying and transforming multiple, heterogeneous
data sources. Many of these sources are not
conventional database systems (such as ASN.l),
and we have found CPL useful for extending their
information retrieval type languages to a general
purpose query language. The strengths of CPL lie
in its ability to represent and manipulate complex
data types, capturing a variety of data formats for
communication with other data sources. CPL has
been implemented on top of an extensible query
system called Kleisli, in which optimizations can be

167

expressed. Chief among the optimizations currently
being used are the abiIity to exploit additiona access
paths or query languages when these exist, and the
ability to “migrate” optimizations (such as joins) to
these external systems.

The examples we used in this paper showed the
system’s ability to integrate ASN.l and relational
formats, and to perform optimizations for these data
sources. The techniques work equally well with
other data formats, including ACE and a number of
interfaces for applications programs. ACE contains
certain object-oriented features, specifically classes
and object identities. Only minor extensions to the
language are needed to query and transform such
st,ructures.

References

PI

PI

[31

[41

[51

[61

PI

ABITEBOUL, S., AND HULL, R. IFO: A formal
semantic database model. ACM Transactions on
Database Systems 12, 4 (December 1987), 525-565.

ABRAMSKY, S., AND HANKIN, C., Eds. Abstract
Interpretation of Declarative Languages. Ellis Hor-
wood, Chichester, England, 1987.

BATINI, C., LENZERINI, M., AND NAVATHE, S. A
comparative analysis of methodologies for database
schema integration. ACM Computing Surveys 18, 4
(December 1986), 323-364.

BJORNER, D., ERSHOV, A. P., AND JONES, N. D.,
Eds. Partial Evaluation and Mixed Computation.
North-Holland, 1988. Proceedings of IFIP TC2
Workshop, Gammel Avernaes, Denmark, October
1987.

BREAZU-TANNEN, V., BUNEMAN, P., AND NAQVI,
S. Structural recursion as a query language. In Pro-
ceedings of 3rd International Workshop on Database
Programming Languages, Naphlion, Greece (August
1991), Morgan Kaufmann, pp. 9-19. Also available
as UPenn Technical Report MS-CIS-92-17.

BREAZU-TANNEN, V., BUNEMAN, P., AND WONG,
L. Naturally embedded query languages. In LNCS
646: Proceedings of 4th International Conference
on Database Theory, Berlin, Germany, October,
1992 (October 1992), J. Biskup and R. Hull, Eds.,
Springer-Verlag, pp. 140-154. Available as UPenn
Technical Report MS-CIS-92-47.

BUNEMAN, P., LIBKIN, L., SUCIU, D., TANNEN, V.,
AND WONG, L. Comprehension syntax. SIGMOD
Record 23, 1 (March 1994), 87-96.

P31

PI

PO1

Pll

WI

1131

1141

P51

PI

P71

P81

P91

PO1

CARDELLI, L. A semantics for multiple inheritance.
Information and Computation 76, 2 (1988), 138-164.

DEPARTMENT OF ENERGY. DOE Informatics Sum-
mit Meeting Report, April 1993. Available via gopher
at gopher.gdb.org.

ETZOLD, T., AND ARGOS, P. Transforming a
set of biological flat file libraries to a fast access
network. Computer Applications in the Biosciences
9, 1 (1993), 59-64.

FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND
STRONG, H. R. Extendible hashing-a fast access
method for dynamic files. ACM Transactions on
Database Systems 4, 3 (1979), 315-344.

FEGARAS, L., AND MAIER, D. Towards an effective
calculus for object query languages. In Proceedings
of ACM SIGMOD International Conference on Man-
agement of Data (1995), pp. 47-58.

GOODMAN, N., ROZEN, S., AND STEIN, L. Re-
quirements for a deductive query language in the
MapBase genome-mapping database. In Proceedings
of Workshop on Programming with Logic Databases,
Vancouver, BC (October 1993).

JACOBSON, D. Pro&web and bioweb-networking
for biologists. In DOE Human Genome Program
Contractor-Grantee Workshop IV (Santa Fe, NM,
November 1994), Department of Energy, p. 206.

JIAO, Z., AND GRAY, P. Optimisation of methods
in a navigational query language. In Proc. 2nd

International Conference on Deductive and Object-
Oriented Database (1991), M. K. C. Delobel and
Y. Masunaga, Eds., Springer-Verlag, pp. 22-42.

KIM, W. A new way to compute the product and
join of relations. In Proceedings of ACM SIGMOD
International Conference on Management of Data
(1980), pp. 179-187.

LITWIN, W., AND ABDELLATIF, A. Multidatabase
interoperability. IEEE Computer 19, 3 (December
1986), 10-18.

MAIER, D., AND VANCE, B. A call to order. In
Proceedings of 12th ACM Symposium on Principles
of Database Systems (Washington, D. C., May 1993),
pp. 1-16.

MILNER, R., TOFTE, M., AND HARPER, R. The
Definition of Standard ML. MIT Press, 1990.

NAKAYAMA, M., KITSUREGAWA, M., AND TAKAGI,
M. Hash-partitioned join method using dynamic
destaging strategy. In Proceedings of Conference on
Very Large Databases (1988), pp. 468-478.

168

[al] NATIONAL CENTER FOR BIOTECHNOLOGY INFOR-
MATION. ENTREZ: Sequences Users’ Guide. Na-
tional Library of Medicine, Bethesda, MD, 1992. Re-
lease 1.0.

[22] NATIONAL CENTER FOR BIOTECHNOLOGY INFOR-
MATION. NCBI ASN.1 Specification. National Li-
brary of Medicine, Bethesda, MD, 1992. Revision
2.0.

[23] NAVATHE, S., ELMASRI, R., AND LARSON, J.
Integrating user views in database design. IEEE
Computer 19, 1 (January 1986), 50-62.

[24] NAVATHE, S., SGALA, GEUM, S., KAMATH, A.,
KRISHNASWAMY, A., SAVASERE, A., AND WHANG,
W. A Federated Architecture for Heterogeneous
Information Systems. In Workshop on Heterogeneous
Databases (December 1989), NSF.

[25] OHORI, A., BUNEMAN, P., AND BREAZU-TANNEN,
V. Database programming in Machiavelli, a poly-
morphic language with static type inference. In Pro-
ceedings of ACM-SIGMOD International Conference
on Management of Data (Portland, Oregon, June
1989), J. Clifford, B. Lindsay, and D. Maier, Eds.,
pp. 46-57.

[26] PAPAKONSTANTINOU, Y., GARCIA-M• LINA, H.,
AND WIDOM, J. Object exchange across heteroge-
neous information sources. In IEEE International
Conference on Data Engineering (March 1995).

[27] PEARSON, P., MATHESON, N., FLESCHER, N., AND
ROBBINS, R. J. The GDB human genome data base
anno 1992. Nucleic Acids Research 20 (1992), 2201-
2206.

[as] REED, C., AND MARR, T. GDB/Accessor User
Guide. Tech. rep., Cold Spring Harbor Laboratory,
1993. URL: http:/www.cshl.org/gdbacc.

[29] REMY, D. Efficient representation of extensible
records. In Proceedings of ACM SIGPLAN Work-
shop on ML and its Applications (1992), P. Lee, Ed.,
pp. 12-16.

[30] REPPY, J. Concurrent programming with events:
The Concurrent ML manual. Technical report,
AT&T Bell Laboratories, 600 Mountain Avenue,
Murray Hill, NJ 07974, February 1993.

[31] RITTER, 0. The IGD approach to the interconnec-
tion of genomic databases. In Meeting on the In-
tegration of Molecular Biology Databases (Stanford
University, Stanford CA, August 1994).

[32] SHETH, A., AND LARSON, J. Federated database
systems for managing distributed heterogeneous and
autonomous databases. ACM Computing Surveys 22,
3 (September 1990), 183-236.

[33] SHETH, A., LARSON, J., CORNELLIO, J., AND
NAVETHE, S. A tool for integrating conceptual
schemas and user views. In Proceedings of 4th In-
ternational Conference on Data Engineering (1988),
pp. 176-183.

[34] SHIN, D.-G. Developing a graphical sql editor
for genomic database federation. In DOE Human
Genome Program Contractor-Grantee Workshop IV
(Santa Fe, NM, November 1994), Department of
Energy, p. 90.

[35] SMITH, J., BERNSTEIN, P., DAYAL, U., GOODMAN,
N., LANDERS, T., LIN, K., AND WONG, E.
Multibase - Integrating heterogeneous distributed
database systems. In Proceedings of AFIPS (1981),
pp. 487-499.

[36] TEMPLETON, M., BRILL, D., DAO, S., LUND,
E., WARD, P., CHEN, A., AND MACGREGOR, R.
Mermaid - a front-end to distributed heterogeneous
databases. Proceedings of the IEEE 75, 5 (May
1987), 695-708.

[37] TRINDER, P. W. Comprehensions, a query notation
for DBPLs. In Proceedings of 3rd International
Workshop on Database Programming Languages,
Nahplion, Greece (August 1991), Morgan Kaufmann,
pp. 49-62.

[38] TRINDER, P. W., AND WADLER, P. L. Improving
list comprehension database queries. In Proceedings
of TENCON’89, Bombay, India (November 1989),
pp. 186-192.

[39] WADLER, P. Comprehending monads. Mathematical
Structures in Computer Science 2 (1992), 461-493.

[40] WIDJOJO, S., WILE, D. S., AND HULL, R. World-
base: A new approach to sharing distributed infor-
mation. Tech. rep., USC/Information Sciences Insti-
tute, February 1990.

[41] WONG, L. An introduction to Remy’s fast polymor-
phic record projection. Technical Report 94-158-0,
Institute of Systems Science, Heng Mui Keng Ter-
race, Singapore 0511, November 1994.

[42] WONG, L. Querying Nested Collections. PhD thesis,
Department of Computer and Information Science,
University of Pennsylvania, PhiIadelphia, PA 19104,
August 1994. Available as University of Pennsylvania
IRCS Report 94-09.

[43] WONG, L. The theory, implementation, and applica-
tion of a modern query language. In Progress Report
on Flexible Storage and Retrieval of Multimedia In-
formation (Real-World Computing Partnership In-
stitute of Systems Science Novel Function Labora-
tory, Heng Mui Keng Terrace, Singapore 0511, De-
cember 1994). Available from 1imsoonOiss .nus. sg.

169

