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K-SVD: An Algorithm for Designing Overcomplete
Dictionaries for Sparse Representation

Michal Aharon, Michael Elad, and Alfred Bruckstein

Abstract—In recent years there has been a growing interest in
the study of sparse representation of signals. Using an overcom-
plete dictionary that contains prototype signal-atoms, signals are
described by sparse linear combinations of these atoms. Applica-
tions that use sparse representation are many and include compres-
sion, regularization in inverse problems, feature extraction, and
more. Recent activity in this field has concentrated mainly on the
study of pursuit algorithms that decompose signals with respect
to a given dictionary. Designing dictionaries to better fit the above
model can be done by either selecting one from a prespecified set of
linear transforms or adapting the dictionary to a set of training sig-
nals. Both of these techniques have been considered, but this topic
is largely still open. In this paper we propose a novel algorithm for
adapting dictionaries in order to achieve sparse signal representa-
tions. Given a set of training signals, we seek the dictionary that
leads to the best representation for each member in this set, under
strict sparsity constraints. We present a new method—theK-SVD
algorithm—generalizing theK-means clustering process.K-SVD
is an iterative method that alternates between sparse coding of the
examples based on the current dictionary and a process of updating
the dictionary atoms to better fit the data. The update of the dictio-
nary columns is combined with an update of the sparse represen-
tations, thereby accelerating convergence. The K-SVD algorithm
is flexible and can work with any pursuit method (e.g., basis pur-
suit, FOCUSS, or matching pursuit). We analyze this algorithm
and demonstrate its results both on synthetic tests and in applica-
tions on real image data.

Index Terms—Atom decomposition, basis pursuit, codebook,
dictionary, FOCUSS, gain-shape VQ,K-means,K-SVD, matching
pursuit, sparse representation, training, vector quantization.

I. INTRODUCTION

A. Sparse Representation of Signals

RECENT years have witnessed a growing interest in the
search for sparse representations of signals. Using an over-

complete dictionary matrix that contains proto-
type signal-atoms for columns, , a signal can
be represented as a sparse linear combination of these atoms.
The representation of may either be exact or ap-
proximate, , satisfying . The vector

contains the representation coefficients of the signal
. In approximation methods, typical norms used for measuring
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the deviation are the -norms for and . In this paper,
we shall concentrate on the case of .

If and is a full-rank matrix, an infinite number
of solutions are available for the representation problem, hence
constraints on the solution must be set. The solution with the
fewest number of nonzero coefficients is certainly an appealing
representation. This sparsest representation is the solution of
either

subject to (1)

or

subject to (2)

where is the norm, counting the nonzero entries of a
vector.

Applications that can benefit from the sparsity and overcom-
pleteness concepts (together or separately) include compres-
sion, regularization in inverse problems, feature extraction, and
more. Indeed, the success of the JPEG2000 coding standard can
be attributed to the sparsity of the wavelet coefficients of natural
images [1]. In denoising, wavelet methods and shift-invariant
variations that exploit overcomplete representation are among
the most effective known algorithms for this task [2]–[5]. Spar-
sity and overcompleteness have been successfully used for dy-
namic range compression in images [6], separation of texture
and cartoon content in images [7], [8], inpainting [9], and more.

Extraction of the sparsest representation is a hard problem
that has been extensively investigated in the past few years. We
review some of the most popular methods in Section II. In all
those methods, there is a preliminary assumption that the dic-
tionary is known and fixed. In this paper, we address the issue
of designing the proper dictionary in order to better fit the spar-
sity model imposed.

B. The Choice of the Dictionary

An overcomplete dictionary that leads to sparse represen-
tations can either be chosen as a prespecified set of functions or
designed by adapting its content to fit a given set of signal ex-
amples.

Choosing a prespecified transform matrix is appealing be-
cause it is simpler. Also, in many cases it leads to simple and fast
algorithms for the evaluation of the sparse representation. This
is indeed the case for overcomplete wavelets, curvelets, con-
tourlets, steerable wavelet filters, short-time Fourier transforms,
and more. Preference is typically given to tight frames that can
easily be pseudoinverted. The success of such dictionaries in ap-
plications depends on how suitable they are to sparsely describe
the signals in question. Multiscale analysis with oriented basis
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functions and a shift-invariant property are guidelines in such
constructions.

In this paper, we consider a different route for designing dic-
tionaries based on learning. Our goal is to find the dictio-
nary that yields sparse representations for the training sig-
nals. We believe that such dictionaries have the potential to out-
perform commonly used predetermined dictionaries. With ever-
growing computational capabilities, computational cost may be-
come secondary in importance to the improved performance
achievable by methods that adapt dictionaries for special classes
of signals.

C. Our Paper’s Contribution and Structure

In this paper, we present a novel algorithm for adapting dictio-
naries so as to represent signals sparsely. Given a set of training
signals , we seek the dictionary that leads to the
best possible representations for each member in this set with
strict sparsity constraints. We introduce the -SVD algorithm
that addresses the above task, generalizing the -means algo-
rithm. The -SVD is an iterative method that alternates between
sparse coding of the examples based on the current dictionary
and an update process for the dictionary atoms so as to better fit
the data. The update of the dictionary columns is done jointly
with an update of the sparse representation coefficients related to
it, resulting in accelerated convergence. The -SVD algorithm
is flexible and can work with any pursuit method, thereby tai-
loring the dictionary to the application in mind. In this paper, we
present the -SVD algorithm, analyze it, discuss its relation to
prior art, and prove its superior performance. We demonstrate
the -SVD results in both synthetic tests and applications in-
volving real image data.

In Section II, we survey pursuit algorithms that are later used
by the -SVD, together with some recent theoretical results jus-
tifying their use for sparse coding. In Section III, we refer to re-
cent work done in the field of sparse-representation dictionary
design and describe different algorithms that were proposed for
this task. In Section IV, we describe our algorithm, its possible
variations, and its relation to previously proposed methods. The

-SVD results on synthetic data are presented in Section V,
and some preliminary applications involving real image data are
given in Section VI. We conclude and discuss future possible re-
search direction in Section VII.

II. SPARSE CODING: PRIOR ART

Sparse coding is the process of computing the representa-
tion coefficients based on the given signal and the dic-
tionary . This process, commonly referred to as “atom de-
composition,” requires solving (1) or (2), and this is typically
done by a “pursuit algorithm” that finds an approximate solu-
tion. In this section, we briefly discuss several such algorithms
and their prospects for success. A more detailed description of
those methods can be found in [10]. Sparse coding is a neces-
sary stage in the -SVD method we develop later in this paper,
hence it is important to have a good overview of methods for
achieving it.

Exact determination of sparsest representations proves to be
an NP-hard problem [11]. Thus, approximate solutions are con-
sidered instead, and in the past decade or so several efficient pur-

suit algorithms have been proposed. The simplest ones are the
matching pursuit (MP) [12] and the orthogonal matching pur-
suit (OMP) algorithms [13]–[16]. These are greedy algorithms
that select the dictionary atoms sequentially. These methods
are very simple, involving the computation of inner products
between the signal and dictionary columns, and possibly de-
ploying some least squares solvers. Both (1) and (2) are easily
addressed by changing the stopping rule of the algorithm.

A second well-known pursuit approach is the basis pursuit
(BP) [17]. It suggests a convexification of the problems posed
in (1) and (2) by replacing the -norm with an -norm. The
focal underdetermined system solver (FOCUSS) is very similar,
using the -norm with as a replacement for the -norm
[18]–[21]. Here, for , the similarity to the true sparsity
measure is better but the overall problem becomes nonconvex,
giving rise to local minima that may mislead in the search for so-
lutions. Lagrange multipliers are used to convert the constraint
into a penalty term, and an iterative method is derived based
on the idea of iterated reweighed least squares that handles the

-norm as an weighted norm.
Both the BP and the FOCUSS can be motivated based on

maximum a posteriori (MAP) estimation, and indeed several
works used this reasoning directly [22]–[25]. The MAP can be
used to estimate the coefficients as random variables by maxi-
mizing the posterior . The prior
distribution on the coefficient vector is assumed to be a super-
Gaussian (i.i.d.) distribution that favors sparsity. For the Laplace
distribution, this approach is equivalent to BP [22].

Extensive study of these algorithms in recent years has es-
tablished that if the sought solution is sparse enough, these
techniques recover it well in the exact case [16], [26]–[30]. Fur-
ther work considered the approximated versions and has shown
stability in recovery of [31], [32]. The recent front of activity
revisits those questions within a probabilistic setting, obtaining
more realistic assessments on pursuit algorithm performance
and success [33]–[35]. The properties of the dictionary set
the limits on the sparsity of the coefficient vector that conse-
quently leads to its successful evaluation.

III. DESIGN OF DICTIONARIES: PRIOR ART

We now come to the main topic of the paper, the training
of dictionaries based on a set of examples. Given such a set

, we assume that there exists a dictionary that
gave rise to the given signal examples via sparse combinations,
i.e., we assume that there exists , so that solving ( ) for each
example gives a sparse representation . It is in this setting
that we ask what the proper dictionary is.

A. Generalizing the -Means?

There is an intriguing relation between sparse representation
and clustering (i.e., vector quantization). This connection has
previously been mentioned in several reports [36]–[38]. In clus-
tering, a set of descriptive vectors is learned, and each
sample is represented by one of those vectors (the one closest
to it, usually in the distance measure). We may think of this
as an extreme sparse representation, where only one atom is al-
lowed in the signal decomposition, and furthermore, the coeffi-
cient multiplying it must be one. There is a variant of the vector
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quantization (VQ) coding method, called gain-shape VQ, where
this coefficient is allowed to vary [39]. In contrast, in sparse
representations as discussed in this paper, each example is rep-
resented as a linear combination of several vectors .
Thus, sparse representations can be referred to as a generaliza-
tion of the clustering problem.

Since the -means algorithm (also known as the generalized
Lloyd algorithm—GLA [39]) is the most commonly used pro-
cedure for training in the vector quantization setting, it is nat-
ural to consider generalizations of this algorithm when turning
to the problem of dictionary training. The clustering problem
and its -means solution will be discussed in more detail in
Section IV-A, since our work approaches the dictionary training
problem by generalizing the -means. Here we shall briefly
mention that the -means process applies two steps per each it-
eration: i) given , assign the training examples to their
nearest neighbor; and ii) given that assignment, update
to better fit the examples.

The approaches to dictionary design that have been tried so
far are very much in line with the two-step process described
above. The first step finds the coefficients given the dictio-
nary—a step we shall refer to as “sparse coding.” Then, the
dictionary is updated assuming known and fixed coefficients.
The differences between the various algorithms that have been
proposed are in the method used for the calculation of coeffi-
cients and in the procedure used for modifying the dictionary.

B. Maximum Likelihood Methods

The methods reported in [22]–[25] use probabilistic rea-
soning in the construction of . The proposed model suggests
that for every example the relation

(3)

holds true with a sparse representation and Gaussian white
residual vector with variance . Given the examples

, these works consider the likelihood function
and seek the dictionary that maximizes it. Two assumptions are
required in order to proceed: the first is that the measurements
are drawn independently, readily providing

(4)

The second assumption is critical and refers to the “hidden vari-
able” . The ingredients of the likelihood function are computed
using the relation

(5)
Returning to the initial assumption in (3), we have

(6)

The prior distribution of the representation vector is assumed
to be such that the entries of are zero-mean i.i.d., with Cauchy

[24] or Laplace distributions [22], [23]. Assuming for example
a Laplace distribution, we get

(7)

This integration over is difficult to evaluate, and indeed, Ol-
shausen and Field [23] handled this by replacing it with the ex-
tremal value of . The overall problem turns into

(8)

This problem does not penalize the entries of as it does for
those of . Thus, the solution will tend to increase the dictio-
nary entries’ values, in order to allow the coefficients to become
closer to zero. This difficulty has been handled by constraining
the -norm of each basis element, so that the output variance
of the coefficients is kept at an appropriate level [24].

An iterative method was suggested for solving (8). It includes
two main steps in each iteration: i) calculate the coefficients
using a simple gradient descent procedure and then ii) update
the dictionary using [24]

(9)

This idea of iterative refinement, mentioned before as a general-
ization of the -means algorithm, was later used again by other
researchers, with some variations [36], [37], [40]–[42].

A different approach to handle the integration in (7) was sug-
gested by Lewicki and Sejnowski [25]. They approximated the
posterior as a Gaussian, enabling an analytic solution of the inte-
gration. This allows an objective comparison of different image
models (basis or priors). It also removes the need for the ad-
ditional rescaling that enforces the norm constraint. However,
this model may be too limited in describing the true behaviors
expected. This technique and closely related ones have been re-
ferred to as approximated ML techniques [37].

There is an interesting relation between the above method and
the independent component analysis (ICA) algorithm [43]. The
latter handles the case of a complete dictionary (the number of
elements equals the dimensionality) without assuming additive
noise. The above method is then similar to ICA in that the algo-
rithm can be interpreted as trying to maximize the mutual infor-
mation between the inputs (samples) and the outputs (the coef-
ficients) [24], [22], [25].

C. The MOD Method

An appealing dictionary training algorithm, named method
of optimal directions (MOD), is presented by Engan et al. [36],
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[40], [41]. This method follows more closely the -means out-
line, with a sparse coding stage that uses either OMP or FO-
CUSS followed by an update of the dictionary. The main con-
tribution of the MOD method is its simple way of updating the
dictionary. Assuming that the sparse coding for each example
is known, we define the errors . The overall rep-
resentation mean square error is given by

(10)

Here we have concatenated all the examples as columns of
the matrix and similarly gathered the representations coef-
ficient vectors to build the matrix . The notation

stands for the Frobenius norm, defined as .
Assuming that is fixed, we can seek an update to such

that the above error is minimized. Taking the derivative of (10)
with respect to , we obtain the relation ,
leading to

(11)

MOD is closely related to the work by Olshausen and Field,
with improvements both in the sparse coding and the dictionary
update stages. Whereas the work in [23], [24], and [22] applies
a steepest descent to evaluate , those are evaluated much more
efficiently with either OMP or FOCUSS. Similarly, in updating
the dictionary, the update relation given in (11) is the best that
can be achieved for fixed . The iterative steepest descent up-
date in (9) is far slower. Interestingly, in both stages of the algo-
rithm, the difference is in deploying a second order (Newtonian)
update instead of a first-order one. Looking closely at the update
relation in (9), it could be written as

(12)

Using infinitely many iterations of this sort, and using small
enough , this leads to a steady-state outcome that is exactly
the MOD update matrix (11). Thus, while the MOD method as-
sumes known coefficients at each iteration and derives the best
possible dictionary, the ML method by Olshausen and Field only
gets closer to this best current solution and then turns to calcu-
late the coefficients. Note, however, that in both methods a nor-
malization of the dictionary columns is required and done.

D. Maximum A-Posteriori Probability Approach

The same researchers that conceived the MOD method also
suggested a MAP probability setting for the training of dictio-
naries, attempting to merge the efficiency of the MOD with a
natural way to take into account preferences in the recovered
dictionary. In [37], [41], [42], and [44], a probabilistic point
of view is adopted, very similar to the ML methods discussed
above. However, rather than working with the likelihood func-
tion , the posterior is used. Using Bayes’ rule,
we have , and thus we can use the

likelihood expression as before and add a prior on the dictionary
as a new ingredient.

These works considered several priors and proposed
corresponding formulas for the dictionary. The efficiency of
the MOD in these methods is manifested in the efficient sparse
coding, which is carried out with FOCUSS. The proposed al-
gorithms in this family deliberately avoid a direct minimization
with respect to as in MOD, due to the prohibitive matrix
inversion required. Instead, iterative gradient descent is used.

When no prior is chosen, the update formula is the very one
used by Olshausen and Field, as in (9). A prior that constrains

to have a unit Frobenius norm leads to the update formula

(13)

As can be seen, the first two terms are the same as in (9). The last
term compensates for deviations from the constraint. This case
allows different columns in to have different norm values.
As a consequence, columns with small norm values tend to be
underused, as the coefficients they need are larger and as such
more penalized.

This led to the second prior choice, constraining the columns
of to have a unit -norm. The new update equation formed
is given by

(14)

where is the th column in the matrix .
Compared to the MOD, this line of work provides slower

training algorithms. Simulations reported in [37], [41], [42],
[44] on synthetic and real image data seem to provide encour-
aging results.

E. Unions of Orthonormal Bases

The very recent work reported in [45] considers a dictionary
composed as a union of orthonormal bases

where , are orthonormal matrices.
Such a dictionary structure is quite restrictive, but its updating
may potentially be made more efficient.

The coefficients of the sparse representations can be de-
composed to pieces, each referring to a different orthonormal
basis. Thus

where is the matrix containing the coefficients of the or-
thonormal dictionary .

One of the major advantages of the union of orthonormal
bases is the relative simplicity of the pursuit algorithm needed
for the sparse coding stage. The coefficients are found using
the block coordinate relaxation algorithm [46]. This is an ap-
pealing way to solve as a sequence of simple shrinkage
steps, such that at each stage is computed while keeping all
the other pieces of fixed. Thus, this evaluation amounts to a
simple shrinkage.
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Assuming known coefficients, the proposed algorithm up-
dates each orthonormal basis sequentially. The update of

is done by first computing the residual matrix

Then, by computing the singular value decomposition of the ma-
trix , the update of the th orthonormal basis
is done by . This update rule is obtained by solving
a constrained least squares problem with as the
penalty term, assuming fixed coefficients and error . The
constraint is over the feasible matrices , which are forced
to be orthonormal. This way the proposed algorithm improves
each matrix separately, by replacing the role of the data ma-
trix in the residual matrix , as the latter should be repre-
sented by this updated basis.

Compared to previously mentioned training algorithms, the
work reported in [45] is different in two important ways: beyond
the evident difference of using a structured dictionary rather
than a free one, a second major difference is in the proposed se-
quential update of the dictionary. This update algorithm reminds
of the updates done in the -means. Interestingly, experimental
results reported in [45] show weak performance compared to
previous methods. This might be explained by the unfavorable
coupling of the dictionary parts and their corresponding coeffi-
cients, which is overlooked in the update.

F. Summary of the Prior Art

Almost all previous methods can essentially be interpreted
as generalizations of the -means algorithm, and yet, there are
marked differences between these procedures. In the quest for
a successful dictionary training algorithm, there are several de-
sirable properties.

• Flexibility: The algorithm should be able to run with any
pursuit algorithm, and this way enable choosing the one
adequate for the run-time constraints or the one planned for
future usage in conjunction with the obtained dictionary.
Methods that decouple the sparse-coding stage from the
dictionary update readily have such a property. Such is the
case with the MOD and the MAP-based methods.

• Simplicity: Much of the appeal of a proposed dictionary
training method has to do with how simple it is, and more
specifically, how similar it is to -means. We should have
an algorithm that may be regarded as a natural generaliza-
tion of the -means. The algorithm should emulate the
ease with which the -means is explainable and imple-
mentable. Again, the MOD seems to have made substantial
progress in this direction, although, as we shall see, there
is still room for improvement.

• Efficiency: The proposed algorithm should be numerically
efficient and exhibit fast convergence. The methods de-
scribed above are all quite slow. The MOD, which has a
second-order update formula, is nearly impractical for very
large number of dictionary columns because of the ma-
trix inversion step involved. Also, in all the above formu-
lations, the dictionary columns are updated before turning

to reevaluate the coefficients. As we shall see later, this ap-
proach inflicts a severe limitation on the training speed.

• Well-Defined Objective: For a method to succeed, it should
have a well-defined objective function that measures the
quality of the solution obtained. This almost trivial fact
was overlooked in some of the preceding work in this
field. Hence, even though an algorithm can be designed
to greedily improve the representation mean square error
(MSE) and the sparsity, it may happen that the algorithm
leads to aimless oscillations in terms of a global objective
measure of quality.

IV. THE -SVD ALGORITHM

In this section, we introduce the -SVD algorithm for
training of dictionaries. This algorithm is flexible and works
in conjunction with any pursuit algorithm. It is simple and
designed to be a truly direct generalization of the -means. As
such, when forced to work with one atom per signal, it trains a
dictionary for the gain-shape VQ. When forced to have a unit
coefficient for this atom, it exactly reproduces the -means
algorithm. The -SVD is highly efficient, due to an effective
sparse coding and a Gauss–Seidel-like accelerated dictionary
update method. The algorithm’s steps are coherent with each
other, both working towards the minimization of a clear overall
objective function.

We start our discussion with a description of the -means,
setting the notation for the rest of this section. While this
may seem superfluous, we will use the very description of the

-means to derive the -SVD as its direct extension. We then
discuss some of the -SVD properties and implementation
issues.

A. -Means Algorithm for Vector Quantization

A codebook that includes codewords (representa-
tives) is used to represent a wide family of vectors (signals)

( ) by nearest neighbor assignment. This
leads to efficient compression or description of those signals as
clusters in surrounding the chosen codewords. As a side
note, we remind the reader that based on the expectation maxi-
mization procedure, the -means can be extended to suggest a
fuzzy assignment and a covariance matrix per each cluster, so
that the data are modelled as a mixture of Gaussians [47].

The dictionary of VQ codewords is typically trained using
the -means algorithm, and as we have argued before, this has
a close resemblance to the problem studied in this paper. We
denote the codebook matrix by , the
codewords being the columns. When is given, each signal is
represented as its closest codeword (under -norm distance).
We can write , where is a vector from the
trivial basis, with all zero entries except a one in the th position.
The index is selected such that

This is considered as an extreme case of sparse coding in the
sense that only one atom is allowed to participate in the con-
struction of , and the coefficient is forced to be 1. The repre-
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Fig. 1. The K-means algorithm.

sentation MSE per is defined as , and the
overall MSE is

(15)

The VQ training problem is to find a codebook that minimizes
the error , subject to the limited structure of , whose columns
must be taken from the trivial basis

subject to for some

(16)
The -means algorithm is an iterative method used for de-
signing the optimal codebook for VQ [39]. In each iteration
there are two stages: one for sparse coding that essentially
evaluates and one for updating the codebook. Fig. 1 gives a
more detailed description of these steps.

The sparse coding stage assumes a known codebook
and computes a feasible that minimizes the value of (16).
Similarly, the dictionary update stage fixes as known and
seeks an update of so as to minimize (16). Clearly, at each
iteration, either a reduction or no change in the MSE is en-
sured. Furthermore, at each such stage, the minimization step
is optimal under the assumptions. As the MSE is bounded from
below by zero, and the algorithm ensures a monotonic decrease
of the MSE, convergence to at least a local minimum solution is
guaranteed. Note that we have deliberately chosen not to discuss
stopping rules for the above-described algorithm, since those
vary a lot but are quite easy to handle [39].

B. -SVD—Generalizing the -Means

The sparse representation problem can be viewed as a gener-
alization of the VQ objective (16), in which we allow each input
signal to be represented by a linear combination of codewords,
which we now call dictionary elements. Therefore the coeffi-
cients vector is now allowed more than one nonzero entry, and
these can have arbitrary values. For this case, the minimization

corresponding to (16) is that of searching the best possible dic-
tionary for the sparse representation of the example set

subject to (17)

A similar objective could alternatively be met by considering

subject to (18)

for a fixed value . In this paper, we mainly discuss the first
problem (17), although the treatment is very similar.

In our algorithm, we minimize the expression in (17) itera-
tively. First, we fix and aim to find the best coefficient matrix

that can be found. As finding the truly optimal is impos-
sible, we use an approximation pursuit method. Any such al-
gorithm can be used for the calculation of the coefficients, as
long as it can supply a solution with a fixed and predetermined
number of nonzero entries .

Once the sparse coding task is done, a second stage is per-
formed to search for a better dictionary. This process updates
one column at a time, fixing all columns in except one, ,
and finding a new column and new values for its coefficients
that best reduce the MSE. This is markedly different from all
the -means generalizations that were described in Section III.
All those methods freeze while finding a better . Our ap-
proach is different, as we change the columns of sequentially
and allow changing the relevant coefficients. In a sense, this ap-
proach is a more direct generalization of the -means algorithm
because it updates each column separately, as done in -means.
One may argue that in -means the nonzero entries in are
fixed during the improvement of , but as we shall see next,
this is true because in the -means (and the gain-shape VQ),
the column update problems are decoupled, whereas in the more
general setting, this should not be the case.

The process of updating only one column of at a time
is a problem having a straightforward solution based on the
singular value decomposition (SVD). Furthermore, allowing a
change in the coefficient values while updating the dictionary
columns accelerates convergence, since the subsequent column
updates will be based on more relevant coefficients. The overall
effect is very much in line with the leap from gradient descent
to Gauss–Seidel methods in optimization.

Here one might be tempted to suggest skipping the step of
sparse coding and using only updates of columns in , along
with their coefficients, applied in a cyclic fashion, again and
again. This, however, will not work well, as the support of the
representations will never be changed, and such an algorithm
will necessarily fall into a local minimum trap.

C. -SVD—Detailed Description

We shall now discuss the -SVD in detail. Recall that our
objective function is

subject to (19)
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Let us first consider the sparse coding stage, where we assume
that is fixed, and consider the above optimization problem as
a search for sparse representations with coefficients summarized
in the matrix . The penalty term can be rewritten as

Therefore the problem posed in (19) can be decoupled to
distinct problems of the form

subject to

for (20)

This problem is adequately addressed by the pursuit algorithms
discussed in Section II, and we have seen that if is small
enough, their solution is a good approximation to the ideal one
that is numerically infeasible to compute.

We now turn to the second, and slightly more involved,
process of updating the dictionary together with the nonzero
coefficients. Assume that both and are fixed and we
put in question only one column in the dictionary and the
coefficients that correspond to it, the th row in , denoted as

(this is not the vector which is the th column in ).
Returning to the objective function (19), the penalty term can
be rewritten as

(21)

We have decomposed the multiplication to the sum of
rank-1 matrices. Among those, 1 terms are assumed fixed,
and one—the th—remains in question. The matrix stands
for the error for all the examples when the th atom is re-
moved. Note the resemblance between this error and the one
defined in [45].

Here, it would be tempting to suggest the use of the SVD to
find alternative and . The SVD finds the closest rank-1
matrix (in Frobenius norm) that approximates , and this will
effectively minimize the error as defined in (21). However, such
a step will be a mistake, because the new vector is very likely
to be filled, since in such an update of we do not enforce the
sparsity constraint.

A remedy to the above problem, however, is simple and also
quite intuitive. Define as the group of indices pointing to
examples that use the atom , i.e., those where is
nonzero. Thus

(22)

Define as a matrix of size , with ones on the
th entries and zeros elsewhere. When multiplying

, this shrinks the row vector by discarding of

Fig. 2. The K-SVD algorithm.

the zero entries, resulting with the row vector of length
. Similarly, the multiplication creates a matrix

of size that includes a subset of the examples that
are currently using the atom. The same effect happens
with , implying a selection of error columns that
correspond to examples that use the atom .

With this notation, we may now return to (21) and suggest
minimization with respect to both and , but this time force
the solution of to have the same support as the original .
This is equivalent to the minimization of

(23)

and this time it can be done directly via SVD. Taking the re-
stricted matrix , SVD decomposes it to . We
define the solution for as the first column of , and the
coefficient vector as the first column of multiplied by

. Note that, in this solution, we necessarily have that i)
the columns of remain normalized and ii) the support of all
representations either stays the same or gets smaller by possible
nulling of terms.

We shall call this algorithm “ -SVD” to parallel the name
-means. While -means applies computations of means to

update the codebook, -SVD obtains the updated dictionary
by SVD computations, each determining one column. A full
description of the algorithm is given in Fig. 2.

In the -SVD algorithm, we sweep through the columns and
use always the most updated coefficients as they emerge from
preceding SVD steps. Parallel versions of this algorithm can
also be considered, where all updates of the previous dictionary
are done based on the same . Experiments show that while
this version also converges, it yields an inferior solution and
typically requires more than four times the number of iterations.
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An important question that arises is: will the -SVD algo-
rithm converge? Let us first assume we can perform the sparse
coding stage perfectly, retrieving the best approximation to the
signal that contains no more than nonzero entries. In this
case, and assuming a fixed dictionary , each sparse coding step
decreases the total representation error , posed in
(19). Moreover, at the update step for , an additional reduc-
tion or no change in the MSE is guaranteed, while not violating
the sparsity constraint. Executing a series of such steps ensures
a monotonic MSE reduction, and therefore, convergence to a
local minimum is guaranteed.

Unfortunately, the above claim depends on the success of pur-
suit algorithms to robustly approximate the solution to (20), and
thus convergence is not always guaranteed. However, when
is small enough relative to , the OMP, FOCUSS, and BP ap-
proximating methods are known to perform very well.1 In those
circumstances the convergence is guaranteed. We can ensure
convergence by external interference—by comparing the best
solution using the already given support to the one proposed by
the new run of the pursuit algorithm, and adopting the better
one. This way we shall always get an improvement. Practically,
we saw in all our experiments that a convergence is reached, and
there was no need for such external interference.

D. From -SVD Back to -Means

What happens when the model order ? This case cor-
responds to the gain-shape VQ, and as such it is important, as
the -SVD becomes a method for its codebook training. When

, the coefficient matrix has only one nonzero entry per
column. Thus, computing the error in (23) yields

(24)

This is because the restriction takes only those columns in
that use the atom, and thus necessarily, they use no other

atoms, implying that for all , .
The implication of the above outcome is that the SVD in the

case is done directly on the group of examples in .
Also, the updates of the columns of become independent
of each other, implying that a sequential process as before, or
a parallel one, both lead to the same algorithm. We mentioned
before that the -means update of the cluster centroids could
be interpreted as a sequential process, and the discussion here
sheds some further light on this interpretation.

We could further constrain our representation stage and, be-
yond the choice , limit the nonzero entries of to be
1. This brings us back to the classical clustering problem as de-
scribed earlier. In this case, we have that is filled with ones,
thus . The -SVD then needs to approximate the re-
stricted error matrix by a rank-1 matrix . The
solution is the mean of the columns of , exactly as -means
suggests.

1While OMP can be naturally used to get a fixed and predetermined number
of nonzeros (T ), both BP and FOCUSS require some slight modifications. For
example, in using FOCUSS to derive exactly T nonzero coefficients, the regu-
larization parameter should be adapted while iterating.

E. -SVD—Implementation Details

Just like the -means, the -SVD algorithm is susceptible
to local minimum traps. Our experiments show that improved
results can be reached if the following variations are applied.

• When using approximation methods with a fixed number
of coefficients, we found that FOCUSS proves to be the
best in terms of getting the best out of each iteration. How-
ever, from a run-time point of view, OMP was found to lead
to far more efficient overall algorithm.

• When a dictionary element is not being used “enough”
(relative to the number of dictionary elements and to the
number of samples), it could be replaced with the least rep-
resented signal element, after being normalized (the repre-
sentation is measured without the dictionary element that
is going to be replaced). Since the number of data elements
is much larger than the number of dictionary elements, and
since our model assumption suggests that the dictionary
atoms are of equal importance, such replacement is very
effective in avoiding local minima and overfitting.

• Similar to the idea of removal of unpopular elements from
the dictionary, we found that it is very effective to prune
the dictionary from having too-close elements. If indeed
such a pair of atoms is found (based on their absolute inner
product exceeding some threshold), one of those elements
should be removed and replaced with the least represented
signal element.

Similarly to the -means, we can propose a variety of tech-
niques to further improve the -SVD algorithm. Most appealing
on this list are multiscale approaches and tree-based training
where the number of columns is allowed to increase during
the algorithm. We have not yet tested these options, and leave
these matters for future work.

V. SYNTHETIC EXPERIMENTS

As in previously reported works [37], [45], we first try the
-SVD algorithm on synthetic signals, to test whether this al-

gorithm recovers the original dictionary that generated the data
and to compare its results with other reported algorithms.

A. Generation of the Data to Train On

A random matrix (referred to later as the generating
dictionary) of size 20 50 was generated with i.i.d. uniformly
distributed entries. Each column was normalized to a unit

-norm. Then, 1500 data signals of dimension 20
were produced, each created by a linear combination of three
different generating dictionary atoms, with uniformly dis-
tributed i.i.d. coefficients in random and independent locations.
White Gaussian noise with varying signal-to-noise ratio (SNR)
was added to the resulting data signals.

B. Applying the -SVD

The dictionary was initialized with data signals. The coeffi-
cients were found using OMP with a fixed number of three co-
efficients. The maximum number of iterations was set to 80.

C. Comparison to Other Reported Works

We implemented the MOD algorithm and applied it on the
same data, using OMP with a fixed number of three coefficients
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Fig. 3. Synthetic results: for each of the tested algorithms and for each noise
level, 50 trials were conducted and their results sorted. The graph labels repre-
sent the mean number of detected atoms (out of 50) over the ordered tests in
groups of ten experiments.

and initializing in the same way. We executed the MOD algo-
rithm for a total number of 80 iterations. We also executed the
MAP-based algorithm of Kreutz-Delgado et al. [37].2 This al-
gorithm was executed as is, therefore using FOCUSS as its de-
composition method. Here, again, a maximum of 80 iterations
were allowed.

D. Results

The computed dictionary was compared against the known
generating dictionary. This comparison was done by sweeping
through the columns of the generating dictionary and finding
the closest column (in distance) in the computed dictionary,
measuring the distance via

(25)

where is a generating dictionary atom and is its corre-
sponding element in the recovered dictionary. A distance less
than 0.01 was considered a success. All trials were repeated
50 times, and the number of successes in each trial was com-
puted. Fig. 3 displays the results for the three algorithms for
noise levels of 10, 20, and 30 dB and for the noiseless case.

We should note that for different dictionary size (e.g.,
20 30) and with more executed iterations, the MAP-based
algorithm improves and gets closer to the -SVD detection
rates.

VI. APPLICATIONS TO IMAGE PROCESSING—PRELIMINARY

RESULTS

We carried out several experiments on natural image data,
trying to show the practicality of the proposed algorithm and the
general sparse coding theme. We should emphasize that our tests
here come only to prove the concept of using such dictionaries
with sparse representations. Further work is required to fully

2The authors of [37] have generously shared their software with us.

Fig. 4. A collection of 500 random blocks that were used for training, sorted
by their variance.

(a) (b) (c)

Fig. 5. (a) The learned dictionary. Its elements are sorted in an ascending order
of their variance and stretched to maximal range for display purposes. (b) The
overcomplete separable Haar dictionary and (c) the overcomplete DCT dictio-
nary are used for comparison.

Fig. 6. The root mean square error for 594 new blocks with missing pixels
using the learned dictionary, overcomplete Haar dictionary, and overcomplete
DCT dictionary.

deploy the proposed techniques in large-scale image-processing
applications.

1) Training Data: The training data were constructed as a
set of 11 000 examples of block patches of size 8 8 pixels,
taken from a database of face images (in various locations). A
random collection of 500 such blocks, sorted by their variance,
is presented in Fig. 4.

2) Removal of the DC: Working with real image data, we
preferred that all dictionary elements except one have a zero
mean. The same measure was practiced in previous work [23].
For this purpose, the first dictionary element, denoted as the DC,
was set to include a constant value in all its entries and was not
changed afterwards. The DC takes part in all representations,
and as a result, all other dictionary elements remain with zero
mean during all iterations.

3) Running the -SVD: We applied the -SVD, training a
dictionary of size 64 441. The choice came from
our attempt to compare the outcome to the overcomplete Haar
dictionary of the same size (see the following section). The coef-
ficients were computed using OMP with a fixed number of coef-
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Fig. 7. The corrupted image (left) with the missing pixels marked as points and the reconstructed results by the learned dictionary, the overcomplete Haar dictio-
nary, and the overcomplete DCT dictionary, respectively. The different rows are for 50% and 70% of missing pixels.

ficients, where the maximal number of coefficients is ten. Note
that better performance can be obtained by switching to FO-
CUSS. We concentrated on OMP because of its simplicity and
fast execution. The trained dictionary is presented in Fig. 5(a).

4) Comparison Dictionaries: The trained dictionary was
compared with the overcomplete Haar dictionary, which in-
cludes separable basis functions, having steps of various sizes
and in all locations (total of 441 elements). In addition, we
build an overcomplete separable version of the DCT dictionary
by sampling the cosine wave in different frequencies to result a
total of 441 elements. The overcomplete Haar dictionary and the
overcomplete DCT dictionary are presented in Fig. 5(b) and (c),
respectively.

5) Applications: We used the -SVD results, denoted here
as the learned dictionary, for two different applications on im-
ages. All tests were performed on one face image which was
not included in the training set. The first application is filling in
missing pixels: we deleted random pixels in the image and filled
their values using the various dictionaries’ decomposition. We
then tested the compression potential of the learned dictionary
decomposition and derived a rate-distortion graph. We hereafter
describe those experiments in more detail.

A. Filling In Missing Pixels

We chose one random full face image, which consists of 594
nonoverlapping blocks (none of which were used for training).
For each block, the following procedure was conducted for in
the range {0.2,0.9}.

1) A fraction of the pixels in each block, in random loca-
tions, were deleted (set to zero).

2) The coefficients of the corrupted block under the learned
dictionary, the overcomplete Haar dictionary, and the over-
complete DCT dictionary were found using OMP with an
error bound of , where is a vector of
all ones3 (allowing an error of 5 gray-values in 8-bit im-

3The input image is scaled to the dynamic range [0,1].

ages). All projections in the OMP algorithm included only
the noncorrupted pixels, and for this purpose, the dictio-
nary elements were normalized so that the noncorrupted
indexes in each dictionary element have a unit norm. The
resulting coefficient vector of the block is denoted .

3) The reconstructed block was chosen as .

4) The reconstruction error was set to
(where 64 is the number of pixels in each block).

The mean reconstruction errors (for all blocks and all corruption
rates) were computed and are displayed in Fig. 6. Two corrupted
images and their reconstructions are shown in Fig. 7. As can
be seen, higher quality recovery is obtained using the learned
dictionary.

B. Compression

A compression comparison was conducted between the over-
complete learned dictionary, the overcomplete Haar dictionary,
and the overcomplete DCT dictionary (as explained before), all
of size 64 441. In addition, we compared to the regular (uni-
tary) DCT dictionary (used by the JPEG algorithm). The re-
sulting rate-distortion graph is presented in Fig. 8. In this com-
pression test, the face image was partitioned (again) into 594
disjoint 8 8 blocks. All blocks were coded in various rates
(bits-per-pixel values), and the peak SNR (PSNR) was mea-
sured. Let be the original image and be the coded image,
combined by all the coded blocks. We denote as the mean
squared error between and , and

PSNR (26)

In each test we set an error goal and fixed the number of bits
per coefficient . For each such pair of parameters, all blocks
were coded in order to achieve the desired error goal, and the co-
efficients were quantized to the desired number of bits (uniform
quantization, using upper and lower bounds for each coefficient
in each dictionary based on the training set coefficients). For the
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Fig. 8. Compression results: rate-distortion graphs.

Fig. 9. Sample compression results.

overcomplete dictionaries, we used the OMP coding method.
The rate value was defined as

(27)

where the following hold.
• holds the required number of bits to code the number of

coefficients for each block.
• holds the required number of bits to code the index of

the representing atom. Both and values were calculated
using an entropy coder.

• Blocks is the number of blocks in the image (594).
• coefs is the total number of coefficients required to repre-

sent the whole image.
• pixels is the number of pixels in the image (

Blocks).
In the unitary DCT dictionary, we picked the coefficients in

a zigzag order, as done by JPEG, until the error bound was
reached. Therefore, the index of each atom should not be coded,
and the rate was defined by

(28)

with the same notation as before.
By sweeping through various values of and , we get per

each dictionary several curves in the - plane. Fig. 8 presents
the best obtained - curves for each dictionary. As can be

seen, the -SVD dictionary outperforms all other dictionaries
and achieves up to 1 – 2 dB better for bit rates less than 1.5 bits
per pixel (where the sparsity model holds true). Samples results
are presented in Fig. 9.

VII. CONCLUSION

In this paper, we addressed the problem of generating
and using overcomplete dictionaries. We presented an algo-
rithm—the -SVD—for training an overcomplete dictionary
that best suits a set of given signals. This algorithm is a gen-
eralization of the -means, designed to solve a similar but
constrained problem. We have shown that the dictionary found
by the -SVD performs well for both synthetic and real images
in applications such as filling in missing pixels and compression
and outperforms alternatives such as the nondecimated Haar
and overcomplete or unitary DCT.

We believe this kind of dictionary, which nowadays is not
being commonly used, can successfully replace popular repre-
sentation methods both in image enhancement and in compres-
sion. Future work is required to enable such a trend. Among
the many possible research directions we mention three: i) ex-
ploration of the connection between the chosen pursuit method
in the -SVD and the method used later in the application; ii)
a study of the effect of introducing weights to the atoms, al-
lowing them to get varying degrees of popularity (in a way we
have used this notion when we separated the DC in our experi-
ments); and iii) handling the scalability problem of the -SVD,
when turning to work with larger image patches.
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