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Abstract

The iterative closest point (ICP) algorithm[2] is
a popular method for modeling 3D objects from
range data. The classical ICP algorithm rests on
a rigid surface assumption. Building on recent
work on nonrigid object models[5; 16; 9], this pa-
per presents an ICP algorithm capable of model-
ing nonrigid objects, where individual scans may be
subject to local deformations. We describe an inte-
grated mathematical framework for simultaneously
registering scans and recovering the surface config-
uration. To tackle the resulting high-dimensional
optimization problems, we introduce a hierarchi-
cal method that first matches a coarse skeleton of
scan points, then adapts local scan patches. The ap-
proach is implemented for a mobile robot capable
of acquiring 3D models of objects.

1 Introduction
In recent years, there has been a flurry of work on acquir-
ing 3D models from range data. The classical setting in-
volves a range sensor (e.g., a 3D range camera or a stereo
vision system) used to acquire range images of the target ob-
ject from multiple vantage points. The problem of integrating
multiple range scans into a 3D model is commonly known
as scan registration. Most state-of-the-art implementations
are based on the populariterative closest pointalgorithm[2].
The topic has received significant attention in fields as di-
verse as computer vision[12; 9] and medical imaging[7],
large-scale urban modeling[14], and mobile robotics[10; 8;
15].

ICP aligns range scans by alternating a step in which clos-
est points are identified, and a step by which the optimal trans-
lation and rotation of scans relative to each other is computed.
In doing so, most of them are making a rigid object assump-
tion: range scans, if aligned correctly, must be spatially con-
sistent with each other.

Many objects are deformable. For example, people change
shape, as do trees, pillows, and so on. A natural research
goal is therefore to extend ICP to accommodate local object
transformations. Following recent work primarily found in
the medical imaging literature[5; 16; 6; 3], we proposes an
approach suited for scan registration and 3D modeling of non-
rigid objects that can efficiently deal with hundreds of thou-

Figure 1: The essential idea: Rather assuming that the relation
of measurement coordinates are fixed relative to the location from
which the measurement was taken, the approach proposed here con-
straints the relation of measurement coordinates in a soft way. The
exact configuration of a scan is calculated while scans are registered
to each other.

sands of variables. To accommodate local deformations, our
approach transforms scans into Markov random fields, where
nearby measurements are linked by a (nonlinear) potential
function. All links are soft. They can be bent, but bending
them incurs a penalty. Figure 1 illustrates this transforma-
tion: rigid links between the measurement coordinates and the
robot sensor are replaced by soft links between adjacent mea-
surement points. The resulting problem of scan registration
under these soft constraints becomes a high-dimensional op-
timization problem with orders of magnitude more variables
involved than in regular ICP. We show how to solve this prob-
lem via Taylor series expansion (linearization), and then pro-
pose a coarse-to-fine hierarchical optimization technique for
carrying out the optimization efficiently.

Our new algorithm is applied to the problem of learning
3D models of non-stationary objects with a mobile robot. We
describe an implemented robot system that utilizes a model
differencing technique similar to the one described in[1] to
segment scans. By acquiring views of the target objects from
multiple sides, our approach enables a robot to acquire a 3D
model of a non-stationary object.

2 Scan Registration
This section describes a variant of the well-knowniterative
closest pointalgorithm (ICP)[2] for rigid objects. The al-
gorithm alternates two phases, one in which nearest points is
identified, and one in which the distance between all pairs of
nearest points is minimized.

2.1 Scans
The input to the ICP algorithm is a set of 3D scans denoted

d = d1,d2, . . . (1)



(a) mobile robot with scanner (b) scene acquired by scanner (c) result of model differencing

Figure 2: (a) 3D range scan acquired by mobile robot shown in (b). (c) Scene from which the scan in (a) is extracted through background
differencing.

Each such scandk consists of a collection of 1D range mea-
surements, arranged as a 3D “range image”:

dk = d1k, d2k, . . . (2)

Figure 2c shows a typical scan acquired by a robot. Further
below, we will denote the horizontal angle of thek-th range
measurement byαk and the vertical one byβk. In our experi-
mental setup, scans are obtained by a SICK laser range finder
mounted on a tilt unit shown in Figure 2a.

The problem of scan registration can be formulated as the
problem of recovering the vantage points from which the
scans were taken. In our approach, scans are taken from a
mobile robot; hence each vantage point is described by three
variables: itsx-y location in Cartesian coordinates and its ori-
entationγ:

xk = (xk, yk, γk)T (3)

Herexk denotes the vantage point from which scandk was
acquired. The set of all vantage points will be denotedx.
Recovering the vantage pointsx is equivalent to registering
the scans if one vantage point is (arbitrarily) defined to be
x1 = (0, 0, 0)T .

2.2 Measurement Model
Scans are registered in world coordinates. To do so, measure-
mentsdik must be mapped into 3D world coordinates. This
is achieved by a projective functionπ, which takes as an ar-
gument a range measurement and a vantage point and returns
as its output the corresponding coordinate in 3D world coor-
dinates:

π(dik,xk) =

(
xk + dik cos(γk + αi) sinβi
yk + dik sin(γk + αi) sinβi

z + dik cosβi

)
(4)

Hereαi andβi are the orientation of the range measurement
dik relative to the sensor. The variablez is the generic height
of the sensor which in our robot system is fixed, but is easily
generalized to variable heights. For brevity, we will some-
times writeπik instead ofπ(dik,xk).

We define the quality of a pairwise scan registration by the
probability representing the likelihoodp(dik) of a range mea-
surement under a fixed (hypothetical) registration:
p(dik | dl,xk,xl) = (5) max

j
|2πΣ|−

1
2 exp

{
− 1

2
(πik−πjl)TΣ−1(πik−πjl)

}
if πik ∈ Fl

const. if πik 6∈ Fl

This likelihood distinguishes two cases. The first case models
the noise in range perception by a Gaussian with a sensor-
specific covarianceΣ (usually a diagonal matrix). The mea-
surement error under this Gaussian is given by the distance
between the pointπik under consideration, and the pointj
in scandl that maximizes this Gaussian. As is easily to be
seen, this pointπjl minimizes the Mahalanobis distance to
πik. Thus,πjl is simply the point “nearest” toπik in the scan
dl underΣ−1.

However, finding the nearest point only makes sense ifπik
falls within the perceptual range of scandl. If πik is oc-
cluded, it might be perfectly well-explained by an object not
detectable from the vantage pointxl. This is captured by the
second case in (5), which applies whenπik lies outside the
free space of scanl. The free space of scanl is denotedFl.
It is defined as the region between the robot and the detected
objects. Ifπik lies outside this region, the measurement prob-
ability is assumed to be uniform. The value of this uniform
depends on the range of occluded space, but it plays no role
in the optimization to come; hence we leave it unspecified.

2.3 Registration as Likelihood Maximization
The goal of scan registration is to determine the vantage
pointsx that maximize the joint likelihood of the scansd and
x:

p(d,x) = p(d | x) p(x) (6)

The first term of this product is obtained by calculating the
product over all individual measurement likelihoods, assum-
ing noise independence in each measurement:

p(d | x) =
∏
k

∏
i

∏
l6=k

p(dik | dl,xk,xl) (7)

The termp(x) in (6) is theprior on the individual vantage
points (and hence on the registration). The prior of the point
xk is expressed as a Gaussian with meanx̄k and covariance
matrixΨ:

p(x) =
∏
k

p(xk) (8)

=
∏
k

|2πΨ|−
1
2 exp

{
− 1

2
(xk − x̄k)TΨ−1(xk − x̄k)

}
In our robot system, this prior is obtained from the robot’s 2D
localization routines, supplied by a public domain software
package[11].
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Figure 3: Illustration in 2D: (a) initial configurations of two scans in red and blue, (b) result of optimal registration, (c-f) result of recovering
the object configuration by our new adjustable shape technique.

The negative logarithm of the joint likelihood (6) is given
by the following sum:

G = − log p(d,x)

= const.+ 1
2

∑
k

[
(xk − x̄k)TΨ−1(xk − x̄k)

+
∑
i

∑
l6=k

min
j

(πik−πjl)TΣ−1(πik−πjl)
]

(9)

Scans are registered by minimizing the sum, which is equiva-
lent to maximizing the likelihood function.

Unfortunately, minimizingG is not possiblein closed form
for the following three reasons: (1) the exact terms in the sum
depend on the occlusion constraint which are a function of
the vantage pointsx; (2) the result of the minimization overj
involves a discrete search for a nearest neighbor, whose out-
come is again a function ofx; (3) the projection functions
π are nonlinear in the pointsx, and the resulting nonlinear
optimization problem is hard.

2.4 Optimization Procedure
ICP-style algorithms minimize the negative log-likelihood by
calculating a sequence of vantage points (registrations):

x
[0]
k ,x

[1]
k ,x

[2]
k , . . . (10)

The first set of points are obtained from the prior (e.g., the
robot odometry):x[0]

k = x̄k. The(n + 1)-th vantage points
are computed from then-th ones by the following five step
algorithm:

Step 1. The set of occluded points is determined for the
n-th pointsx[n]

k . This step involves the calculation of a rela-
tive orientation of a pointπik to scandl via xl. It furthermore
involves a range comparison with the corresponding measure-
ment in scandl, to determine ifπik is occluded relative todl.

Step 2.The minimization in (9) is carried out by determin-
ing the closest measurementj in each scan relative to each
pointπik:

l
[n]
ikl = min

j
(πik−πjl)TΣ−1(πik−πjl) (11)

ForΣ = const. ·I, this calculation is equivalent to finding the
closest points (hence the name of the algorithm).

Step 3. The projection functionπ is linearized to obtain a
quadratic objective function. This is achieved by the Taylor
series expansion:

π(dik,xk) ≈ π
[n]
ik + J

[n]
ik (xk − x

[n]
k ) (12)

HereJ[n]
ik is the Jacobian (gradient) ofπ at x[n]

k , which is di-
rectly obtained from the definition ofπ in (4):

J
[n]
ik =

(
1 0 −dik sin(γk + αi) sinβi
0 1 dik cos(γk + αi) sinβi
0 0 0

)
(13)

With this approximation,G[n] (the negative log-likelihood
functionG in then-th iteration) becomes quadratic inxk and
is of the form

G[n] = const.+ 1
2
(x− x̄)TΨ−1(x− x̄)

+ 1
2
(A[n]x− c[n])T Γ̃−1(A[n]x− c[n]) (14)

HereA[n] is a matrix,c[n] a vector, andx the vector of all
vantage points (the unknowns). The various sums in (9) are
simply integrated intoA[n] andc[n], andΣ̃ generalizesΣ to
the full space of all pointsx:

Σ̃−1 =

 Σ−1 · · · 0
...

. . .
...

0 · · · Σ−1

−1

(15)

Step 4. The x-y-values of the vantage pointsx[n+1] are
now obtained through a closed-form solution of minimizing
G[n]. This solution is obtained by setting the first derivative of
G[n] with respect tox to zero (derivation omitted, see[13]):

x[n+1] (16)

= (Ψ−1 + A[n]TΣ−1A[n])−1 (Ψ−1x̄ + A[n]TΣ−1c[n])

In the original ICP algorithm[2], this step is implemented by
calculating the the “center of mass” of each scan and shifting
the scans accordingly (which is computationally simpler); our
approach also accommodates a priorx̄ onx.

Step 5. Because of the linearization, only Cartesian co-
ordinates are actually updated in Step 4; the orientation co-
ordinates remain unmodified. For this reason, the original
ICP literature introduced a separate step for calculating ori-
entations. This is achieved by a singular value decomposition
(SVD) step, in which the correlation between residual errors
in the scan is determined, and each scan is rotated so as to
minimize these error correlations. Details on this step can be
found in the ICP literature[2].

All steps are iterated until a convergence criterion is
reached. Satisfactory registrations are usually obtained within
the first three to four iterations. If the total number of scans is
small (e.g., less than 10), the computationally most expensive



step is the determination of the closest points in Step 2. This
step is usually implemented efficiently by representing scans
through kd-trees[4].

Figure 3a-b illustrate the result of scan registration in 2D.
The initial configuration in Figure 3a is transformed into the
one shown in Figure 3b, which is the one that minimizes the
squared distance (maximizes the likelihood). Clearly, both
scans are incompatible in shape. Pure registration techniques
are unable to handle such shape deformations, but the tech-
nique presented in the next section is.

3 Recovering the Surface Configuration of
Nonrigid Objects

The key idea for extending ICP to nonrigid objects was al-
ready discussed in the introduction to this paper, and is high-
lighted in Figure 1. Technically, it involves two modifica-
tions: First, the static relationship between pointsπik and
the corresponding vantage pointsxk is replaced by nonrigid
links between adjacent points. These links can be bent (but at
a probabilistic penalty), to accommodate nonrigid surfaces.
Second, and as consequence of this, the optimization now in-
volves the determination of the location of all pointsπik, in
addition to the robot posesxk. This optimization problem is
much higher dimensional, and we will discuss a hierarchical
optimization technique for tackling it efficiently. A key char-
acteristic of the approach proposed here is that it fits neatly
into the ICP methodology above: Again, under appropriate
linearization the target function is quadratic, and estimates are
obtained just as in (16).

3.1 Links
The definition of links between pairs of adjacent points makes
it necessary to augment the notion of a measurement point. In
particular, our approach associates an (imaginary) coordinate
system with each node. The origin of each coordinate sys-
tem is the familiar coordinateπik, and its orientation is speci-
fied by three Euler angles (an alternative formulation may use
quaternions):

rik = (φik, θik, ψik)T (17)

The orientation is initialized arbitrarily; e.g.rik = (0, 0, 0)T .
(The result of the optimization is invariant with respect to
this initialization.) A link is now given by the affine coor-
dinate transformations among the coordinate systems of adja-
cent measurements. Each link possesses six parameters, three
for rotation (denoted∆ri→j,k) and three for translation (de-
noted∆πi→j,k). They are calculated as follows:

∆ri→j,k = rjk − rik (18)

∆πi→j,k = Rz(−ψik) ·Ry(−θik) ·Rx(−φik)

(
xjk − xik
yjk − yik
zjk − zik

)
Here theR’s are the rotation matrices around the three coor-
dinate axes. Links enable us to recover a node’s coordinates
from any of its neighbors:

πjk = πik +Rx(φik) ·Ry(θik) ·Rz(ψik)∆πi→j,k︸ ︷︷ ︸
=: π̂i→j,k

rjk = rik + ∆ri→j,k︸ ︷︷ ︸
=: r̂i→j,k

(19)

To model nonrigid surfaces, our approach allows for violation
of these link constraints. This is obtained by introducing the
following Gaussian potentials for each link

hi→j,k =; |2πΘ|−
1
2

exp

{
− 1

2

(
πjk − π̂i→j,k
rjk − r̂i→j,k

)T
Θ−1

(
πjk − π̂i→j,k
rjk − r̂i→j,k

)}
HereΘ defines the strength of the link (the resulting structure
is a Markov random field[17]).

3.2 Target Function
The negative logarithm of these potentials, summed over all
links, is given by the following functionH (constant omitted):

H = 1
2

∑
i→j,k

(
πjk − π̂i→j,k
rjk − r̂i→j,k

)T
Θ−1

(
πjk − π̂i→j,k
rjk − r̂i→j,k

)
(20)

As in the scan registration problem, all these terms are non-
linear in the node coordinatesπik and the orientationsrik.
To obtain a closed-form solution for the resulting equation
system, the link function is linearized via a Taylor series ex-
pansion:(

πjk
rjk

)
≈

(
π

[n]
ik

r
[n]
ik

)
+K

[n]
ik,ik

(
πik − π[n]

ik

rik − r
[n]
ik

)
(21)

whereπ[n]
ik andr[n]

ik specify the coordinate system for the node

ik in then-th iteration of the optimization. The matrixK [n]
ik,ik

is a Jacobian matrix of dimension six by six, which is obtained
as the derivative of the functions (19).

By the same logic by whichG can be approximated by a
quadratic function in the scan registration problem, substitut-
ing our approximation back into the definition ofH gives us a
quadratic function in all variablesπik andrik. This function
can be written in the form

H = 1
2

[
B[n]

(
π
r

)
− f [n]

]T
Θ̃−1

[
B[n]

(
π
r

)
− f [n]

]
(22)

whereπ is the vector of all coordinate system origins,r the
vector of all Euler angles, andB[n] is a matrix andf [n] a vec-
tor. CalculatingB[n] andf [n] is involved but mathematically
straightforward.

3.3 Optimization Procedure
Our new version of ICP now minimizes the combined target
functionG + H, which is again quadratic in all parameters
(x, π, andr). By doing so, it simultaneously recovers the
scan registration and the surface configuration of the object.
The solutions forx andπ are completely analogous to the one
in (16): (

π[n+1]

r[n+1]

)
= (B[n]TB[n])−1 B[n]T f [n] (23)

The global orientation is still optimized by a single global
SVD as above. Our new augmented optimization leads to
relative adjustments between measurement points, in which
the links play the role of soft constraints.

This is illustrated in Figure 3c-f, for different values for
Θ. As the various diagrams illustrate, scans are deformed to
improve their match. The degree of the deformation depends
on the value ofΘ, which defines the rigidity of the surface.
Figure 3c-f illustrates that our approach succeeds in locally
rotating and even rescaling the model.



Figure 4: Example of a thinned graph superimposed to the origi-
nal scan left) and before and after adjustment (right). Thinning is
necessary to perform the optimization efficiently.

3.4 Efficient Variable Resolution Optimization
The main problem with the approach so far is its enormous
complexity. The number of variables involved in the opti-
mization is orders of magnitude larger than in scan registra-
tion. This is because the target functionH is a function of all
measurement pointsπ and orientationsr, whereasG has only
the vantage pointsx as its arguments. The matrixB[n] in (23)
is, thus, a (sparse) matrix with many thousand dimensions.

To tackle such problems efficiently the optimization is re-
duced to a sequence of nested optimization problems. In a
first step, scans are analyzed for connected components (re-
gions without large disparities); links exist only between con-
nected components in each scan; henceH factors naturally
into different subproblems for different connected compo-
nents. Next, the resulting scan patches are thinned. Thin-
ning proceeds by identifying a small number of representa-
tive landmark measurements that are approximately equally
spaced. This computation is performed by stipulating a grid
over the scan (in workspace coordinates), and selecting mea-
surements closest to the center points of each grid cell. An all
point shortest path search then associates remaining measure-
ments with landmark measurements. The optimization is first
performed for the thinned scan; after the landmark scans are
localized (and the corresponding coordinate transformation
are computed), the remaining measurements are optimized
locally, in groups corresponding to individual landmark mea-
surements. Smoothness is attained by using multiple land-
mark measurements as boundary conditions in this optimiza-
tion. Figure 4 shows an examples of a thinned graph, for
which the optimization can be carried out in seconds.

4 Setup and Experimental Results
Our approach was implemented using a mobile robot, in an
attempt to acquire 3D models of non-stationary objects. In a

start loop #1 loop #2 loop #3
moving arms
scan 1 2.3266 0.8993 0.7986 -
scan 2 2.5320 0.8704 0.8001 -
stretched body
scan 1 1.9369 1.2915 1.2008 1.1975
scan 2 2.5087 1.2964 1.2220 1.2120

Table 1: Average distance to the closest points to the matched model
after scan registration. The decrease of this distance measures the
improvement of the model through local surface deformations.

Figure 5: 2D map, object (center) and four different vantage points.

technique adopted from[11], we first acquired a map of the
environment (see Figure 5). Non-stationary objects were de-
tected through differencing of scans, using the robot’s local-
ization routines to get a rough estimate of this pose. Figure 2b
illustrates the segmentation process. Red scans are retained
while the black scans are assumed to correspond to the back-
ground and are henceforth discarded.

Figure 6 illustrates one iteration of the algorithm in all es-
sential steps, using data acquired by the robot. Results for
matching three scans with different postures are shown in Fig-
ure 7(a-b). While the standard registration procedure leads to
a model with six arms, our approach correctly deforms the
scan to arrive at an improved model, with two arms. A sim-
ilar result is shown in Figure 7(c-g), which shows three raw
scans on the left, followed by the result of (rigid) scan reg-
istration and the result of our approach. Another example is
the chair in Figure 8(a-d) scanned in different heights. The
standard registration will lead to multiple feet, our approach
correctly aligns them. Table 1 shows the cumulative distance
between points in the nearest neighbor calculation. The value
marked as “start” is the result of an initial registration phase,
reflecting the remaining distances under the rigid body as-
sumption. All other columns correspond to further iterations
of our algorithm as it adjusts the shape of the scans. This re-
sult illustrates numerically the integrity of the result is indeed
improved by iterate the process.

5 Discussion
This paper proposed a technique for simultaneous scan reg-
istration and scan deformation for modeling nonrigid objects.
The deformation was made possible through the definition of
(soft) links between neighboring scan points, whose config-
uration was calculated during registration. To tackle the re-
sulting optimization problem efficiently, we described a hi-
erarchical optimization techniques that operated on thinned
graphs. Experimental results obtained using a mobile robot
illustrated the viability of this approach.

There are many problems in object modeling that this pa-
per does not address, but whose inclusion shall be the subject
of future research. For example, the present segmentation ap-
proach is somewhat simplistic: It will fail if more than one
non-stationary object appears in the scene. The approach re-
quires deformations to be small, and the target object may
not move very far during acquisition. Objects are not sub-
segmented. This will cause difficulties when components of
objects are adjacent to different other components, or missing
entirely, which can happen if components are combined and



(a) (b) (c) (d) (e)

Figure 6: (a) Thinning, (b) nearest neighbor search, (c) optimization (first iteration), (d) optimization (second iteration), (e) optimization of
remaining nodes.

(a) (b) (c) (d) (e) (f) (g)

Figure 7: (a) Optimal scan registration with rigid object assumption, (b) corresponding result for our approach. (c-e) three scans, (f) results
of optimal scan registration and (g) our approach.

(a) (b) (c) (d)

Figure 8: Adjustable chair: Scans of the chair in high position (a),
scan from the chair in low position (b), the resulting model of the
chair with multiple feet (c), and the resulting model of the chair with
the transformed scan (b).

cannot be separated to find the corresponding part. A final
direction of future research involves the integration into ad-
vanced techniques for between-object data association when
modeling multiple objects in non-stationary environments[1].
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