OverQoS: Offering Internet QoS Using Overlays

Lakshminarayanan Subramanian*

Abstract

This paper proposes OverQoS, an architecture for providing
Internet QoS using overlay networks. OverQoS empowers
third-party providers to offer enhanced network services to
their customers using the notion of a controlled loss virtual
link (CLVL). The CLVL abstraction bounds the loss-rate
experienced by the overlay traffic; OverQoS uses it to pro-
vide differential rate allocations, statistical bandwidth and
loss assurances, and enables explicit-rate congestion control
algorithms.

1. Introduction

There has been a growing demand for Internet QoS over
the past decade. Several research efforts have addressed the
problem of enhancing the best-effort service model to pro-
vide QoS, resulting in the Intserv and Diffserv architec-
tures [2, 3]. These, and other proposals for Internet QoS,
have two key requirements: first, they require all routers
along a path to implement QoS mechanisms for scheduling
and buffer management, and second, they require the right
incentives for Internet Service Providers (ISPs) to enable
these functions. Unfortunately, these two requirements have
often turned out to be difficult to meet, and despite much
research, the Internet largely continues to provide only the
basic best-effort service model.

Over the past few years, overlay networks have emerged
as an alternative for introducing new functionality that is
either too cumbersome to deploy in the underlying IP in-
frastructure, or that requires information that is hard to
obtain at the IP level. Examples of overlay networks include
application-layer multicast [5, 8], Web content distribution
networks, and resilient overlay networks (RONs) [1]. Moti-
vated in part by the positive results of these approaches for
specific network services, we seek to investigate if an overlay
network can do the same for Internet QoS.

To motivate why an overlay might lead to a promising QoS
architecture, consider the following third-party QoS provider
model. In this model, a provider buys network access from
several traditional ISPs and places nodes in different routing
domains. These nodes form an overlay network, which the
third-party provider uses to offer enhanced network service

*EECS Department, University of California at Berkeley,
emails: {lakme,istoica,randy} Qcs.berkeley.edu
fLaboratory of Computer Science, Massachusetts Institute
of Technology, hari@Ics.mit.edu

Ton Stoica*

Hari Balakrishnan® Randy H. Katz*

to its customers. Another example would be an organization
that uses overlays to provide enhanced services in its Virtual
Private Network.

Of course, this idea isn’t useful unless the third-party
provider can demonstrate enhanced services. This paper de-
scribes a system called OverQoS that shows that an overlay
network can indeed provide certain forms of QoS. An im-
portant aspect of OverQoS is that it does not mandate any
changes to the data or control planes of the IP routers be-
tween OverQoS nodes, instead placing all the QoS machin-
ery at the OverQoS nodes.

When QoS is provided at the IP layer, an IP router has to-
tal control over its packet buffers and the output link band-
width, and can directly schedule these resources. In contrast,
an OverQoS node controls neither the bandwidth nor the
losses on the underlying IP path. However, if each OverQoS
router handles a flow aggregate, transmitting the aggregate
at some fair rate across the virtual link (the underlying IP
path) connecting two OverQoS routers, then it can allocate
the resources available to the flows within the aggregate by
controlling the rates of each flow on the virtual link.

While this allows flows within an aggregate to achieve
proportional sharing, it does not provide any assurances on
achieved rates or observed loss rates. To address this, we
develop the notion of a controlled loss virtual link (CLVL),
which ensures that as long as the aggregate rate does not
exceed a certain value, the loss rate observed by the ag-
gregate is very small. Exposing the CLVL abstraction to a
flow aggregate traversing a virtual link is a powerful one.
We argue this by showing that it can be combined with tra-
ditional scheduling (e.g., weighted fair queuing) and buffer
management schemes running at the OverQoS nodes to pro-
vide service differentiation. We also show that it can provide
approximate statistical assurances when used in conjunction
with adaptive admission control schemes (e.g., where flows
can periodically renegotiate their transmission rates), and
discuss how a CLVL abstraction enables new explicit-rate
end-to-end congestion control algorithms.

2. OverQoS Architecture

This section describes the OverQoS network architecture
(Figure 1). A virtual link is the underlying IP path connect-
ing two overlay nodes. A virtual link is unidirectional and
carries traffic from an entry overlay node to an exit over-
lay node. A bundle is the stream of application data packets
carried across the virtual link; it typically includes packets
from multiple transport-layer flows across different sources
and destinations.

In general, a virtual link is characterized by a capacity b
and a loss rate p. (We don’t focus on delay assurances in
this paper.) The capacity b represents the maximum rate
at which the entry OverQoS node can send traffic over the
virtual link, while the loss rate p represents the probability
that a packet is dropped on the virtual link due to con-
gestion. In practice, we expect b to be either determined
based on some fairness criterion or obtained from a contract

Virtual link
path between OverQosS routers)

OverQosS routers

Figure 1: The OverQoS system architecture.
OverQoS routers in different AS’s communicate
with each other over virtual links using the under-
lying IP paths.

agreement with the administrators (ISPs) of the underly-
ing network. One way of providing fairness is to set b based
on an N-TCP pipe abstraction. This abstraction provides
a bandwidth which is NV times the throughput of a single
TCP connection on the virtual link. NV may be negotiated
between the OverQoS provider and the ISPs, or be picked
to be the number of flows in the bundle (see Section 3).

Three constraints make the design of the mechanisms at
the OverQoS nodes challenging:

1. OverQoS nodes will usually span different routing do-

mains and AS’s.

2. The OverQoS nodes will usually not be directly con-
nected to the congested links.

3. In general, some (or most) of the traffic traversing the
congested links of the IP path between two overlay
nodes will not be part of the OverQoS bundle.

As a result, OverQoS needs to handle time-varying cross-
traffic and network conditions that it has no control over,
and yet enhance the service quality of the bundle.

OverQoS is based on two fundamental design principles:
a) loss control; b) aggregate resource control. Loss control
enables OverQoS to obtain a minimum service quality irre-
spective of the varying network conditions. By aggregating
flows into a bundle, OverQoS can exercise complete control
in distributing the available resources (bandwidth, loss) for
the bundle amongst the individual flows.

2.1 Controlled-Loss Virtual Link (CLVL)

To enable OverQoS to provide better than best-effort ser-
vices, we propose a new abstraction, controlled-loss virtual
link (CLVL), to characterize the service received by a bun-
dle. Using mechanisms implemented at the entry and exit
nodes, a CLVL provides a bound, g, on the loss rate seen by
the bundle over a certain period of time regardless of how
the underlying bandwidth b and loss rate p vary in time.
The idea is that a CLVL isolates the losses experienced by
the bundle from the loss-rate variations in the underlying
IP network path.

One way to control the virtual link loss rate is to add re-
dundancy packets to the bundle. Forward error correction
(FEC) and automatic repeat request (ARQ) are two ways
to do this. While ARQ has a lower bandwidth requirement
than FEC, ARQ may need more time to recover depend-
ing on the RTT between the overlay nodes and the num-

ber of retransmissions. In Section 4.2, we present a hybrid
FEC/ARQ solution.

The traffic between two overlay nodes consists of the flows
in the bundle and redundancy traffic for loss recovery. If r
represents the amount of redundancy required to achieve
a target loss-rate g, the awailable bandwidth for the flows
in the bundle is ¢ = b(1 — r). This leads to the definition
of the CLVL service model: As long as the arrival rate of
the bundle at the entry node does not exceed c, the packet
loss rate across the virtual link will not exceed q, with high
probability.

2.2 Aggregate Resource Control

The CLVL abstraction provides the service on a bundle
aggregate, rather than on a per-flow basis. This has two ben-
efits: First, the entry node has control over how the resources
of the aggregate are distributed among the individual flows
in the bundle. Second, applying FEC for loss-control on an
aggregate is more efficient than on a per-flow basis. The
larger the number of packets within any time window, the
lower the FEC overhead [10].

The entry node exerts control on the traffic in the bun-
dle at two levels of granularity: on the bundle as a whole,
and on a per-flow basis within the bundle. At both these
levels, the entry node can control either the sending rate or
the loss rate. The entry node first determines the virtual
link’s underlying parameters, b and p. Next, it determines
the level of redundancy r required to achieve a certain target
loss-rate g and estimates the resulting available bandwidth
c. The entry node then distributes the bundle’s available
bandwidth ¢ among the individual flows. If the net input
traffic is larger than ¢, the extra traffic is dropped at the
entry node and the losses are distributed across the flows in
the bundle according to their service specifications.

In the next section, we provide some of the potential ben-
efits to an end-user for using an OverQoS architecture as
opposed to just using the Internet. Section 4 discusses how
a CLVL can be implemented. Section 5 gives examples of
how the CLVL abstraction can be used to provide enhanced
services.

3. Why Use OverQoS?

In this section, we try to answer the following question:
Can OverQoS provide enhanced service to all OverQoS flows
without negatively affecting the background traffic? If “yes”,
we would have a strong case for using OverQoS.

More precisely, we want to know whether there are
OverQoS solutions that satisfy the following constraints:

1. Any OverQoS user should get a service no worse than
using the best-effort Internet. Otherwise a user won’t
have any incentive to use OverQoS.

2. OverQoS should not penalize the background (best-
effort) traffic. Ideally, we would like a best-effort flow
to receive roughly the same throughput irrespective of
how many other flows (that share the same congested
link) use OverQoS. This way, an ISP won’t have neg-
ative incentives not to support OverQoS traffic.

It is not immediately clear that it is possible to simultane-
ously satisfy both constraints. Consider n flows traversing a
congested link. We consider two scenarios, (a) all n flows are
best-effort, and (b) m flows belong to a CLVL, and the rest of

n —m flows are best-effort. Assume that all best-effort flows
are TCPs. We call the throughput achieved by a flow in sce-
nario (a) the TCP-equivalent throughput of that flow. Then
constraint (2) can be rewritten as: each background flows
should achieve no less than its TCP-equivalent through-
put no matter how many flows belong to the CLVL. From
here it follows that the aggregate bandwidth of a CLVL, b,
should not exceed the sum of the TCP-equivalent through-
puts of the m flows that belong to the CLVL. However, this
implies that if a CLVL flow achieves more than its TCP-
equivalent throughput, there is at least another CLVL flow
that achieves less than its TCP-equivalent throughput. But
this apparently violates constraint (1) since the user whose
flow achieves less than its TCP-equivalent throughput may
get a better service by switching to the best-effort Internet!
Fortunately, this is not the case. The problem with the
above argument is that we have implicitly equated the ser-
vice received by a user with the throughput of his flows.
However, a user is not always interested in optimizing the
throughput of each of his flows. We illustrate this point with
three examples in which OverQoS provides enhanced ser-
vices to users while still satisfying the above constraints.
Trading throughput for loss-rate: For some users it
is more important to achieve a low loss rate than maxi-
mizing the throughput of their flows. For instance, if the
TCP-equivalent throughput of a flow were 100 Kbps, a user
using a voice-over-IP application would be happy to get only
64 Kbps as long as the loss rate is less than say 0.1%. The
reason for using OverQoS in this case — instead of simply
using per-flow FEC - is that per-aggregate FEC has a lower
overhead in terms of redundant traffic than per-flow FEC.
Spatial bandwidth redistribution: Given a choice,
many users would like to have control on their aggregate
traffic. For instance, a user that has multiple flows may
want to improve the throughput of his “important” flows at
the expense of those less “important”. Consider a user that
has two flows in the same CLVL where the TCP-equivalent
throughput of a flow is 0.5 Mbps. In this case, the user should
be able to redistribute the total of 1 Mbps among its two
flows as he wishes. This functionality can be easily achieved
by using hierarchical link sharing [14]. Note that in today’s
Internet, a user cannot achieve this; unless the congestion is
on the outgoing link, reducing the throughput of one flow
will not result in increased throughput for the other flows.
Temporal bandwidth redistribution: A user may
want to reduce the completion times of short flows if this
won’t impact the completion times of long flows. Such a
service could significantly improve the web browsing expe-
rience since the majority of web transfers consist only of a
few data packets [7]. To illustrate the feasibility of such a
service, consider the example in Figure 2 in which a CLVL
with a bandwidth of 1 Mbps is shared by one long flow that
transfers 200 Kb, and four short flows that transfer 50 Kb
each. The long flow starts the transfer at time 0, while short
flows start their transfers at times 0, 0.1, 0.2, and 0.3 sec re-
spectively. Figure 2(a) shows the case when all flows receive
an equal share of the CLVL’s bandwidth. This accounts for
the case when the entry node runs a simple FIFO scheduler,
and all flows use the same congestion control scheme and
the have the same RTT. As a result, the long flow finishes
its transfer in 0.4 sec, while all short flows complete their
transfer in 0.1 sec. In contrast, Figure 2(b) shows the case
when the entry node runs a per-flow scheduling algorithm

[liongflow BN short flow

[%0]
Qo
ie)
=
—
0 01 0.2 03 0.4 sec
@
!
=)
=
—
0 01 0.2 03 0.4 sec
(b)

Figure 2: Improving short flow completion times.
(a) Short and long flows split equally the available
bandwidth. (b) Short flows get 3/4 of the available
bandwidth. The completion time of short flows de-
creases to 0.066 sec; the completion time of the long
flow remains unchanged.

that gives the short flows 3/4 of the available bandwidth. As
a result, each short flow completes the transfer in only 0.066
sec. The important point to note is that this improvement
does not affect the long flow; the long flow still completes its
transfer in 0.4 sec. A scheduling algorithm that can imple-
ment this service without prior knowledge of the flow lengths
is presented in [11].

In summary, OverQoS can indeed provide better services
to its users without unduly affecting the background traffic.

Finally, note that in practice there are cases in which
it makes sense to violate constraint (2). In particular, an
ISP may choose to allocate more bandwidth to a OverQoS
provider at the expense of the background traffic as long
as this is justified by the price structure of the best-effort
and the OverQoS services. For instance, an ISP can offset
the decrease in the throughputs of the background flows by
reducing the price per bit for this traffic, and recoup the dif-
ference by correspondingly pricing the bandwidth used by
the OverQoS provider. In turn, the OverQoS provider can
ask its customers to pay a higher price in exchange for better
service.

4. Implementing CLVLs

This section describes two different ways of building
CLVLs: a pure FEC-based solution and a hybrid solution
which is a combination of FEC and ARQ. Recall that a
CLVL abstraction aims to bound the bundle loss rate to
q < p. Since burstiness of cross-traffic is usually unpre-
dictable, we define ¢ as a statistical bound on the average
loss rate observed over some larger period of time (on the
order of seconds).

A purely ARQ-based solution for building CLVLs is easy
to construct. In a reliable transmission (¢ = 0), a packet
is repeatedly retransmitted until the sender receives an ac-
knowledgment from the receiver. In contrast, to achieve a
non-zero target loss rate, g, it is enough to retransmit any
lost packet at most L = log;q times, where p represents
the average loss rate over the interval over which we want
to bound gq.

4.1 FEC-based CLVL construction

In an FEC-based approach, we divide time into windows,
where a window is a unit of encoding/decoding. We con-
sider an erasure code such as Reed-Solomon, characterized
by (n, k), where k is the number of packets arriving at the
entry node during the window, and (n — k) represents the
number of redundant packets added. Define the redundancy
factor, r = (n — k)/n. The FEC problem reduces to de-
termining a minimum redundancy factor, r, such that the
target loss rate g is achieved.

This problem is challenging because packet losses are un-
predictable, and the algorithm must handle drastic changes
in loss rate and correlated packet losses. Since the value of
q may be one or two orders of magnitude smaller than p,
we may not be able to afford to wait for feedback from the
receiver about bursty losses in a window. Also, the time pe-
riod of a burst may be comparable to the time for obtaining
feedback from the receiver. So, rather than trying to predict
the occurrence and magnitude of the next burst, we follow a
conservative approach: We compute a statistical bound on
the fraction of packets lost in a window due to bursts based
on past history and set the redundancy factor to this bound.
A burst induces unrecoverable losses in a window if the frac-
tion of packets lost outnumber the redundancy factor. We
calculate this bound such that the net losses caused by such
bursts is less than g.

More precisely, let f(p) denote the PDF of the loss rate p,
where each value of p is measured over an encoding/decoding
window. Then, for a given target loss rate g, we need to
compute the smallest r such that:

/ pf(p)dp < q. (1)

Computing r requires the knowledge of the distribution
f(p). In practice, we estimate f(p) as follows. The OverQoS
exit node for a bundle computes the loss rate p for each
window and sends it back to the entry node. In turn, the
entry node uses these samples to construct a histogram, and
then uses this histogram to estimate f(p). Finally, the entry
node computes 7 for the next window based on the estimated
f(p).

It turns out that our algorithm requires 2/q loss samples
to accurately estimate r for a given value of ¢. Since we
compute the histogram only using the last 2/q samples, we
require the stationary property to hold only over relatively
short time periods (of the order of minutes).

4.2 FEC+ARQ based CLVL construction

While the FEC based solution is relatively easy to imple-
ment, it can incur a high overhead when the loss rate p is
bursty (e.g., when f(p) is heavy-tailed). To reduce this over-
head, we outline a hybrid FEC/ARQ approach that extends
the previous FEC solution.

Due to delay constraints for loss recovery, we restrict the
number of retransmissions to at most one. We divide packets
into windows and add a redundancy factor of r; for each
window in the first round. In the second round, if a window is
non-recoverable, the entry node retransmits the lost packets
with a redundancy factor r».

We need to estimate the parameters, r1 and r2. As in the
previous case, let f(p) model the fraction of packets lost
in a given window. The expected packet loss rate after two
rounds is equal to G(r1) X G(r2) where:

Overhead: FEC vs FEC+ARQ

~,
~
~
~
e
~a,

Overhead(%)
’
.

‘== Pure FEC
=—— FEC+ARQ
isr = = Pure ARQ

.............................. - E—

107 10°

10"
Target loss—rate(q) in %

Figure 3: Overhead (r): FEC4+ARQ vs Pure FEC.
In both cases b = 2Mbps and the bottleneck link is
10Mbps with a 9Mbps self similar background traffic.

G(r) = / pf (0)dp. (2)

The expected overhead, O, is simply r1 + G(r1)(1 + r2).
This yields the following optimization problem: Given a tar-
get loss rate g, determine the redundancy factors r; and 73
that minimize the expected overhead, O = r1 + G(r1) x (1+
r2), subject to the target loss constraint: G(r1) x G(r2) < q.

Fortunately, for many loss distributions that occur in
practice, the optimal solution for this problem is when
r1 = 0. This solution implies that it is better not to use
FEC in the first round, and use FEC only to protect re-
transmitted packets.

Figure 3 compares the overhead characteristics for
FEC+ARQ with pure-FEC and pure-ARQ based ap-
proaches. We make two observations. First, the overhead
of the FEC+ARQ algorithm is much smaller than that
of the pure-FEC algorithm. This is because, FEC+ARQ
applies FEC only to the retransmitted packets, and the
number of retransmitted packets is much smaller than the
total number of packets. Second, when ¢ > p?wg, the
FEC+ARQ algorithm reduces to the pure-ARQ algorithm,
where r1 = r2 = 0. This is because in this case each lost
packet is retransmitted only once; this is enough to achieve
a target loss-rate < pZ,,.

While FEC+ARQ is more efficient than pure-FEC,
FEC+ARQ may require more time to recover. With the
pure-FEC algorithm, the worst-case recovery time is W,
where W is the length in time of the encoding/decoding
window. In contrast, with the FEC+ARQ algorithm it may
take RTT+ W1+ W time to recover from losses, where RTT
is the round-trip time between the entry and the exit node,
and Wi and W> are the sizes of the windows correspond-
ing to rounds 1 and 2. For the simulation results shown in
Figure 3, the values of RTT, W and W1 are set to 100ms
each. The value of W5 depends on the number of retransmit-
ted packets in a window which in turn is dependent on the
loss-rate experienced by the window (worst-case: Wy = Wh,
average-case: Wa = pavg X W1).

5. Examples of Using CLVLs

In this section, we discuss three concrete examples of
how CLVLs can be used by OverQoS to provide different
types of services for end-to-end flows. The three examples
we consider are: per-flow bandwidth differentiation, statisti-

Differentiating Flows in a bundle

-=- Flow1
18 — Flow 2 |]
— Flow 3

I
N

o
®

Throughput(Mbps)

o
@

,| oy

BV} !

:'u.'\.,,‘, »\, B

Y

el LU

oy Y
!

N A o " Y ["
(A ! |l.,|n", ,“r'l,",vn TLRATAR XY
vray uv R

R

o
IS

o
N
T
-

300 350 400
Simulated Time(sec)

Figure 4: Differential rate allocation for three classes
within a bundle in the ratio 1:2: 3.

cal bandwidth guarantees, and explicit-rate end-to-end con-
gestion control algorithms. All these examples represent dif-
ferent ways in which the entry node distributes the CLVL
available bandwidth, ¢, among the competing flows.

5.1 Differential Rate Allocation

A simple way of distributing ¢ among the flows is to al-
locate the bandwidth in a proportionally fair manner. We
can implement a Diffserv-like service by separating OverQoS
flows into different classes and proportionally distributing ¢
among the different classes. Figure 4 demonstrates this ser-
vice for three different classes of traffic across a single CLVL.
In this simulation, the bundle bandwidth is allocated in the
ratio 1 : 2 : 3 using a DRR scheduling discipline [12]. Here,
we assume a 10 Mbps link, and a 6 Mbps self similar back-
ground traffic. This ratio is strictly preserved even in the
presence of a varying bundle bandwidth b (as estimated by
N times the rate of a single TCP flow). While this exam-
ple illustrates the differentiation across a pair of OverQoS
nodes, we can easily extend the same model across the entire
path in the overlay network.

5.2 Statistical Rate and Loss Assurances

OverQoS can provide statistical rate and loss assurances
that may be useful for streaming media delivery.

If the net arrival rate at the entry node is less than c,
then the entry node doesn’t have to drop any packets. Since
c itself varies in time, it may not always be possible to avoid
losses at the entry node. If the values taken by c can be mod-
eled by a distribution, we can estimate a value ¢pin, such
that P(c < ¢min) is small. ¢pin is a stable value as long
as the underlying distribution of c¢ is stationary. If ¢imin is
non-zero, the entry node can admit flows with pre-specified
bandwidth requirements such that the net bandwidth re-
quirement is less than c¢pi,. Since the net arrival rate of
these flows is less than ¢ with high probability, the CLVL
abstraction can provide these flows with both statistical loss
and bandwidth guarantees. We refer to these flows as QoS
flows. Of course, we need an admission control module at the
entry overlay node to allocate the bandwidth c¢pi, amongst
the QoS flows. Also, these flows can be admitted only over
the period for which ¢, is stable and fixed (typically of
the order of minutes), and flows may renegotiate admission.

Providing Guaranteed Bandwidth and Protection

—— TCP Flow
0.9 i Misbehaving Flow-3 Mbps
= Guaranteed Flow—0.5 Mbps|

Throughput(Mbps)

.
250 255 260 265 270 275 280 285 290 295 300
Simulated Time(sec)

Figure 5: Providing statistical bandwidth guarantees
to QoS flows and protection to available-bandwidth
ones.

The remaining part of the available bandwidth can be dis-
tributed amongst the other available-bandwidth flows in the
bundle.

We illustrate the CLVL’s capability to provide this service
model using a simple simulation. Consider a virtual link be-
tween two overlay nodes running a CLVL bundle for a target
loss rate of g = 0.1% on top of an N-TCP pipe with N = 10.
The virtual link traverses a bottleneck link of 10 Mbps and
the cross-traffic comprises 50 long-lived TCP flows. By ob-
serving samples of ¢, the entry node determines cmin = 0.5
Mbps since P(c < 0.5Mbps) is negligible. The entry node of
the bundle implements the DRR scheduling discipline. The
bundle consists of three flows: (1) a QoS flow requiring a
bandwidth guarantee of 0.5 Mbps, (2) a 3 Mbps CBR flow,
and a (3) TCP flow. Flows 2 and 3 are available-bandwidth
flows.

Figure 5 plots the average bandwidth achieved by the
three flows as a function of time. Flow 1 receives its guar-
anteed bandwidth with a loss-rate of only 0.02%. This is
two orders of magnitude lower than the network loss rate
of 2.44%. The TCP flow is protected against the aggressive
3 Mbps CBR (both flows have the same weight). Further-
more, the TCP flow in the bundle receives more bandwidth
than a regular TCP since it experiences a lower end-to-end
loss rate. Finally, when the TCP flow experiences a timeout,
flow 2 takes advantage of this and uses the excess bandwidth.
None of this requires any QoS machinery in the IP routers
on the virtual link; all the required functionality is imple-
mented exclusively at the overlay nodes.

5.3 Explicit-rate Congestion Control

An end-to-end path obtained by “stitching together” a se-
quence of CLVLs enables new end-to-end congestion control
algorithms without IP router support. For simplicity, con-
sider the case when all end-to-end flows traverse exactly one
CLVL. Since the entry node knows ¢ at any point in time,
it can decide how to allocate ¢ amongst the currently active
flows in the bundle, ensuring that each ¢; allocated to flow
i satisfies the constraints that ¢; < a; (the arrival rate of
flow i) and 3, ¢i = ¢. Then, by providing this information
to each flow as feedback analogous to XCP [9], cooperating
end-hosts can send at rate ¢;, a rate that will not cause more

than a small number of observable losses. One can extend
this to flows that traverse multiple CLVL’s by setting the
sender’s flow transmission rate to the minimum of the ¢;’s
returned along the reverse path.

6. Discussion

We now discuss a few important aspects of the OverQoS
design: The benefits of overlays, the power of controlled-loss
and scalability issues.

Why overlays? Overlays are easy to deploy compared
to changes to the IP infrastructure. More importantly, they
empower third-party entities other than traditional ISPs to
offer enhanced communication services to clients. Similarly,
OverQoS enables enterprises to build their own VPNs to
provide communication services superior to the ones offered
by traditional ISPs.

The key to provide better services in OverQoS is the CLVL
abstraction. CLVL allows applications to provide per-flow
bandwidth differentiation, statistical rate assurance, and im-
plement new congestion control algorithms without any QoS
support in routers. There are two properties of CLVL that
make it possible to implement these services in an overlay
network: the ability to control the loss rate, and traffic ag-
gregation.

Controlled-loss: CLVLs achieve a predefined target loss
rate, potentially at the expense of a reduction in the bun-
dle’s throughput. This is different from other similar QoS
mechanisms (e.g., Diffserv’s Assured Forwarding class) that
provide a fixed-bandwidth abstraction but without any
loss guarantees. There are two advantages of providing a
controlled-loss abstraction.

First, a controlled-loss abstraction gives more flexibility
to the entry router in allocating a bundle’s resources among
flows in a situation where no form of admission control is
present. If the available bandwidth decreases, the entry node
can choose to protect “important” flows by dropping the
packets of the “less-important” ones. Second, since the loss
seen by a bundle is in general much lower than the loss in
the underlying network, we can more readily deploy new
explicit-rate congestion control algorithms for flows within
the bundle.

Scalability: Scalability is an important concern in
OverQoS: we look at the amount of state, the FEC over-
head, and the number of OverQoS bundles below.

Traditional solutions to provide fine-granularity services
require to perform per-flow buffer management, scheduling,
and eventually admission control. For very large bundles
maintaining and managing the state for each flow in the
bundle may not be feasible. To get around this problem we
can use scalable techniques that were proposed at the IP
layer to enhance Internet’s QoS, such as end-host based ad-
mission control [4], or dynamic packet state (DPS) [13].

There are two components of the FEC overhead: com-
munication and processing. The communication overhead
scales well with the bundle’s rate. In fact, the percentage
of redundant traffic decreases as the rate of the bundle in-
creases. This is because the number of packets sent during
the same time window increases with the rate of the bun-
dle. Our current untuned implementation can process 200
Mbps of FEC traffic on a 866 MHz Pentium III. Further-
more, in-order arrival of packets is well-suited to an imple-
mentation using pipelined, high-bandwidth FEC ASICs for
Reed-Solomon codes. Such ASICs are commercially avail-

able [6].

In practice, we expect multiple OverQoS networks to co-
exist, an important question concerns the effect of multiple
CLVLs sharing the same congested link. This question re-
mains open, but our preliminary simulation results indicate
that the N-TCP abstraction allows any number of CLVLs to
seamlessly coexist and share the bandwidth of a congested
link. In addition, our simulation results indicate that a bun-
dle using N-TCP abstraction is also fair to the background
TCP traffic.

References

[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proc. 18th
ACM SOSP, pages 131-145, Banff, Canada, Oct. 2001.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. An architecture for differentiated
services, Oct. 1998. Internet Draft.

[3] R. Braden, D. Clark, and S. Shenker. Integrated
services in the Internet architecture: An overview,
June 1994. Internet RFC 1633.

[4] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and
H. Zhang. Endpoint admission control: Architectural
issues and performance. In Proc. of ACM
SIGCOMM’00, pages 57-69, Stockholm, Sweden,
Sept. 2000.

[5] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling
conferencing applications on the Internet using an
overlay multicast architecture. In Proc. of ACM
SIGCOMM 2001, San Diego, CA, Aug. 2001.

[6] Advanced Hardware Architectures.
http://www.aha.com/.

[7] A. Feldmann, A. C. Gilbert, and W. Willinger. Data
networks as cascades: Investigating the multifractal
nature of internet wan traffic. In Proc. of ACM
SIGCOMM 1998, Vancouver, Canada, Aug. 1998.

[8] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F.
Kaashoek, and J. O’Toole. Overcast: Reliable
multicasting with an overlay network. In Proc.
USENIX OSDI, San Diego, CA, Oct. 2000.

[9] D. Katabi, M. Handley, and C. Rohrs. Internet
congestion control for future high bandwidth-delay
product environments. In Proc. of ACM SIGCOMM
2002, Pittsburg, PA, Aug. 2002.

[10] S. Lin and D. Costello. Error control coding:
Fundamentals and applications. In Prentice Hall, New
York, NY, Feb. 1983.

[11] T. S. E. Ng, D. Stephens, I. Stoica, and H. Zhang.
Supporting best-effort traffic with fair service curve.
In Proc. of GLOBECOM 1999, Rio de Janeiro, Brazil,
Dec. 1999.

[12] M. Shreedhar and G.Varghese. Efficient fair queueing
using deficit round robin. In Proc. of ACM
SIGCOMM 1995, Cambridge, MA, Aug. 1995.

[13] I. Stoica. Stateless Core: A Scalable Approach for
Quality of Service in the Internet. PhD thesis,
Carnegie Mellon University, dec 1995.
CMU-CS-00-176.

[14] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical
fair service curve algorithm for link-sharing, real-time
and priority service. In Proc. of ACM SIGCOMM
1997, Cannes, France, Aug. 1997.

