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The Campbell-Baker-Hausdorff expansion for classical and 
quantum kicked dynamics 
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Fachbereich Physik, Universitat-GHS Essen, Postfach 103764, D-4300 Essen, Federal 
Republic of Germany 

Received 4 January 1988 

Abstract. A technique based on the Campbell-Baker-Hausdorff ( C B H )  formula is intro- 
duced to calculate the effective Hamiltonian for kicked dynamics, classical and quantum. 
An integrable example is exactly solved by this method. A non-integrable kicked spin 
dynamics is treated approximately up to seventh order in a perturbation parameter. The 
CBH expansion is evaluated in a transparent way with the help of a REDUCE program, 
thereby illustrating that the CBH expansion is asymptotic. 

1. Introduction 

The usefulness of Lie techniques in the investigation of dynamical systems is now well 
documented (Olver 1986, Finn 1986, Steinberg 1986). Symplectic maps also have been 
treated by these techniques (Dragt and Finn 1976). One of them is quite well known: 
the Birkhoff -Gustavson normal form transformation (for references see Lichtenberg 
and Lieberman (1983)). A somehow obscure role among these techniques is played 
by the so-called Campbell-Baker-Hausdorff (CBH) formula and in some sense the dual 
Zassenhaus formula. These formulae have been used to solve ordinary differential 
equations of the form: Y = A Y  with the linear operators A ( t )  and Y ( t )  depending 
on t E R with the initial condition Y(0)  = I ,  the identity (Magnus 1954). The idea of 
using the CBH formula for the construction of invariants of symplectic maps was put 
to work by Dragt and Finn (1976), but the practical use was quite limited. 

The objective of this paper is to give a short introduction to these techniques from 
a practical point of view. I especially propose to show how the CBH formula gives the 
possibility of constructing an exact or approximate integral of a symplectic map (or 
its quantal counterpiece) depending on whether the map is integrable or only nearly 
integrable. Finally I shall demonstrate the CBH formula in an expanded form to be 
useful even for chaotic maps. It is now a tool for constructing local approximate 
integrals in the vicinity of elliptic orbits. This article gives a unified treatment of 
classical (symplectic) and quantum (unitary) maps thereby stressing the deep 
similarities between them. Of special importance among the constructed integrals is 
the effective Hamiltonian, the infinitesimal generator of the classical or quantum map. 

The validity of the CBH expansion can be destroyed by resonances that show up 
in the classical as well as in the quantum case. This is studied in an example of an 
integrable map where at resonances there actually is no effective Hamiltonian. More 
interesting is the case of non-integrable maps where the effective Hamiltonian generates 
the flow in the smooth parts of the phase space approximately. For a non-integrable 
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example it is shown how to calculate the CBH expansion up to seventh order in a 
perturbation parameter with the help of computer algebra. 

2. The Campbell-Baker-Hausdorff formula 

For reasons of being self-contained a short derivation of the C B H  formula is given 
(Sattinger and Weaver 1987) and some conclusions are drawn. Suppose we have an 
algebra d of generally non-commuting quantities A, B, C, etc. By definition the 
commutator [A, B] = AB,- pA,is an element of d too. Nowlfor a shorthand notation 
introduce the elements A, B, C, etc, of the adjoint algebra ~4 acting on the elements 
of d by 

A B  = [A, B]. (2.1) 

B( t )  := exp( tA)B exp( -tA) = exp( td)B. 

Defining the exponential function of elements of 2 by Taylor series we have the identity 

( 2 . 2 )  

The second equation can be easily proved by differentiating B( t )  with respect to t and 
noticing the initial condition B(0)  = B. Now let A depend on t and define the function 

(2.3) 
a 

at  
B(s,  t ) : =  exp(sA(t)) -exp(-sA(t)). 

Differentiating B(s ,  t )  with respect to s gives 

_- aB -[A, B ]  - A =  A B  - A  
( A = $ )  as 

(2.4) 

with the solution 

B ( s ,  t)=exp(sA(t))B(O, t ) -  d r  exp((s-r)A(t))A(t) .  (2.5) 

Noticing that B(0,  t )  vanishes we get 

where f ( z )  = (exp(z) - l) /z.  

uniquely defined and we get the Campbell-Baker-Hausdorff (CBH)  formula 
Now for A, B E  d sufficiently close to 0 the element C = ln(exp(A) exp(B)) is 

C = B +  d s  g[exp(sA) e x p ( i ) ] A  ld 
where 

( - l )n  
n = ~  ( n  + 1) 

g ( z ) = l n ( z ) / ( z - I ) =  __ (z - 1 y .  

For a proof let C ( t )  = ln(exp(tA) exp(B)) and we get with (2.6) 
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Noticing the identity f ( ln  z)g(z)  = 1 and using (2.2) gives 

e x p ( e ) D  = e x p ( C ( t ) ) D  exp(-C(t))  = exp(tA1 exp(Ej)D 

C( t )  = g[exp( tA) exp(8)lA 

(2.9) 

for all D E  .d and we finally get 

(2.10) 

which proves (2.7) when taking into account the initial condition C ( 0 )  = B. Writing 
C = -ln[exp( - B) exp( -A)] we get an alternative CBH formula 

C = A +  dsg[exp(-s8)exp(-a)]B. J o' 

Four special cases s tould be considered now. 
(i) First let d 6 A  = B2A = 0. Then (2.7) simplifies considerably to 

d s  g (  1 +SA+ 8 ) A =  B + A -:8A 

(2.7') 

(2.11) 

which gives the following well known formula if [A, [A, B]] = [ B, [A, B]] = 0 

exp(A) exp(B) =exp(A+B+;[A, B ] ) .  (2.12) 

(ii) Now we suppose only A6"A = 0 for all n. Then (2.7) simplifies to 

C = B + g[exp(i)]A = B + 8[exp( 8) - l]- 'A (2.13) 

and alternatively with l%"B = 0 for all n (2.7') gives 

C = A+g[exp(-A)]B = A - A[exp(-A) - l]- 'B (2.13') 

showing the possibility of small denominators explicitly. 
(iii) Suppose that A and B are linear combinations of three quantities S,( i = 1 ,2 ,3 )  

fulfilling the SU(2) commutation relations: [S,, S k ]  = iEJklSI. Then the CBH formula 
immediately tells us that C is also a linear combination of the S, with the coefficients 
yet to be determined. This simply means that the succession of two rotations is a 
rotation. 

(iv) For the last case we choose C of the form C(A) = -ln[exp(-AB) exp(-A)] 
and use 

C(A) = A +  dsg[exp(-sA8) exp(-A)]hB 16 
which gives up to O(A2) 

C(A) = A + Ag[exp( -A)] B + O(A ') 

showing the possibility of small denominators as (2.13'). 

3. Quantum maps 

(2.14) 

(2.15) 

Now we want to specify the algebra d. For example, we might take the real (or 
complex) algebra of real (or complex) N x N matrices. Instead we look at the algebra 
H of Hermitian linear operators acting on the Hilbert space of some quantum system. 
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First we take the Hamilton operator of the system and define the unitary time evolution 
of some observable A in the Heisenberg picture 

A ( f ) = e x p ( $  Hf)A(O)exp(-$ Hr) =exp($fit)A(O) (3.1) 

with the ad operator fi defined as in (2.1). For fixed t (3.1) defines a unitary quantum 
map. One might also look at the succession of two unitary maps, as it arises in 
connection with a kicked quantum system, for example the kicked rotator (Casati et 
a1 1979) or kicked tops (Haake et a1 1987a, b). Quantum maps of this kind look like 

A,+ ,=exp($t f i )  exp($s?)A, (3.2) 

with H being the Hamiltonian of the unperturbed system and sV being the perturbation 
'kicked in' at times nt with integer n. For an introduction to quantum maps see Berry 
et a1 (1979). For [ H, VI # 0 the quantum map does not possess an integrable classical 
limit in general. 

Comparison between (2.9) and (3.2) shows that the CBH formula should give an 
expression for the effective Hamiltonian operator He, defined as 

exp (i He,) = exp (i tH) exp ($ s V )  . (3.3) 

For commuting H and V one gets of course He,= rH+sV. But generally with the 
help of (2.7) and (2.7') 

He, = s V +  t lo' d r  g [ exp($ r r f i )  e x p ( i  s?)] H 

He, = tH + s 5,' d r g  [ exp (-; rs?) exp (-i t f i ) ]  V. 

Supposing ?fi"V=O for all n we get as in (2.13') 

Using (3.1) one finds in the eigenrepresentation of H[ H I n )  = E, I n)] 

( n  I e x p ( i  r f i )  A 1 m )  = exp(f [ E ,  - E , ] f )  A,, 

(3.4) 

(3.4') 

(3.5) 

(3.6) 

and in the special case (3.5) 

(nlH,,lm)=tE,S,,-sV,, - [E , -E , ] t  (3.7) (A 
From (3.7) we notice that starting at t = 0 and increasing t the given analytic continu- 
ation inevitably leads to resonances on account of small denominators, which destroy 
He, although for all non-resonant values of t the C B H  formula (3.5) is exact in this 
special case. Resonances show up in the classical limit of quantum maps as well, as 
will be shown in the next section. 
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We conclude this section by stating a formula valid for unitary transformations of 
analytic functions of momentum and position operators 

as can be proven immediately by Taylor expansion of F and use of (2.2). 

4. Symplectic maps 

In this section we want to use the CBH formula for the investigation of compositions 
of symplectic maps, the classical limit of unitary quantum maps. 

We support the even-dimensional Euclidean vector space RZd with Cartesian coor- 
dinates ( p ,  q )  = ( p l ,  . . . , P d ,  q l ,  . . . , q d )  and call it the phase space, pi  being momenta 
and qi positions. Then we define the Poisson bracket (PB) for smooth phase space 
functions F (  p, q ) ,  G( p, q )  etc: 

{F ,  G } =  (-----). a F a G  a F a G  
k = l  aqk a P k  apk aqk 

The PB is bilinear, skew symmetric and fulfils the Jacobi identity (Arnol’d 1978) 

{{F,  a, HI + {{G, -HI, Fl + {{H, F } ,  GI = 0. (4.2) 

Phase space functions commute with respect to simple multiplication. Therefore we 
cannot use the CBH formulae immediately. The classical analogue of the quantum 
commutator [A, B] being the PB {F ,  G }  of two phase space functions F and G, the 
obviously useful analogue of the quantum operator A is the differential operator fi9 a 
so-called Hamiltonian vector field: 

(4.3) 

acting on other phase space functions 

j?G = { F, G}. (4.4) 

Vector fields are linear differential operators that do not commute generally. Defining 
H = { F, G }  for the moment and using the Jacobi identity (4.2) gives 

f i K  = {{  F, G } ,  K }  = fi[ 6 K ]  - 6[ f i K ]  

H = { F , G } + f l = [ j ? , & ]  (4.6) 

(4.5) 

for all smooth functions K .  Therefore 

[fi, 61 denoting the commutator of the vector fields 8 and 6. 
Now we look at the physical prototype of a Hamiltonian vector field: the vector 

field of the Hamiltonian H ( p ,  q )  of a dynamical system. The time evolution of a phase 
space function F(  p, q )  under the flow generated by H fulfils the differential equations 
(Arnol’d 1978) 

F = - { H ,  F)=-AF. (4.7) 
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For example, we get the Hamilton equations for the canonical coordinates 

= -W, q d  = a H / w  

p k  = -{ H, ~ k }  = -a Hldq,. 

For time-independent H we integrate (4.7) to give 

~ ( t )  = exp(-ljt)F(O). (4.9) 

Since F has no explicit time dependence it changes only because its arguments p and 
q change in time and we get 

e X P ( - m Y P ( O ) ,  d o ) )  = F ( P ( t ) ,  d t ) )  
= F[exp(-ljt)p(O), exp(-fit)q(o)l. (4.10) 

This should be compared with (3.8). For fixed t ,  (4.9) defines a symplectic classical 
map which should be compared with the unitary quantum map (3.1). 

As in § 2 we now investigate the composition of maps, V( p ,  q )  being another phase 
space function and the corresponding Hamiltonian vector field. Then we define the 
map 

F,,, = exp(-tt i)  exp(-sG)F,. (4.1 1) 

As in (3.2), H is the Hamiltonian of the unperturbed system and sV is the perturbation 
kicked in at times nt. As in § 2 we now construct an effective infinitesimal generator 
and the corresponding effective Hamiltonian vector field with the following property: 

exp(-fiefi) = exp(-t& exp(-sP). (4.12) 

Before we can use the CBH formula (2.7') we have to define adjoint vector fields acting 
on vector fields in the obvious way 

i% = [& d']. (4.13) 

Again the Jacobi identity is fulfilled. We rewrite (4.6) and as in (4.5) we deduce 

H = FG 3 fi = I% = [g, d'] 3 fi = [F, 61, (4.14) 

Now we can use the CBH formula and find 

gCff= CA+ drg[exp(rsc)  exp(tfi)]sl? J 0' 
(4.15) 

The final question is whether gefi is a Hamiltonian vector field. Formally we define 
the effective Hamiltonian 

(4.16) 

Hefi(p, q ) = s v ( p ,  q)+ jo '  drg[exp(-rtfii) e x p ( - s ~ ) l t ~ ( p ,  4 ) .  (4.16') 

Equation(4.14) guarantees the validity of the adjoint equation (4.15) if Hefi(p, q )  given 
by (4.16) exists. Otherwise, (4.16) should be read as a formula to generate an expansion 
in powers of s and t ,  the C B H  expansion.*The adjoint expansion can then formally be 
resummed to give (4.15). In  this sense He,  is the Hamiltonian vector field belonging 
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to He,(p, q ) .  He,(p ,  q )  is the infinitesimal generator of the map (4.11) and of course 
it is invariant under the map 

exP(-fiefi)Hefi(Pv 4 )  0. 

Using (4.10) this can be written in the form 

H,,(exp(-tfi) exp(-sQ)p, exp(-tfi) exp(-sQ)q) = ~ , , ( p ,  q )  (4.17) 

for fixed s and t .  If He, given by (4.16) does not exist as an analytic function then 
the CBH expansion in powers of s and t is invariant under the map (4.11). 

Finally we state the analogue of (3.5). Supposing 9 f i " V  = 0 for all n we get 

H,, = t~ + tf i(exp(tA) - I)-'sv. (4.18) 

5. The classical limit of quantum maps 

When comparing the last two sections we notice a correspondence betwee: several 
quantities and formulae. The role of a classic$ Hamiltonian vector field F ( p ,  q )  is 
played by the adjoint quantum operator - ( i / h ) F  leading to the well known correspon- 
dence 

{ F ,  G} & -(i/h)[F, GI. (5.1) 

With respect to this 'commutator' the classical functions F (  p ,  q )  and G( p, q )  do not 
commute and the CBH formula (4.16) is a consequence of this. 

Formally the classical (4.16) and the quantum (3:4) CBH formulae are identical 
(after making the identification (5.1)), but (3.4) contains more information (higher 
powers in h )  which cannot be restored from (4.16) by a unique quantisation prescription 
as simple examples show. This is reminiscent of the situation in the quantisation of 
normal forms (Wood and Ali 1987). 

Although the validity of the C B H  formula may be lost by resonances via small 
denominators in the classical as well as in the quantum case, it is always possible to 
associate an effective Hamilton operator with the unitary operator 

such that the phases become the energies of H e S .  We obviously have 

with arbitrary integers n ( 4 )  = O ( l / h )  and spectral density ~ ( 4 ) .  For an arbitrary 
choice of the phases n ( @ ) ,  Hcff will not have a smooth classical limit. One possibility 
of choosing the n (  4 )  would be by analytic continuation starting with H,,(s = 0, t )  = tH 
and increasing s. But this is not possible in general because H e ,  is not analytic in both 
t and s as simple examples with discrete spectra show (Reed and Simon 1978). The 
reason lies in resonance phenomena called avoided level crossings that show up when 
two nearly degenerate eigenfunctions of U ( s ,  t )  (or of H ( s ,  t )  = ? H i  sV)  are strongly 
coupled by the perturbation V. This complicates the structure of their Wigner functions. 
The classical route into chaos is accompanied by 'overlapping' avoided level crossings 
coupling O( 1/ h )  or more eigenfunctions on the energy shell leading to more and more 
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‘irregular’ eigenfunctions that cannot be approximated by semiclassical quantisation 
procedures. The criterion of Hose and Taylor (1983) gives a first hint how to construct 
the quantum numbers n ( 4 )  for nearly integrable (i.e. weakly perturbed) cases. For 
strongly perturbed dynamics ‘good quantum numbers’ may only exist for parts of the 
spectrum. 

The given arguments show that even the last integral HeR of a kicked dynamics 
may be lost in the classical limit, in contrast to autonomous dynamics, where the 
Hamiltonian H ( p ,  q )  is always a global single-valued analytic integral of motion. This 
clearly shows that integrable autonomous dynamics with one degree of freedom can 
become non-integrable through periodically kicked perturbations: H, the last and only 
integral of the motion is lost, first locally near hyperbolic orbits, and globally for 
stronger perturbations. 

6. An integrable example 

First we want to show the power of the CBH formula for integrable systems. We choose 
d = 1, s = a, t = p, H = p and V(  q )  = V (  q + 27r) leading to the vector fields 

A a  a H = - - = $  ? = V‘( q )  - = V’( q ) i ,  
aq dP 

This generates the map 

(’) + exp( p”)  exp( -aV’(q) (’) - - ( p - a v ’ ( q + P ) ) .  
( 6 . 2 )  

4 aq dP 4 s + P  
This map has been investigated by Grempel et a1 (1982) and by Berry (1984). The 
vector fields A and ? fulfil the condition Qfi“V=O for all n and with (4.18) we find 

HetdP, 4 )  =PP+P$[exP(pp^)-ll-’aV(q). ( 6 . 3 )  

After Fourier expansion of V(  q )  

v(q) = Re( m = l  f cm exp(imq)) ( c m  E E) 

and noticing 

f($) exp(imq) =f(-im) exp(imq) 

we get for the effective Hamiltonian 
m 

H e , = P p + $ a p  Re 1 mc, exp[im(q+p/2)]/sin(mP/2) ) . (6.6) 

First we want to check that the integration of the Hamiltonian flow generated by He, 
from t = 0 to t = 1 leads to the map ( 6 . 2 ) :  

( m = l  

(6.7) 



Campbell- Baker- Hausdor-  expansion 2015 

Integration gives 

and finally from the last equation 

a 
P n + l  - P n  = -a- V(q,+,) 

aqfl+1 
(6.9) 

which is equivalent to the map (6.2). 
Obviously He, given by (6.6) is destroyed by resonances at mp = 2nn if c, # 0. 

But even then formula (6.6) still can be used to construct the invariant curves for the 
resonant map taken at the resonant value Po = 2nn,/ m, with no and m, relatively prime. 
The rescaled Heff is an integral of the map (6.2), too: 

I = lim He, sin( pmo/2)  = amO Re (6.10) 

This involves only q and we see that the invariant sets are systems of lines parallel to 
the p axis. 

Now look at the corresponding effective Hamiltonian of the quantum map. As in 
the classical case the condition p f i " V = O  is fulfilled and with (3.5) we find 

00 

c,,, exp[ip( m,q + non) ] ) .  
P + P O  LI 

(6.11) 

Since no products of p and q remain in the formula, there are no ordering problems. 
Therefore (6.6) is true for the quantum case, too. In q representation we get for 
non-resonant and non-vanishing P :  

m He,=-ihp-+ia/3 a Re( mc, exp[im(q+p/2)]/sin(m/3/2)). 
aq m = l  

(6.12) 

The periodicity of U, implies the quantisation condition 

E , ( K )  = ph(n  + K )  n integer. (6.15) 

By the method of stationary phases one can show for h +-0 that the eigenfunctions 
are localised along the classical integral curves for the given quantised energy E,( K )  = 
HeH(p, q) .  For a given wavevector K the spectrum of the quasi-energy q, ,(K)= 
E , ( K ) / h  (mod 2 ~ )  is dense in [ 0 , 2 ~ )  if P / n  is irrational. Because of the localisation 
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of the eigenfunctions along the integral curves only O( I/&) eigenfunctions are 
appreciably excited by a coherent state Ip, q )  in the semiclassical limit. This is in 
contrast with the case of non-integrable strongly chaotic maps where the number of 
excited ‘irregular’ eigenfunctions is O( l l h )  (Haake et a1 1987a). 

7. A non-integrable example 

Replacing p by p 2 / 2  in the unperturbed Hamiltonian of the last section’s example we 
get the so-called kicked rotator (Casati et a1 1979) which leads to a non-integrable map 

(:) + exp ( p p  ”) exp ( - a  V’ (q )  ”> (i) - - ( - +”)). (7.2) 
84 d P  4+PP 

fi and ? d o  not fulfil any of the simplifying conditions mentioned at the end of 0 2. 
The iterated Poisson brackets of $12 and V( q )  generate products of higher and higher 
powers of p and q as soon as V’( q )  is non-linear. In general then there is no possibility 
of evaluating the C B H  formula immediately and one has to calculate the CBH expansion 
and try to resum it. 

Previous investigations tried to calculate the CBH expansion with the help of 
computer algebraic programs in the most general form (Richtmyer and Greenspan 
1965). But then the calculation of the iterated Poisson brackets is still left, and if they 
do not show any simple building law, as is usually the case, for this evaluation one 
has to use the computer once again. Therefore it is reasonable to calculate the C B H  

expansion in one step. This section shows how to do that for a simple non-integrable 
classical example. 

The formulae to start with are (4.16) or (4.16’). With the definition of g ( z )  after 
(2.7) formula (4.16) can be expanded in the form 

H,,=tH+ OC - io (i) ( - l )k  jo’ dr[exp(rsQ) exp(tfi)lksV. (7.3) 
n = O  n + 1  k =  

Sums and integrals have been interchanged because (7.3) will be evaluated only 
asymptotically for s, t + 0. The expression under the integral is nothing but a k-fold 
map acting on V. Therefore He, can be calculated up  to a wanted power in s and 1 
by calculating the mapped V up  to the required accuracy. This is a straightforward 
computer algebraic job. 

As an example I choose the dynamics of a kicked top (Haake et a1 1987b) with 

H = L;,/2 v= L:/2 (7.4) 

{LY, L, 1 = L, 

with the components of the angular momentum vector L fulfilling the PB relations 

and cyclically in x, y and z. (7.5) 

One might make this Poissonian structure to a symplectic structure. First we notice 
from (7.5) that the scalar L’= Lt + Lt + Li is unchanged under a Lie transformation 
generated by any function of L, because {L2,  L}  = (0, 0,O). So we might choose L2 = 1. 
For reasons of convenience we write x instead of L,, etc. Finally we introduce the 
polar angle 4 by expressing x, y ,  z in polar coordinates: x +iy = (1 - z * ) ” ~  exp(i4).  
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States of the system are thus represented by points on the unit sphere. Defining the 
PB in the canonical way by identifying 4 as the angle and z as the action variable we 
can reproduce the Poissonian structure (7.5): {x, y }  = z (and cyclically). Actually for 
calculating He, only the Poissonian structure is needed and several symplectic structures 
leading to the same Poissonian structure give the same result. 

Coming back to the non-integrable example, we put it in the form 

exp(-EGeff) = exp(-et& exp(-EC) = exp(-etyy) exp(-sx;). 

This generates the map (x, y ,  z)  + (x',  y ' ,  z ' )  
x ' = X  

y '  = j cos( ET) - z sin( ET) 

z ' =  F c o s ( s 8 ) + j  sin(e2) 

with 

X = x cos( Ety) + z sin( Ety) 

Y ' Y  

2 = z cos( ~ t y )  - x sin( sty). 

(7.6) 

(7.7) 

We want to calculate He,  only for t = 1 but to do this we need the map (7.7) for 
t E [0, 11. With the definition (7.4) of H and V (4.16') gives 

HeR=ix2+jO1 dtg[exp(-s t f i )  exp(-sC)]iy2. (7.8) 

To calculate He, up to N t h  order in E we only have to take the Taylor expansion of 
sin and cos in (7.7) up to N t h  order. The n-fold iteration of this truncated map acting 
on y can be calculated by the computer and will be named 

Y,,(B, t )  = [exp(-EtA) e x p ( - ~ C ) l ~ y + ~ ( s ~ + ' ) .  (7.10) 

From (7.9) we see that we only have to sum up for n G N 

H,,=~X'+$ " - io (L) Io' dtyz(t ,  E ) + O ( E ~ + ' ) .  (7.11) 
,,=o n S 1  k =  

The expression on the right-hand side has been summed up  by REDUCE for N = 7 .  
The first few terms are 

He, = i(x '  + y 2 )  + $ E X ~ Z  +A E * ( x ~  - x2  +4x2y2 + y4 - y 2 )  

1 - 2 ~ * - 2 ~ ~ ) ~ ~ ~ + 0 ( ~ ~ ) .  (7.12) 

Figures 1-4 allow us to compare the integral curves H e ,  = constant with the map (7.7). 
Two different views of the unit sphere are shown: one of the northern hemisphere 
z 2 0  projected on the xy plane and one from the equator for x 3 0  projected on the 
y z  plane. For B < 2 the two poles z = *1 are elliptic fixed points and the C B H  expansion 
gives quite reasonable results in their vicinity. For E > 2 these poles are hyperbolic 
fixed points and the CBH expansion in their vicinities breaks down although around 
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the four elliptic fixed points on the equator (only one is fully visible) the approximation 
is still useful even for E > 2. 

8. Discussion 

The main result of this paper is that the Campbell-Baker-Hausdorff (CBH) formula 
allows an asymptotic expansion for an approximate integral of non-integrable maps- 
classical as well as quantum. 

In the classical case several situations have to be distinguished. 
If the map has elliptic fixed points surrounded by regions of regular motion the 

CBH formula allows the construction of an effective Hamiltonian HeR. This Hamiltonian 
generates a flow which, after integration for integer times, resembles the original map 
in the vicinity of the elliptic fixed points. Therefore He, not only gives the approximate 
integral curves but also allows us to calculate winding numbers. 

If the map has elliptic n-cycles ( n  > 1) or jumps between unconnected integral 
curves, no effective Hamiltonian exists. But as the integrable example in 8 6 shows, 
the CBH formula might still give an (approximate) integral of the map. 

If the map is nearly integrable the CBH formula gives an approximate integral that 
can be used to calculate the separatrices connecting hyperbolic orbits along which the 
chaos starts to show up (cf figure l(b)).  
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Y O  

-0  5 

-1 0 
-10 - 0 5  0 0 5  1 0  -10 -05  0 0 5  1 0  

X 

1 0  1 0  

0 5  0 5  

0.7 

-0 5 -0 5 

-1 0 -1 0 
-1 0 -05 0 0 5  1 0  -10 - 0 5  0 0 5  1 0  

Y 

Figure 1. Lines of constant Ifeff given by the C B H  expansion (7.12) up to O ( E ’ )  (LHS) 
compared with classical iteration (7 .7)  ( R H S )  for ( a )  E = 1 on the northern hemisphere 
( z  > 0) and ( b )  around the equator (x  > 0). Note that the C B H  expansion is globally reliable 
in this nearly integrable case. 
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Figure 2. The same as figure 1 for E =2.  Note that the CBH expansion still faithfully 
reproduces all regular structures, even though the elliptic fixed points at the poles z = i 1  
are now just marginally stable. 
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Y 
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Figure3. Lines of constant H e R ( p ,  q )  given by the CBH expansion (7.12) up to O(&’) (LHS) 
compared with classical iteration (7.7) (RHS) for E =2.1 around the equator (x>O). In 
contrast to the now chaotic behaviour of the iteration near the poles the equatorial behaviour 
is still dominantly regular and well represented by the CBH expansion. 
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Figure 4. The same as figure 3 but for E = 2.5 on the northern hemisphere ( z  > 0). With 
the last K A M  trajectory between the poles destroyed, the CBH expansion bears little 
resemblance to the exact dynamics. Only symmetries are respected and the most prominent 
regular islands are recognisable from the He,  curves. 

Ip Ip 

\' 
/ \  

Figure 5. Dependence of two representative eigenenergies E, = f i [ b j ( P )  + 2 n n j ]  (1 = 1 , 2 )  
of the effective Hamilton operator upon a perturbation parameter P near an (avoided) 
degeneracy: ( a )  for an integrable case showing level crossing (the n, of the spectrum are 
chosen in such a way that He,  possesses a smooth classical limit); (6 )  for a nearly integrable 
case showing avoided level crossings (the energies are determined by analytic continuation). 
The results are different thereby illustrating the non-existence of a smooth classical limit 
for phase choices of the form ( b )  in contrast to figure 1. 

For non-integrable maps like the one presented in figures 1-4 the CBH expansion 
can at best be asymptotic and, as numerical evidence shows, it actually is. As is typical 
for asymptotic expansions there is an optimal choice for the order of the expansion 
depending on the parameters and on the phase space region to be approximated. For 
strongly chaotic maps the approximations fail badly. 

In the quantum case an  effective Hamilton operator for the map always exists as 
was shown in 3 5 .  But there are eigenvalue ambiguities. The CBH expansion resolves 
these ambiguities in such a way that the eigenvalues are given by analytic continuation 
upon increasing the perturbation. Actually the CBH expansion fails at avoided level 
crossings where the eigenphases of He* have to jump in order to allow a smooth 
classical limit for stronger perturbations (see figure 5). But this failure only concerns 
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that part of the Hilbert space which is involved in avoided level crossings. (Further 
details will be published in Scharf (1988).) 

As a conclusion I make some general remarks. The C B H  formula was constructed 
for ‘ A  and B sufficiently close to 0’. .This restriction has been shown to be important 
for integrable as well as non-integrable kicked dynamics. For integrable ones it might 
happen that there actually is no He,  at localised resonances, as the example in § 6 has 
shown. The investigation of other kicked dynamics along the lines just presented is 
straightforward. 

The big advantage in investigating symplectic maps via the C B H  expansion is we 
have non-commutativity of the generators only with respect of the Lie product. After 
calculating the PB no ordering problems exist and expansions become comparatively 
easy to resum. When calculating Hefi  in the quantum case this advantage is lost and 
one has to run the calculations with non-commuting quantities (and of course with 
the exact quantum map). This exceeds the computer capacity much earlier than the 
corresponding classical calculations. But if one is only interested in the semi-classical 
correction, i.e. terms of O ( h ) ,  again this is simple to manage. 
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