Sequence Assembly

Karsten Scheibye-Alsing
Steve Hoffmann
Annett M. Frankel

Peter Jensen

Peter F. Stadler

SFI WORKING PAPER: 2009-04-010

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the
views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or
proceedings volumes, but not papers that have already appeared in print. Except for papers by our external
faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or
funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure
timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the author(s). It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only
with the explicit permission of the copyright holder.

www.santafe.edu

SANTA FE INSTITUTE




Seqguence assembly

K. Scheibye-Alsing, S. Hoffmann, A. Frankel, P. Jensen, P. F. Stadfe?+°,
Y. Mang’, N. Tommerup
M. J. Gilchrist® A.-B. Nygard,
S. Cirerd, C. B. JargensénM. Fredholnt and J. Gorodkih*

IDivision of Genetics and Bioinformatics, IBHV, Universitf Copenhagen,
Grgnnegardsvej 3, 1870 Frederiksberg C, Denmark
2 Interdisciplinary Center for Bioinformatics, University Leipzig,
Hartelstral3e 16-18, D-04107 Leipzig, Germany
3 Bioinformatics Group, Dept. of Computer Science,
University of Leipzig, HartelstralRe 16-18, D-04107 LegpZermany
4RNomics Group, Fraunhofer Institut fiir Zelltherapie undviomologie,
Deutscher Platz 5e, D-04103 Leipzig, Germany
5Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87504, US
8Department of Theoretical Chemistry, University of Vienna
WahringerstralRe 17, A-1090 Wien, Austria
7 Wilhelm Johannsen Centre for Functional Genome Research,
Department of Cellular and Molecular Medicine, Panum toggi, University of Copenhagen,
Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
8 The Wellcome Trust/Cancer Research UK Gurdon Institute
Cambridge CB2 1QN

Draft: April 27, 2009

* Corresponding author: Jan Gorodkin
Division of Genetics and Bioinformatics, IBHV
University of Copenhagen

Grgnnegardsvej 3

1870 Frederiksberg C

Denmark

Phone: +45 3533 3578

Fax: +45 3533 3042

Email: gorodkin@genome.ku.dk



Abstract:

Despite the rapidly increasing number of sequenced anegeesiced genomes, many issues regarding the computational
assembly of large-scale sequencing data have remain WedsdComputational assembly is crucial in large genome
projects as well for the evolving high-throughput techigids and plays an important role in processing the inforomati
generated by these methods. Here, we provide a comprebengwiew of the current publicly available sequence as-
sembly programs. We describe the basic principles of coatipmial assembly along with the main concerns, such as
repetitive sequences in genomic DNA, highly expressed gyand alternative transcripts in EST sequences. We sum-
marize existing comparisons of different assemblers andige a detailed descriptions and directions for download o
assembly programs dtt t p: / / genone. ku. dk/ r esour ces/ assenbl y/ met hods. ht m .

Keywords: Assembly methods, EST, shotgun, genomes, high-througieputencing.



1 Introduction

Genome sequencing is a discipline that has undergone taousrdevelopment in the past. With the introduction of
the different new massively parallel sequencing techrie®the field will go through further transformations as new
challenges arise. Today 567 bacterial genomes with up ®riillion base pairsRlesiocystis pacifica SIR}have been
sequenced and submitted to NCBI (as of October 9, 2008). ditiad several eukaryote genomes with approximately
three billion base pairs have been sequenced and asserhbled/(/ ww. ensenbl . or g), and many other sequencing
projects are under wayi(t p: / / ww. genonesonl i ne. or g) [1].

The experimental technique used in most de novo sequencajects of higher organisms, DNA chain termination,
was developed three decades ago and remains, except forhglhar levels of automation, basically the same. The
introduction of new massively parallel sequencing methbdaever, opens completely new fields of application. fnort

after the introduction of sequencing methods, some of tise féports of the determination and comparison of cDNA
sequences were published. Late in the 1970s the bactegephphiX174 and Lambda [2, 3, 4] were among the first
genomes to be completed together with the human mitocham§sj 6].

In the following decade the shotgun sequencing strategyintesduced [7, 8], and during the subsequent years it was
extended by applying it to larger and larger DNA sequenceserl in plasmids (a few kilobases (kb)), cosmids (40 kb)
[9], artificial chromosomes cloned in bacteria (BAC — Baietiehrtificial Chromosome) and yeast (YAC — Yeast Artificial
Chromosome), with inserts of 100 to 500 kb [10]. The assemhblyhole genome shotgun sequencing data was deemed to
be futile until the successful WGS assembly of the 1.8Mb gaesidaemophilus influenzae 1994 [11]. An approximate
time line of the major breakthroughs and milestones in secjag is shown on Fig. 1.

[Figure 1]

“High throughput” sequencing (HTS) of cDNA was initiated 1991 by Adams [12], who also introduced the term
"Expressed Sequence Tag" (EST) to refer to this new typemqfesece information. Collections of ESTs have given a first
good approximation of the diversity of all protein codinghgs in a tissue [13]. During the years ESTs have become an
important tool with many applications, mostly in relatiangene analysis and gene discovery [14, 15, 16, 17, 18, 19, 20,
21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36387,

The amount of data generated by the different sequencingqtsas overwhelming. For example, sequencing of the
human genome produced 23 and 27 billion bases of raw shoggiueaces in the International Human Genome Sequenc-
ing Consortium and the Celera projects, respectively [BD, However, the vast amount of fragments can not readily be
concatenated to a final sequence. Only by using computegsdtbes possible to carry out the assembly of the pieces, but
the outcome as well as the reliability of the result for a gityge of data depends on the underlying strategy implerdente
in the computer program. Some strategies might be moredsiateone type of data than others. Also, the computational
resources of some methods might not scale well with the nuofiEequences in the data set. Though the experimental
techniques have essentially driven the computationalchsfesequence assembly, the computational aspect is &till 0
utmost importance since any meaningful assembly needsdorbputer assisted.

One of the first assemblers introduced by Staden in 1980 [4§]axcomputer program developed to store and manipulate
DNA gel reading data obtained from the shotgun method of DEuencing. During the next decade several other
programs were presented, among them SEQAID [42], CAP [48RA&P [44], and the TIGR assembler, which was
used to assemble the genomeHafemophilus influenzgé1]. In order to assemble larger and more complex eukaryoti
genomes, new assemblers have been designed and implemf&mieog them the Celera Assembler (now part of AMOS)
[45, 46] and GigAssembler [39], both applied to human gendata sets; the JAZZ-assembler, which was applied to both
the genome oTakifugu rubripegthe pufferfish) [47] andCiona intestinali§48]; and the ARACHNE [49] and Phusion
[50] assemblers, both applied to the mouse genome.

Several specific efforts have been undertaken in the coot&8T assembly, and several tools are available. Among them
are StackPack [51, 52], TIGR TGICL [53], and geneDistille4]. Some of the tools deal with splice variants [55] or other
problems such as chimerism (and includes alternativeespliciants detection) [54, 56, 57]. Approaches to incorfgra
rather than remove repetitive sequences are discusse8,if9560].

Along with the increasing number of completed genomesy&fire also made in developing computational methods for
comparing genomes. These include TIGRs MUMmer [61, 62], NBCAN, GENEWISE, GENOMESCAN [63, 64],



BLAT [65], and AVID [66, 67] used for alignment and compairisaf whole genomes, and FORRepeats which is used to
detect repeats on entire chromosomes and between gendshes [6

The massive effort to sequence the human genome producetidréift version in 2001 [39], and did, as a draft sequence,
contain numerous gaps. It took another 3 years of sequeacid@ssembly before the finished version was presented
(which still contains more than 300 gaps) [69].

2 Sequencing approaches

As mentioned the choice of assembly strategy depends orthescing method, and the choice of sequencing method
may also depend on the organism that is being sequencedeslfisat can affect the final assembly (other than the
obvious quality of sequence data) are the size of the insenisther the sequencing was uni- or bi-directional, thealiyp
construction, the cloning vector, the selection of clorebé sequenced, and the availability of additional inforarat
(consensus genome, ESTs, known verified genes, gene maps, et

Approaches for the de novo sequencing of genomes from highanisms using Sanger sequencing [70] will be described
first. In the context of genome resequencing we take a clos&rdn the new massively parallel sequencing technologies
and their obstacles, though many of the concerns are oy@nigeg.sequencing quality assessment.

2.1 Basic sequencing procedure

The basic procedure in sequencing has been to isolate geiw or RNA (reverse transcribed into cDNA), and clone
it into vectors €g.plasmids, BACs) capable of stable propagation in suitabt bells such aEscherichia colisee Fig.

2 for a schematic illustration of a sequencing vector. SEva@oning systems with insert sizes varying from hundreds o
base pairs to megabases have been developed. The idedllostanefor genomic sequencing has the following features.

1. The clones are highly redundant, covering the entire genmany times (typically 6-10).
2. The clone coverage is random and not biased towards arsigaiecific regions of the genome.

3. The clones are stable, not subject to recombination egamization during the propagation process [71].

It should be noted that one of the major improvements of tkemassively parallel sequencing technologies is that they
do not rely on vector cloning prior to sequencing, and theceons listed here are therefore not directly applicabladsé
technologies.

[Figure 2]

After propagation, the clones are selected and the sequgeiscperformed. An essential feature in sequencing is the
attachment of quality values to the raw sequences. Thetgualiues indicate the likelihood of each base call being
correct. In the assembly stage the quality values will helgistinguish true DNA polymorphisms from sequencing esror
and match end sequences of low quality [72, 73, 74, 75].

In genomic shotgun sequencing, which typically uses a siimglividual DNA source, sequences sharing less than 98%
identity are usually assumed to come from different regafresgenome (including different repetitive elements) [16]
contrast, EST data is usually derived from a variety of sesirepresenting the spectrum of polymorphisms in the algin
samples. These will usually include a number of erroneolygparphism which are caused by sequencing errors inherent
in single pass sequencing, a relatively high rate of insestand deletions, contamination by vector and linker secgse
and the non-random distribution of sequence start siteBgo(@T)-primed libraries. Therefore, the degree of idigrin
overlapping sequences from the same gene will often be lIoweST projects than in genomic sequencing projects. In
addition, the patterns of overlapping sequences causetdipative spliceforms are different from those observed i
genomic shotgun project [76].



The major tool to gather sequence information was the metitoatiuced by Fred Sanger in the second half of the 70'ties.
It uses dideoxynucleotide triphosphates (ddNTPs) as DN#rcterminators [77, 70]. The classical Sanger approach is
carried out in four independent DNA polymerase reactionssitBes the DNA template and deoxynucleotides (ANTPSs)
a reaction mix contains either ddATP, ddCTP, ddTTP or dd@&&h reaction results in DNA fragments of different
length terminating with the respective ddNTP. Electropgisas of the fluorescence- or radio labeled fragments allbes t
recovery of the template sequence. Later, the use of dyeirtators made it possible to perform sequencing in a single
reaction rather than four — the basic principle however ieaththe same. While the classical Sanger approach requires
separate synthesis and detection steps, High Throughguée8eing (HTS) technologies employ sequencing-by-sighe
and sequencing-by-ligation approaches, allowing for #immeous synthesis and detection.

2.2 Shotgun sequencing

Two approaches for genome shotgun sequencing can be distiegl: whole-genome shotgun (WGS) sequencing and
hierarchical shotgun sequencing.

2.2.1 Whole Genome Shotgun

Sequencing using the whole genome shotgun approach basitdns that the genome is randomly broken into pieces
and cloned into a sequencing vector. The inserts are substyprocessed to generate sequences of bases (referred to
as reads). See illustration on Fig. 3a. During the mid 19@0srsl groups recognized that sequence information from
both ends of relatively long inserts dramatically improtes efficiency of sequence assembly [9, 78, 79, 80, 81, 82].
In contrast to single sequence reads from one end of the whalgnes pairs of sequence reads from both ends have
known spacing and orientation. Exact knowledge of the lenfthe insert is not required to utilize the advantages df en
sequencing in assembly [83], but good estimates of clorgttenill aid the assembly immensely.

[ Figure 3]

2.2.2 Hierarchical shotgun sequencing

The ’'Hierarchical shotgun sequencing’ (also referred toreep-based’, 'BAC-based’ or 'clone-by-clone’) approach i
volves generating and organizing a set of large insert sl¢typically 100-200 kb each) covering the genome (a “mihima
tiling path”), followed by separate shotgun sequencingacheclone. For illustration see Fig. 3. Itis possible tolelith

a tiling path of overlapping BAC-clones using only BAC fingenting technologies [84]. However, knowledge of unique
genome markersef). ESTs or sequence-tagged sites (STS)) and their locatidmeigénome map is of great help for
organizing the BAC clones in the correct order. In hierarahshotgun sequencing the sequence information is local,
therefore the risk of long-range and short-range misasigesiteduced.

2.2.3 Mixed strategy sequencing

A strategy that can be used on large complex genomes is thedhsirategy sequencing’. The technique utilizes both
hierarchical and whole-genome shotgun. The method comlairght (x1) BAC clone coverage of the genome, with
whole genome shotgun sequencing . The BAC clones act as@flmsiework for WGS sequence assembly. The method
was successfully applied to rat genome [85].

2.2.4 Reduced Representation Sequencing

A variant of WGS is “reduced representation sequencing"§RRvhere one selectively chooses subsets of the genome
to avoid sequencing the (often much) larger regions thahatef interest. In [86], SNPs were discovered by mixing
DNA from many individuals, preparing a library of appropéely sized restriction fragments, and randomly sequencing



clones. Here, the choice of the restriction fragments &ffely selects only a small subset of the human genome. Sever
approaches to RRS have been employed for plant genomes 88898 Methyl-filtration (MF) sequences uses the
endogenous restriction-modification systenkotolito eliminate methylated DNA inserts, the RescueMu (RM) apph
focuses on the gene-rich regions which are rich in mutadémsposons, and High-Cot filtration avoids repetitive and lo
copy sequences due to differences in the relative rates &f 2Nassociation. Most of the Maize and Sorghum genomes
have been sequenced using MF.

Many of the applications of the new high throughput sequamplatforms are based on various RSS strategies (see.2.2.6)
This includes electrophoretic size separation to enrictsfoall RNA molecules€g.[90, 91]); reduced representation
bisulphite sequencing for genome wide methylation analjgs]; flow sorting of derivative translocation chromos@me
for breakpoint mapping [93]; enrichment of DNA-fragmentsibd to specific proteins by chromatin immunoprecipitation
of fixed, sheared DNA, for identification of transcriptiorcfar binding sites (CHiP-Seq) [94, 95, 96]; enrichment of
specific parts of the genome by multiplex PCR-amplificat@n [or by hybridization to custom made arrays [97, 34,

for SNP discovery [99] and in situ exon capture [100].

2.2.5 EST sequencing

Expressed Sequence Tags (ESTs) are sequences repregem@sgwhich can originate from specific tissues [12]. In
EST-sequencing a single automated sequencing from onetbrelnols of a cDNA-inserts is performed. This single-
pass approach is the major reason EST-sequencing is cestiadf[101]. For additional information, seg. [102] and
references therein.

In most cases EST sequencing projects are aimed at estaplartial sequences of transcribed genes rather than full
length cDNA sequences. However, this approach featureg spmcial challenges such as common sequence motifs,
alternative transcripts and paralogous genes are chalighgt potentially impact the assembly quality. Thesesssuill

be discussed further in section 4.4.3.

2.2.6 Massively parallel sequencing

Recently, a number of new sequencing technologies havegerhefhe development was initiated by 454 sequencing and
followed by Solexa sequencing and others [103, 104, 105,1@[. The common feature of all these technologies is that
they are massively parallgk. they generate a large number of different sequence readsiimgke run. The generated
small reads are usually aligned to a reference genome, atiefanalyzed, see Fig. 3d for an illustration.

The methods generally use one variant or another of fixingynsaguence fragments on a substrate, cyclically adding
different bases with some — technology-specific — luminalrahbteristics, and recording an image at each cycle. Image
analysis is used to recover the all sequences at once. Sangef all immobilized fragments thus proceeds in parallel

Compared to traditional sequencing a large amount of seguéaita is generated at a drastically reduced cost per base.
The most important disadvantage of high throughput sedngns the significantly reduced read length, which limits
their application in de novo sequencing of complex genoregsl(ie to repeats), at least using simple shotgun strategies.
However, these new platforms have many uses in genome seiqg, especially if it is possible to align the fragments
to an existing good quality reference genome.

Due to the amount of raw sequence data, high throughput seipgeis valuable in areas such as SNP finding. In EST
sequencing, HTS technologies might enable a researcheake atcurate digital expression profiles, even includimg lo
abundance transcripts, and help detecting alternativerspdepending on the platform chosen).

One of the key technologies that gave rise to the era of HT&sgguencing, was introduced in 1998 [103]. This
sequencing-by-synthesis method is at the very heart of G& $ylstems by 454 Life Sciences [104]. The detection
is based on pyrophosphates (PPi) released during the pagmeeaction. Sulfurylase converts PPi to ATP which is
subsequently consumed by luciferase to emit light in thibkispectrum. In GS FLX systems, a library of DNA templates
is immobilized on DNA capture beads, amplified using emul$d€R (emPCR) and loaded onto proprietary titer plates
with several hundreds of thousands reaction wells. Duringna the four nucleotides are flowed sequentially over the



plates. The luciferase reaction triggered by nucleotidesgementary to DNA templates is recorded by a CCD camera.
A washing step is necessary to allow the next detection Step GS FLX currently allows read lengths of several hundred
bases. According to the manufacturer a single instrumentith two high-density plates generates information fanath

20 million base pairs.

A competing technology, Solexa, now sold by Hlumihat(p: // www. i | | umi na. con), uses optically transparent surfaces
to immobilize fragmented and adapter-tagged DNA. Eacltlaéid fragment is subsequently amplified000 fold by
repeated steps of bridge amplification. The resulting dlohesters are then sequenced using reversible terminaitrs
removable fluorescent dyes. With approximately 30-40 bg@oleads are significantly shorter compared to GS FLX.
However, close to 50 million clones per flow cell can be segediin parallel, resulting in presently >1.5 Gb of sequenced
DNA in a single sequencing run. This amount can be double@byencing the other end of each fragment (paired-end).
Improvementin chemistry may further increase the readtlengnd hence push the total amount of sequenced DNA well
beyond the size of a human diploid genome.

A third synthesis-based technology, tSMS (true Single Male Sequencing), is currently distributed by Heliclist (:

[ I'ww. hel i coshi 0. com). No DNA amplification is required for this approach. Instefragmented single stranded
DNA molecules are directly immobilized on a solid surfacenifar to Solexa, tSMS works with nucleotides that carry a
removable, laser light-detectable fluorescent. At the nrirtiee system is able to sequence reads with lengths up to 55
bases at a speed of 25 to 90 million usable bases per hour.

SOLID, a system now sold by Applied Biosystenhst(p: / / www. appl i edbi osyst ens. com), is a technology that uses

a sequencing-by-ligation approach. An adapter-taggedrijiof short DNA fragments is amplified with emPCR, immo-
bilized on capture beads and then deposited onto high4glegiass arrays. The SOLID sequencing-by-ligation protoco
uses four by four sets of 8-mer probes. In each set only twedhdisiorescently labeled, are specific. The interrogation o
sequences is done in four phases. If a probe has specificallydto the free template in the first phase, say at position
1 and 2, it is enzymatically ligated to the curreheBd at position 0. After the detection step 3 nucleotidefefirobe
along with the fluorescence label are cleaved. The nextidigatep interrogates 6 and 7 and so forth. After the first
phase, the ligated sequence is removed, and another setaxf & called. So in the second phase bases 2 and 3 are read,
in the third 3 and 4 and so forth. The advantage of the SOLifesyss that the double base reading leads to an increased
accuracy. Currently SOLID produces read lengths of abott@Bp and a total of 9 Gb per single run, with read length
expected to become longer in the future.

In the future, other technologies may become availabld) asdhe use of solid state nanopores for sequencing of single
DNA molecules [108]. We refer to [109] for an overview, in whiseveral interesting ideas how this approach could be
implemented in practice are presented.

3 Mapping of short high-throughput sequencer reads

Compared to de novo assembly, the mapping of resequencesl tea template genome is a computationally easier
problem. Still, efficient mapping tools are crucial (seetieec4.7), and several tools for mapping of short reads are
available. Most of the toolde. MAQ, SOAP, SHRIMP or Eland (proprietary), use seeding tégives that gain their
speed from precomputed hash look-up tables [110, 111, Tyically, seeds of fixed length allow for not more than
one or two mismatches. In addition, the capability to detes¢rtions and deletions, as they frequently occur in 454
sequences (see section 4.4.4) is very limited,and mostrgmgcan only detect indels in subsequent alignment runs.
For short sequences it would be helpful, but computatigrmatbre expensive, to incorporate indels right from the start
Current mapping tools have different additional featurBse program MAQgg, additionally supports paired-end read
matching — helpful to deal with paired-end reads produsgthy the GS FLX and other high throughput platforms.

4 Computational assembly

Computational assembly is the only way to efficiently asdenskequenced fragments of DNA. However, a sufficient
amount of high quality sequences are required. The assgmiyams should be able to handle large data sets effgctivel



and avoid misassemblies in the presence of large repatitidaplicated regions and redundant sequences. To acampli
this, effective algorithms to handle large input data setk the use of minimal computer time and memory are needed.

One of the primary difficulties in computational genome ag3lg is to develop an algorithmic approach capable of de-
tecting stretches of repetitive DNA without causing misaisklies. Repetitive sequences complicate assembly asefitf
pieces of sequence can share the same repeat sequencatimggirom different genomic locations. Since the pieces ar
put together by searching for matching overlapping nudaest repeats can be put together erroneously. Typicailty, f
shotgun data, repetitive sequences are revealed by dustetaining more overlapping reads than would be expegted b
chance, illustrated on Fig. 4.

[ Figure 4]

In EST datasets the main difficulty is to develop an algorithapproach that, in addition to efficient assembly, can kand
highly expressed genes, paralogous genes, alternatigefgpins and chimerism in the dataset.

The theoretical background for genome assembly lies in coenscience, and an insight into the mathematical and
theoretical background can be found in [113] and refereticagin.

Although pyrosequencing with a whole-genome shotgun ardnas been successfully applied to bacterial genomes
[104], the construction of high-quality assemblies witlghthroughput sequencing data is still a non-trivial peobl
even for short genomes. At present, no approach has beeogewo directly assemble large animal or plant genomes
directly from short sequences obtained using HTS. As desdrbelow the SHort Read Assembly Protocol (SHRAP)
[114], however, comprises a protocol for high-throughpwrsread sequencing that differs in two respects from aks
hierarchical sequencing approaches. This protocol howexpects read lengths much longer (200 nucleotides) than
those produced by SOLID or Solexa. The assembly methodaolggsed on the Euler engine introduced in 2004 [60].
The Euler-SR assembler, specifically designed to asserhble ieads, uses an updated version of the Euler engine to
reduce memory requirements. The results for real Solexasrdmwever, were less convincing [115] due to the poorly
understood error model and highly variable error ratessscdifferent machines and run times.

4.1 Basic principles of Assembly

For the majority of traditional assembly programs the basiteme is the same, namely the overlap-layout-consensus
approach. Essentially it consists of the following steps [416]:

e Sequence and quality data are read and the reads are cleaned.

e Overlaps are detected between reads. False overlaps;atgpleads, chimeric reads and reads with self-matches
(including repetitive sequences) are also identified aftalé for further treatment.

e The reads are grouped to form a contig layout of the finishgdesgce.

e A multiple sequence alignment of the reads is performed gatmhsensus sequence is constructed for each contig
layout (often along with a computed quality value for eacbd)a

e Possible sites of misassembly are identified by combininguakinspection with quality value validation.

Prior to the assembly, the electropherogram (for Sangeresaing, images for massively parallel sequencers) forengi
sequence is interpreted as a sequence of bases (a readssotticdied quality values, these values reflect the log-odds
score of the bases being correct. The basecaller PHRED [8 Dflen used, however alternatives exex, the CATS
basecaller [118].

The reads can then be screened for any contaminant DNA sugkcagrichia coli cloning or sequencing vector. Low
quality regions can be identified and removed [45]. Baseityuallues can be used in computation of significant overlaps
and in construction of the multiple alignments [44, 116]eTipeline for a typical sequence assembly is sketched on Fig
5.



[ Figure 5]

For high-throughput sequencing data, the basic propasitio SHRAP is to sample clones from the genome at high
coverage, while sequencing reads from these clones at legrage. SHRAP starts off with assembling the reads greedily
to small local assemblies and subsequently to contigs dnaace. It proceeds by ordering the clones in a “clone graph”
and constructing “clone contigs”, which are then asseminiéddpendently. Computer simulations of the procedure show
that the approach can reach a quality comparable to thentlassemblies of single human chromosomes and fruit fly
genomes using reads of 200nt with an error rate of not more1f& These are constraints that are too strict for short
(Solexa or SOLID) readsx{ 40bp) and because of higher error rates challenging for real 48ds[119]. Furthermore,
for mammalian genomes the use of a hierarchical sequentcatggy might be somewhat cumbersome.

However, the use of templates might bail Solexa and SOLibsusa: In a recent study, de novo assemblies of chloroplast
genomes# 120 kb) were improved by aligning preassembled contigsfeveace genomes [120]. After de-Bruijn graph
assembly of reads [121], small contigs were aligned to glasdated chloroplast genomes. Between 67% and 98% of
the contigs could be aligned to such templates. If alignrfegletd, sequences were scanned for similarity using BLASTN
[122]. The authors reported that successful BLASTN matdppegally contained> 100 bp insertions relative to the
reference genome. In the end, however, their assemblies egtimated to be 88—94% complete. Yet, the assembly of
mammalian genomes or genomes without good reference seepiseems to be a considerably more difficult task. The
successful de novo assembly of Chloroplasts genomes withetils has been shown earlier [123].

454, SOLID, Solexa technologies allow convenient genenatif mate-pair/paired-end sequendesthe ability to se-
guence both ends of each DNA fragment. However, in an asgamlslg a hybrid dataset of real 454 reads and simulated
mate-pair data, about 96% of the mate-pairs did not cort&ibdditional information and hence did not improve the
assembly [115]. Likewise, in a hybrid dataset of 454 reads%snger reads the vast majority of long sequences did not
improve the assembly substantially, measured by N50 cai#&g Hence, the authors concluded that hybrid protocols
should be reviewed critically. Despite those simulatiosutts, the latter method has already been shown to work quite
well in practice [124], and one area where mate-pair/pagmedisequencing should improve the analysis dramaticaflbyri

the detection of breakpoints related to structural regearentseg.deletions, duplications, inversions and translocations
[125].

4.2 General Assembler differences

When different assemblers try to piece the DNA puzzle togrethey essentially work from the same input, but the
assemblers differ in the way they utilize the sequence im&tion, and in the way this is combined with additional
information. In general the differences fall in the followgi categories.

e Overlaps: A lot of different methods are used to find potential overlbpveen sequences. Some are based on
BLAST (eg.geneDistiller [54, 56]), while other assemblers use variother methods to find similarities between
reads.

e Additional information: Depending on how the sequence reads are produced someadditformation might
be available. This information might consist of read pafoimation, BAC clone information, base quality infor-
mation, etc. Some assemblers use this data to impose addistvucture on the assembly of the sequenegs (
GigAssembler [39]).

e Short read assembly:De novo assembly of the micro reads generated from next geéoieisequencing platforms
is still challenging. While assemblers have been develapeidapplied to assemble bacterial genomes successfully
[115, 126], on larger genomes the assembly is performed Ippmg the micro reads to reference genomes. The
major next generation sequencing platforms all have lgbftware to handle this tasky.GS Reference mapper,
Gerald for Solexa. In SOLID systems the mapping tool “magséaonverts reference sequences into color space
and perform the mapping in color space.

A somewhat related issue is how the sequences are cleanedtahtinant sequenceie(vector sequences, repeat se-
guencesegtc). While this can essentially be considered separately adependently from the assembly itself, some
assemblers incorporate cleaning in the way they procesg#us €g.[49]).



These basic ideas will be discussed further in the follovéxg, and an overview on how the different assemblers applie
these ideas can be found in the supplemental matétiap(// genone. ku. dk/ r esour ces/ assenbl y/ net hods. ht m ).

4.3 Overlap identification and alignment

In a whole-genome context, trillions of overlaps betweesdseare examined [45]. The majority of assemblers uses
alignment algorithms which are general modifications ofhmds first introduced by Needleman and Wunsch in 1970
[127], Smith and Waterman in 1981 [128] and Gotoh in 1982129

Initial overlap detection is often performed by finding eixatentical subsequences (often called words, k-words or k-
mers) between reads, prior to making the actual alignmentsese identical subsequences are used to find pairs of
potentially overlapping sequences, which can then be efign each other in order to check if they represent a true
overlap. The size of the subsequences varies from methoeétoeh, and is dynamic in some assemblers. Furthermore,
the identical subsequences are grouped and used in diffeagis depending on the assembler.

For almost all assemblers, a modified Smith-Waterman [1&f)rethm is used to align candidate overlapping reads.
The basic idea in the alignment algorithms is to use dynamagnamming to construct a matrix containing scores of
all subsequences, which is then analyzed to find the “optialajnment. Dynamic programming simply means that
the alignment is calculated as extensions to already alignbsequences. The assembly programs differ in their exact
implementation of this algorithm, as (nearly) all of thene wsheuristic approach to decrease the computational load,
thereby increasing speedd[116]). In the assembly of ESTs a clustering step is used eogthe input sequences
sharing significant regions of near identity together [1¥4 Fig. 6, an assembled cluster is shown, the example ia take
from the Sino-Danish pig EST sequencing project [131].

[ Figure 6]

4.3.1 Multiple alignments and the consensus sequence

While the alignment of two sequences is usually straightéod, aligning more than two is not so simple. The standard
Smith-Waterman algorithm can easily be extended to the déskigning many sequences by constructing a “multi-
dimensional matrix”. However, the number of calculatioise rexponentially with the number of sequences. This sets
severe practical limits of the number of sequences thatial#esto align, and therefore finding the true sequence from a
number of overlapping reads becomes difficult.

Precisely how the different assemblers generate a mu#tiigement and consensus sequence is only vaguely desanibed
the literature, but a common approach is to use a heuris@dyralgorithm (see for example [132]). The greedy algorith
typically performs pairwise alignment between overlagpeads, from which a multiple alignment s build up iteratyy

ie. adding one sequence at a time, but with this approach theregsiarantee that such a multiple alignment is correct.

After the multiple alignment has been constructed the amisesequence is found. This would typically be the sequence
generated by taking the most common base at each positibe @mlignment, however other methods exist. For instance
geneDistiller [54], where ungapped alignments of readerfopmed (thus simplifying the multiple alignment). Theeo
sensus sequence is constructed by splitting the multigerakent in 12-mer words and analyzing the relative freqiesnc

of these, where the presence of alternative transcriptstected through the frequencies of the 12-mers (and disglay
as stretches of "alternate consensus’).

The assumption is that the final consensus sequence canegpthe original genomic sequence where the sequenced
fragment originate.
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4.3.2 Eulerian Fragment Assembly

In assemblers aimed at short read assendrfyJOLID reads) an approach based on mathematical graph tieeoftgn
used, namely the Eulerian fragment assembly method. ThexiBnlfragment assembly avoids the costly computation of
pairwise alignments between reads [133]. D& Bruijn graphof a genome has as its vertices all distiket 1 tuples
that occur within the sequence (whdeés the word length that is used). A directed edge is insertdd/dens andt if
there is & tuple (uz, Uy, ..., U1, Ux) in the genome such that= (ug, Uz, ..., Ux_1) and({t = uy,...,ux_1,Us), ie., if sand

t appear shifted by single nucleotide. A sketch of a graphtcocison procedure is shown on Fig. 7. In practice one uses
the k-tuples appearing in the collection of the sequence readsaamlue ofk between 6 and 9 or 10. In the error-free
case, the genomic sequence can be read off directly as andaytath through the De Bruijn graph (with repeats forming
“tangles”). In real, error-prone data underrepresentadgkes,ie. k-tuples that appear less frequently than expected from
the coverage rate, indicate sequencing errors and can bieedmi

[ Figure 7]

4.4 Data reliability
4.4.1 Preprocessing and cleaning

A critical aspect of any large-scale sequencing effort ésgloduction of high quality data. To obtain this preprocess
is applied to the reads. For Sanger sequencing this inclodss-calling, filtering of low quality reads, short length
reads (typically less than 100 bp), identification of seaeefeatures such as linker restriction sites, cloning vegto
polyadenylation tails, library tags, polyadenylationrgifs [134] and other contaminants like bacterial sequejiGs.

There are different computational programs available teat¢hese contaminations. Most of the existing prograred us
for processing solely focus on a single step. While PHRED/[Hdeals with base-calling, cross_match [44] aims to
identify and mask vector sequences in reads. Preprocesainglso be done using other programs such as LUCY [135],
a sequence trimming script like SeqClean [136], or ESTpi&d].

In the Solexa system, the module for sequence alignmentald;applies some filters to remove low quality base calling
before the real mapping starts. As it is based on opticalctiete of ultra-high dense sequence clusters on surface,
chastity and purity of optical signals are crucial for acteg the quality. Distance between clusters is also taken in
consideration. Thresholds for these features can be cusdrim the program (see lllumina in-house documentation fo
details). Other next-generation sequencing systems gndjfferent measures according to their methods.

4.4.2 Repeats

In mammalian genomes the repetitive content can be as hi§%s The repeated fraction includes interspersed re-
peats derived from transposable elements, and long gerregimns that have been duplicated in tandem, palindromic
or dispersed fashiorg.ribosomal RNA genes, centromeres, heterochromatin anatr@isposons. Such features com-
plicate the assembly into a correct finished genome sequamtdave a great influence on the design of assemblers.
Computationally repeats are typically handled as follows:

e Comparing: By comparing reads to known repeated regions in other gesopatential repetitive sequences can
be separated (and typically discarded) from the assembly.

e Masking: Regions which have a high depth, that is regions where mausrehare the same sequence, are marked
as repeats (illustrated on Fig. 4). Usually such regionslesearded by the assembler, and are not incorporated in
the assemblygg.by the method presented in [137].

A standard program for masking repeats is RepeatMaske}.[lt3@arches through curated repeat databageRépbase
[139]) using the alignment program cross_match [44] to liferand mask repeats. The speed of cross_match can be
increased by using the software wrapper MaskerAid [140].
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4.4.3 Expressed Sequence Tags

Due to the way that the EST sequences are generated, thesevaral concerns which can severely disrupt attempts to
analyze the data:

Over-clustering: This happens when ESTs from different genes are clustegedtter, and therefore associated with the
same genetic sequence. This often arise as a result of thglprocedure, which falsely place two originally separat
sequences in the same regdchimerism. However, paralogous genes can also be clugstagether due to high sequence
similarity. Using the traditional (TGICL, d2_cluster) gile transitive single linkage clustering methods [141,]1428n
cause all EST from both genes to be assigned to the samerclMstee stringent clustering methods such as the double
linkage of geneDistiller [54] can reduce the amount of figistustered reads, and create more consistent assembties a
consensus sequences [56].

Highly expressed genesin non-normalized cDNA libraries the fraction of the genleattis highly expressed, will be
represented in a high number and lead to large and deeprslustat may accidentally contain EST from more than one
gene. There are several ways to handle highly expressed depending on the purpose of the investigation: (i) Removal
of known house keeping genes: If the sequence of some hoegéngegenes of the organism are known, removing
ESTs that originate from these genes can alleviate the gmudl (ii) Adding annotated gene sequences: If a genetic
sequence of an annotated gene is known, it can be used aslateefopthe ESTSs. (iii) Seeded clustering: Known full-
length transcripts can be used for 'seeded clustering’¢clvhelps to create smaller, better partitioned clustersaandtl
chimeric assemblies [130].

These procedures can alleviate some of the problems, hosenwe clusters of highly expressed genes can still contain
several thousands EST sequences. Producing a consensiegssedrom such a large cluster can be tricky as most
assembler are not able to handle such deep clusters. Seethadds have been created to deal with this problem, such as
the “containment clustering” of TGICL [130], or the alignmifconsensus strategy of geneDistiller [54, 56].

Other minor concerns in EST assembly are overlapping geméisey can be on opposite strand and share a UTR-tail or
have common motifs. This can cause the assembly progransignaSSTs from two different genes to the same cluster
[52], and will complicate analysis of the cluster.

4.4.4 Reliability of high-throughput assemblies and sequee data

Although no major comparison of assemblies generated \iffiérent HTS technologies has been published yet, prelimi-
nary analysis shows that assemblies with 454 and Solex#isartly differ from those obtained with classical sequiegc
reads. In a survey of assemblies ftreptcoccus suisom 454, Solexa and capillary data, 454 sequencing of arjbr
with 5-fold coverage produced 5336 contigs while the Sangsthod, two-fold coverage, resulted in only 1011 contigs.
The length of the largest contig was 5336 for 454 and 1225théocapillary sequencing method. Moreover, using Solexa,
a ten-fold coverage was necessary to produce 8370 contigsavmaximum length of only 1687 [143]. The best results
were seen for hybrid assemblies comprising data from at teasdifferent sequencing technologies. The authors con-
cluded that assembly methods are to be refined to addregsetiéic shortcomings of each method [143]. As mentioned
earlier, the differences are likely to be caused by veryedst error patterns. In the case of the Solexa technology, e
rates are highly position-dependent, variable acroseraifft machines and even across different runs [115]. Inentec
investigation on the quality of Solexa reads, the authaugdica bias in the read coverage: significantly more reads were
found in GC-rich genomic intervals. Despite the manufadigpecifications for the read quality, error rates variechfr
0.3% to 3.8% [144]. Compared to 454 sequences, only fewtinssrand deletions were found [119]. In the future a new
basecalling softwareg.Alta-Cyclic [145], might be able to improve the quality ofI8ra sequences. Additionally, it has
been shown that under idealized conditions it is theorigipassible to assemble bacterial genomes (with 80x c@eera
of 30 nt reads) [146].

4.5 Assembly of contigs - scaffolding

While the assembly of the individual reads into contigs giweme (local) information, the contigs still need to be st in
the context of the whole genome. This is carried in the laasplof an assembly process: scaffolding, which is the psoces
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where different (genomic) contigs are organized into eaegdr frameworks (scaffolds or super-contigs). The cerdig
ordered and oriented in a consistent way, so that the sddftald is a true representation of chromosomes, thougte ther
may still be gaps between contigs, which are dealt with in reynds of sequencing (see finishing below).

In the scaffolding stage of an assembly, all the informatisnally come from other sources than the reads themselves.
This information includes read-pair information, STS (Gewnce Tag Sites), and other sources [147].

4.6 Finishing

When an assembly has been completed, specific parts of thmblysusually need to be reexamined, perhaps due to low
quality of the data, low (or no) coverage of the sequences sithder suspicion of misassembly, etc. The reexamination
are usually dealt with in an elaborate process where mangpéction is used to analyze the ambiguous section(s) and
new ways are devised to clarify the particular ambiguities.

Analysis of the assembled contigs can be performed with ébeuof tools. One is Consed [148], which allows navigation
of the assembled contigs and reads, problematic regionbeaearched for with different criteria, and regions can be
tagged for further inspection. Others are Autofinish [18ACcardi [150], and GAP4 [151], all of which has different
strengths and purposes.

4.7 Genome Resequencing

Recent developments in high-throughput sequencing técgies have ignited the scientific community’s imagination
Terms such as the “personal genome* or “1000$ genome* argoopwlar in the media [152, 153]. The growing number
of publicly available reference genomes allows genomegressgcing on a larger scale, as sequencing costs decrease and
throughput increases [154]. However, currently even HTE atlows deep resequencing of a small number of large
individual genomes [155] or of specific parts of the genorhbak been remarked that the full power of high-throughput
sequencers might not be unleashed since no suitable mettheddect for specific genomic subsets are available and
methods for targeted amplification are more likely to beaife [97]. However, recent methods using hybrid techngque
such as microarray-based genomic selection (MGS) andptextexon capture to narrow down the number of sequences
or to focus on specific genomic locations may overcome ttostsbming [98, 97]. Thanks to the contribution of James D.
Watson a first complete personal genome, sequenced usingdS4gublished in 2008 [156]. In this project a set of 106.5
million reads, representing 24.5 billion bases and a depih4sfold, was generated. The mapped reads in combination
with 454 quality values (Q-values) were used to gather a 58t32 million SNPs. Several filters had to be applied to
increase specificity. A read was only included if the BLAT J&lignment (i) was spanning at least 90% of the read
length, (ii) did not have alternate hits, (iii) had less tli@e mismatches, (iv) had less than five indels. Subsequéehdy
remaining 93 million reads were again realigned with PHRAG?bss_match tool. Three additional filter steps using the
quality score, (see supplementary material for [156]),rtte® of the variant to total coverage- (0.2) and the vicinity

to homopolymer runs< 5bp) in order to avoid false positive indels ended this compéidgprocedure. Finally, the
authors were able to discover approximately 500 000 newtipat8NPs. Additionally, approximately 2.6 million reads
of novel sequence and reads with low quality alignments vassembled in 170 000 contigs spanning 48Mb. After a
filter step 110000 contigs spanning 29Mb remained [69]. Tutb@s concluded that those contigs might represent the
25Mb predicted to be absent from the current reference gen@vith costs of about 1 million US$, however, the “1000$
genome* genome still seems to be a distant prospect.

Next-generation HTS has also been applied for the mappitraie$location breakpoints. HTS not only reduces the labor
and time cost of traditional methods in detecting trandiooebreakpointseg.in situ hybridization with fluorescent dye-
labeled bacterial artificial chromosome clones (BAC-FI3biit also greatly improve the resolution so that the digdpt
gene can be identified by PCR cloning. Thus, mapping and semqmgbreakpoints region with Solexa platform has
been used to identify novel candidate genes for mentaldatian [93]. Probability calculations as well as simulago
suggest that current paired-end sequencing technologgdrprovides a high probability of breakpoint detectiod an
good resolution in localizing structural chromosomal tearrangements [125].
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5 Overview of assembly methods

Different assemblers use different information in the agdg process. Some only use sequences in fasta format and
the corresponding quality values, while others can assemithout quality values. Additional information on known
sequencesef). genes), clones, clone sizes and the orientation of the rgadgard-reverse) might be helpful in the
assembly process.

An overview of different assemblers is presented in tabkesnid 1b, which summarizes the approach each program
utilizes in assembly.

[Table 1a]
[Table 1b]

5.1 Assemblers

In the following a large selection of different assemblératthave been created over time are presented. An overview
with shorts presentations of the different assemblers mengon the web-paght t p: // genone. ku. dk/ r esour ces/
assenbl y/ met hods. htni .

One of the (relatively) early assemblers is PHRAP [44], \uhgcstill in use, both in itself (for small DNA sequence sgets)
and as a subcomponent of WGS assembigRePS [157], Phusion [50], JAZZ [158], and ATLAS [159]. OtWGS
assemblers that also use some variety of the standard puaglaut-consensus approach are, the Celera assembler [45
CAP3[116], RAMEN [160], PCAP [161], the TIGR assembler [L,&ZTROLL [132], and ARACHNEZ2 [49]. Some new
approaches to assembly have been attempted, among therfb&jieand TRAP [58], which try novel ways to deal with
repetitive sequences by checking the trace and quality fA@semerging approach is to use more explicit graph based
programs, such as Euler [133], Partial ordered alignme®A)H163], Velvet [121], Splicing graphs [55], ASmodeler
[164], and xtract [57], where the last three are used spatifitor ESTs. Other programs that analyze ESTs are TGICL
[165], StackPack [13], PaCE [166], Hidden Markov Model (HM&ampling [167], and geneDistiller [54]. Finally, some
programs are used in the scaffolding stage, where contegpracessed and put in ordeg. GigAssembler [168] and
Bambus [147] (part of the AMOS package [46]).

5.2 Assembler Comparisons

Comparing the different assemblers is not a trivial tasktdiseveral factors. Not to mention the problems of consingct
appropriate benchmark data. First the different assembige a variety of input data, and so comparing an assembler
which uses a lot of the additional information to one whichyamses a fragment of the information is inappropriate.
Another aspect is evaluating the success criteria, the igdal create a single error-free contig of each chromosome,
which means that fewer gaps, longer contigs, and fewersamerdesired. However, different assemblers might dorbette
in one area and worse in another, so weighing the performaincee assembler against another can be difficult. Still
there have been a few attempts to compare assemblers.

In[132], PHRAP, TIGR Assembler, and STROLL were comparedagquence data from the bacteriBorrelia burgdor-
feri. Phusion and ARACHNE were both applied to the assembly oMbease genome [169, 50]. PHRAP has been
compared to CAP3in [116] (on four BAC datasets) and [76] (8T BHata) where the TIGR Assembler was also included.
Furthermore, a short comparison between PHRAP, ArachikeEaler is presented in [60].

Common to these studies is that the individual performaiftiescassemblers depend on the data they are presented with.
PHRAP is generally aggressive in joining reads and creatgs kcontigs, though sometimes at the expense of introgucin
errors. This assembler would be a fairly good choice if thiaskt consisted only of reads with assigned quality values.
However if additional information, such as forward-reetsnstraints, is available other programg.CAP3, STROLL)
would perform better. Another observation is that the panfince of PHRAP degrades when it is applied to some large
data sets. Additionally an updated assembler based on tlee gackage [60], Euler-SR [115], is available. Euler-SR
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which uses a revised version of the Euler package, is lesg spgensive and optimized for short Reads. Alternatives ar
assemblers such as Arachne or Velvet [121].

6 Applying assemblies for other analyzes

There are different possibilities for further processihthe data and thereby for finding interesting and importeatdres
for future investigation, for example searching for SNAsg& Nucleotide Polymorphisms) and alternative spligets,
or comparing genomes with each other.

SNP detectionESTs are the most often used data source for SNP detectioBNRs can be found from shotgun data as
well. SNPs in transcribed sequences can either be synorg/nowamino acid change), or non-synonymous (encoding a
different amino acid). A variety of different computer prags are designed for SNPs analysis. Some find and predict
whether a given site is polymorphieg. Polybayes [170], Polyphred [171] and novoSNP [172]. Othirdo predict
whether a given SNP is potentially harmful or neutegl,Polyphen [173] and SIFT [174].

Massively parallel Sequencinihe new massively parallel sequencing technologies will/jgle a wealth of new infor-
mation. As mentioned above they have already been appliethéosequencing of an individuals genome [156], and
detection of genomic rearrangements [93, 125], and in thuieéinew ways of utilizing their enormous capacity will like
appear, both with respect to the number of clones that algzethand the total amount of sequenced DNA.

Detection of alternative splicingtn eukaryotes, the removal of introns by splicing is a crusiap in gene expression.
For some genes, splicing results in only one single type oNRbut studies have revealed that up to 60% of the human
genes result in two or more mRNA isoforms due to alternafplieisig [36, 175]. One approach to investigate alternative
splicing is through assemblies of ESTs. However, assembfi€STs usually has multiple solutions in the presence of
alternative splicing, which might end in truncated, misssbkled or missing transcripts [175, 176]. Having a complete
genome as a reference can help because it allows compafigm©BST to the corresponding genomic sequence. Some
programs have been created which explicitly try to addresgptroblem of assembling alternative splice variants from
ESTs, among them are Splicing Graph [55] and geneDistiié}. [

Genome Comparison: Furthermore, as different sequencing project complete tkepective genomes and the data
become available, it becomes possible to compare diffeseand similarities between different species on a sequence
basis. This can generate a wealth of new information, ane géw insights into the evolution and biology of living
organisms. Examples of how such a comparative analysiseaeiormed are given in [177, 67, 62].

7 Discussion

As still more genomes are studied and more sophisticategpetanprograms for genome assembly and analysis are
developed, our knowledge of genomics will expand tremeslyouSequencing technologies have already given us a
consensus sequence lidmo sapiensand in the future we can expect that many individual humarogees will be
sequenced , which will add to the steadily growing numbereafagic variations and genetic predisposition to diseagte th
has been revealed in our specie. Furthermore, many modatigrgs and eventually, all species remain to be sequenced,
which will give a better understanding of life and its evabut

For mammalian genomes whole genome shotgun sequencirigehg 10 entail similar costs for producing a finished
sequence as a hierarchical shotgun solution. The hiecalchpproach has a higher initial cost than the whole-genome
approach, owing to the need to create a map of clones (aboof 8 total cost of sequencing) and to identify sequence
overlap between clones. On the other hand, the whole-germpmeach is likely to require much greater work and
expense in the final stage of the assembly, because of tHemialof resolving misassemblies.

New high-throughput sequencing technologies have ragidigrged. However, the sequencing methods as well as the
computational tools have to be further improved, to allonoaplete de novo assembly for large genomes with these
technologies. However, today only little data on the errodels of different massively parallel sequencing techgiel®

is available. These error models are crucial to interprdtaaralyze the sequence data correctly [144]. When it comes to
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de novo assembly, the short read lengths of SOLID and Solethadologies seem to be a momentous disadvantage and
the high number of reads produced might not be able to comapeifer this handicap. However, all manufacturers aim
to increase the read lengths. Currently, a reasonable agipto the assembly of such short sequences could include dat
from low coverage Sanger sequencing. Although hybrid dett@gproaches are cumbersome [115], they have already
been shown to produce useful assemblies [124].

The choice of sequencing strategy should also be influengelebgoal of the project. In some organisms it might be
desirable to quickly generate a few contigs covering keynsan the genome, while in others a broader strategy might
apply. Still other projects combine whole—genome with &iehical shotgun in a hybrid approach trying to utilize the
strengths of each [159].

Other applications of sequencing and assembly are contgtyideing explored. For example, the growing field of
environmental sequencing (or metagenomics) [178, 179, 180 undoubtedly present new challenges to assemblers,
since sequence data will no longer be known to come from dessaurce organism, but from several and often from
a multitude of distinct organisms, with different relatimbundances, different genome structures, repeat comtedt,

so on. A somewhat related field is paleogenomics — is sequgmdifossil DNA. This field has become much more
accessible with the new massively parallel sequencing odsthas the traditional Sanger sequencing is difficult and
technical impractical on fossil DNA samples. The new teghes, however, have made it possible to extract genomic
information from long extinct species, for example the vipalammoth [181].

The assemblers presented in this paper show the greatitivamd ingenuity that has gone into finding better ways of
assembling the DNA puzzle from diverse types of data. Th@wuarstrategies for overcoming the challenges revealed
in assembly are also discussed. Newer assemblers (andadsdqmograms) endeavor to surmount these challenges in
novel ways, and it is likely that computational whole genomssembly will be further refined in the future. Also, it
should be remembered, that a substantial fraction of tlgelgenomes still evades sequencing/assembly with existing
technology [69]. The estimated10% of the human genome which has not been sequenced maywithbat function,

as exemplified by the centromeres and pericentric hetevogdtic regions. Many of the tandem repeats within these
regions have been sequenced at clone scale, but none hawvedmpenced at genome-scale, where their size exceeding
many megabases preclude assembly. Why the remaining >2&8l(esigaps, scattered over the euchromatic part of the
human genome, with sizes ranging from 20 to 100 kb, cannoehaeced/assembled is unknown. It is likely that
this terra incognita will only be sequenced when (if) singlelecule, very long read sequencing technologies have been
developed.
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Figures
Figure 1 — Timeline

Figure 1: Figure showing the major breakthroughs in sequgndhe year of the different milestones is chosen to be the
publication year of the first article that presented the mettSoftware publications are marked in cursive. On the left
the size of GenBank (in deposited basepairs) is shown, WéHength and width of the bars representing the size on a
logarithmic scale.

Figure 2 — Sequencing vector

Figure 2: Figure showing a schematic drawing of a sequenantpr, such as a BAC (Bacterial Artificial Chromosome).
The insert can be a genomic fragment, or an cDNA (for EST sszjng). In both cases sequencing from each end will
produce a read pair that can provide additional informdiomssemblers.

Figure 3 — Sequencing methods

Figure 3: Schematic drawing of the four different sequeg@rocedures. (a) Hierarchical shotgun, where a BAC clone
map (tilling map) covering the genome is first created afteiclvthe BACs are sequenced. (a) Whole Genome Shotgun,
where the genome is randomly split into smaller parts andesaced. () EST sequencing, where mRNA is extracted from
tissue and then sequenced. (d) Massively parallel sequeemdiere short sequence fragments are aligned to a reference
genome.

Figure 4 — Repeat Contig

Figure 4: Schematic drawing of a cluster contain a likelyeap The region on the right is covered by many more reads
than would be expected by chance, and is therefore potigraiatpeat region, which could be masked.

Figure 5 — Assembly pipeline

Figure 5: Figure showing the typical pipeline of a sequeggiroject. Sequenced reads are generated, after which they
are cleaned and assembled. Following the assembly arorotatid analysis can be performed.The grey line show the
pipeline for massively parallel sequencing where the readsnapped to a reference genome, while the full pipeline is
for de novo sequencing ans assembly. Part of the figure igedifom [182]

Figure 6 — Assembly example

Figure 6: Figure showing an examples of an assembled (ESTjgctcluster). The thick line at the top represents
the consensus sequence produced by the applied assemBI&}).([The blowup shows a putative SNP present in the
sequences. The colored stretches mark specific tri-nidésgt ATG’ is green and 'TAA is red, and are drawn to show

the structure of the assembly.

Figure 7 — Graph example
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Figure 7: Figure showing an examples of how a graph is coctstiu Two reads are mapped onto the different k-mer
nodes k = 6 in this example), and edges between the nodes are deterinyribe reads. The presence of a nucleotide
difference ég. sequencing error, SNEfc) between the two reads cause the graph to split up, thusncpasiambiguity

in the sequence.
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Fig. 5
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Tables

Table 1a — Assemblers used primarily for shotgun data.

Assembler Computational Additional Common| Reference
dependencies Information Features
Phusion RPPHRAP PR, BAC,Q P, R, K [50]
JAZZ banded SW, Qr K [158]
malign, PHRAP
RePS BLAST/PHRAP PR R, K [157]
ARACHNE2 | SW Qr, PR K [49]
[183]
GigAssembler| psLayout PR, BAC,EST,@ | PR [168]
Celera BLAST-like PR P [45]
assembler
Euler graph-based PR R [133]
CAP3 banded SW Qr, PR P [116]
GAP4 CAP3, PHRAP Q,PR [151]
or FAKII
RAMEN banded SW Qr R [160]
ATLAS PHRAP, Qr R, K [159]
banded SW
PCAP CAP3, banded SW P, R [161]
Bambus - contigs P [147]
TRAP mod SW Qr R, K [58]
PHRAP banded SW Q [44]
TIGR mod SW Q R [162]
Assembler
STROLL banded SW Q [132]
mira banded SW Qr R [59]
ALLPATHS graph-based PR [146]
SHARCGS contig elongation [184]
Velvet graph-based PR [121]
SSAKE contig elongation [185]

Table 1a: Overview of different assembly programs (inatgdscaffolders), some of the programs have also been used
to assemble EST sequences. The additional informationsti@information which a given assembler can use, besides
read informationPR: Paired Reads informatioBAC : Bacterial artificial Chromosome daf@; quality dataQy : Quality

data and trimming reads without sufficient quality. Commeatfires are features that the assembler shares with other
assemblers?: Process can be run on parallel computBrdiandles repeat& : K-mer approach to find potential overlaps.
The last four programs listed are designed primarily forstead assembly.
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Table 1b: Overview of the programs designed for clusteramglysis and assembly of EST data. See table 1a for abbre-

viations.

Table 1b — “Assemblers” designed for ESTs

Program| Computational Additional | Common| Reference
dependencies$ Information | Features
TGICL | megablast/CAP3 known genes, P [141]
StackPack PHRAP Qr [13]
PaCE Suffix tree R [166]
Splicing graphs graph-based [55]
ASmodeler| Directed acyclic mRNA, EST [164]
graph | protein sequencep
HB-algorithm HB-algorithm EST [186]
geneDistiller megablast Qr [54]
xtract graph-based Qr [57]
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