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Abstract 

Scientific data of importance to biologists in the Hu- 
mitn Genome Project resides not only in conventional 
da.tabases, but in structured files maintained in a num- 
ber of different formats (e.g. ASN.1 a.nd ACE) as well 
a.s sequence analysis packages (e.g. BLAST and FASTA). 
These formats and packages contain a number of data 
types not found in conventional databases, such as lists 
and variants, and may be deeply nested. We present in 
this paper techniques for querying and transforming such 
data, and illustrate their use in a prototype system de- 
veloped in conjunction with the Human Genome Center 
for Chromosome 22. We also describe optimizations per- 
formed by the system, a crucial issue for bulk data. 

1 Introduction 

The goal of the Human Genome Project (HGP) is to 
sequence the 24 distinct chromosomes comprising the 
human genome. Much of the information associated 
with the HGP resides not in conventional databases, 
but in files that have been formatted according 
t,o a variety of conventions. These formats have 
been adopted in preference to database management 
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systems for several reasons. First, the data is complex 
and not easy to represent in a relational DBMS. 
Typical structures include sequential data (lists) and 
deeply nested record structures. This complexity 
would argue for the use of object-oriented database 
systems, but t(hese have not met with success because 
of the constant need for database restructuring [13]. 
For example, each time a new experimental technique 
is discovered, new data structures are needed to 
record details peculiar to that technique. Second, 
formatted files are easily accessed from languages 
such as Fortran and C, and a number of useful 
software programs exist that work with these files. 
Third, the files and associated retrieval packages are 
available for a variety of platforms. 

For example, ACE is an extremely popular data for- 
mat within the HGP, and has been designed to inter- 
act easily with C. Its data model is tree-structure, and 
allows complex nested types. Many of the schemas 
that have been developed around it are very intuitive, 
and easy to understand. A number of sophisticated 
display and analysis packages have also been devel- 
oped for ACE, and are available on machines ranging 
from Sun workstations to Macintosh laptops. 

Another popular data format within the HGP is 
ASN.l (Abstract Syntax Notation) [22], which con- 
sists of a syntax for types and a prescription of how 
data conforming to an ASN.l type is to be physically 
represented in a sequential file or data stream. It 
was originally intended as the format for data trans- 
port between the top layers of the OS1 architecture, 
but is now being used by the National Center for 
Biotechnology Information (NCBI) for storing one of 
the most comprehensive repositories of biological se- 
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quence information. 

Below we show the specification of an ASN.l type 
for t,he Publication entity in GenBank, one of the 
databases maintained by NCBI: 

Publications = 

{[title: string, 

authors: {II [name: string,initial: string] ID, 

journal: <uncontrolled: string, 

controlled: cmedline-jta: string, 

% Medline journal title abbreviation 
iso-jta: string, 

% IS0 journal title abbreviation 
journal-title: string, 

% Full journal title 
issn: string>> 

% ISSN number 
volume: string, 

issue: string, 

year: int, 

pages: string, 

abstract: string, 

keywd: {string}]} 

Rat,her than use ASN.l syntax for specifying this 
type, we have used notation that is close to that of 
high-level programming languages. 

It should be noted that these types can be arbitrarily 
nest#ed. The variant or “tagged union” is frequently 
used in this and other formats. Its use can be seen 
in the example above where journal is either an 
abbreviated journal name (also a variant type), or 
t,he name of the person who performed the data entry 
(an informal review process). 

/ 

list 
set 

record 

variant 

Notation ASN.l 
terminology 

TP 

sequence of 
r set of 

Vl : Tl) ..,I, :T,l sequence 
(labeled fields) 

<I 1 :q,...,ln :-fn> choice 
(tagged union) 

Query languages associated with data formats are 
typically very limited. For example, GenBank is 

accessed t,hrough an information retrieval package 
called Entrez, which simply selects ASN.l values 
through pre-computed indexes; no pruning or field 
selection from values can be performed. Effective 
query mechanisms for such data, however, must not 
only be able to extract data, but transform data from 
one format to another. The ability to transform 
data is not only necessary for manipulating data 
for storage in archival databases, hut for structuring 
data so that it can be used by other software such 
as graphical user interfaces and sequence homology 
packages. Data. transformation is also necessary for 
data integration, in which data from several different 
sources is integrated into a common format,. This is a 
crucial problem within the HGP since as data sources 
proliferate, data of interest to scientists is no longer 
isolated in one or two central data repositories but 
may be spread across several sources. 

We therefore describe in this paper techniques for 
querying and transforming data that is maintained 
in these formats as well as data maintained in 
conventional databases, and illustrate their use on 
problems arising within the HGP. It should be noted 
that while our examples deal mainly with ASN.l, the 
techniques work equally well with a large number 
of data formats we have studied, including ACE, 
FASTA, GCG and EMBL as well as object-oriented 
databases. 

The rest of this paper is organized as follows. In 
Section 2, we describe our model and query language 
CPL. In Section 3, we give the architecture of a 
prototype system for querying data formats and 
databases, and describe how it is currently being 
used in the Informatics Group of the Center for 
Chromosome 22 at the University of Pennsylvania. 
Query optimization is then discussed in Section 4. A 
brief comparison with other approaches can be found 
in Section 5. 

2 CPL: A Query Language for 
Collection types 

The language CPL (Collection Programming Lan- 
guage) is based on a type system that allows arbi- 
trary nesting of the collection types - set, bag and 
list - together with record and variant types. The 
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types are given by the syntax 

r := boo1 1 int ( string 1 . . ) {T} 1 {IrD 1 

(11~11) 1 <I1 : q,. .) 1, : m> I CIl : 5-1,. . . ,l, : TnT,l 

Here, boo1 I int I string ] are the (built-in) base 
t,ypes. The other types are all constructors and build 
new types from existing types. C/i : ri, . , d, : T,] 
constructs record types from the types ~1,. . . , r,. 
tlr : rr, . . , I, : Tn> constructs variant types from 
the types ~1,. . , r,. {T}, (17D, and (I]T]D respectively 
construct set, bag, and list types from the type T. An 
exa.mple of this type system, Publication, was given in 
the introduction. 

Da.ta formats also have a syntax for values. Such 
a synt.a.x is available in CPL as the subset of the 
language that explicitly constructs values: [bi = 
e1, f 1 - e,] for records; 4 = e> for variants, “, n - 
{cl . . e,} for sets; and similarly for multisets and 
list,s. For example, a fragment of data conforming to 
t,he Publication type is 

{ [title= “Structure of the human perforin gene”, 

authors={(( [name= “Lichtenheld” ,initial= “MG”] , 

[name= “Podack” ,initial= “ER”] ID, 

journal=<controlled=<medline-jta=”J Immunol”>>, 

volume= “143” , 

issue= “12”, 

year=1989, 

pages=“4267-4274”) 

abstract=“We have cloned the human perforin 

(Pl) gene....“, 

keywd= { “Amino Acid Sequence”, “Base Sequence”, 

“Exons” , “Genes, Structural” }I.. .} 

This example shows just the first publication record 
in a set of such records. It is an easy matter to 
t,ranslate from ASN.l syntax into this format as it 
is for a. variety of other data models. By treating a 
rela.tion as a set of records, it is also straightforward 
to represent a relational database in this format. 
In fact, the type system of CPL (which is slightly 
larger than the description given here) allows us to 
express most common data formats including those 
t,hat contain object identity, which is briefly discussed 
Ia.ter. Arrays are also common in data formats, and 

while they can be expressed as lists, the task of 
finding the right primitives for array manipulation 
is an area of current research [12, 181. We should 
also remark here tha.t we do not, in general, represent 
whole databases in this format; it is used for data 
exchange between the query language of a DBMS 
or the application programming interface of a data 
format. 

The language CPL. The syntax of CPL resembles, 
very roughly, that of relational calculus. However 
there are important differences that make it possible 
to deal with the richer variety of types we have 
mentioned and to allow function definition within the 
language. The important synta.ctic unit of CPL is the 
comprehension, which can be used with a variety of 
collection types. 

As an example of a comprehension, this is a simple 
CPL query that extracts the title and authors from 
a database DB of the type Publication 

{[title = p.title, authors = p.authorsl I \p <- DB} 

Note the use of \p to introduce the variable p. The 
effect of \p <- DB is to bind p to each element of the 
set DB. The use of explicit variable binding is needed 
if we are to use database queries in conjunction with 
function definition or pattern matching as in the 
example below, which is equivalent to the one above. 
Note that the ellipsis “. . .” matches any remaining 
fields in the DB record. 

{[title = t, authors = al ) 

[title = \t, authors = \a, . . .I <- DB} 

Also, the following queries are equivalent: 

{[title = t, authors = al I 

[title = \t, authors = \a, year = \y, . .I <- DB, 
y = 1988) 

{[title = t, authors = al 1 

[title = \t, authors = \a, year = 1988, . . .I <- DB} 

Apart from the fact that the queries above return 
a nested structure, they can be readily expressed in 
relational calculus. The following queries perform 
simple restructuring: 
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{[title = t, keyword = k] 1 

[title = \t, keywd = \kk, .I <- DB, \k <- kk} 

{[keyword = k, titles = {x.titlel \x <- DB, 

k <- x.keywd }I ) 

\y <- DB, \k <- y.keywd } 

The first query “flattens” the nested relation; the sec- 
ond restructures it so that the database becomes a 
database of keywords with associated titles. Oper- 
at,ions such as these can be expressed in nested re- 
lat#ional algebra. and in certain object-oriented query 
langua.ges. The strength of CPL is that it has more 
generaJ collection types, allows function definition 
aud can also exploit variants, which may be used in 
pa.t,t#ern matching: 

{[name = n, title = t 11 

[title = \t, journal = <uncontrolled = \n>, . . 1 

<- DB } 

This gives us the names of “uncontrolled” journals 
t,ogether with their titles. The pattern <uncontrolled 

= \n> matches only uncontrolled journals and, when 
it, does, binds the variable n to the name. 

The syntax of functions is given by \z=+e, where e is 
a,n expression that may contain the variable 2. We 
can give this fun&ion (or any other CPL expression) 
a name with the syntax define f == e which causes 
.f to act, a.s synonym for the expression e. Thus, the 
tit,les of papers of a given author can be expressed as 
the function 

define papers-of == 

\x *{pi \p <- DB, x <- p.authors} 

Note that x <- p.authors matches elements of a list 
&her than elements of a set. 

Pat,tern matching may also be used in function 
definition, using a vertical bar “1” to separate 
patt,erns: 

define jname == 

<uncontrolled = \s> JS 

1 <controlled = <medline-jta = \s>> JS 

( <controlled = <iso-jta = \s>> =FS 

) <controlled = <journal-title = \s>> JS 

1 <controlled = <issn = \s>> JS 

At the risk of some confusion and loss of information, 
this function finds the identifier or title of a journal. 
We may use this function in an expression such as 

{ [title=t, name =jname(v)l I 

[titIe=\t, journal = \v, . .I <- DB) 

which gives us another example of transforming into 
a relational database format. A more sophisticated 
transformation could preserve the tag information 
from the variant structure in an additional attribute 
of the relation. 

These examples illustrate part of the expressive power 
of CPL. A more detailed description of the language is 
given in [7]. An important property of comprehension 
syntax is that it is derived from a more powerful 
programming paradigm on collection types, that of 
structural recursion [6, 51. This more general form 
of computation on collections allows the expression 
of aggregate functions such as summation, as well 
as functions such as transitive closure, that cannot 
be expressed through comprehensions alone. The 
advantage of using comprehensions is that they have 
a well-understood set of transformation rules [42, 38, 
371 that generalize many of the known optimizations 
of relational query languages to work for this richer 
type system. 

Object Identity. While ASN.l illustrates the com- 
plex types typically found in HGP databases, other 
databases and data formats such as ACE also make 
explicit use of object, identity. For pverying databases 
with object identity the type system of CPL is ex- 
tended with a reference type and the language ex- 
tended to include a dereferencing operation and a 
reference pattern. Note that this does not give the 
language the power to create or update references. 
For creating object-oriented databases, some systems 
such as ACEDB have a text format for describing 
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a whole database in which the object identifiers are 
explicit values. We can generate such files with the 
existing machinery of CPL by applying the appropri- 
a.te output reformatting routines. For object-oriented 
databases that do not have this “bulk load” ability, it 
is usually an easy matter to make CPL generate the 
text of a program in native OODB code that calls the 
appropriate constructors to populate the database. 

3 Prototype System and Application 
in the HGP 

Recently, an interesting list of queries thought to be 
“impossible” in the HGP, primarily due to the lack of 
tools for querying, integrating and transforming data 
sources, was published in [9]. An example of one of 
t,hese queries follows: 

Find information on the known DNA sequences on 
human chromosome 22, as well as information on 
h,omologous sequences from other organisms. 

Answering this query requires access to two distinct 
data sources, GDB and GenBank; furthermore, to 
produce the correct groupings for this query the 
answer has to be printed as a nested relation. GDB 
[27] is a Sybase relational database located at Johns 
Hopkins University, and is a central repository of 
information on physical and genetic maps of all 
human chromosomes. GenBank [21] is an ASN.l data 
source maintained by NCBI, and is accessed through 
the information retrieval system Entrez. It is located 
at the National Library of Medicine in Bethesda, 
MD, and is one of four international repositories for 
nucleic acid sequence data. To answer this query, 
GDB is accessed for information about the GenBank 
identifiers of DNA sequences known to be within 
the chromosomal region of interest (in this case, the 
whole of chromosome 22). GenBank is queried to 
retrieve the sequence entries along with precomputed 
links to homologous sequences (i.e., sequences with 
significant similarity to the original). Only links to 
non-human organisms are selected. Other queries in 
the report also required access to these and other data 
sources, as well as software systems such as those for 
sequence analysis (e.g. BLAST and FASTA). 

Using CPL, we have developed a prototype system for 

Select a qtogeneticband interval on chromosome 22 (valid bands are listed). 

Figure 1: Sample View Interface 

querying, integrating and transforming data sources 
within the HGP. Since our intended users are not 
database experts, we have paid careful attention 
to developing “multidatabase user-views” of the 
available biological data sources. Multidatabase 
user-views are not simple integrations of underlying 
databases (as discussed, for example, in [33, 23, 3, 
32]), but represent generalized intended uses of the 
collection of underlying data sources and frequently 
involve restructuring data from several sources to 
some desired format. These user-views are frequently 
parameterized and programmed with special purpose 
GUIs such as the one shown in Figure 1, an interface 
which generalizes the sample DOE query given earlier 
by allowing users to specify a chromosome and band 
region of interest.’ Underlying this simple interface is 
a CPL function which is executed using the specified 
parameters. 

The overall architecture of the system is shown 
in Figure 2. CPL is implemented on top of an 
extensible query system called Kleisli2, which is 
written entirely in ML [19]. Routines within Kleisli 
manage optimization, query evaluation, and I/O from 
remote and local data sources. Once registered in 

IThis executable screen is available via Mosaic using 
http://agave.humgen.upenn.edu/cgi-bin/cpl/mapsearchl.html. 

‘The system is named after the mathematician H. Kleisli, 
who discovered a natural transformation between monads. 
This transformation plays a central role in the manipulation 
of sets, multisets and lists in our system. 
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Figure 2: Accessing Biomedical Databases 

Kleisli, the data drivers perform the task of logging 
into a specific data source, sending queries in the 
native form for that source, returning results to 
Kleisli in internal Kleisli value syntax, and logging 
out from the data source when the CPL session 
terminates. For example, a query against the 
form in Figure 1 would generate a query request 
to the Sybase driver, which would in turn access 
GDB and transform the resulting relation into an 
internal Kleisli data value; the result of this would 
then generate input requests to the ASN.l driver, 
which would then access GenBank and transform the 
resulting ASN.l data value into an internal Kleisli 
data value. Because communication with the drivers 
is facilitated through UNIX pipes, drivers can be 
written in any language; we have used C, perl, and 
Prolog. In addition, a flexible printing routine in CPL 
allows data to be converted to a variety of formats 
for use in displaying (e.g. HTML) or reading into 
another programming language (e.g. perl). 

Kleisli has two interfaces: the application program- 
ming interface and the compiler interface. The appli- 
cation programming interface consists of ML modules 
implementing the data types supported in the model 
described in the previous section, as well as for token 
streams and functions. Token streams are important 
for passing data between CPL and the underlying 
data sources, and provide Kleisli the mechanisms for 
laziness, pipelining and fast response. The compiler 
interface supports the rapid construction of query 
languages, as we have done for CPL in the present 
protot,ype, and contains modules which provide sup- 

port for compiler/interpreter construction activities. 

To give an idea of how drivers are used from within 
CPL, we show two queries accessing GDB (Sybase) 
and GenBank (ASN.l). These will then be used to 
implement the sample DOE query. 

Querying a Sybase Database. Once a Sybase 
driver has been registered, driver functions can be 
used as primitives in CPL to access any relational 
Sybase database. For example, the following CPL 
code opens a session with GDB, and defines a func- 
tion Loci22 which ships an SQL query to GDB. We 
shall shortly see how the rather complex SQL query 
is actually generated from CPL by the optimizer in 
Kleisli . 

define GDB == 

Open-Sybase( [server=“GDB” ,user= “cbil” , 

password= “bogus” 1); 

define Loci22 == 

GDB( [query= 

“select locus-symbol, genbank-ref 

from locus, object-genbank-ref, locus-cyto-location 

where locus.locus-id = locus-cyto-location-id 

and locus.locus-id = object-genbank-eref.object-id 

and object-class-key = 1 
and lot-cyto-chrom-num = ‘22’ “1); 

In this example, the user has completely specified the 
query in SQL. However, Kleisli understands how to 
move selections, projections as well as joins from CPL 
into Sybase queries. Using an SQL-template function 
GDB-Tab as follows 

define GDB-Tab == \Table + 

GDB( [query=“select * from ” ^ Table 1); 

(- denotes string concatenation) the previous query 
could have been written entirely within CPL: 

define Loci22 == {[locus-symbol= x, genbank-ref= yl ) 
[locus-symbol=\x,locus-id=\a, .I 

<- GDB-Tab( “locus”), 
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Cgenbank-ref=\y,object-id=a,object-class-keyzl, . .] 

<- GDB-Tab( “object-genbank-eref”), 

Clocxyto-chrom_num=“22”, locus-cyto-location-id=a, 

1 <- GDB-Tab(“I ecus-cyto-location”)}; 

The opt,imizer migrates not only all selections and 
projections to the Sybase server, but also moves the 
local joins to joins on the server where pre-computed 
indexes and table statistics may be exploited. Thus, 
a.lthough the second version of Loci22 appears to send 
t*hree queries to the Sybase server and perform the 
join within CPL, the optimizer would reconstruct it 
as in the first version, resulting in a single SQL query 
being shipped. 

Querying an ASN.l Database. The ASN.l 
driver for Entrez [al, 221 is significantly more compli- 
cated than the Sybase server because there is no real 
query la.nguage interface for ASN.l. While Entrez 
queries allow the selection of a complex value from 
a.11 ASN.l source, they do not allow any pruning or 
field selection from that value. For example, if the 
value were a. set of tuples (a relation), there would 
be no way to project over certain fields. Although 
such pruning could be done to an ASN.l value after 
it has been retrieved into the CPL environment, we 
are able to minimize the cost of parsing and copying 
ASN. 1 values by pruning at the level of the ASN.l 
driver. For this purpose, we have developed a path 
extraction syntax that allows for a terse description of 
successive record projections, variant selections, and 
rxtract,ions of elements from collection. 

The selection of ASN.l va.lues from Entrez is accom- 
plished through pre-computed indexes in the style of 
information retrieval systems. For the ASN.l driver, 
a. simple syntax that uses boolean combinations of 
index-value pairs is used. 

To illustrate use of the ASN.l driver functions, 
suppose we want the following information: 

Retrieve equivalent identijiers corresponding to the 
acression number M81409. 

define GenBank == 

Open-ASN( [server= “NCBI” , 

user= “cbil” , password= “bogus” I); 

define ASN-IDS == \accession 3 

GenBank( Cdb=“na” , 

select= “accession ” L accession, 

path=“Seq-entry.seq.id..giim”, args=L] 1); 
ASN-IDs( “M81409”); 

The driver responds to the ASN-IDs( “M81409”) query 
by sending the index lookup select= “accession M81409” 

to the nucleic acid division in Entrez (db= “na” - this 
division contains GenBank), which returns the en- 
tries with accession number M81409. The path ex- 
pression is applied during the parse so that only the 
ASN.l sequence IDS are returned. In this query, the 
path expression specifies two projections (.seq.id) on 
the root type Seq-entry, followed by a variant extrac- 
tion for each element in the resulting set (_ .giim). The 
CPL type specification Seq-entry: Cseq: [id:{<giim: int, 

. . >}, . ..I.. .I shows the nested types that are en- 
countered by this traversal, where the ellipsis “. .” 
matches unspecified remaining fields. 

As with the Sybase driver, the optimizer migrates 
projections on ASN.l data from CPL to Entrez. 
Although general rewrite rules for the translation of 
CPL queries to path expressions are not available, we 
are currently investigating type inferencing for path 
expressions in order to provide such a translation. 

Revisiting the “Impossible” DOE Query. We 
are now in a position to put the pieces together and 
answer the DOE query given in the introduction to 
this section. Loci22 returns accession numbers for 
known DNA sequences on chromosome 22. ASN- 

IDS returns ASN. 1 sequence ids for given accession 
numbers. To find homologous sequences for these 
ASN.l entries, we use pre-computed similarity links 
which are available in Entrez via the function NA- 

Links. NA-Links takes an ASN.l sequence identifier 
and returns a set of records describing linked entries. 
The final solution to our query can then expressed 
using these functions as: 

{ [locus=locus, homologs=NA-Links(uid)] 1 \locus <- 

Loci22, \uid <- ASN-IDs(locus.genbank-ref) 

Note that the query itself is quite simple, and that 
most of the effort was spent figuring out where the 
relevant data was stored. 
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4 Query Optimization 

Crucial to the success of Kleisli for large scale 
integration of remote data sources is the ability to 
perform optimizations. Optimization of queries is 
done entirely at compile time using rewrite rules3. 
The benefit of this approach is that it is easily 
extensible; new rules can be specified by the designer 
of the system and grouped into rule sets along wit,h 
an indication of how they are to be applied, eg. 
bottom-up or top-down with respect to the tree of 
s&expressions and how many iterations of a rule set 
should be applied in what order. 

Monadic Optimizations. The core of optimiza- 
t,ions in Kleisli is based on rewrite rules derived from 
t-he equational theory of monads on which CPL is 
based. This is similar to relational systems, in which 
ma.ny of the optimizations are based on rewrite rules 
for the relational algebra, the theoretical basis for re- 
lational query languages. Once submitted to Kleisli, 
a CPL query is translated into an abstract syntax lan- 
gua.ge in the monad algebra NRC to which the rewrite 
rules can be applied. The monad rewrite rules are ini- 
t,ially applied until a normal form is reached; this is 
guaranteed to terminate in a finite number of steps 
because the rewrite rules are strongly normalizing. 

NRC is very similar to CPL, except that it does not 
use pattern matching and uses the U{el 1 \X <- ez} 
construct instead of the comprehension construct of 
CPL. The meaning of U{el 1 \X <- es} is the set 
formed by taking the union of the sets el[ol/z], . . . . 
e1 [o,,/x] where (01, . , on} is the set e2. Compre- 
hensions in CPL can be translated into this con- 
st,ruct, of NRC using three simple identities due to 
Wa.dler [39] as follows: translate {e 1 } to {e}, 
{e 1 \Z <- e’, A} to U{ {e I A} I \X <- e’}, and 
{e 1 e’,A} to if e’ then {e I A} else {}. The last 
case occurs when e’ is not of the form \x <- e”, i.e. 
it, is a boolean expression. 

Details of the monad rewrite rules are beyond the 
scope of this paper (see [42]). We provide only a few 
of them below. However, the important thing to no- 
t,ice is that they generalize many known optimizations 
for relational algebra to complex objects. 

“Run-time optimizations are currently under investigation. 

Rl: 

R2: 

R3: 

R4: 

U{el I \x <- Me2 I \Y <- e3)) 

- U{U{el I \x <- e2) I \Y <- e3). 

Vert.ical loop fusion is an optimization which 
combines two loops into one to reduce the amount 
of intermediate data. It is applicable when 
the first loop is a producer and the second 
loop is a consumer. Rule Rl implements this 
optimization. 

In comprehension syntax this is 
{e 1 Al,\x <-- {e’ I A},A,} 
-+ {e[e’/xl I AI, A, &&‘/~I) 

equivalent to: 

However, Al, AZ, and A are each irregular 
sequences of filter and generator expressions, 
making the comprehension form of this rule messy 
to program. On the other hand, Rule Rl is 
trivial to program. This is one of the reasons that 
the first step in our implementation of CPL is to 
tra.nslate it to NRC. 

U{el I \x <- eIl U We2 I \x <-- e1 
crf U{el U e2 I \x <- e) 
Horizontal loop fusion is a.nother optimization 
that combines two loops into one. It is applicable 
when there are two indepedent loops over the 
same set, where instead of doing the first loop 
and then the second loop in a process requiring 
the set to be traversed twice, both loops are 
performed simultaneously. Rule R2 implements 
this optimization. It applies to sets and multisets, 
but not to lists. 

U{ifp(y) then el else ez I \X <- e} 

-Ytifp(y)then U{el j\x <-e} else U{ez I \x <- e) 

Filter promotion is an optimization that moves a 
filter test p(y) 1 c oser to the generator \y <- e’ of 
y. It corresponds to migrating a piece of invariant 
code out of a loop. Rule R3 implements this 
optimization. 

[l=e,...].l+e 

This rule corresponds to the traditional database 
optimizat,ion that reduces the number of columns 
in intermediate data. For example, applying Rule 
Rl followed by Rule R4 to 
U{{XJlI I 

\x <- U{{ C/l = f(Y), 12 = g(y)] 1 I \Y <- RI) 
gives us 
W(Y) I \Y <- RI. 
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The t#gpe of rewriting illustrated above allowed us to 
push projections, selections, and joins from queries 
specified entirely in CPL to the Sybase driver in 
t,he previous section. In fact, it can be proved [42] 
that our optimizer is able to push any subquery not 
involving nested relations and not using powerful 
opera.tors to the server. 

Optimizing Joins. Other optimizations in Kleisli 
involve introducing new operators rather than merely 
rewriting expressions within NRC and are hence 
called “non-monadic” optimizations. The most 
import8ant of these are dedicated to improving the 
performance of joins across data sources, that is, joins 
t,hat cannot be moved to database servers and must 
be performed locally. To do this, two join operators 
ha.ve been added as additional primitives to the basic 
Kleisli system: the blocked nested-loop join [16], and 
the indexed blocked-nested-loop join where indices 
are built on-the-fly (this is a variation of the hashed- 
loop join of [‘LO]). The join rule-set is dedicated to 
recognizing under what conditions to apply which 
join operator. For example, the indexed join can be 
used only if equality tests in the join condition can be 
turned into index keys. Both operators have a good 
balance of memory consumption, response time, and 
total t#ime behaviors. 

As the system is fully compositional, the inner 
relation in a join can sometimes be a subquery. To 
avoid recomputation, we have therefore introduced 
an operator t80 cache the result of a subquery on 
disk. Rules t,o recognize when the result of an inner 
subquery can be cached check that the subquery 
doesn’t depend on the outer relation. 

Several of the rules for join optimizations require 
statistics about the size of files, and can therefore 
only be used when such statistics are available. We 
have found it problematic to obtain such statistics on 
the fly from remote sites, and are currently extending 
the system to use statically stored statistics from 
commonly used data sources. 

Laziness, Latency, and Concurrency. The eval- 
uat,ion mechanism of Kleisli is basically eager, with 
rules used to introduce a limited amount of laziness 

in strategic places to minimize memory consumption 
and reduce response time. This strategy is the op- 
posite of fully lazy systems which execute lazily by 
default and rely on sophisticated strictness analysis 
to bring in eagerness to improve performance [2, 41. 
As an example of how lazy evaluation is introduced 
into our system, consider the nested-loop query 

{(xv YI \x <- DB, \Y <- S(x)) 

Note that y is instantiated to members of the set 
obtained by applying S to x and is thus dependent 
on x. Although full evaluation of the query will 
require instantiating all x and y, each (x, y) pair in 
the result can be assembled by retrieving a single 
element x from DB and single element from the set 
S(x). Where possible, the Kleisli optimizer will lazily 
retrieve elements from DB and lazily evaluate the 
function S in order to generate initial output quickly, 
and minimize storage of intermediate results such as 
the instantiations of x and y. This mechanism is 
primarily used when DB and S(x) are derived from 
external data sources. 

Equally important is the ability to introduce paral- 
lelism to improve response time. Consider again the 
nested-loop query above, and suppose S is a function 
that sends x as a request to some remote database 
and then returns the reply. Rather than sequentially 
sending values of x to S, we should be able to exploit 
the fact that many data servers can handle several re- 
quests simultanenously. Similarly, while our system is 
waiting for a response from S, it has enough resources 
to send a new request to S and process the reply to 
its previous request simultaneously. We have there- 
fore introduced a primitive that retrieves elements 
from a collection in parallel and returns the union of 
the results, and implement it by building pre-emptive 
thread scheduling into our system using Concurrent 
ML [30]. Again, rules are introduced to recognize 
when a function accessing a remote database appears 
in an inner loop. 

In introducing such parallelism, we must be careful 
of two things: First, the server S may only be able 
to handle a limited number of requests at a time, 
say five. In this case, we should send five values 
of x at a time to avoid overwhelming the server. 
Secondly, each concurrent thread requires resources 
(such as memory) to be allocated if their output are 
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not consumed quickly enough. Therefore, techniques tally. A greater than two-fold improvement has been 
to’ automatically adjust the level of concurrency obtained over the plain Remy projection; a full de- 
hased on the capability of servers and on resource scription of the Remy technique and our improvement 
availability are being developed [43]. can be found in [41]. 

Optimizing Projections. We also improve the 
speed of record projection by exploiting homogeneity. 
Consider the innocent-looking query below: 

{ Cname=n, age=a, sex=s] 1 Cname=\n, age=\a, .] 

<- DBl, [name= n, sex=\s,. . .] <- DB2) 

This query essentially joins DBl and DB2. However, 
we have to compile it with only the knowledge that 
DBl has a name field and an age field, and that DB2 
has a. name field and a sex field. We do not know 
what are in these fields and we do not know what 
ot,her fields are present. 

Since we cannot compile queries using traditional 
techniques, which require precise knowledge of types 
to calculate field offsets at compile time, we have 
adopted a technique due to Remy[29] (which is 
related to the extendible technique of Fagin[ll]). His 
t,echnique is to represent a record as a pair consisting 
of a. pointer to a directory and an array. The array 
keeps the values of the fields of the record. The 
direct,ory is used to generate the right index into the 
array given a field name. All records having the same 

fields share the same directory. 

The t,echnique works across systems based on para- 
metric polymorphism [25, etc.] and systems based on 
subtype polymorphism [8, etc.]. However, not every 
system needs this kind of generality in record pro- 
jection. In particular, relational databases have ho- 
mogeneous sets. In this case, it is possible to take 
a.dvantage of homogeneity to speed up record projec- 
tion. To do so, we note that Remy record projection 
consists of two steps. The first step is the computa- 
tion of an offset based on field name and the magic 
number associated with a Remy directory. The sec- 
ond step uses the offset to index into a Remy record 
to retrieve the value of the required field. If the set we 
are mapping over is homogeneous, then all its records 
share the same Remy directory. Therefore, we can 
compute the offset only for the first record and this 
offset can be reused for the remaining records. Our 
system is able to perform this optimization automati- 

5 Conclusions 

Issues of integrating databases are not new, and 
have been dealt with extensively in the computer 
science literature [36, 35, 17, 24, 40, etc.]. The chief 
distinction between our approach and these is the 
complexity of data types that we model and query, 
and the ability to transform between complex types. 
Although the model in [l] encompasses many of the 
types we consider (sets, records and variants), the 
transformations considered are limited and queries 
are not supported. Our approach also contrasts with 
that taken by [26] which has a very simple data model 
and expresses types dynamically. When dealing with 
biological data sources, static type information is 
both available and useful in specifying and optimizing 
transformations. 

In the biological domain, the main integration efforts 
have been either to produce centralized repositories 
[31], provide indexed or hypertext links between 
data sources [lo, 141, or GUIs to provide fixed 
integrated access [28, 341. However, none of these 
are supported by a query language which allows 
data to be combined from multiple, heterogeneous 
sources. The idea of using list comprehensions to 
optimize Daplex queries over protein databases has 
been studied in [15]. 

The system presented in this paper manipulates 
complex data types, and is currently being used 
in the Philadelphia Center for Chromosome 22 for 
querying and transforming multiple, heterogeneous 
data sources. Many of these sources are not 
conventional database systems (such as ASN.l), 
and we have found CPL useful for extending their 
information retrieval type languages to a general 
purpose query language. The strengths of CPL lie 
in its ability to represent and manipulate complex 
data types, capturing a variety of data formats for 
communication with other data sources. CPL has 
been implemented on top of an extensible query 
system called Kleisli, in which optimizations can be 

167 



expressed. Chief among the optimizations currently 
being used are the abiIity to exploit additiona access 
paths or query languages when these exist, and the 
ability to “migrate” optimizations (such as joins) to 
these external systems. 

The examples we used in this paper showed the 
system’s ability to integrate ASN.l and relational 
formats, and to perform optimizations for these data 
sources. The techniques work equally well with 
other data formats, including ACE and a number of 
interfaces for applications programs. ACE contains 
certain object-oriented features, specifically classes 
and object identities. Only minor extensions to the 
language are needed to query and transform such 
st,ructures. 
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