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Abstract

This paper studies the nonparametric identification and estimation of voters’ preferences when voters are

ideological. We build on the methods introduced by Degan and Merlo (2009) representing elections as Voronoi

tessellations of the ideological space. We exploit the properties of this geometric structure to establish that

voter preference distributions and other parameters of interest can be identified from aggregate electoral

data. We also show that these objects can be consistently estimated using the methodology proposed by Ai

and Chen (2003) and we illustrate our analysis by performing an actual estimation using data from the 1999
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1 Introduction

Elections are the cornerstone of democracy and voters’ decisions are essential inputs in

the political process shaping the policies adopted by democratic societies. Understanding

observed voting patterns and how they relate to voters’ preferences is a crucial step in our

understanding of democratic institutions and is of great relevance, both theoretically and

practically. These considerations raise the following fundamental question: Is it possible to

nonparametrically identify and estimate voters’ preferences from aggregate data on electoral

outcomes?

To address this question, one must first specify a theoretical framework that links

voters’ decisions to their preferences. The spatial theory of voting, formulated originally by

Downs (1957) and Black (1958) and later extended by Davis, Hinich, and Ordeshook (1970),

Enelow and Hinich (1984) and Hinich and Munger (1994), among others, is a staple of

political economy.1 This theory postulates that each individual has a most preferred policy

or “bliss point” and evaluates alternative policies or candidates in an election according to

how “close” they are to her ideal. More precisely, consider a situation where a group of voters

is facing a contested election. Suppose that each voter has preferences (i.e., their bliss point)

that can be represented by a position in some common, multi-dimensional ideological (metric)

space, and each candidate can also be represented by a position in the same ideological space.

According to the spatial framework, each voter will cast her vote in favor of the candidate

whose position is closest to her bliss point (given the positions of all the candidates in the

election).2 In this case, we say that voters vote ideologically.3

In this paper, we study the issue of nonparametric identification and estimation of

voters’ preferences using aggregate electoral data under the maintained assumption that

voters vote ideologically. We build on the methods introduced by Degan and Merlo (2009)

1See, e.g., Hinich and Munger (1997).
2Data sets containing measures of the ideological positions of politicians based on their observed behavior

in office are widely available (see, e.g., Poole and Rosenthal (1997) and Heckman and Snyder (1997) for the

United States Congress or Hix, Noury, and Roland (2006) for the European Parliament).
3For a survey of alternative theories of voting, see, e.g., Merlo (2006).
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representing elections as Voronoi tessellations of the ideological space.4 We exploit the

properties of this geometric structure to establish that voter preference distributions and

other parameters of interest can be retrieved from aggregate electoral data. We also show

that these objects can be estimated using the methodology proposed by Ai and Chen (2003).

We provide large sample results and Monte Carlo experiments for the estimator in the context

of our application. We then illustrate our analysis by performing an actual estimation using

data from the 1999 European Parliament elections.

Since our analysis focuses on retrieving individual level fundamentals from aggregate

data, it is related to the ecological inference problem.5 It is also related to the vast literature

on identification and estimation of discrete choice models. Starting with McFadden (1974)’s

seminal work, other important papers investigating the identification of discrete choice mod-

els include Manski (1988) and Matzkin (1992).6 In particular, our paper is most closely

related to the industrial organization literature on discrete choice models with random coef-

ficients and macro-level data (e.g., Berry, Levinsohn, and Pakes (1995) and, more recently,

Berry and Haile (2009)), and pure characteristics models (see Berry and Pakes (2007) and

references therein). In the language of the pure characteristics model, in our environment,

the “consumer” (i.e., the voter) obtains utility U t(Ci) = −(Ci−t)>W (Ci−t) from “product”

(i.e., candidate) i, where t is a vector of individual “tastes” (i.e., the voter’s bliss point), Ci

is a vector of “product characteristics” (i.e., the candidate’s position) and W is a matrix of

weights. Also, the distribution of tastes depends on “market” (i.e., electoral precinct) level

covariates, both observed and unobserved.7 Whereas the distribution of tastes is typically

taken to be parametric in pure characteristics models, we show that it can be nonparametri-

4Degan and Merlo (2009) characterize the conditions under which the hypothesis that voters vote ideologi-

cally is falsifiable using individual-level survey data on how the same individuals vote in multiple simultaneous

elections (Henry and Mourifié (2010) extend their analysis and develop a formal test of the hypothesis). In

this paper, we restrict attention to inference based on aggregate data on electoral outcomes in environments

where the hypothesis is non-falsifiable.
5See, e.g., King (1997) for a survey.
6See also Chesher and Silva (2002).
7Clearly, the analogy is only partial since in the environment we consider there are no prices.
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cally identified and estimated together with the finite dimensional components of the model

(W ). Our identification strategy relies on the geometric structure (i.e., Voronoi tessellation)

implied by the functional form of the utility function, but the main ideas also apply to more

general utility functions.8

Part of the identification strategy we develop in this paper is related to previous work

by Ichimura and Thompson (1998) and Gautier and Kitamura (2008) on binary choice models

with random coefficients. However, these papers require a “dilatation invariance” property

and only admit environments with two alternatives.9 Since the property is not satisfied

by our model and the environments we consider typically entail more than two alternatives,

their identification strategy does not apply in our case. In fact, because Voronoi tessellations

can also be defined on hyperspheres, and in Ichimura and Thompson (1998) and Gautier

and Kitamura (2008) covariates and coefficients are both supported on a hypersphere, we

believe our methodology may also be used to generalize their ideas.

The remainder of the paper is organized as follows. In Section 2, we describe the

model and discuss its identification. Nonparametric estimation is presented in Section 3.

Sections 4 and 5 contain Monte Carlo experiments and an empirical illustration, respectively.

Concluding remarks are presented in Section 6. All proofs are contained in the Appendix.

2 Identification

Consider a situation where a population of voters has to elect some representatives to public

office. Consistent with the spatial theory of voting, there is a common ideological space,

Y , which is taken to be the d-dimensional Euclidean space (i.e., Y = Rd and the reference

measurable space is this set equipped with the Borel sigma algebra: (Rd,B(Rd))). We observe

a cross-section of elections e ∈ {1, ..., E}. An election is a contest among n ≥ 2 candidates.

Let C ≡ (C1, . . . , Cn) ∈ Rd × · · · × Rd denote a profile of candidates in the n-fold Cartesian

product of Rd which characterizes an election. Each candidate i in this set of candidates is

8We discuss this point in detail in Section 2.1.
9We provide a formal definition of this property in Section 2.
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characterized by a distinct position in the ideological space, Ci ∈ Y , which is known to the

voters.

Each voter has an ideological position (or bliss point) t, and her preferences are

characterized by indifference sets that are spheres in the d-dimensional Euclidean space

(or d-spheres), centered around her bliss point.10 It follows that voter t’s preferences over

candidates in election e can be summarized by the utility function

U t
e (Ci) = ut

e (d (t, Ci)) , (1)

where ut
e (·) is a decreasing function which may differ across voters and elections and d (·, ·) ≥

0 denotes the Euclidean distance (i.e., for any two points x, y ∈ Rd, d(x, y) =
√

(x− y)>(x− y)).

Other than monotonicity, we impose no additional restrictions on the ut
e (·) functions, which

are therefore left unspecified. Given these preferences, a voter t (strictly) prefers candidate

i to candidate j in election e if d (t, Ci) < d(t, Cj).

As in Degan and Merlo (2009), for each election e ∈ {1, . . . , E}, and position Ci ∈ Y

of a generic candidate i in the election, let Vi(C) ≡ {t ∈ Y : d(t, Ci) < d(t, Cj), j 6= i} be

the set of points in the ideological space Y that are closer to Ci than to the position of any

other candidate in the election. Since d (·, ·) is the Euclidean distance, it follows that for

each pair of candidates in election e, Ci, Cj, the set of points in the ideological space Y that

are equidistant from Ci and Cj is a hyperplane H(Ci, Cj), which partitions the ideological

space Y into two regions (or half spaces), Y
Cj
Ci

and Y Ci
Cj

= Y \[Y Cj
Ci
∪H(Ci, Cj)], where Y Ci

Cj

is the set of ideological positions that are closer to the position of candidate i than to the

position of candidate j and vice versa for the set Y
Cj
Ci

. Hence, for each candidate i, Vi(C) is

the intersection of the half spaces determined by the n− 1 hyperplanes (H(Ci, Cj))j 6=i (i.e.,

Vi(C) = ∩j 6=iY Ci
Cj

). Note that, for all candidates i, Vi(C) is non empty and convex. Hence, each

election e ∈ {1, . . . , E} implies a partition of the ideological space Y into n convex regions,

10In one dimension, the restriction implies that each voter’s utility function is single-peaked and symmet-

ric. In the following subsection, we consider more general specifications of preferences where the voters’

indifference sets are ellipsoids in the d-dimensional Euclidean space. When d ≥ 2, such preferences allow for

the possibility that voters may evaluate different ideological dimensions using different weights.
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{Vi(C)}i∈{1,...,n}, where each region Vi(C) is the set of voters voting for candidate i in election

e.11 For each election e ∈ {1, . . . , E}, the set {Vi(C)}i∈{1,...,n} defines what in computational

and combinatorial geometry is called a Voronoi tessellation of Rd and each region Vi(C) is

a d-dimensional Voronoi polyhedron (or Voronoi cell).12 Figure 1 illustrates an example of

the Voronoi tessellation that corresponds to an election with 5 candidates, {a, b, c, d, e}, with

positions {Ca, Cb, Cc, Cd, Ce} in the two-dimensional ideological space Y = R2.

Figure 1: The Voronoi Tessellation for a 5-candidate election in R2.

The distribution of preference types (or bliss points) T in the population of voters

is given by the conditional probability distribution PT |X,ε, which is assumed to be abso-

lutely continuous with respect to the Lebesgue measure on (Rd,B(Rd)) given X and ε.13

Here, X represents observable characteristics at the electoral precinct level, such as average

11Note that Vi(C) ∩ Vj(C) = ∅ for all i 6= j, and ∪i∈{1,...,n}{Vi(C) ∪j 6=i H(Ci, Cj)} = Y .

12For a comprehensive treatment of Voronoi tessellations and their properties, see, e.g., Okabe, Boots,

Sugihara, and Chiu (2000).

13For a detailed discussion of conditional probability measures see Chapter 5 in Pollard (2002).
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demographic and economic features, and ε stands for unobservable electoral precinct char-

acteristics. For example, in our empirical illustration, the French constituency of Paris is

one such electoral precinct, for which we have data on observable characteristics such as

age, gender and education distribution of the precinct population at the time of the election.

The object of interest is PT |X ≡
∫

PT |X,εPε|X(dε|X), the conditional probability distribution

given X only. For notational convenience, we omit the conditioning variable for most of this

section and refer to the distribution of voter locations simply as PT . Since the identification

arguments can be repeated for strata defined by regressors, this is without loss of generality.

Candidates are drawn from a distribution characterized by the measure PC , again absolutely

continuous with respect to the Lebesgue measure on (Rd,B(Rd)). The proportion of votes

obtained by each candidate is the probability of the Voronoi cell that contains the candidate’s

ideological position.

For each election, the observed data contain the ideological position of each candidate

and the electoral results (i.e., the proportion of votes obtained by each candidate). For any

given profile of candidates C and preference type distribution PT , we can define the following

object:

(C,PT ) 7→ p(C,PT )

where p(C,PT ) takes values on the n−dimensional simplex and denotes the vector of the

proportions of votes obtained by all the candidates in the profile C according to the prefer-

ence type distribution PT . The expected proportion of votes obtained by candidate i in an

election with n candidates C = {C1, . . . , Cn} and Voronoi cell Vi(C) = {t ∈ Rd : d(t, Ci) <

d(t, Cj), j 6= i} is given by:

E(1t∈Vi(C)|X, C) =
∫

1t∈Vi(C)PT |X,ε(dt|X, ε)Pε|X(dε|X)

=
∫

1t∈Vi(C)fT |X,ε(t|X, ε)dtPε|X(dε|X)

=
∫

1t∈Vi(C)fT |X,ε(t|X, ε)Pε|X(dε|X)dt

=
∫

1t∈Vi(C)fT |X(t|X)dt

where fT |X,ε is the density of PT |X,ε and analogously for fT |X .

7



Notice that T and C are not (unconditionally) independent, but we assume that, upon

conditioning on the demographic covariates X, C carries no further information about the

distribution of T (i.e., C and T are conditionally independent given X). This assumption

is reasonable insofar as X lists all the guiding variables for the determination of a candi-

date’s position.14 It is also weaker than (unconditional) independence between regressors

and coefficients typically required in the literature on discrete choice models with random

coefficients (e.g., Ichimura and Thompson (1998) or Gautier and Kitamura (2008)).15 In our

case, the variables C act as a “special regressor”, allowing us to identify the structure. The

assumption is made explicit below:

Assumption 1 C and T are conditionally independent given X.

The following definition qualifies our characterization of identifiability. We remind

the reader that the analysis is conditional on X and notation is omitted for simplicity.

Definition 1 (Identification) Let PT1 and PT2 be two measures on (Rd,B(Rd)), both ab-

solutely continuous with respect to the Lebesgue measure on Rd. PT1 is identified relative to

PT2 if and only if p(·,PT1) = p(·,PT2), Leb-a.s.⇒ PT1 = PT2.16

In words, two preference type distributions that for every possible configuration of candidates

in an election (except for cases in a zero measure set) generate the same proportions of votes

should correspond to the same measure. We can now state the identification result:

14As it is common in the political economy literature on the spatial model of voting, we treat the distri-

bution of candidate positions as given. The assumption that, upon conditioning on the vector of observable

characteristics X, this distribution does not convey additional information on the distribution of voters’

preferences is consistent, for example, with the “partisan” model of Hibbs (1977) and Alesina (1988). A full

characterization of the distribution of candidates’ positions as an equilibrium object in a general environment

with more than two candidates and a multidimensional space is not feasible given the current status of the

theoretical literature (e.g., Merlo (2006)). It is therefore outside of the scope of our analysis.
15We also assume that ε and C are conditionally independent given X.
16Leb.-a.s. refers to the fact that the underlying measure is the Lebesgue measure on Rd × · · · × Rd, the

n-fold Cartesian product of Rd. The factors relate to the number of candidates in the elections.
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Proposition 1 Suppose that Assumption 1 holds and all measures are absolutely continuous

with respect to the Lesbegue measure on (Rd,B(Rd)) and defined on a common support. Then

PT is (globally) identified.

The proof is given in the Appendix for elections with any number of candidates. It

basically generalizes the simple insight that for two candidate elections the Voronoi tessel-

lation is given by an affine hyperplane. One can then sweep the space looking for an affine

hyperplane that delivers different election outcomes for two distinct preference type distri-

butions. That such an affine hyperplane exists is guaranteed by the Cramér-Wold device.

Consequently, even if candidate and voter types do not share the same support, the argument

would deliver identification on the intersection of the two supports. Since the Cramér-Wold

device does not require absolute continuity, in principle the result could be extended to

discrete types. Because in our application the relevant variables are continuous we did not

pursue this extension further. Similar arguments are used in Ichimura and Thompson (1998)

to show identification of the unknown distribution for the random coefficients in a binary

choice model. In that paper, the distribution of random coefficients has to be restricted

to a subset of their space (i.e., a hemisphere of the normalized hypersphere where random

coefficients realizations take their values). This “dilatation invariance” property is due to

the particular structure of the binary choice model analyzed by Ichimura and Thompson

(1998) and also by Gautier and Kitamura (2008), which is not shared by our model.17

2.1 Extensions

The canonical spatial model of voting analyzed above can easily be extended to accom-

modate more general voters’ preferences (e.g., Hinich and Munger (1997)). In particular,

17In particular, in the papers by Ichimura and Thompson (1998) and Gautier and Kitamura (2008), choices

(y) follow a linear index threshold crossing condition which is essentially an inner product between covariates

(x) and random coefficients. This implies the “dilatation invariance” property that P(y|x) = P(y|cx), where c

is any positive scalar. Our problem deals with multinomial choices and relies on a nonlinear index comparing

alternative choices of candidates. Hence, the property does not apply.
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consider the case in which individual utility functions are decreasing functions of a weighted

Euclidean distance dW (x, y) =
√

(x− y)>W (x− y) with weighting matrix W , assumed to

be symmetric and positive definite.18 According to the spatial theory of voting, the main

diagonal elements in the matrix W subsume the relative importance to a voter of the dif-

ferent dimensions of the ideological space in a given election. The off-diagonal elements,

on the other hand, describe the way in which voters make trade-offs among these different

dimensions.

Voters preferences are now described by the pair (PT ,W ): the distribution of voter

bliss points in the population PT and the weighting matrix W . Our definition of identification

is extended to this setting by ascertaining that two relatively identified pairs (PTi ,Wi), i =

1, 2 cannot give rise to the same voting proportions as a function of candidate positions

across a certain number of elections.

As before, let the individual bliss points be represented by the variable T (distributed

according to PT ). Furthermore, consider preferences based on the weighted distance with

weighting matrix W . For a given set of candidates C1, . . . , Cn, let V W
i ((Cj)j=1,...,k) represent

the Voronoi cell for candidate i. In other words,

V W
i ((Cj)j=1,...,k) = {t ∈ Rd : dW (t, Ci) < dW (t, Cj), j 6= i}, i ∈ {1, . . . , n}.

Accordingly, let V W ((Cj)j=1,...,k) =
(
V W
i ((Cj)j=1,...,k)

)
i=1,...,k

. Since these Voronoi cells are

the same for weighting matrices αW, α > 0, we impose the normalization that ||W ||d×d =
√
d

where ||W ||d×d =
√
Tr(W>W ) is the Frobenius norm. This in particular includes the d-

order identity matrix as a possible choice for W . Once this normalization is imposed, we

obtain the following result:

Lemma 1 Suppose Assumption 1 holds, ||W ||d×d =
√
d and there are at most d + 1 candi-

dates. Then (PT ,W ) is identified.

18Degan and Merlo (2009) also consider this extension which Okabe, Boots, Sugihara, and Chiu (2000),

p.197, refer to as the elliptic distance with weighting matrix W .

10



The proof for this result is presented in the Appendix for elections with any number

of candidates. Intuitively, under the elliptic distance dW , the Voronoi cells when there are

two candidates are separated by the affine hyperplane

HW (C1, C2) ≡ {t ∈ Rd : C>1 WC1 − C>2 WC2 − 2(C2 − C1)>W t︸ ︷︷ ︸
≡dW (C1,t)2−dW (C2,t)2

= 0}, (2)

and analogously for the elliptic distance dW . The two affine hyperplanes (HW (C1, C2) and

HW (C1, C2)) intersect at the midpoint (C1 +C2)/2. If two systems (PT ,W ) and (PT ,W ) are

observationally equivalent, the two candidates should obtain the same share of votes under

(PT ,W ) as they would under (PT ,W ) (see Figure 2).

Figure 2: Voronoi Tessellations for Candidates C1, C2

One can then obtain a translation of the candidates, say (C ′1, C
′
2), such that C1−C2 =
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C ′1−C ′2, and the same original Voronoi diagram under W is generated. The affine hyperplane

characterizing the W -Voronoi cells for the new pair (C ′1, C
′
2) is parallel to the W -Voronoi

hyperplane for (C1, C2). Again, under the assumption of observational equivalence, these

two cells under the W elliptic distance would have the same proportion of votes as with the

unchanged Voronoi tessellation under W (see Figure 3).

Figure 3: Voronoi Tessellations for Candidates C1, C2

This would imply the existence of a region with zero probability in the ideological

space (under either PT or PT as they are observationally equivalent). Since we can manipulate

the argument to have any bounded set be contained in this region, any such set would have

probability zero. We reach a contradiction as this would lead to the conclusion that the

probability of the sample space (Rd) is zero.
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This proof strategy exploits the availability of multiple candidate profiles generating

the same Voronoi tessellation (for weighting matrix W ) and Lemma 1 extends the above

argument for at most d + 1 candidates. When there are more than d + 1 candidates, the

proof strategy cannot be applied since the existence of multiple profiles generating the same

Voronoi tessellation is no longer guaranteed (see for instance the discussion in the proof for

Theorem 14 in Ash and Bolker (1985) for d = 2). It is nevertheless intuitive that the addition

of more information with a larger number of candidates would still allow for identification.

This is indeed so. If two environments are identified, for a set of candidate profiles with

positive measure one can single out one candidate with different voting shares in the two

environments. When there are d+ 1 candidates or more, a new candidate can be introduced

without perturbing the W - or W -Voronoi cells for the singled out candidate and identification

is established. The following proposition summarizes the result:

Proposition 2 Suppose Assumption 1 holds, ||W ||d×d =
√
d. Then (PT ,W ) is identified.

A natural corollary of Proposition 2 is that election specific (e.g., local, senatorial,

gubernatorial, presidential) weights and bliss point distributions are identified (up to the

normalization ||W e||d×d =
√
d). Consequently, voting records in multiple simultaneous elec-

tions are informative about different dimension weights ascribed by the voters in elections

for different levels of government.

Another potential generalization would be to allow the weighting matrix W to be

individual specific and to have the distribution of voter preferences range over bliss points

and voting weights. We conjecture that in this case, identification would be lost as there

would be too many degrees of freedom to fit the data. However, we were not able to find an

appropriate argument to establish the result.

The ideas in Proposition 1 are also useful in more general settings using distance

functions that are not Euclidean. The relative identifiability of two generic distance functions

d(·, ·) and d(·, ·) can be obtained in an analogous manner. We state this result below:

13



Proposition 3 Suppose that Assumption 1 holds, that there are two candidates and that for

two profiles (C1, C2) and (C ′1, C
′
2),

{t ∈ Rd : d(C1, t) = d(C2, t)} = {t ∈ Rd : d(C ′1, t) = d(C ′2, t)}

and

{t ∈ Rd : d(C1, t) = d(C2, t)} ∩ {t ∈ Rd : d(C ′1, t) = d(C ′2, t)} = ∅.

Then, (PT , d(·, ·)) and (PT , d(·, ·)) are relatively identified.

The proof follows along the lines of that for Lemma 1 and hence is omitted.

3 Estimation

Estimation in a one-dimensional ideological space is straightforward and is briefly discussed

in the next subsection. In two or more dimensions, a different strategy is pursued and is

discussed below.

3.1 A Simple Case

In the case of a one-dimensional ideological space, an election provides an estimate of the

cumulative distribution function FT (t|X) =
∫ t
−∞ fu|X(T |X)du at the midpoints separating

any two contiguous candidates. With n candidates in election e, assume without loss of

generality that C1,e < C2,e < · · · < Cn,e. The sum of the proportions of votes received by

candidate Ci,e and by all the candidates positioned to the left of Ci,e gives an estimate of

the cdf FT at Ci,e ≡ Ci,e+Ci+1,e

2
where , i = 1, . . . , n − 1. As more elections are sampled,

we obtain an increasing number of points at which we can estimate the cdf. Let Yi,e be the

proportion of votes obtained by candidates C1,e, . . . , Ci,e in election e and assume there are

ve votes in this election. Notice that

E(1(T ≤ Ci,e)|Ce,Xe) = FT (Ci,e|Xe).

14



Since Yi,e =
∑ve
i=1 1(Ti≤Ci,e)

ve
,

E(Yi,e|Ce,Xe) = FT (Ci,e|Xe)

and a natural estimator for FT given m elections would be a multivariate kernel or local

linear polynomial regression. Under usual conditions (see, e.g., Li and Racine (2007)), the

estimator is consistent and has an asymptotically normal distribution. Other nonparamet-

ric techniques (splines, series) may also be employed. To impose monotonicity, one could

appeal to monotone splines (Ramsay (1988), He and Shi (1998)) or smoothed isotonic regres-

sions (Wright (1982), Friedman and Tibshirani (1984), Mukerjee (1988), Mammen (1991)),

possibly conditioning on regressor strata if necessary.

3.2 Multidimensional Ideological Space

When the number of dimensions of the ideological space is greater than one (d > 1), it is not

possible to directly recover estimates for the cumulative distribution function as suggested

above. It is nevertheless true that for a given election:

E
[∫

1t∈Vi(C)fT |X(t|X)dt− pi
∣∣∣∣X̃] = 0, i ∈ {1, . . . , n}

where V (C) is the Voronoi cell for candidate i, X̃ = (X, C) and the expectation is taken

with respect to the candidate positions, X and ε. The quantities pi, i ∈ {1, . . . , n}, are

the electoral outcomes obtained from the data. This suggests estimating f(·) using a sieve

minimum distance estimator as suggested in Ai and Chen (2003) (see also Newey and Powell

(2003)). We follow here the notation in that paper. The estimator is the sample counterpart

to the following minimization problem:

inff∈HE
[
m(X̃, f)>

[
Σ(X̃)

]−1

m(X, C, f)

]
(3)

where m(X̃, f) = E
[
ρ((pi, Ci)i=1,...,n,X, f)|X̃

]
with

ρ((pi, Ci)i=1,...,n,X, f) =

(∫
1t∈Vi(C)fT |X(t|X)dt− pi

)
i=1,...,n−1

15



Notice that the n-th component of the above vector is omitted as the vector adds up to one.

Here, we assume that elections have the same number of candidates. If this is not the case,

the objective function can be rewritten as the sum of similarly defined functions for different

candidate numbers and treated, for example, as in the analysis of auctions with different

numbers of bidders.19

As pointed out by Ai and Chen (2003), two difficulties arise in constructing this

estimator. First, the conditional expectation m is unknown. Second, the function space H

may be too large. To address the first issue, a non-parametric estimator m̂ is used in place

of m. With regard to the second problem, the domain H is replaced by a sieve space HE

which increases in complexity as the sample size grows.

For the estimation of the function m, let {bi(X̃), i = 1, 2, . . . } denote a sequence

of known basis functions (e.g., power series, splines, etc.) that approximate well square

integrable real-valued functions of X and C. With bJ(X̃) =
(
b1(X̃), . . . , bJ(X̃)

)>
, the sieve

estimator for mi(X̃, f), the i-th component in m, is given by

m̂i(X̃, f) =
E∑
e=1

ρi(pe, X̃e, f)bJ(X̃e)
>(B>B)−1bJ(X̃) i = 1, . . . , n− 1

where B = (bJ(X̃), . . . , bJ(X̃)) and, as before, e indexes the elections.

We consider the classH of densities studied by Gallant and Nychka (1987).20 For sim-

plicity, we omit the conditioning variable (X) but notice that the approach can be extended

to conditional densities as in Gallant and Tauchen (1989), for example. Fix k0 > d/2,

δ0 > d/2, B0 > 0, a small ε0 > 0 and let φ(t) denote the multivariate standard normal

density. The class H admits densities f such that:

f(t, ξ) = h(t)2 + εφ(t)

with ∑
|λ|≤k0

∫
|Dλh(t)|2(1 + t>t)δ0dt

1/2

< B0 (4)

19See for instance the treatment in Donald and Paarsch (1993).
20See also Fenton and Gallant (1996a), Fenton and Gallant (1996b), Coppejans and Gallant (2002) and

references therein.
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where
∫
f(t, ξ)dt = 1, ε > ε0,

Dλf(t) =
∂λ1
∂xλ1

1

∂λ2
∂xλ2

2

. . .
∂λd
∂xλdd

f(t), λ = (λ1, . . . , λd)
> ∈ Nd

and |λ| =
∑d

i=1 λi. Given a compact set on the ideological space, condition (4) essentially

constrains the smoothness of the densities and prevents strongly oscillatory behaviors over

this compact set. Out of this set, the condition imposes some reasonable restrictions on

the tail behavior of the densities. Nevertheless, condition (4) allows for tails as fat as

f(t) ∝ (1 + t>t)−η for η > δ0 or as thin as f(t) ∝ e−t>tη for 1 < η < δ0− 1. In practice, the

term involving ε is either ignored (see Gallant and Nychka (1987), p.370) or set to a very

small number (ε = 10−5 in Coppejans and Gallant (2002), for example).

Gallant and Nychka (1987) show that the following sequence of sieve spaces is dense

on the (closure of the) above class of densities (with respect to the consistency norm defined

in the proof for Proposition 4):

HE =

f : f(t, ξ) =

[
JE∑
i=0

Hi(t)

]2

exp

(
−t>t

2

)
+ εφ(t),

∫
f(t, ξ)dt = 1


where Hi are Hermite polynomials, φ is the standard multivariate normal density and ε is a

small positive number.21 As mentioned before, the set of densities on which ∪∞E=1HE is dense

is fairly large. Because the parameter space is also compact with respect to the consistency

21In Gallant and Tauchen (1989) the functions are defined as follows. Let z = R−1(t− b− Bx) where R

and B are matrices of dimension d× d and d× dim(x) respectively and b is a d-dimensional vector. Then,

f(t|x) = h(z|x)/det(R)

where

h(z|x)/det(R) =

[∑Jz

|α|=0 aα(x)zα
]2
φ(z)∫ [∑Jz

|α|=0 aα(x)Uα
]2
φ(U)dU

with a(x) =
∑Jx

|β|=0 aαβx
β . The function zα maps the multi-index α = (α1, . . . , αd) into the monomial

zα = Πd
i=1z

αi
i and analogously for xβ with respect to β = (β1, . . . , βdim(x)). Kim (2007) examines truncated

versions of the GN sieve space on a compact support.
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norm (see the proof for Proposition 4), ill-posedness of this inverse problem is not an issue

(see Newey and Powell (2003)). The estimator is also very attractive computationally as

integrals can be obtained analytically. We nevertheless approximate the integral of one such

density over a particular Voronoi cell by simulation. We sample many draws from a bivariate

normal density and take the average of the Hermite factors of the density evaluated at each

draw times an indicator for whether the draw is closer to the candidate corresponding to the

Voronoi cell of interest than to any other candidate. For the optimization, we use Nelder-

Meade’s non-gradient algorithm. As the number of draws increases, the approximation

converges to the desired integral.

The estimator is formally defined as:

f̂ = argminf∈HE
1

E

E∑
e=1

m̂(X̃, f)>
[
Σ̂(X̃)

]−1

m̂(X̃, f) (5)

To establish consistency we rely on the following assumptions:

Assumption 2 (i) Elections are iid; (ii) supp(X̃) is compact with nonempty interior; (iii)

the density of X̃ is bounded and bounded away from 0.

Assumption 3 (i) The smallest and largest eigenvalues of E{bJ(X̃)bJ(X̃)>} are bounded

and bounded away from zero for all J ; (ii) for any g(·) with E[g(X̃)2] < ∞, there exist

bJ(X̃)>π such that E[{g(X̃)− bJ(X̃)>π}2] = o(1).

Assumption 4 (i) Σ̂(X̃) = Σ(X̃)+op(1) uniformly over supp(X̃); (ii) Σ(X̃) is finite positive

definite over supp(X̃).

Assumption 5 (i) (n− 1)J ≥ JE, JE →∞ and J/E → 0.

The following proposition establishes consistency:

Proposition 4 Under Assumptions 1-5,

f̂ →p fT

with respect to the consistency norm defined by Gallant and Nychka (1987).
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The estimator above can be easily extended for the weighted distance discussed in

subsection 2.1. The parameters to be estimated are now given by (W, f(t|x)) where W ∈ Θ,

a (suitably normalized) space of matrices of dimension d. In this case, the estimator becomes:

(Ŵ , f̂) = argmin(W,f)∈Θ×HE
1

E

E∑
e=1

m̂(X̃, (W, f))>
[
Σ̂(X̃)

]−1

m̂(X̃, (W, f)) (6)

where now

ρ((pi, Ci)i=1,...,n,X, (W, f)) =

(∫
1t∈Vi(C,W )fT |X(t|X)dt− pi

)
i=1,...,n−1

Consistency with respect to the product norm follows along the same lines as before.

Proposition 5 Under Assumptions 2-5 and Θ compact (with respect to the Frobenius norm),

(Ŵ , f̂)→p (W, fT )

with respect to the norm

||(W, f)|| = max
|λ|≤k0

sup
t
|Dλf(t)|(1 + t>t)δ0 +

√
tr(W>W )

The proof for the above result is a slightly changed version of Lemma 3.1 in Ai and

Chen (2003), where instead of appealing to Holder continuity in demonstrating stochastic

equicontinuity of the objective function we adapt Lemma 3 in Andrews (1992) using domi-

nance conditions.

4 Monte Carlo Experiments

In this section, we examine the small sample performance of the suggested estimation strat-

egy in a few Monte Carlo experiments. We investigate models without covariates with three

potential distribution of voter types. We use the distributions suggested in the Monte Carlo

study by Ichimura and Thompson (1998) which are summarized in Table 1 and Figure 4.
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For each of these, we postulate two different weighting matrices W for the elliptic distance

function. The first one has W1,2 = W2,1 = 0 and W2,2 = 2, and the second W1,2 = W2,1 = 0.5

and W2,2 = 2. Both matrices are normalized to have W1,1 = 1. We assume that the analysis

has 100 observations in each set of Monte Carlo experiments. Each observation contains

the position and vote proportions for 2 candidates that are sampled uniformly over [−1, 1]2.

The proportions are estimated using (1000) draws from the voter type distribution in the

data generating process. This introduces sampling error in the observed proportion of votes

(i.e., an electoral precinct level ε) which differ in general from the numerical integration of

the proposed type distribution over the candidate’s Voronoi cell. We use 50 Monte Carlo

repetitions for each one of the three models.

Figure 4: DGP Densities
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Table 1: Data Generating Processes

Model 1: N ([0, 0]′, I2)

Model 2: Equiprobable mixture of

Y1 ∼ N

 µ

−µ

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2


and

Y2 ∼ N

 −µ
µ

 ,
 σ2

2 ρσ1σ2

ρσ1σ2 σ2
1


µ = 0.3587, σ2

1 = 0.2627, σ2
2 = 0.06568, ρ = −0.1

Model 3: Y1 and Y2 independently distributed

Y1 ∼ N (0, σ2)

Y2 an equally weighted mixture of X1 and X2

X1 ∼ N (0.2806, σ2) , X1 ∼ N (−1.6806, σ2)

σ2 = 0.038462

The estimation follows the guidelines prescribed in the previous section. For the

estimation of m(·) we use linear splines (with cross-products) for Models 1 and 2 and simple

linear projections for Model 3. The estimation weighting matrix (Σ̃) is the identity. In Tables

2, 3 and 4, we report squared bias, variance and MSE for the two parameters in the W matrix

for each of the three models. We follow Blundell, Chen, and Kristensen (2007) in reporting

similar quantities for the density estimates. Letting f̂i be the estimate of f from the ith

Monte Carlo simulation and letting f(t) =
∑MC

i=1 f̂i(t)2/MC. The pointwise squared bias is

then defined as
(
f(t)− f(t)

)2
and the pointwise variance is

∑MC
i=1

(
f̂i(t)− f i(t)

)
/MC. We

report squared bias, variance and MSE integrated over a grid of 100× 100 points.
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Table 2: Monte Carlo Results: Model 1

(W1,2,W2,2) = (0, 2)

Bias2 Variance MSE JE

(0.0001, 0.0141, 4.4566× 10−5) (0.0011, 0.0408, 2.2451× 10−5) (0.0012, 0.0549, 6.7017× 10−5) 0

(0.2781, 0.3837, 4.8133)× 10−5 (0.0005, 0.0093, 3.8467× 10−5) (0.0005, 0.0093, 5.1980× 10−5) 1

(W1,2,W2,2) = (0.5, 2)

Bias2 Variance MSE JE

(0.0008, 0.0230, 6.4572× 10−5) (0.0034, 0.0477, 4.6148× 10−5) (0.0042, 0.0707, 1.1072× 10−4) 0

(0.0000, 0.0011, 4.0107× 10−5) (0.0008, 0.0089, 5.6757× 10−4) (0.0008, 0.0100, 4.5782× 10−5) 1

The three arguments correspond to W1,2, W2,2 and the integrated quantities for the density as described in the text. The

order refers to the Hermite polynomial order. m(·) is estimated using linear splines. 50 Monte Carlo repetitions for 100

elections with two candidates sampled uniformly on [0, 1]2.

Table 3: Monte Carlo Results: Model 2

(W1,2,W2,2) = (0, 2)

Bias2 Variance MSE JE

(0.0023, 0.4658, 0.0025) (0.2206, 0.2212, 5.5267× 10−4) (0.2228, 0.6871, 0.0031) 0

(0.0010, 0.0853, 0.0016) (0.1215, 0.2108, 4.6720× 10−4) (0.1224, 0.2961, 0.0020) 1

(0.0001, 0.0201, 0.0012) (0.0912, 0.1316, 4.3440× 10−4) (0.0913, 0.1517, 0.0016) 2

(0.0006, 0.0120, 9.3694× 10−4) (0.0693, 0.0952, 3.9928× 10−4) (0.0699, 0.1072, 0.0013) 3

(0.0001, 0.0088, 8.4013× 10−4) (0.0556, 0.0900, 3.6408× 10−4) (0.0557, 0.0988, 0.0012) 4

(W1,2,W2,2) = (0.5, 2)

Bias2 Variance MSE JE

(0.2346, 2.5381, 0.0042) (0.2391, 0.8908, 0.0042) (0.4737, 3.4289, 0.0042) 0

(0.2435, 2.0193, 0.0038) (0.2473, 1.0363, 0.0007) (0.4908, 3.0556, 0.0046) 1

(0.2005, 1.9740, 0.0037) (0.2497, 1.0579, 8.1940× 10−4) (0.2005, 3.0319, 0.0045) 2

(0.1958, 1.0874, 0.0036) (0.2458, 1.0874, 8.2810× 10−4) (0.4416, 3.0167, 0.0044) 3

(0.1937, 1.9216, 0.0036) (0.2439, 1.0867, 8.7007× 10−4) (0.0180, 0.5403, 0.0045) 4

The three arguments correspond to W1,2, W2,2 and the integrated quantities for the density as described in the

text. The order refers to the Hermite polynomial order. m(·) is estimated using linear splines. 50 Monte Carlo

repetitions for 100 elections with two candidates sampled uniformly on [0, 1]2.
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Table 4: Monte Carlo Results: Model 3

(W1,2,W2,2) = (0, 2)

Bias2 Variance MSE JE

(0.0015, 0.0002, 0.0274) (0.0442, 0.1275, 0.0014) (0.0457, 0.1277, 0.0287) 0

(0.0008, 0.0111, 0.0274) (0.0221, 0.0633, 0.0015) (0.0229, 0.0633, 0.0289) 1

(0.0007, 0.0164, 0.0136) (0.0938, 0.0317, 0.0125) (0.0946, 0.0481, 0.0260) 2

(0.0036, 0.0064, 0.0149) (0.0775, 0.0258, 0.0136) (0.0812, 0.0323, 0.0285) 3

(0.0008, 0.0389, 0.0073) (0.0244, 0.2360, 0.0131) (0.0252, 0.2749, 0.0204) 4

(W1,2,W2,2) = (0.5, 2)

Bias2 Variance MSE JE

(0.0021, 0.0208, 0.0279) (0.0752, 0.4363, 0.0019) (0.0773, 0.4571, 0.0019) 0

(0.0002, 0.0056, 0.0274) (0.0186, 0.0226, 0.0016) (0.0187, 0.0282, 0.0289) 1

(0.0004, 0.0561, 0.0133) (0.1189, 0.1552, 0.0138) (0.1193, 0.2113, 0.0271) 2

(0.0010, 0.0099, 0.0140) (0.0880, 0.0226, 0.0139) (0.0890, 0.0326, 0.0279) 3

(0.0001, 0.0301, 0.0071) (0.0097, 0.1467, 0.0115) (0.0098, 0.1768, 0.0186) 4

The three arguments correspond to W1,2, W2,2 and the integrated quantities for the density as

described in the text. The order refers to the Hermite polynomial order. m(·) is estimated using

linear projections. 50 Monte Carlo repetitions for 100 elections with two candidates sampled

uniformly on [0, 1]2.

As expected, the estimator attains low bias and variance for relatively low orders of

the Hermite polynomial in Model 1. An order 0 polynomial already offers good properties.

Moving to an order 1 polynomial leads to improvements particularly for the weighting matrix

parameters. For Model 2, with a diagonal weighting matrix, substantial gains are observed

before one reaches an order 3 polynomial when incremental improvements are then minor.

With a non-diagonal weighting matrix, the type distribution seems to be accurately estimated

even at lower orders, but the parameters are less precisely estimated. For Model 3, even with

a non-diagonal weighting matrix the estimator seems to behave well.
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5 Empirical Illustration

In this section, we illustrate the methodology described above with an empirical analysis of

the 1999 election of the European Parliament.22 Elections for the European Parliament take

place under the proportional representation system and typically with closed party lists.

This means that voters do not vote for specific candidates, but for parties. The fraction

of votes received by a party determines its proportion of seats in the Parliament. The

identity of the politicians elected to Parliament is then determined by the parties’ lists (e.g.,

if a party obtains three seats, the first three candidates in its list are elected). Our data

consist of ideological positions of the parties competing in the election, electoral outcomes

and demographic characteristics, for each electoral precinct.

The ideological positions of the parties were obtained from Hix, Noury, and Roland

(2006), who used roll-call data for the 1999-2004 Legislature of the European Parliament

to generate two-dimensional ideological positions for each MP along the lines of the NOMI-

NATE scores of Poole and Rosenthal (1997) for the US Congress.23 As indicated in Heckman

and Snyder (1997), ideological positions are obtained essentially through a (nonlinear) factor

model with a large number of roll-call votes and parliament members. Given the magnitude

of these dimensions, we follow the empirical literature on “large N and large T” factor mod-

els and take these scores as data (see, e.g., Stock and Watson (2002), Bai and Ng (2006a) or

Bai and Ng (2006b)). Since the closed-list proportional representation system induces strong

party cohesion, where elected representatives systematically vote along party lines, to obtain

the ideological positions of the parties competing in the election, for each dimension, we use

the average coordinate of individual candidates from a given party as the coordinate for the

party’s position (see, e.g., Degan and Merlo (2009)). Figure 5 depicts a typical datapoint

(the Milano, Italy electoral precinct) with seven parties and reports the proportion of votes

obtained by each party.

22A description of the rules and composition of the European Parliament since its inception can be found

on http://www.elections-europeennes.org/en/.
23The data are publicly available at http://personal.lse.ac.uk/hix/HixNouryRolandEPdata.htm.
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Figure 5: Voronoi Diagram for Milano (Italy), 1999

We combine the data on the ideological positions of parties with electoral outcomes

in the 1999 elections and demographic information at the electoral precinct level (age, gen-

der and education distribution of the precinct population) from the 2001 European Cen-

sus. The election outcomes data were obtained from the CIVICACTIVE European Election

Database.24 The demographic data were obtained from EUROSTAT and we extracted three

electoral precinct variables: the female-to-male ratio, the percentage of the population with

secondary education and the percentage of the population older than 35.25

We estimate two versions of the model. In the first version, we include only one

24The data is available on http://extweb3.nsd.uib.no/civicactivecms/opencms/civicactive/en/.
25Our variables were obtained from http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics

/search database under “Data Navigation Tree > Database by themes > Population and social conditions

> Population (populat) > Census (cens) > Regional level census 2001 round (cens r2001) > Educa-

tional level (cens redu) > Population by sex, age group, highest educational attainment and occupation

(cens reisco)”. The female-to-male ratio in this tabulation is lower than typically publicized figures and one

may want to compute this variable using another tabulation.
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covariate: the female-to-male ratio in the electoral precinct. There are 846 electoral precincts

in our dataset with observations on this covariate. The results are summarized in Figure 6.

The Hermite polynomials used were of order 2 (types) and 1 (demographic covariate).

Figure 6: Estimation Results at Percentiles of Conditioning Variable

In our second specification we use all three covariates: the female-to-male ratio (X1),

the percentage of the population with secondary education (X2) and the percentage of the

population older than 35 (X3). There are 437 electoral precincts in the data with observations

on all three covariates. We had to exclude Germany as we could not find information on

the two additional covariates at the electoral precinct level. Following Gallant and Tauchen

(1989), we re-scale the data to avoid situations in which extremely large or small values

of the polynomial part of the conditional density are required to compensate for extremely

small or large values of the exponential part. Following these authors, we transform the data

so that x̃e = S−1/2(xe − x) where S = (1/E)
∑E

e=1(xe − x)(xe − x)>,x = (1/E)
∑E

e=1 xe

and S−1/2 is the Cholesky factorization of the inverse of S. The results are summarized in

Figures 7 and 8.
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Figure 7: Estimation Results at Mean of Conditioning Variables

Figure 8: Estimation Results at Percentiles of Conditioning Variable (X1 = 50%)
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The estimates for m(·) were linear projections on covariates. In both the one-covariate

and the three covariate cases, we use Hermite polynomials of order 2 (types) and 1 (demo-

graphic covariates), which provided the lowest values for the objective function among the

specifications we experimented with.

Hix, Noury, and Roland (2006) provide an interpretation of the two dimensions of the

ideological space based on an extensive statistical analysis which combines parties’ manifestos

and expert judgements by political analysts. They relate the first dimension to a general

left-right scale on domestic socio-economic issues, and the second dimension to positions

regarding European integration policies. For both our specifications, we observe a negative

association between the two dimensions of the preference type distribution. Following Hix,

Noury and Roland’s interpretation, this implies that voters who are on the right of the

left-right scale on domestic policies also tend to be less supportive of European integration

policies. This relation is by no means a simple one though, as multiple local modes seem to be

present in the distribution of voter types for different values of the demographic covariates.

Another finding that is robust to the covariates specification is that the first ideological

dimension appears to be substantially more important to voters than the second one. The

parameter W22 for the weighting matrix is estimated at Ŵ22 = 0.0939 for the three covariate

specification and Ŵ22 = 0.0974 for the one covariate specification. On the other hand, the

estimates of the voters’ trade-off between the two ideological dimensions we obtain vary with

the model specification. The off-diagonal element W12 is estimated at Ŵ12 = 0.2451 for the

three covariate case and at Ŵ12 = −0.2195 for the one covariate specification.

6 Conclusion

In this paper, we have addressed the issue of nonparametric identification and estimation

of voters’ preferences using aggregate data on electoral outcomes. Starting from the basic

tenets of one of the fundamental models of political economy, the spatial theory of voting,

and building on the work of Degan and Merlo (2009), which represents elections as Voronoi
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tessellations of the ideological space, we have established that voter preference distributions

and other parameters of interest can be retrieved from aggregate electoral data. We have

also shown that these objects can be consistently estimated using the methods by Ai and

Chen (2003), and have provided an empirical illustration of our analysis using data from the

1999 European Parliament elections.

Voronoi tessellations are extensively studied in computational geometry and have

found wide applicability in computer science, statistics and many other applied mathematics

areas (see Okabe, Boots, Sugihara, and Chiu (2000)). They are, however, relatively new in

the social sciences. We believe the methods developed in this paper can also be applied to

other economic environments and in particular to applications in industrial organization.
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Appendix: Proofs

Proof of Proposition 1

It is enough to consider a single election with n candidates. In what follows, Mk×l is

the space of k × l real matrices which is endowed with the typical Frobenius matrix norm

||A||k×l =
√

Tr(A>A) for A ∈ Mk×l. Accordingly, ||A||k is the typical Euclidean norm in

Rk. The product metric space Mk×l × Rm is endowed with the normed product metric

d((A1, b1), (A2, b2)) =
√
||A1 − A2||2k×l + ||b1 − b2||2m.

Step 1: (∃(A∗, b∗) ∈ Mn−1×d × Rn−1 : PT1({T ∈ Rd : A∗T ≤ b∗}) 6= PT2({T ∈ R :

A∗T ≤ b∗})) Suppose that PT1({T ∈ Rd : AT ≤ b}) = PT2({T ∈ Rd : AT ≤ b}),∀A, b. For

a given A, let Z ≡ AT and define the joint cdfs of Z under PT1 and PT2 as

FT1,A(b) ≡ PT1({T ∈ Rd : AT ≤ b})

and

FT2,A(b) ≡ PT2({T ∈ Rd : AT ≤ b}).

Since the probabilities of {T ∈ Rd : AT ≤ b} coincide for any A and b,

FT1,A = FT2,A, ∀A.

By the Cramér-Wold device (see (Pollard 2002), p.202), this implies that the cdfs for any

linear combination c>Z of Z will coincide under PT1 and PT2 . Since a linear combination of

Z is a linear combination of T, the cdf for an arbitrary linear combination of T under PT1

coincides with the cdf for that combination under PT2 . Again, by the Cramér-Wold device,

this implies that PT1 = PT2 . Consequently,

PT1 6= PT2 ⇒

∃(A∗, b∗) ∈Mn−1×d × Rn−1 : PT1({T ∈ Rd : A∗T ≤ b∗}) 6= PT2({T ∈ Rd : A∗T ≤ b∗})

Step 2: (∃η > 0 : PT1({T ∈ Rd : AT ≤ b}) 6= PT2({T ∈ Rd : AT ≤ b}),∀(A, b) ∈

N ((A∗, b∗), η)) We claim that

h(A, b) ≡ PT1({T ∈ Rd : AT ≤ b})
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is continuous at (A, b) ∈Mn−1×d×Rn−1. Take a sequence (Ak, bk)
∞
k=1 such that d((Ak, bk), (A, b))

k→∞−→

0. Then

|h(A, b)− h(Ak, bk)| ≤ |PT1({T ∈ Rd : AT ≤ b ∧ AkT > bk}|+

|PT1({T ∈ Rd : AkT ≤ bk ∧ AT > b}|

Note that

lim sup
k
{t ∈ Rd : At ≤ b ∧ Akt > bk} = ∩m ∪k≥m {t ∈ Rd : At ≤ b ∧ Akt > bk}

and t belongs to this set if it belongs to {t ∈ Rd : At ≤ b ∧Akt > bk} for infinitely many k.

Since d((Ak, bk), (A, b))
k→∞−→ 0 ⇒ ||Ak − A||n−1×d

k→∞−→ 0 and ||bk − b||n−1 → 0, for any fixed

t ∈ Rd, ||(AkT− bk)− (At− b)||n−1
k→∞−→ 0. Hence, At− b ≥ 0 if and only if there is K such

that k > K implies that Akt− bk ≥ 0. This means that

lim sup
k
{t ∈ Rd : At ≤ b ∧ Akt > bk} = ∅.

Likewise,

lim inf
k
{t ∈ Rd : At ≤ b ∧ Akt > bk} = ∪m ∩k≥m {t ∈ Rd : At ≤ b ∧ Akt > bk}

and t belongs to this set if there is m such that AkT ≤ bk for every k ≥ m. Again because

||(Akt − bk) − (At − b)||n−1
k→∞−→ 0, At ≥ b if and only if there is m such that Akt ≥ bk for

every k ≥ m. Hence,

lim inf
k
{t ∈ Rd : Akt ≤ bk} = ∅.

Finally, this means that

lim
k
{t ∈ Rd : At ≤ b ∧ Akt > bk} = ∅.

Countable additivity then implies that

lim
k

PT1({T ∈ Rd : AT ≤ b ∧ AkT > bk}) = PT1(lim
k
{T ∈ Rd : AT ≤ b ∧ AkT > bk}) = 0.

A similar argument holds for {t ∈ Rd : Akt ≤ bk ∧ At > b}. Consequently,

|h(A, b)− h(Ak, bk)|
k→∞−→ 0
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and h(·, ·) is continuous. Finally, if PT2 is substituted for PT1 the same conclusion is obtained

and this shows that

PT1({T ∈ Rd : AT ≤ b})− PT2({T ∈ R : AT ≤ b})

is a continuous function of (A, b).

By Step 1, ∃(A∗, b∗) ∈ Mn−1×d × Rn−1 : PT1({T ∈ Rd : A∗T ≤ b∗}) − PT2({T ∈ R :

A∗T ≤ b∗}) 6= 0. Since this is a continuous function, this inequality should hold for any

(A, b) in some η-ball around (A∗, b∗): N ((A∗, b∗), η).

Step 3: ({t ∈ Rd : At < b} is a Voronoi cell for any (A, b) ∈ N ((A∗, b∗), η)) With

n candidates, a Voronoi cell is characterized by the intersection of n − 1 half-spaces (see

(Okabe, Boots, Sugihara, and Chiu 2000), p.49). To see that

R1 ≡ {t ∈ Rd : At < b}

represents a Voronoi cell for some set of candidates, we use the fact that a tessellation of

Rd into polyhedra R1, R2, . . . , Rn is a Voronoi tesselation if and only if there are points

C = {C1, . . . , Cn} ⊂ Rp such that

i. Ci belongs to the interior of Ri, for i = 1, . . . , n

ii. If Ri and Rj are neighboring polyhedra, then Ci is the reflection of Cj in the hyperplane

containing Ri ∩Rj

(see Theorem 1.1 in (Hartvigsen 1992). Now, note that {t ∈ Rd : At ≤ b} 6= ∅ (other-

wise PT1(∅) = PT2(∅) = 0 contradicting Step 1). Furthermore, {t ∈ Rd : At < b} 6= ∅

as well. Otherwise, since both PT1 and PT2 are absolutely continuous with respect to the

Lebesgue measure on Rd, PT1({T ∈ Rd : AT ≤ b}) = PT2({T ∈ Rd : AT ≤ b}) = 0, again

contradicting Step 1. Consequently, R1 has non-empty interior and any point C1 in the

interior of R1 satisfies i above. We can also find C2, . . . , Cn such that the segment C1Cj is
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perpendicularly bisected by one of the hyperplanes defined by the system At = b and con-

dition (ii) above is satisfied. (Note that this is facilitated as we only rely on one Voronoi cell.)

Step 4: (p(·,PT1) 6= p(·,PT2) with positive Lebesgue measure) Consider a set of can-

didate positions C∗ = {C∗1 , . . . , C∗n} that generates A∗t < b∗ as a Voronoi cell. For each

of these points C∗i , i = 1, . . . , n, define an ε-ball N (C∗i , ε), ε > 0. Consider the Voronoi

tessellation generated by the selection of n points from each of the N (C∗i , ε) balls and let

S(ε) ≡ {(A, b) ∈ Mn−1,d × Rn−1 : {t ∈ Rd : At > b} is the Voronoi cell containing C1

and Ci ∈ N (C∗i , ε), i = 1, . . . , n}. Notice that S(ε)
ε→0−→ {(A∗, b∗)} ⊂ N ((A∗, b∗), η). Fur-

thermore, {S(ε)}ε>0 is totally ordered by set inclusion (ε1 ≥ ε2 ⇒ S(ε1) ⊃ S(ε2)) and,

given the order topology, the mapping ε 7→ S(ε) is continuous. Hence, ∃ε > 0 so that

S(ε) ⊂ N ((A∗, b∗), η). Since ε > 0, the set ×ni=1N (C∗i , ε) has positive Lebesgue measure on

the n-fold Cartesian product of Rd and identification follows as candidate points obtained

in this set generate a Voronoi cell that attains a different proportion of votes under PT1 and

PT2 . �

Proof of Lemma 1

Consider two different spatial voting models characterized by (PT ,W ) and (PT ,W ). If

W = W , identification follows along the lines of the first proposition. Assume then that

W 6= W and (PT ,W ) and (PT ,W ) are observationally equivalent: for almost every candidate-

election profile C = (C1, . . . , Cn), the proportion of votes obtained under the two different

systems is identical.

Step 1: (There is more than one set of candidates that generates a Voronoi

tessellation.) Generically (i.e., except for a set of measure zero), all the vertices of a

Voronoi tessellation in Rd are shared by (the closure of) d+ 1 cells (see Theorem 9 and sub-

sequent remark on Ash and Bolker (1985), p.185). Consequently, if there are at most d + 1

candidates, there is at most one vertex (a point on the boundary of three or more regions).
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A generalization of case (3) in Theorem 14 of Ash and Bolker (1985) (p.191) then implies

that a given Voronoi tessellation can be generated by more than one set of candidates. We

will rely on a particular set of alternative candidates generating the same W -Voronoi tessel-

lation. The argument relies on the existence of a point which is equidistant from all the k

candidates.

If k = d + 1 and no three candidates are collinear, there will be a vertex. Since

collinearity of three candidates is an event of measure zero, generically there will be a vertex.

Let the vertex be denoted by P and let C ′ be such that

C ′i = 2Ci − P, ∀i.

Notice that

dW (C ′i, t)− dW (C ′j, t) = 0 ⇔

⇔ (C ′i − t)>W (C ′i − t)− (C ′j − t)>W (C ′j − t) = 0 ⇔

⇔ C ′>i WC ′i − C ′>j WC ′j − 2(C ′i − C ′j)>W t = 0 ⇔

⇔ (2Ci − P )>W (2Ci − P )− (2Cj − P )>W (2Cj − P )− 4(Ci − Cj)>W t = 0 ⇔

⇔ C>i WCi − C>j WCj − (Ci − Cj)>WP − (Ci − Cj)>W t = 0

Since P is vertex shared by all the regions, dW (C ′i, P )− dW (C ′j, P ) = 0 for any i and j and

consequently 1
2

(
C>i WCi − C>j WCj

)
= (Ci − Cj)>WP . This in turn implies that

C>i WCi − C>j WCj − 2(Ci − Cj)>W t = 0 ⇔

⇔ dW (Ci, t)− dW (Cj, t) = 0.

Since this holds for any choice of i and j, the W -Voronoi diagram is the same.

If k < d+ 1, the set of vectors t such that

dW (C1, t) = · · · = dW (Ck, t)

will have dimension at least one. To see this, note that the above is equivalent to

dW (C1, t)− dW (Ck, t) = · · · = dW (Ck−1, t)− dW (Ck, t) = 0.
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These define k − 1 linear equations on t ∈ Rd. Since k − 1 < d, the solution set for this

equation contains at least one element. In this case, let P denote one such solution and

proceed as before in defining C ′.

Step 2: (For C 6= C ′ such that V W (C) = V W (C ′), V W (C) and V W (C ′) have paral-

lel faces) Consider C and C ′, sets of size n ≤ d + 1 such that their Voronoi tessellations

under W coincide, i.e., V W (C) = V W (C ′). As before, let V W
i , i = 1, . . . , n denote the n cells

in this Voronoi tessellation. Accordingly, denote by Ci and C ′i the corresponding candidates

in C and C ′.

Given our definition of C and C ′, note that

C ′i − C ′j = 2(Ci − Cj)

for every i and j. Then see that

t ∈ HW (C ′i, C
′
j) ⇒ C ′>i WC ′i − C ′>j WC ′j − 2(C ′j − C ′i)>W t = 0

⇒ 1
2

(
C ′>i WC ′i − C ′>j WC ′j

)
− (Cj − Ci)>W t = 0.

(7)

where HW is defined in equation (2). This shows that HW (C ′i, C
′
j) is a translation of the

hyperplane

{t ∈ Rd : (Cj − Ci)>W t = 0}.

By definition HW (Ci, Cj) is also a translation of this hyperplane.

Step 3: (∃i such that V W
i (C) is strictly contained in V W

i (C ′)) The Voronoi cell V W
i (C)

is a convex polyhedron in Rd (see Hartvigsen (1992)). It can then be represented as:

V W
i (C) = {t ∈ Rd : Ait < bi}

where the rows of the vector Ait−bi are the “defining hyperplanes” (see Hartvigsen (1992)):

2(Ci − Cj)>W︸ ︷︷ ︸
≡a>ij

t + C>i WCi − C>j WCj︸ ︷︷ ︸
≡bij

= 0, j 6= i.
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Similarly,

V W
i (C ′) = {t ∈ Rd : A′it < b′i}.

Because V W (C) and V W (C ′) have parallel faces (see (7)), we have

A′i = Ai.

Furthermore, expression (7) gives that the d− 1 rows of bi − b′i are given by

∆ij ≡ C>i WCi − C>j WCj −
1

2

(
C ′>i WC ′i − C ′>j WC ′j

)
for j 6= i.

For every i, there exists j such that ∆ij 6= 0. Otherwise, V W
i (C) = V W

i (C ′). Since

||W || = ||W || and V W
i (C) = V W

i (C ′) this can only happen in a set of candidates of zero

measure. This follows because a given set of candidates defines its Voronoi cells by “growing

ellipsoids”, all at the same rate and with axes determined by the weighting matrix (W or

W ) (see Scheike (1994), p.45). The axes of the ellipsoid associated with W are vectors

proportional to its eigenvectors (see Strang (1988), pp.334-336). Hence, if W and W have

different sets of eigenvectors, their Voronoi cells for a given set of candidates grow with

different orientations and there cannot be i such that V W
i (C) = V W

i (C ′) and V W
i (C) =

V W
i (C ′). If W and W have the same eigenspaces, V W

i (C) = V W
i (C ′) = V W

i (C) = V W
i (C ′)

as long as Ci − Cj belongs to an eigenspace of W (or equivalently in this case, W ). This

configuration has measure zero (by application of Fubini’s theorem for null sets for example).

If there is i such that ∆ij ≥ 0 for any j 6= i (or ∆ij ≤ 0 for any j 6= i) with at least

one strict inequality, bi − b′i ≥ 0 (or bi − b′i ≤ 0) and bi 6= b′i. But then

Ait < b′i ⇒ Ait < bi

and V W
i (C>) ⊂ V W

i (C). If bi − b′i ≤ 0, the inclusion is reversed.

If this is not the case, but there exists i such that ∆ij ≥ 0 for all j 6= i except for

j = l, note that

∆il ≤ 0⇔ ∆li ≥ 0.
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Then,

∆li + ∆ij = C>l WCl − C>i WCi − 1
2

(
C ′>l WC ′l − C ′>i WC ′i

)
+

+C>i WCi − C>j WCj − 1
2

(
C ′>i WC ′i − C ′>j WC ′j

)
=

= C>l WCl − C>j WCj − 1
2

(
C ′>l WC ′l − C ′>j WC ′j

)
= ∆lj ≥ 0

for any j 6= i, l. That means that ∆lj ≥ 0 for any j and consequently bl − b′l ≥ 0.

To generalize the above argument by induction, assume the claim is true if i is such

that ∆ij ≥ 0 for all but s − 1 indices. Above we showed that this holds for s = 2. We will

now show that one can obtain l such that bl−b′l ≥ 0 there is i such that for all but s indices,

∆ij ≥ 0. For those indices l such that ∆il ≤ 0, we have ∆li ≥ 0. Take one of them and, as in

(6), ∆lj ≥ 0 for all those indices j such that ∆ij ≥ 0. Since ∆li ≥ 0, there are at most s− 1

indices such that ∆lm ≤ 0. By induction, bl − b′l ≥ 0 and V W
i (C ′) ⊂ V W

i (C). If inequalities

are reversed, bl − b′l ≤ 0, the inclusion is itself reversed.

Step 4: (PT (Rd) = 0, leading to a contradiction) Select a neighborhood N in Rd ×

· · · × Rd such that for any candidate profile C ∈ N , the corresponding C ′ (generated as in

Step 1) and assume without loss of generality that for i, V W
i (C) ⊂ V W

i (C ′).

Because Rd is a separable metric space and consequently second-countable, it can be

covered by a countable family of bounded, open sets (start with the cover {N (x, ε)}x∈Rd

where N (x, ε) is an ε-ball around x for some ε > 0 and use Lindelöf’s Theorem to obtain

a countable subcover). Let B be a set in this sub-cover such that for any candidate profile

C ∈ N

B ⊂ V W
i (C ′)\V W

i (C).

This can always be achieved by selecting a small enough neighborhood N . Since the (PT ,W )

and (PT ,W ) are observationally equivalent, for (almost) every profile in N ,

p(C; PT ,W ) = p(C; PT ,W )

where p(·; PT ,W ) is the vector of shares that each candidate gets under (PT ,W ). Consider

one such profile C.
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For this profile, let p denote the proportion of votes obtained by candidate Ci:

p = PT (V W
i (C)) = PT (V W

i (C))

where the second equality follows from the assumption of observational equivalence.

Then consider C ′ generated as in Step 1. Because V W (C) = V W (C ′), the proportion

of votes obtained by candidate C>i under W is also p:

p = PT (V W
i (C ′))

Since (almost) every candidate profile in N generates observationally equivalent outcomes

under (PT ,W ) and (PT ,W ), we can assume that this is also the case for C ′. Otherwise, focus

on the set of generated candidates of C ′. Then this set of candidate profiles has positive

measure and the outcomes under (PT ,W ) and (PT ,W ) are distinct. This would establish

identification.

Otherwise, if the outcomes for C ′ are observationally equivalent under (PT ,W ) and

(PT ,W ), it is then the case that

p = PT (V W (C ′))

Furthermore, note that

0 = PT (V W
i (C ′))− PT (V W

i (C)) =

= PT (V W
i (C ′)\V W

i (C)) =

≥ PT (B) ≥ 0

and consequently PT (B) = 0. But since this is an arbitrary B in the subcover, this implies

that PT (Rd) = 0, a contradiction. �

Proof of Proposition 2

If there are at most d+ 1 candidates, Lemma 1 establishes the results. If n > d+ 1, consider

first a Voronoi tessellation with d + 1 candidates C1, . . . , Cd+1. In this case, apply Lemma
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1 to obtain the existence of a set of candidate profiles with positive measure such that

p((C1, . . . , Cd+1); PT ,W ) 6= p((C1, . . . , Cd+1); PT ,W ).

Now, let i be a candidate for which voting shares are distinct under the two environ-

ments. Since there are at least d + 1 candidates, V W
i has (generically) at least one vertex

(see Theorem 9 in Ash and Bolker (1985)). Select one of these vertices P and let C be the

smallest cone that has Ci as its vertex and contains all the candidates that share the vertex

P with Ci (i.e., if Y ∈ C, Ci + α(Y − Ci) ∈ C, ∀α > 0). Since P is equidistant from all

d+ 1 candidates by definition, there is a hypersphere SW centered at P that contains every

candidate. For any points Cd+2, . . . , Cn in C\SW , V W
i ((C1, . . . , Cd+1)) = V W

i ((C1, . . . , Cn))

as the hyperplane bisecting Ci and Cd+2 so chosen does not intersect V W
i ((C1, . . . , Cd+1)).

This is the case when Cd+2 = α(Cj − Ci) where α > 1 and Cj is any other candidate in the

hypersphere. By locating Cd+2 in C\SW we assure that the same holds for any other point

in a neighborhood containing Cd+2.

An analogous argument can be made for (PT ,W ). Consequently, for any point in the

set (C\SW )∩(C\SW ) = C\(SW∪SW ) we have PT (V W
i ((C1, . . . , Cn))) 6= PT (V W

i ((C1, . . . , Cn))).

Using arguments akin to those in Steps 2 and 4 of the proof of Proposition 1 we can

show that the same holds for a neighborhood of (C1, . . . , Cn) in Rd × . . .Rd. �

Proof of Proposition 4

Let

||f ||cons = max
|λ|≤k0

sup
t
|Dλf(t)|(1 + t>t)δ0 .

This is the consistency norm defined by Gallant and Nychka (1987) on H.

The result follows from Lemma 3.1 in Ai and Chen (2003) (which in turn relies on Theorem

4.1 and Lemma A1 of Newey and Powell (2003)). Assumptions 2-5 correspond to assump-

tions 3.1, 3.2, 3.4 and 3.7 in that lemma. Assumption 3.3 is attained from the previous

identification results (Propositions (1) and (2)). Assumption 3.5 follow from compactness

and denseness results in Gallant and Nychka (1987). For Assumption 3.6, notice that

E
[
|ρi(pe, Ce,Xe, f)|2

∣∣∣∣X̃] ≤ 4
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for i = 1, . . . , n− 1. Then take f1, f2 ∈ H and note that

(1 + t>t)δ0 |f1(t)− f2(t)| ≤ ||f1 − f2||cons

for any t. Consequently∣∣∣∣∫ 1t∈Vi(Ce) (f1(t)− f2(t)) dt− pi(Ce) + pi(Ce)
∣∣∣∣ ≤ ∫

|f1(t)− f2(t)| dt

≤
∫

1

(1 + t>t)δ0
dt ||f1 − f2||cons

which establishes Holder continuity of ρ with respect to f . This completes the proof for the

consistency of f̂T . �

Proof of Proposition 5

The proof again relies on the same results as the previous result. These amount to the

verification of Lemma A1 in Newey and Powell (2003).

First notice that compactness of Θ with respect to the topology induced by the

Frobenius norm and that of H with respect to topology induced by the consistency norm in

Gallant and Nychka (1987) implies that the product space is also compact (with respect to

the product topology) by Tychonoff’s Theorem. This observation plus assumptions 2-5 and

our identification results imply conditions (i) and (iii) in Lemma A1 of Newey and Powell

(2003).

Because of compactness and since pointwise convergence can be established easily

given the assumptions we impose, the uniform convergence condition (iii) in Newey and

Powell (2003) is attained once we show that the objective function is stochastically equicon-

tinuous (see Theorem 2.1 in Newey (1991)). This can be obtained once we show stochastic

equicontinuity of

gE(f,W ) =
1

E

E∑
e=1

(
ρi(pe, Ce,Xe,W, f)2

)
i=1,...,n−1

=
1

E

E∑
e=1

(
ρie(W, f)2

)
i=1,...,n−1

.

To see this, notice that the E × (n− 1) matrix of estimates

M̂ = B(B>B)−1B>ρ(W, f) = Pρ(W, f)

45



where ρ is an E × (n− 1) matrix stacking
(∫

1t∈Vi(Ce,W )f(t)dt− pi,e
)>
i=1,...,n−1

for all obser-

vations and P is an E×E idempotent matrix with rank (= trace) at most J . Since we have

Assumption 4, we can assume without loss of generality that Σ̂(Xe, C) = I. This in turn

implies an objective function equal to

Qn(W, f) ≡ 1

E

E∑
e=1

||m̂(Xe, Ce, (W, f))||2 =
1

E
tr
(
M̂>M̂

)
=

1

E
tr
(
ρ>P>Pρ

)
which in turn delivers

|Qn(W1, f1)−Qn(W2, f2)| =
∣∣∑n−1

i=1

(
1
E
||Pρi(W1, f1)||2E − 1

E
||Pρi(W2, f2)||2E

)∣∣
≤

∑n−1
i=1

∣∣ 1
E
||Pρi(W1, f1)||2E − 1

E
||Pρi(W2, f2)||2E

∣∣ (8)

Because∣∣∣∣ ||A||√C − ||B||√C
∣∣∣∣ ≤ ||A−B||√

C
⇒
∣∣∣∣ ||A||2C

− ||B||
2

C

∣∣∣∣ ≤ ||A−B||(||A||+ ||B||)C

after multiplication of both terms in the inverse triangle inequality by (||A|| + ||B||)/
√
C,

each of the terms in the sum (8) is bounded by∣∣∣∣ 1

E
||P (ρi(W1, f1)− ρi(W2, f2)) ||E (||Pρi(W1, f1)||E + ||Pρi(W2, f2)||E)

∣∣∣∣ ≤∣∣∣∣ 1

E
||ρi(W1, f1)− ρi(W2, f2)||E (||ρi(W1, f1)||E + ||ρi(W2, f2)||E)

∣∣∣∣
where the inequality follows because P is idempotent and consequently ||Pa|| ≤ ||a|| for

conformable a (see the proof for Corollary 4.2 in Newey (1991)). Now, since

||ρi(W, f)||2E =
E∑
e=1

ρ2
ie ≤ 4E

we have ∣∣∣∣ 1

E
||ρi(W1, f1)− ρi(W2, f2)||E (||ρi(W1, f1)||E + ||ρi(W2, f2)||E)

∣∣∣∣ ≤∣∣∣∣∣4
√
||ρi(W1, f1)− ρi(W2, f2)||2E

E

∣∣∣∣∣
This in turn gives

sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

|Qn(W1, f1)−Qn(W2, f2)|

≤
n−1∑
i=1

sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

∣∣∣∣∣4
√
||ρi(W1, f1)− ρi(W2, f2)||2E

E

∣∣∣∣∣
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where N ((W1, f1), δ) is a ball of radius δ centered at (W1, f1). These imply that

P

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

|Qn(W1, f1)−Qn(W2, f2)| > ε

)

≤
n−1∑
i=1

P

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

∣∣∣∣∣4
√
||ρi(W1, f1)− ρi(W2, f2)||2E

E

∣∣∣∣∣ > ε

n− 1

)

=
n−1∑
i=1

P

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

||ρi(W1, f1)− ρi(W2, f2)||2E
E

>
ε2

16(n− 1)2

)
Consequently, once we show that

lim
δ→0

lim
n→∞

P

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

||ρi(W1, f1)− ρi(W2, f2)||2E
E

> ε

)
= 0

for any ε > 0, we have stochastic equicontinuity of the objective function. Let then

Yeδ = sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

(ρie(W1, f1)− ρie(W2, f2))2

(for i ∈ {1, . . . , n− 1}) and notice that

sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

||ρi(W1, f1)− ρi(W2, f2)||2E
E

=
1

E

E∑
e=1

Yeδ

To show stochastic equicontinuity we essentially follow the proof for Lemma 3 in Andrews

(1992). Given ε > 0, take 4 < M <∞ and δ > 0 such that P (Yeδ > ε2/2) < ε2/(2M). That

such a δ can be chosen follows because Assumption TSE-1D from Andrews (1992) holds in

our application. Given its Lemma 4 (replacing ‖ · ‖ by (·)2) we obtain Termwise Stochastic

Equicontinuity (TSE), which essentially states that limδ→0 P (Yeδ > ε) = 0 for any ε > 0.

Now, for such a δ,

lim
E→∞

P

(
1

E

E∑
e=1

Yeδ > ε

)
≤ 1

ε
E(Yeδ)

=
1

ε

[
E
(
Yeδ1

(
Yeδ ≤

ε2

2

))
+ E

(
Yeδ1

(
ε2

2
< Yeδ ≤M

))
+ E (Yeδ1 (Yeδ > M))

]
≤ 1

ε

(
ε2

2
+MP(Yeδ >

ε2

2
)

)
≤ ε

Since this argument can be repeated for i = 1, . . . , n− 1, we have stochastic equicontinuity.

�
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