
Distributed Execution with Remote Audit

Fabian Monrose Peter Wycko� Aviel D. Rubin

New York University Bellcore AT&T Labs - Research

New York, NY Morristown, NJ Florham Park, NJ

Abstract

Recently, there has been a rapidly expanding body of
work with the vision of seamlessly integrating idle
networked computers into virtual computing environ-
ments. This is enabled primarily by the success of re-
search e�orts promoting parallel and distributed com-
puting on networks of workstations and the wide accep-
tance of Java. The proliferation of work in this area has
provided new Internet-based infrastructures that har-
ness the power of computing bases comprising hun-
dreds of loosely-connected volunteered machines (i.e.,
hosts). While many of these systems have proposed the
use of non-altruistic market-based schemes for promot-
ing large-scale participation, mechanisms for ensuring
that hosts participating in collaborative computing en-
vironments perform the work assigned to them have
been largely ignored. This paper presents our imple-
mentation of one framework that layers a remote audit
mechanism on top of an existing distributed comput-
ing model, and provides eÆcient methods for verifying,
with a tunable level of certainty, whether a remote host
performed the task it was assigned.

1 Introduction

The popularity of the World Wide Web and Java [5, 25]
has promoted a new model for distributing code |
down-loadable active content. This new model has lead
to a proliferation of research inMetacomputing, that is,
the transparent integration of multiple computer plat-
forms, possibly across geographically dispersed areas,
into a single virtual computing environment. The dis-
tinctive feature of this model is the exploitation of code
mobility and mechanisms developed for parallel com-
puting on loosely coupled machines [4].
Platforms that support Metacomputing, such as At-

las [7], Charlotte [8], Javelin [13], and ParaWeb [10]
provide programming models that support the single-
program-multiple-data (SPMD) computational model
in heterogeneous computing environments. These plat-
forms address the issues of scalability and fault toler-
ance, and for the most part, make eÆcient use of re-

sources for supporting parallel computation within the
Java framework. They support the execution of coarse-
grained parallel computations on numerous anonymous
machines on the Internet, and rely on Java's security
architecture [40] to ensure safety to hosts. However,
the issue of detecting misbehavior by hosts has been
largely ignored.

Although it is possible to provide simple result check-
ers for speci�c SPMD-style applications such as matrix
multiplication and factoring, providing result check-
ers for arbitrary SPMD programs is not easily accom-
plished. With the exception of redundant computation
and voting schemes [35, 28], no additional mechanisms
for verifying the work performed by remote hosts par-
ticipating in coarse-grained parallel computations has
yet been proposed.

Though the idea of computing with secrets in public
is appealing for addressing this issue, detecting misbe-
havior through the use of assertion mechanisms that
rely on inserting secret keys within the active con-
tent, is inadequate | since the content distributed
across these platforms must be readable by a poten-
tially large group of hosts, the keys are also read-
able, and thus can be easily recovered and reused [18].
Furthermore, the availability of eÆcient decompila-
tion techniques [30, 39], even in light of code obfus-
cation [22], make these approaches unsatisfactory for
deterring hosts from misbehaving.

Recently, Sanders and Tschudin [34, 33] proposed
the use of computing with encrypted functions [32, 1]
to address the issues pertaining to publicly readable
executable content. While the idea of computing with
encrypted functions is appealing, numerous obstacles,
both theoretical and practical, still need to be overcome
before its application to mobile cryptography can be
fully realized. An examination of some of the problems
associated with computing with encrypted function, as
it applies to protecting against malicious hosts, is pre-
sented in Section 3.

We have designed and implemented an audit mech-
anism to detect misbehavior by hosts participating in
Metacomputing environments. In particular, we show
that a host claiming to perform work that it in fact

1

did not do will be caught with high probability. Our
implementation is Java-speci�c and makes use of the
Java execution environment. However, the same prin-
ciples and techniques could also be applied to other
environments such as Safe-Tcl [29, 41].

Section 2 introduces a high-level overview of our
model for verifying the work performed by remote
hosts. Some preliminary work on mobile agent security,
as well as other approaches within di�erent contexts,
but with similar desirable goals as ours, is presented
in Section 3. Our design and implementation are pre-
sented in Section 4. To illustrate proof of concept we
present an example application and provide some em-
pirical performance results in Section 5. An analysis of
the probability associated with catching cheating hosts
is presented in Section 6, and limitations of the current
design and implementation are examined in Section 7.
We conclude with directions for future work.

2 Overview

A high-level overview of our approach to validating
whether hosts participating in coarse-grain, SPMD-
style parallel computations, perform the work assigned
is now presented. We consider the model where a
\manager" has a large parallel computation to be per-
formed and there exists a collection of \workers" will-
ing to participate in the computation for some pay-
ment. The payment mechanism is outside the scope of
this paper. We assume that there is some arrangement
between the manager and the workers, and payment
is facilitated by some other mechanism (perhaps Net-
Cash [27] or NetBill [36]). Our goal is to audit workers
so that the manager can detect misbehavior.

The following terms are used throughout the paper:

� Computational components are tasks to be per-
formed and are characterized by executable con-
tent containing code and a set of variables fMg
whose values are to be computed. The running
time of a computational component is denoted as
T .

There are three entities which participate in our com-
puting model: managers, workers and veri�ers:

� Managers are processes requiring computing re-
sources.

� Workers are processes o�ering computing re-
sources and represent execution environments.
They host computational components and pro-
vide support for execution. In its simplest form a

worker is a Java-enabled Web browser. The fol-
lowing subtle distinction is made between cheat-
ing and malicious workers:

{ A cheating worker is a worker that does not
execute a computational component in its
entirety; a cheating worker may execute any
part(s) of the component that it chooses.
For instance, a cheating worker may exe-
cute only the �rst half of a computational
component and return partially computed
values for fMg.

More formally, let 0 � P < 1, then a cheat-
ing worker devotes PT execution time to
a component and returns an incorrect set
of values for fMg. A cheating worker may
use part of the execution time devoted to a
component for techniques such as decompi-
lation.

{ A malicious worker is a worker which at-
tempts to deliberately subvert an ongoing
computation by providing an incorrect set
of values for fMg, even at the cost of exe-
cution time greater than T .

More formally, let P � 0, then a malicious
worker devotes PT execution time to a com-
putational component.

The practical di�erence between cheating and
malicious workers is that a cheating worker's goal
is to minimize resource expenditure (possibly to
maximize pro�t), whereas a malicious worker's
goal is to subvert the computation. This paper
addresses the issue of detecting misbehavior by
cheating hosts only.

� Veri�ers are processes which con�rm the remote
execution of a computational component. They
represent processes working on behalf of man-
agers.

Our current veri�cation system is geared towards
catching cheating workers and is based on instrument-
ing computational components, with the aid of com-
piler techniques, to produce proofs of execution. Once
a worker completes the work it was assigned, a proof
of execution is sent to the veri�er, which examines
parts of the proof to check (with some desired level
of con�dence) whether the component was executed
correctly. Since our goal is to provide a framework
upon which Metacomputing infrastructures can reside,
transparency is important in our design.
With regards to the proofs which are generated, there

are two important issues that must be addressed. First,

2

the proof must cover the execution of the entire compo-
nent, not just parts of it. Otherwise a cheating worker
could modify the component to execute only the parts
that are checkable. Second, since a cheating working
will know the exact protocol for producing and verify-
ing the proof a priori, the veri�cation protocol cannot
present any implications about the security of the sys-
tem.

In our model, a proof consists of the state of the com-
putational component at various points in its execu-
tion. In essence, a computational component is trans-
formed into small subcomponents whose post execution
state is the input to the next subcomponent. Each post
execution state consists of private data and information
from the call stack, which we call a trace.

Veri�cation consists of repeatedly picking one of the
traces, i, at random, and executing the computational
component from the point of the execution that pro-
duced that state, to the point in the execution which
triggers the next trace. If the state of the call stack in
the veri�er's virtual machine after executing up to the
next state point is the same as the i+1 state point that
the worker submitted, the worker produced the correct
state transition between those two traces.

Figure 1 depicts a high-level view of our system ar-
chitecture illustrating the compile-time, the run-time,
and the veri�cation modules. We describe each of
these modules in more detail in Sections 4.1, 4.2.1, and
4.2.2, respectively. As the �gure shows, computational
components are automatically instrumented (via the
compile-time module) with the code needed to produce
checkable state points. This augmented component is
sent to the worker which executes it, producing the
proof of execution and the result(s). Once completed,
the worker sends the veri�er the results and the se-
quence of state points that comprise the proof. The
veri�er then samples a random set of these state points,
checking the correctness of the transitions between the
state points.

Intuitively, if a computational component is trans-
formed into N � 1 pieces, then there are N traces (the
initialization variables for the component form the ex-
tra trace). If the proof contains L incorrect traces,
and the veri�er chooses to verify K of the traces, then
the probability that the veri�er �nds one of the incor-
rect traces is greater than 1� ((N � L)=N)K . In Sec-
tion 4.1 we describe how computational components
are transformed in such a way that producing interme-
diate states requires that the components are executed.

3 Related work

Although the research on program checkers, probabilis-
tic interactive proofs and their spin-o�s is quite di�er-
ent from that presented in this paper, it is nonetheless
particularly important to our work. The theory and
ideas put forth in that research provide a sound formal
background for work in this area. The work of Blum
et al. [9], on program checking is concerned with veri-
fying that a given program returns a correct answer on
a given input rather than on all inputs, and, with the
adaption of interactive proof systems [19], provides the
basic intuition for our work.

Recently, research on validating remote execution
has been conducted within the mobile agent frame-
work. Although the distributed SPMD-style comput-
ing model which we are interested in is quite di�er-
ent from the focus of classical mobile agent systems,
there are some similar desirable security goals in both
models. Mobile agents are de�ned as processes which
can autonomously migrate to new hosts while execut-
ing their task. Approaches to solve the problem of
malicious hosts within these environments have been
proposed by Hohl [22], Sanders and Tschudin [34, 33],
and Vigna [38].

To address the problem of misbehavior by hosts,
Hohl [22] proposes a combination of code mess-up (i.e.,
obfuscation) and placing time critical restrictions on
the mobile code. These restrictions are encapsulated as
part of the code, with the intention that nodes which
host agents comply with the restrictions placed on the
code. Therefore, an agent is invalidated as it migrates
from host to host if it is not executed within a certain
time window. The timing constraints of the execution
window are based on empirical results for the expected
de-mangling time of the code (typically on the order
of seconds). The goal is to restrict the lifetime of the
agent by limiting the execution window to a fraction
of the time it would take to de-mangle, understand,
and change the code in a deliberate manner. Since
the de-mangling time is much less than that of typi-
cal coarse-grain parallel computations, this approach
is not applicable to our goals.

The approach of Sanders et al. [34, 33] for protect-
ing mobile agents against malicious hosts is based on
the idea of computing with encrypted functions [32, 1].
The intuition is as follows: given a function f(x) which
can be represented by a program P , rather than dis-
tribute P , the encrypted function E(P) is distributed
instead. The remote host then executes y = E(P)(x)
and transmits y back to the originating host, at which
point y is decrypted to retrieve f(x). P is expressed as
a polynomial or rational function with certain mathe-

3

B0

B136

B25B147

B126 B64

Run-time Environment

verification

Compile-time Environment

task

transformation

proof

checkable units

remote agent

worker

computational
component

stack traces

local
stack

transformed
component

=

compare states in remote
and local call stacks.

load random
stack trace

Figure 1: High-level overview of the system design illustrating the compile-time, run-time and veri�cation environments.
The compile-time module automatically instruments computational components with the code needed to generate state
points. These augmented components are sent to the worker which then executes them in its local interpreter. A remote
agent, responsible for handling each component, creates a proof of execution and the results (�nal state). Once the worker
completes the task assigned, the remote agent sends the veri�er the results and the sequence of state points that comprise
the proof. The veri�er then samples a few of these state points checking the correctness of the transitions between the
states.

matical properties.

The caveat is that computing with encrypted func-
tions for general programs is an open problem and
many strong arguments which largely discourage the
idea of computing with encrypted data have already
been put forth (see [2, 11, 32]). Furthermore, eÆ-
cient encryption schemes with the desired homomor-
phic properties (see [34]) for arbitrary functions are not
known and since P is executed in its encrypted form,
exactly how this approach will be realized in practice
is unclear.

The solution put forth by Vigna [38] is to verify pro-
gram execution by tracing the operations performed by
a mobile agent during its lifetime. In Vigna's model,
a roaming agent is composed of code and a state that
is determined, at some speci�ed point, by code execu-
tion. Every statement executed by the agent is logged

and before the agent migrates to a new host, a dig-
itally signed message is sent to the originating host
containing a checksum of the program's �nal state be-
fore migrating, a checksum of the execution trace, and
a unique identi�er. Traces are logs of the operations
performed by the agent during its lifetime. The ex-
tended form of the execution trace is stored for some
limited period of time.

In the event that tampering of an agent's code is sus-
pected, tampering can be proven by verifying the agent
program against a supposed history of its execution i.e.,
simulating the entire program locally. The system is
implemented in a restricted subset of Safe-Tcl [29] and
tracing is accomplished by adding new instructions to
the language. It is assumed that the code is static,
therefore performance enhancements such as just-in-
time compilation are not possible. The main caveat,

4

however, is that the complexity of the validation pro-
cess is linear with respect to the size of the execution
traces, which can be signi�cant. No implementation
or empirical results based on system performance were
presented.

4 Architecture

Our design and implementation can be roughly sepa-
rated into a compile-time module and a run-time mod-
ule. The compile-time module automatically instru-
ments computational components with code to interact
with the remote debugger and the run-time module
performs the veri�cation. We discuss the design and
implementation of these two modules in the following
sections.

4.1 Compile-time module

In Section 2 we stated that the remote agent periodi-
cally saves information from the call stacks of executing
computational components based on conditions speci-
�ed by the manager at run-time. The mechanism by
which these conditions are selected is now elaborated
on.
As mentioned earlier, the compile-time module trans-

forms a computational component into checkable units,
some of which the veri�er runs from start to �nish on
its local machine, to check that the proof of execution
provided by a worker corresponds to a correct execution
of those units. A proof is represented by a sequence of
traces, t0; t1; : : : ; tn.
We now de�ne some terms that are useful for de-

scribing the design and implementation of the system.
A block of code is de�ned as execution capturable if,
with high probability, the state of the job after its ex-
ecution cannot be produced correctly by means other
than executing the block. For example, a subcompu-
tation that generates a single bit of information is not
execution capturable because an adversary may be able
to guess the outcome and generate a correct state with
0:5 probability.
During the transformation of a component, some

parts of the program generate single units while loops
correspond to multiple units. We must ensure that the
multiple units that are generated within a loop have
some property that makes them unique. Otherwise,
the traces that correspond to their executions might
be interchangeable. We de�ne the unit that is gener-
ated from a part of the program that does not have a
loop boundary (i.e., it is not contained in a loop but it
may contain loops) as distinct. We de�ne the units gen-
erated from a loop where the values computed in the

B2

B73

B5B90

B70 B55

checkable units

state i+1

state n
(creates output)

z

z

z

z

z

z

state i
(initialization)B1

B0

Figure 2: High-level overview of the transformation of the
computational component for discrete log example (from
the Appendix) into checkable units using its CFG. Given
this CFG and its associated component, the compile-time
module transforms the code by instrumenting it to trigger
breakpoints at speci�c points. At run-time, when break-
points are triggered, the remote agent associated with the
current computational component, collects internal state in-
formation on the call stack for the current thread. These
traces are used later during veri�cation.

loop depend on at least the loop index and the state of
the program before the loop as uniquely identi�able.
We require that the units that our transformation

creates are either distinct or uniquely identi�able. Oth-
erwise, the trace transitions that are de�ned by the
units may not necessarily correspond to only one unit.
If that is the case, a cut-and-paste style attack is pos-
sible. To guarantee that these criteria are met, we
require that at least one variable within a computa-
tional component captures past history. That is, there
is at least one object (for example, an array) whose
values correspond to the computation, and therefore,
re
ect the computation between traces. This ensures
that successive traces include some actual state that
was computed.

4.1.1 Code transformation

Our compile-time module uses the control
ow graph
(CFG) [3] for a given computational component, P , to
generate its corresponding checkable units. Intuitively,
the key to the instrumentation process is: (1) the exe-
cution of the checkable units is captured in the traces
and (2) each trace corresponds to the output of exactly

5

one checkable unit. The CFG is produced by recovering
high-level structure from the Java bytecode of the un-
transformed computational component using our own
back-end to the Java compiler. Java is used as our
platform for implementation because of its portability
and heterogeneity. The �xed format of Java class �les
makes it ideal for recovering high-level structure [30]
needed to build the CFGs.

In a manner similar to the work on compiler-assisted
checkpointing [24], given the CFG our compile-time
module adds the target nodes, i, of any back-edges to
a set of breakpoint candidates S. Additionally, every
exit node in P is added to S. For all i 2 S a new ob-
ject actionSi

, consisting of a single boolean method, is
created. This method speci�es when a computational
component's state should be saved and triggers the re-
mote agent whenever this condition is true. ActionSi

is
created based on simple data analysis techniques and
can be overwritten by the programmer. Work on opti-
mizing Java compilers [15, 12] utilize signi�cantly more
powerful analysis techniques than those we currently
use, and we hope to borrow some design and implemen-
tation from their research to enhance our functionality.

All objects are loaded on-demand across the network
by the remote agent, transparently to the worker. Fig-
ure 2 depicts a transformation of a computational com-
ponent into checkable units, each of whose \output"
is the input to the next unit. If the entire compo-
nent were not covered by checkable units, a malicious
worker, would be free to corrupt the uncovered parts
without any danger of being caught.

Once S and actionSi
are created, for all i 2 S, the

compile-time module inserts calls to actionSi
at the lo-

cation speci�ed by Si. The manager saves some meta-
data including S in persistent storage, and at run-time,
the remote agent responsible for collecting traces for
the executing component is instructed (via a callback
mechanism) where to set breakpoints. These break-
points alert the remote agent when state must be saved.
A trace represents the current state of a computa-
tion, including the value of all instance variables within
scope, at the point in time when the breakpoint was
triggered. Type information is not saved since the ver-
i�er knows the type of each object that should appear
on its local stack at any given point. We show that even
if the condition under which state is saved is known a
priori it is of no advantage to a cheating worker.

4.2 Run-time module

The runtime component of our system must be inter-
operable with existing Metacomputing environments.
Otherwise, remote monitoring and veri�cation ser-

vices would not be transparent to the programmer
who would need to write stack marshaling and un-
marshaling routines for every breakpoint in a compu-
tational component. To avoid this, we chose the most
common Metacomputing environment implementation
language, Java, as our runtime system's implementa-
tion platform. While a number of inherent security

aws have been outlined [26, 16, 23], we provide a
framework that assumes that these concerns will be re-
solved as Java matures; however, our veri�cation tech-
nique will not be compromised even if a worker tampers
with its JVM.

4.2.1 Remote monitoring

Agent Input

Remote Agent

R
e
m

o
te

D
e

b
u
g

g
e

r

Notification
event socket

Request
socket

Debugger
Callback

B
re

a
k
p

o
in

t
H

a
n
d
le

r

A
g
e

n
t

< CallBack >

Separate processes

Figure 3: Overview of the remote debugging process in
Java. The architecture consists of a debugger client, a de-
bugger server, and a TCP/IP socket based communication
protocol. The API allows us to connect and communicate
with the JVM of the worker and obtain low-level infor-
mation about the internal states of executing threads. A
remote agent handles the actions initiated by the client,
while a separate thread handles noti�cation events from
the server. The communication and noti�cation events are
transparent to the worker.

Our implementation of remote auditing is based pri-
marily on Java's Debugger API. This API is designed
around the concept of remote debugging which allows
the debugger and its target (i.e., debugee) to execute
on separate machines. The Java model for remote de-
bugging is depicted in Figure 3.

6

The model consists of a debugger client, a debug-
ger server, and a TCP/IP socket-based communication
protocol. The API allows a process to connect and
communicate with the JVM [25] of the target and ob-
tain low-level information about the internal states of
executing threads. All communication to and from the
debugger server is performed over two socket connec-
tions created when the RemoteDebugger class is in-
stantiated. A remote agent thread handles synchronous
actions initiated by the client and communicated over
one of the sockets, while an agent input thread han-
dles noti�cation events from the server. These events
are asynchronous to the client and are implemented via
a callback mechanism. When the Agent Input thread
receives a message from the debugger server over the
socket, the message is interpreted and the appropriate
method within the registered callback is invoked.

For ease of implementation and to reduce commu-
nication overhead, the remote agent and the debugger
server reside on the target worker machine. This de-
cision has little signi�cance with regards to cheating
workers, but does in
uence the trust relationship be-
tween managers and workers. While the current ar-
chitecture allows for functionality provided by these
modules to be easily migrated to the manager, network
latency overhead would degrade system performance.

The remote agent's task of capturing the state of
the computational object in a serialized form suitable
for transmission is accomplished through the use of an
object serialization mechanism known as pickling [31].
The complementary process of unpickling is used by
the veri�er for initializing frames in its local call stack
to those transmitted by the remote agent.

4.2.2 Veri�cation

The veri�er is depicted in Figure 4. A traditional
challenge-response style protocol is used by the veri-
�er to validate the proofs of execution submitted by
a remote agent working on behalf of a worker. The
protocol proceeds as follows.

The remote agent commits to each trace (ti; : : : ; tn)
by submitting a cryptographic hash (SHA-1 in our im-
plementation) of each trace collected. The veri�er then
randomly chooses r 2 n and challenges the remote
agent to present the trace for tr. The remote agent re-
sponds with the requested trace, which is cross-checked
by the veri�er.

To validate trace tr+1, the veri�er reconstructs the
image of tr on its stack (checking the values of loop in-
dices for correctness), executes a local copy of P from
the program counter immediately following the point
which triggered the commitment of state tr, until state

Load remote
stack image

Execute same
step in computational
component

=

Reward worker

Compare states
in remote and
local call stacks.

Penalize worker

✘ ✔

Continue

remote Agent

verifier

Figure 4: The veri�cation process. The veri�er selects a
trace, i, at random, and reconstructs its state on its local
call stack. The computational component is executed until
state i + 1 is reached and the �nal state is compared with
that in trace i + 1 submitted by the remote agent. If the
two states are equal, then the trace is accepted and the
worker is rewarded. Otherwise, the trace is rejected. At
that point, it might be prudent to penalize the worker or
the organization which it represents.

tr+1. The local execution represents running a fraction
of the computational component, which corresponds
to the amount of work performed between successive
traces. The veri�er compares the hash of its call stack
with hash(tr+1), previously committed by the remote
agent. If the hashes are equal, tr is accepted, other-
wise it is rejected. The procedure may be repeated for
any number of the remaining traces|depending on the
level of assurance required by the manager. We show
that the run-time associated with validating traces is
signi�cantly less than the time it would take if the man-
ager executed the entire component locally (i.e., spot-
checking [35]).

7

5 Example: computing a dis-

crete logarithm

As proof of concept, we consider an example where a
party, Alice, uses the same secret exponent (x) for mul-
tiple DiÆe-Hellman [17] key exchanges. Mallot, Alice's
adversary, has knowledge of this fact, and wants to
impersonate Alice. However, he has only limited re-
sources and exhaustively searching for the secret expo-
nent is the only method available. Mallot also knows
that Alice uses the relatively small public parameters,
g = 17 and n = 9311. This particular example was
chosen because it can be represented by a SPMD-style
application that can be eÆciently supported by current
Metacomputing infrastructures.
To expedite the search for the secret exponent, Mal-

lot creates a SPMD-style computational component uti-
lizing a striping technique, and submits the component
to a manager, thereafter agreeing on some form of pay-
ment for workers. The Java code for the component
is given in the Appendix. While it is trivial for Mal-
lot to check that exponents returned by workers are
in fact the secret exponent x he is seeking, payment
must also be made to workers who pruned the search
space requested of them, but did not yield any candi-
date exponent(s). Furthermore, cheating workers must
not receive any payment. For these reasons, the ver-
i�cation service provided by the manager is essential
to the task at hand. This example is used as a basis
for the performance results presented in the following
section.

5.1 Performance

Performance results based on the discrete log example
are now presented. Experiments were conducted within
the Distributed Systems Laboratory at New York Uni-
versity on twelve 200Mhz Pentium Pro machines run-
ning Linux, each with 64MB of main memory. The
machines were interconnected by a 100 Mbit/sec Eth-
ernet. All entities resided on separate machines.
Our �rst set of experiments examined the perfor-

mance and overhead associated with the remote moni-
toring environment. In these experiments, the elapsed
execution time for exhaustively searching in parallel for
the secret exponent, on a series of machines, was com-
pared to the sequential execution of the same task in
a non-monitored environment (i.e., the execution was
performed on one machine outside the remote monitor-
ing environment).
The sequential execution time was 277 seconds. The

elapsed time for performing the search within the re-
mote monitoring environment with only one worker

0

200

400

600

800

1000

1200

1400

1600

1 2 4 6 8 10 12

Number of Workers

Ti
m

e (
se

cs
)

I = 100 %

I = 10 %

I = 1 %

Sequential

Figure 5: Performance of the auditing environment. I

represents the trace interval, that is, the amount of work
performed between successive traces. As more workers are
added to the computation, speedups over the sequential ex-
ecution are realized. The relatively low overhead imposed
on workers in these distributed settings makes such an au-
diting environment bene�cial to managers, as it provides
assurances with regard to a worker's execution of a compu-
tational component.

participating in the computation, and the remote agent
logging state at every step during the computation, was
approximately 1452 seconds. This represents a slow-
down of more than 5 times over the non-monitored,
sequential execution. However, when the remote agent
was instructed to save the state at 10% intervals (i.e.,
the amount of work performed between successive
traces corresponds to 10% of the total work to be per-
formed) the elapsed time was 458 seconds. This repre-
sents a slowdown of only 1:65. The overhead diminishes
rapidly as more workers are added to the computation
(see Figure 5). In fact, speedups over the sequential ex-
ecution are achieved with 5 or more workers, regardless
of how much state is saved.

A second set of experiments was conducted to evalu-
ate the performance of the veri�cation system. The ex-
periments involved starting one manager that spawned
n = 1; 2; : : : ; 12 workers in successive experiments. For
each worker participating in the discrete log compu-
tation the veri�er picked 10% of the submitted traces
at random (in addition to the initialization and �nal
states) and checked the correctness of each state tran-
sition against its locally reconstructed image. The re-
sults are depicted in Figure 6 | the elapsed time for

8

0

50

100

150

200

250

300

1 2 4 6 8 10 12

Number of Workers

T
im

e
 (

s
e

c
s
)

Sequential

Figure 6: Performance of the veri�cation system. For each
worker participating in the computation the veri�er picked
I = 10% of the submitted traces at random (in addition to
the initialization and �nal states) and checked the correct-
ness of each state transition against its locally reconstructed
image. These results show that our approach represents an
eÆcient method for verifying a worker's supposed execution
of a computational component.

starting the remote n workers is not re
ected here.

Verifying 10% of the traces of one worker required
signi�cantly less time (109:30 seconds) than executing
the computational component sequentially. As more
workers were added, and hence more traces needed
to be veri�ed, the performance of the veri�cation sys-
tem steadily degraded due to the overhead associated
with receiving multiple proofs of execution from remote
agents, simultaneously. Nonetheless, these results show
that our approach represents an eÆcient method for
catching cheating workers in a distributed environment.

To evaluate where possible improvements in perfor-
mance could be achieved, we measured the overhead
of the various monitoring and veri�cation activities. It
was observed that while there was room for enhance-
ment within the veri�cation component whose pri-
mary function is in reconstructing and comparing stack
states, a signi�cant portion of the overhead, 37:2%, is
associated with context switching, especially in time
spent pausing and resuming threads within the Java
debugging environment. The same is true for the re-
mote monitoring environment.

Although we suspect that performance enhance-
ments within the classes that provide the functional-
ity for the Java debugging environment are unlikely (it

has been unsupported since JDK 1.02), implementing
a veri�cation system which does not rely on the func-
tionality provided by the remote debugging facilities
can be accomplished with little diÆculty. We are cur-
rently pursuing this approach.

6 Probability of catching a

cheating worker

We now present an analysis of the probability as-
sociated with catching a cheating worker. Consider
the case where the adversary is paid to execute 100
jobs, each of which is transformed into 100 units. As-
sume that the adversary wants to (or only has the re-
sources to) execute 95% of the total work neccessary
to complete the 100 jobs in their entirety. We compare
the minimum probability of catching such a cheating
worker in our system with spot checking [35]. The
minimum probability of catching the worker is com-
puted by �nding the probability of catching a worker
that is employing an optimal cheating strategy.
For our scheme the probability of catching a cheat-

ing worker is multiplicative, and therefore, the opti-
mal cheating strategy is to execute 95 of the units
for each job. If the veri�er checks a single unit per
job, the veri�er has a :05 probability on each job of
catching the adversary cheating. Over the 100 jobs the
probability of detecting misbehavior is approximately
:994

�
1� (1� :05)100

�
. This probability is associated

with the veri�er checking only 1% of each job (actually,
the probability is slightly higher because when the tran-
sition from ri to ri+1 is checked for 1 � i � n � 1, if
either of ri and ri+1 is incorrect, the veri�cation will
catch the error).
If instead as in spot checking, the veri�er were to pe-

riodically execute a job locally, in its entirety, then the
optimal cheating strategy is to execute 95 of the jobs
in their entirety, not expending any e�ort for the other
5 jobs. Then the probability of detecting misbehavior
is only :05.

7 Limitations

Our approach to remote auditing of hosts is well suited
when the computational components are SPMD-style
programs. While our work addresses an important
problem within the distributed and parallel research
community, our techniques are not directly transfer-
able to other �elds, such as classical mobile computing.
Some limitations of our current design and implementa-
tion, which will be addressed as this research matures,
are now outlined:

9

� The veri�cation techniques described herein as-
sume the existence of good pseudo random num-
ber generators; otherwise, if a worker can guess
with high probability which traces are examined
by the veri�er a priori, this knowledge signi�-
cantly decreases its chances of getting caught.
Given the current random number generators in
Java, such attacks on our system are possible.
However,this attack can be subverted through the
use of hardware number generators.

� Our model assumes that computational compo-
nents can be transformed into checkable units
that have similar execution times. However, there
are certainly applications where this is not the
case. Therefore, in choosing which traces to
check, it is necessary that the veri�er weigh the
traces with estimates of their relative execution
time. Research on designing eÆcient weighting
algorithms is currently underway.

� Programs which rely on external input or random
data can not be handled per se by the method
outlined here | however programmer assistance
using pragmas or more sophisticated compiler as-
sistance can be used to handled external input
and random data.

� Performance enhancements within the remote de-
bugging interface are unlikely as it has been un-
supported since JDK Release 1.02. In addition,
the functionality provided by the remote debug-
ging environment requires access to privileged
system targets beyond the normal con�nes of the
Java sandbox. However, in environments where
the principals participating in distributed com-
putations are represented by Java applications,
as is the case with JavaPVM [14], object signing
is not an issue. Although the security policies
which de�ne the behavior of local versus remote
code are being designed to be more
exible and
extensible [21, 20], if one intends to support this
framework entirely within Java enabled browsers
then issues pertaining to object signing, need to
be taken into consideration.

8 Conclusion and future work

In this paper, we presented a technique for auditing
the execution of SPMD tasks in a distributed envi-
ronment based on transforming tasks into checkable
units. Our work is geared towards auditing workers
participating in coarse-grain parallel computations, on
numerous anonymous machines on the Internet. We

presented a framework based on compile- and run-time
modules which include a veri�er capable of catching
cheating workers with high probability, based on check-
ing a small number of the state transitions between
these units. Intuitively, this scheme has the advantage
that for a worker to cheat, it must successfully corrupt
at least one of the checkable units, which is much more
diÆcult than corrupting an entire computation by sim-
ply returning an erroneous result.
For our auditing technique to apply, we are restricted

to a set of programs that are execution capturable and
have uniquely identi�able units generated within loops.
Although we show the probability of catching cheating
workers given a proper transformation of a computa-
tion, we do not show what the probabilities are for pro-
grams not in our restricted set|which may be the case
if we apply our techniques to non-SPMD programs.
Previous practical work in this area has relied on un-

reasonably strong assumptions about the adversarial
model of cheating or malicious workers. For exam-
ple, systems which rely on embedding keys within tasks
and returning some function of these keys as assertions
that the task was correctly executed, assume that the
code will not be decompiled. The availability of eÆ-
cient decompilation techniques has rendered these ap-
proaches inadequate. Other approaches have proposed
replicating the tasks on domain disjoint machines, and
occasionally checking task outputs using a trusted ma-
chine. Our approach is in some sense orthogonal to
these heuristics and they can therefore be applied to
our system; however, the advantage would be minimal.
Our contribution is in providing a more eÆcient exe-
cution environment for detecting misbehavior by hosts
participating in Metacomputing infrastructures.
A promising approach to improving the guarantees

provided by our system involves the application of tech-
niques such as those of Arora and Safra [6] for devising
probabilistically checkable proofs (PCP) to the veri�-
cation of the transitions between checkable units. We
plan to pursue this approach by creating redundancy
in the traces so that checking a reasonably small num-
ber of the augmented pieces of the proof of execution
presented by a worker would �nd errors in the worker's
computation with high probability. We are also con-
sidering incorporating more complex binary predicates
instead of only stack equalities as checks and hope to
achieve these goals without too high a cost in perfor-
mance.

9 Acknowledgments

The authors would like to thank Saugata Basu, Matt
Franklin, and Laxmi Parida for stimulating discussions

10

about this research. We also thank the anonymous
referees, Geritt Bleumer, Tom Bowen, Ian Jermyn, and
Zvi Kedem for their suggestions on improving earlier
drafts of the paper.
This research was sponsored by the Defense Advanced

Research Projects Agency and Rome Laboratory, Air

Force Materiel Command, USAF, under agreement num-

ber F30602-96-1-0320; and by the National Science Foun-

dation under grant number CCR-94-11590. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints

for Governmental purposes notwithstanding any copyright

annotation thereon. The views and conclusions contained

herein are those of the author and should not be interpreted

as necessarily representing the oÆcial policies or endorse-

ments, either expressed or implied, of the Defense Advanced

Research Projects Agency, Rome Laboratory, or the U.S.

Government.

11

APPENDIX

The Java code which implements the discrete log example discussed in Section 5 is now given. The code is
augmented with labels that represent the nodes in the control
ow graph (CFG) of Figure 2. These labels represent
the actual o�sets within the Java bytecode of the corresponding class �le.

// Discrete log example with relatively small integers

import java.math.*;

import java.lang.*;

import java.util.*;

public class DLSearch extends Thread f
private int whoami, window, result=0;

private final int prime = 9311, g=17, z = 5653;

private int[] zp; /* variable which captures past computations */

B0: public static void main(String args[])f
DLSearch d =

new DLSearch(Integer.parseInt(args[0]), Integer.parseInt(args[1]));

g
B1: DLSearch(int who, int slice) f

this.whoami = who;

this.window = slice;

this.setPriority(6);

zp = new int[prime/window];

this.start();

g
/* divide work based on striping technique */

B2: public void run() f
int i = 0;

B73: while ((whoami+(i*window)) < prime) f
B5: zp[i] = (((BigInteger.valueOf(g)).pow(whoami+(i*window))).

mod(BigInteger.valueOf(prime))).intValue();

if (zp[i] == this.z) f
B55: result=whoami+(i*window);

g
B70: i++;

g
B90: System.exit(0);

g
g

Figure 7: Labels B0 . . . BN correspond to the labels in the control
ow graph (CFG) in Figure 2. High level
structure is recovered from the Java bytecode; labels represent the actual o�sets within the Java bytecode of the
corresponding DLSearch class �le.

12

References

[1] M. Abadi and J. Feigenbaum. Secure Circuit Eval-
uation. Journal of Cryptography, 2(1):1{12, 1990.

[2] N. Ahituv, Y. Lapid, and S. Neumann. Processing
Encrypted Data. Communications of the ACM,
30(9):777{780, 1987.

[3] Aho, Sethi, and Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, 1986.

[4] T. E. Anderson, D. E. Culler, and D. A. Patter-
son. A Case for Networks of Workstations: NOW.
IEEE Micro, Feb 1995.

[5] K. Arnold and J. Gosling. The Java Programming
Language. Addison Wesley, 1996.

[6] S. Arora and S. Safra. Probabilistic Checking
of Proofs. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science,
pages 2{13. IEEE Computer Society Press, Octo-
ber 1992.

[7] J. E. Baldeschwieler, R. D. Blumofe, and E. A.
Brewer. ATLAS: An Infrastructure for Global
Computing. In Proceedings of the Seventh ACM
SIGOPS European Workshop on System Support
for Worldwide Applications, 1996.

[8] A. Baratloo, M. Karaul, Z. M. Kedem, and
P. Wycko�. Charlotte: Metacomputing on the
Web. In Proceedings of the 9th International
Conference on Parallel and Distributed Comput-
ing Systems, 1996.

[9] M. Blum and S. Kannan. Programs That Check
Their Work. In Proceedings of the Twenty First
Annual ACM Symposium on Theory of Comput-
ing, 1989.

[10] T. Brecht, H. Sandhu, M. Shan, and J. Talbot.
ParaWeb: Towards World-Wide Supercomputing.
In Proceedings of the Seventh ACM SIGOPS Euro-
pean Workshop on System Support for Worldwide
Applications, 1996.

[11] Ernest F. Brickell and Yacov Yacobi. On Privacy
Homomorphisms (Extended Abstract). Eurocrypt,
1987. Abstracts: IV-7-IV-14.

[12] Z. Budlimic and K. Kennedy. Optimizing Java:
Theory and Practice. Concurrency - Practice and
Experience, 9(6):445{464, June 1997.

[13] P. Capello, B. Christiansen, M. Ionescu, M. Neary,
K. Schauser, and D. Wu. Javelin: Internet-Based
Parallel Computing Using Java. ACM Workshop
on Java for Science and Engineering Computa-
tion, 1997.

[14] Center for Human-Machine System Research.
JavaPVM: The Java to PVM Interface, August
1997.

[15] M. Cierniak and W. Li. Optimizing Java Byte-
codes. Concurrency - Practice and Experience,
9(6):427{444, June 1997.

[16] Drew Dean, Ed Felten, and Dan Wallach. Java
Security: From HotJava to Netscape and Beyond.
In Proceedings of the IEEE Symposium on Security
and Privacy, pages 190{200, 1996.

[17] W. DiÆe and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, 22(6):644{654, Nov. 1976.

[18] William Farmer, Joshua Guttman, and Vipin
Swarup. Security for Mobile Agents: Issues and
Requirements. In Proceedings of the 19th National
Information Systems Security Conference, pages
591{597, 1996.

[19] S. Goldwasser, S. Micali, and C. Racko�. The
Knowledge Complexity of Interactive Proof Sys-
tems. 17th ACM Symposium on Theory of Com-
puting, pages 291{304, 1985.

[20] Li Gong, M. Mueller, H. Prafullchandra, and
R. Schemers. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the
Java Development Kit 1.2. In Proceedings of the
USENIX Sysposium on Internet Technologies and
Systems, December 1997.

[21] Li Gong and Roland Schemers. Implementing Pro-
tection Domains in the Java Development Kit 1.2.
In Proc. Internet Society Symposium on Network
and Distributed System Security, pages 125{134,
March 1998.

[22] Fritz Hohl. An Approach to Solve the Problem
of Malicious Hosts. Technical Report TR-1997-03,
Universit�at Stuttgart, Fakult�at Informatik, Ger-
many, March 1997.

[23] Mark D. Ladue. Java Insecurity. Computer Soci-
ety, Spring 1997.

[24] C. J. Li and W. K. Fuchs. CATCH: Compiler-
Assisted Techniques for Checkpointing. In 20th

13

International Symposium on Fault Tolerant Com-
puting, pages 74{81, 1990.

[25] T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Speci�cation. Addison-Wesley, Menlo Park,
California, 1996.

[26] Gary McGraw and Edward Felten. Java Security:
Hostile Applets, Holes and Antidotes. John Wiley
and Sons. New York. New York, 1996.

[27] G. Medvinsky and B. C. Neuman. NetCash: A
Design for Practical Electronic Currency on the
Internet. In Proceedings of the First ACM Confer-
ence on Computer and Communications Security,
Nov. 1993.

[28] Y. Minsky, R. van Renesse, F. B. Schneider,
and S. D. Stoller. Cryptographic Support for
Fault-Tolerant Distributed Computing. In Seventh
ACM SIGOPS European Workshop, pages 109{
114, Connemara, Ireland, 1996.

[29] J. Ousterhout, J. Levy, and B. Welch. The Safe-
Tcl Security Model. Technical report, Sun Mi-
crosystems, Nov 1996.

[30] Todd A. Proebsting and Scott A. Watterson.
Krakatoa: Decompilation in Java. In Proceedings
of the 3rd USENIX Conference on Object-Oriented
Technologies and Systems, pages 185{197, June
1997.

[31] R. Riggs, J. Waldo, and A. Wollrath. Pickling
State in Java. In Proceedings of the 2nd Con-
ference on Object-Oriented Technologies and Sys-
tems, pages 241{250, Toronto, June 1996.

[32] R. Rivest, L. Adleman, and M. Dertouzos. On
Data Banks and Privacy Homomorphisms. Foun-
dations of Secure Computation, pages 169{177,
1978.

[33] T. Sanders and C. Tschudin. Protecting Mobile
Agents Against Malicious Hosts. Mobile Agent Se-
curity, 1997.

[34] T. Sanders and C. Tschudin. TowardMobile Cryp-
tography. IEEE Symposium on Security and Pri-
vacy, 1998.

[35] Luis F. G. Sarmenta. Bayanihan: Web-Based Vol-
unteer Computing Using Java. In Proceedings of
the 2nd International Conference of World-Wide
Computing and its Applications, 1998.

[36] M. Sirbu and J. D. Tygar. Netbill: An Inter-
net Commerce System Optimized for Network De-
livered Service. IEEE Personal Communications,
pages 34{39, Aug. 1995.

[37] Glenn Vanderburg. Tricks of the Java Program-
ming Gurus. Sams Net, 1997.

[38] G. Vigna. Protecting Mobile Agents through Trac-
ing. In Proceedings of the 3rd Workshop on Mobile
Object Systems, June 1997.

[39] Hanpeter van Vliet. The Mocha Decompiler, 1996.

[40] Frank Yellin. Low Level Security in Java. In
Proceedings of the 4th International World Wide
Web Conference, Boston, Massachusetts, Decem-
ber 1995.

[41] X. N. Zhang. Secure Code Distribution. Com-
puter, 30(6):76{79, June 1997.

14

