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I. INTRODUCTION

For large self-reconfiguring (SR) robots, any algorithm that
requires linear space per module (with respect to the number
of modules) or linear time computation or communication per
actuation is undesirable. Unfortunately, many existing algo-
rithms require linear time or space (e.g. to achieve arbitrary
configurations, goal configurations must use linear space).
However, for locomotion, sublinear algorithms are feasible –
a complete goal specification is not necessary, reducing space
requirements, and it is possible for the modules to move based
on only local information, reducing the communication per
move. There are two critical aspects of any such algorithm:
all modules must be able to use local planning to find and
execute paths that ensure that the robot does not become
disconnected, and since many modules must move in parallel
to enable time-efficient motion, paths must be maintained in
the face of the changing topology of the robot. In this paper we
describe a Reinforcement Learning technique that performs re-
liable locomotion among arbitrary obstacles. Planning is done
for all modules simultaneously through distributed dynamic
programming, while modules use local constant-time search
and module locking to ensure physical integrity of the robot
while following their paths. We also look after the dynamics
of the system by modifying the planning to prefer locations
closer to the ground. We expect this sublinear approach will
enable locomotion planning at scales not previously possible,
such as a million-module robot.

Related Work: Most algorithms for reconfiguration of
lattice-based SR robots assume an exact specification of the
desired shape and generate explicit module paths. One ex-
ception is the work of Stoy and Nagpal [4] which uses a
representation independent of the number of modules in the
system. Similarly, we use a simple bounding box to specify
the goal of locomotion, though the goal could easily be made
more detailed. In the work of Yim et al. [6], an exact shape
is specified, but only local control is used to avoid explicit
long-range path planning. Previous work in locomotion uses
a cellular automata framework with constant information and
computation requirements [2], but requires a restricted initial
configuration and complex rule sets. Our technique uses more
explicit planning to direct a robot from any configuration to
any location over obstacles.

II. PARALLEL PATH PLANNING

Planning for locomotion is similar to reconfiguration plan-
ning, in that modules move through the system to change
the shape of the robot and reach a goal region at a distant
location. Here, instead of finding a set of global paths that
are guaranteed to work in concert (the space of such sets of
paths is extremely large [1]), we build independent paths and
continuously replan them in an efficient way as the system
evolves. We define the Parallel Path Planning problem as
finding a path from each mobile module to a position in a goal
region, here defined by a bounding box. Borrowing techniques
from Reinforcement Learning [5], we formulate this problem
as a Markov Decision Problem (MDP) and solve it using
dynamic programming (DP). The resulting policy yields a
path from all open positions in the current configuration to
a position in the goal region. Because the DP updates are
executed in parallel, the policy converges in sublinear time in
the size of the robot. As modules move, the underlying MDP
also changes and we update the policy.

In our MDP formulation, a state s is a module face, or
equivalently the adjacent lattice position, and an action a is a
module actuation in any of the four cardinal directions with
respect to s. The transition function maps each (s, a) pair to
the resulting lattice position s′. State-action pairs that result
in collision with an obstacle or another module transition to a
state with a large negative reward. Otherwise, a reward of -1
is given for each action that does not transition into the goal
region. For s′ in the goal region, the reward is 0 plus a small
negative value determined by the height of the lattice position
above the ground, decreasing from 0 towards -1. This reward
function results in modules moving first into the goal region
and then towards the ground as far as possible.

Since the value function is defined over module faces, it
is natural to store it within the modules and propagate value
updates in a parallel distributed fashion. Updates are triggered
by a change in the goal region as well as by module movement.
Values propagate back from the goal, exploiting best case
DP behavior, and the MDP converges quickly. A module
moves toward the goal by querying its neighbors at each step
and choosing an action with maximal value. This mechanism
does not prevent disconnection or collisons with other moving
modules, however. We describe a powerful method for local
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Fig. 1. Simulation of a thousand-module robot. Initial shape is shown in (a). After the first parallel actuation, the resulting configuration is (b). This illustrates
a representative number of parallel actuations achieved by the algorithm. The goal region is shown filled in (c), along with the next position of the bounding
box, which is nearly filled in (d). Due to our goal ordering heuristic, the goal region is filled from the bottom up.

motion control that solves these problems in the next section.

III. PARALLEL ACTUATION

When moving a single module in a fixed configuration,
disconnection can be avoided with simple graph analysis:
articulation points in the connectivity graph of the modules
correspond to non-mobile modules (those which are not safe
to move) and can be easily detected. However, this test takes
linear time, and finding a set of mobile modules that can
safely move in parallel is significantly more difficult. Here
we describe a method that can be executed in a parallel
distributed manner, prevents disconnection and collision, and
allows modules to follow the specified paths.

If we remove a module from the connectivity graph and the
graph remains connected, then the removed module is mobile,
and its neighbors must be connected by a path not passing
through it. We can therefore identify a module as mobile by
using a local search that attempts to find a path connecting all
neighbors. This search begins at each neighbor, using depth-
limited depth-first search implemented with message passing.

The modules along the search path are locked to preserve
connectivity. We must also lock the (one-step) destination
position to prevent collision with another moving module. This
is implemented using message passing to simulate a test-and-
set operation. After actuation, the locked modules are free to
attempt their own motions. All modules execute this process
in parallel, allowing parallel actuation. This is a conservative
test in that the depth limit means we do not find all mobile
modules, but we expect to find many mobile modules in dense
configurations. Also, the depth limit gives a tight constant
bound on the time it takes to do mobility checking. In the case
where we find no mobile modules due to a sparse configuration
(e.g. a large ring of modules), we can increase search depth
as in iterative deepening search.

Modules continuously attempt to move, guided by the value
function. Motion control and path planning are executed until
the robot achieves the goal configuration. Then, the bounding
box is shifted either by a human operator or by some higher
level process and locomotion continues.

Our goal is to implement this algorithm in a system with
one million modules. We have implemented our approach
in simulation using the SRSim simulator [3]. To experiment
with large robots simulated on a serial computer, we used

a centralized implementation. Fig. 1 illustrates locomotion
with a thousand-module robot. Experimental data confirms the
running time grows with 3

√
n for cubic robots with n modules.

IV. DISCUSSION

Since our approach comes from a well-studied area, we
can borrow much of that analysis to prove properties of our
algorithm. For instance, the convergence properties of MDPs
are generally well understood. In addition, the dynamics of
any SR system are important, and we hope to show that the
reward structure enforces good dynamic structure. We can also
show that the rewards will allow the modules to densely fill
the goal area (i.e. not leave any holes), since any hole will
immediately be filled by the module(s) above it.

The development of this algorithm has pointed out interest-
ing issues with large, dense systems relative to smaller, sparse
ones. For example, the mobile module detection is ideally
suited to dense configurations, and may work reasonably for
regular structures like scaffolds, but gracefully degrades in
sparse structures. Similarly, the DP propagation takes time
proportional to the diameter of the shape, which can be
anywhere from 3

√
n to n, depending on density. We believe

it is critical for any algorithm for SR robots to consider its
configuration dependence, that is, under what circumstances it
performs well, and in general to not only shape the robot to
the task, but choose an algorithm appropriate to the particular
configurations and vice versa.
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