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Abstract

Learning temporal causal structures among multiple time
series is one of the major tasks in mining time series data.
Granger causality is one of the most popular techniques in
uncovering the temporal dependencies among time series;
(i) the spurious
effect of unobserved time series and (ii) the computational

however it faces two main challenges:
challenges in high dimensional settings. In this paper,
we utilize the confounder path delays to find a subset of
time series that via conditioning on them we are able to
cancel out the spurious confounder effects. After study of
consistency of different Granger causality techniques, we
propose Copula-Granger and show that while it is consistent
in high dimensions, it can efficiently capture non-linearity in
the data. Extensive experiments on a synthetic and a social
networking dataset confirm our theoretical results.

1 Introduction

In the era of data deluge, we are confronted with large-
scale time series data, i.e., a sequence observations of
concerned variables over a period of time. For example,
terabytes of neural activity time series data are pro-
duced to record the collective response of neurons to
different stimuli; petabytes of climate and meteorologi-
cal data, such as temperature, solar radiation, and pre-
cipitation, are collected over the years; and exabytes of
social media contents are generated over time on the In-
ternet. A major data mining task for time series data is
to uncover the temporal causal relationship among the
time series. For example, in the climatology, we want to
identify the factors that impact the climate patterns of
certain regions. In social networks, we are interested in
identification of the patterns of influence among users
and how topics activate or suppress each other. Devel-
oping effective and scalable data mining algorithms to
uncover temporal dependency structures between time
series and reveal insights from data has become a key
problem in machine learning and data mining.

There are two major challenges in discovering tem-
poral causal relationship in large-scale data: (i) not all
influential confounders are observed in the datasets and
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(ii) enormous number of high dimensional time series
need to be analyzed. The first challenge stems from
the fact that in most datasets not all confounders are
measured. Some confounders cannot even be measured
easily which makes the spurious effects of unobserved
confounders inevitable. The question in these situations
is how can we utilize the prior knowledge about the un-
measured confounders to take into account their impact.
The second challenge requires us to design scalable dis-
covery algorithms that are able to uncover the temporal
dependency among millions of time series with short ob-
servations.

Granger Causality [10] is one of the earliest methods
developed to quantify the temporal-causal effect among
time series. It is based on the common conception that
the cause usually occurs prior to its effect. Formally, X
Granger causes Y if its past value can help to predict
the future value of Y beyond what could have been done
with the past value of Y only. It has gained tremendous
success across many domains due to its simplicity,
robustness, and extendability [3, 4, 12, 18, 21]. Granger
causality, similar to other causality discovery algorithms
is also posed to the two data challenges. Spirtes et
al [27, ch. 12] in the open problems section of their
book describe the challenges in Granger causality as
following: “First, tests of regression parameters waste
degrees of freedom at the cost in small samples of
power against alternatives. Since in many cases the
number of observations is of the order of the number of
parameters, whatever can be done to increase reliability
should be. Second, it appears that while the time
series setting removes ambiguities about the direction
of dependencies, or edges, it does not remedy problems
about unmeasured common causes of the outcome and
regressors, and thus even asymptotically regression may
yield significant coefficients for variables that are neither
direct nor indirect causes of the outcome.”

In this paper we address both issues. In attempt
to cancel out the effects of unobserved confounders, au-
thors in [6, 7, 8] have extended Pearl’s criteria [22] for
determining a set of time series that via conditioning
on them the spurious causation paths are blocked and
the Granger causality identifies the true temporal de-
pendency graph. As shown in Fig 1, by analysis of the
effects of unobserved confounders in simple structures,
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Figure 1: The sequence of the theoretical results: Theorem 3.1 utilizes path delays to find a subset of time series
that via conditioning on them we are able to cancel out the spurious confounder effects. Proposition 4.1 shows that
when unobserved time series are parents of multiple observed time series, there is no consistent Granger causality
test. The Causal Sufficiency assumption excludes these structures and with this assumption both significant test
and Lasso-Granger become consistent in low dimensions (Proposition 4.2). Proposition 4.3 shows that in high
dimensions significant test is inconsistent but Lasso-Granger is consistent. When the data deviates from the linear
model assumed in Lasso-Granger, Theorem 4.1 shows that while Copula-Granger is consistent in high dimensions,

it can efficiently capture non-linearity in the data.

we derive a new set of criteria which utilizes the aggre-
gate delay in the confounding paths. The new criteria
requires smaller subset of time series to be observed;
hence it is more likely to be able to guarantee that
Granger causality results are the true temporal rela-
tionships among the time series.

Next we identify a key set of unobserved variables
that there existence prevents any guarantee on accu-
racy of Granger causality results. We show that under
causal sufficiency assumption which excludes this struc-
tures, the two main linear Granger causality inference
techniques, Significance Test [17] and Lasso-Granger
[2, 26, 28], are consistent. However, we observe that
in higher dimensions only Lasso-Granger is consistent.
Utilizing the high dimensional advantages of L; regu-
larization, we design a semi-parametric Granger causal-
ity inference algorithm called Copula-Granger and show
that while it is consistent in high dimensions, it can ef-
ficiently capture non-linearity in the data.

In the rest of the paper, we first review Granger
causality and the existing approaches to uncover
Granger causality in Section 2, and then we discuss the
theoretical analysis results to answer each of these two
questions in Section 3 and 4, respectively. In Section 5,
we show experiment results on synthetic datasets and
social media application data to support our theoretical
analysis, and finally summarize the paper and hint on
future work.

2 Preliminaries and Related Work

Granger Causality is one of the most popular ap-
proaches to quantify causal relationships for time series
observations. It is based on two major principles: (i)
The cause happens prior to the effect and (ii) The cause
makes unique changes in the effect [10, 11]. There have
been extensive debates on the validity and generality of
these principles. In this paper, we omit the lengthy dis-
cussion and simply assume their correctness for the rest
of the discussion.

Given two stationary time series X = {X(t)}tez
and Y = {Y(¢)}iez, we can consider the following
information sets: (i) Z*(t), the set of all information
in the universe up to time ¢, and (ii) Z”(¢), the set
of all information in the universe excluding X up to
time t. Under the two principles of Granger causality,
the conditional distribution of future values of Y given
Z*y(t) and Z*(t) should differ. Therefore X is defined
to Granger cause Y [10, 11] if

(2.1) PlY(t+1) e AZ"(t)] #P[Y(t+1) e A|IZZx ()],

for some measurable set A € R and all ¢t € Z. As
we can see, the original definition of Granger causality
is very general and does not have any assumptions
on the data generation process. However, modeling
the distributions for multivariate time series could be
extremely difficult while linear models are a simple yet
robust approach, with strong empirical performance
in practical applications. As a results, Vector Auto-
regression (VAR) models have evolved to be one of the
dominate approaches for Granger causality.



Up to now, two major approaches based on VAR
model have been developed to uncover Granger causal-
ity for multivariate time series. One approach is the
significance test [17, ch. 3.6.1]: given multiple time se-
ries Xq,..., Xy, we run a VAR model for each time
series X;, i.e.,

1%
(2.2) X;(t) =Y 8] XF09ed 4 ¢(t),
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where X799 = [ X (¢-L),..., X;(t-1)] is the history
of X; up to time ¢, L is the maximal time lag, and
Bji = [B85,:(1),...,B;:(L)] is the vector of coefficients
modeling the effect of time series X; on the target
time series. We can determine that time series Xj;
Granger causes X if at least one value in the coefficient
vector (3; is nonzero by statistical significant tests.
The second approach is the Lasso-Granger approach
[2, 26, 28], which applies lasso-type VAR model to
obtain a sparse and robust estimate of the coefficient
vectors for Granger causality tests. Specifically, the
regression task in eq (2.2) can be achieved by solving
the following optimization problem:
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where ) is the penalty parameter, which determines the
sparsity of the coefficients 3.

The Lasso-Granger technique addresses the first
challenge regarding the high dimensional learning to
a great extent. However, it is applicable only to lin-
ear systems and the challenge still remains for the non-
linear systems. Several approaches have been proposed
for identification of Granger Causality in non-linear sys-
tems; among the notable ones, kernelized regression [18],
non-parametric techniques such as [12, 21, 25], Non-
Gaussian Structural VAR [14] and generalized linear
autoregressive models [15]. However these methods ei-
ther perform poorly in high dimensions or do not scale
to large datasets. In this paper we propose a semi-
parametric approach based on the copula approach [16]
to retain the scalability of linear VAR and high dimen-
sional accuracy of Lasso methods and at the same time
efficiently cancel out the effect of non-linearity of the
data with no prior assumption on the marginal distri-
bution of the data.

The remarkable success of Granger causality via the
VAR approach in different applications [3, 4, 12, 18, 21]
has led to definition of Granger Graphical models [5, 7]
and Directed Information Graphs [23]. Both graphical
models are obtained via graphical representation of each
time series with a node and the dependency of the future
of a time series X;(t) to past values of another time

series X (¢) via a directed edge X; - X; in the graph.
Granger graphical models are similar to the Causal
Graphs [22, 27], however they have several significant
differences: (i) they are not necessarily acyclic; a
Granger graph can even have bidirectional edges; i.e.
both of X; - X; and X; - X; edges and (ii) they
are not irreflexive; i.e. a node can have an edge into
itself X; — X, the situation that is usually can be
interpreted as memory in the system. The differences
between Granger graphical models and causal graphs
pose the question of how one can handle the effect of
spurious causation due to unobserved confounders in
Granger graphical models.

Several key steps have been taken by Eichler in
analysis of effects of unobserved confounders in Granger
graphical models, see [7] and the references therein. He
introduced the m-separation criteria, as the counterpart
of Pearl’s d-separation in causal graphs [22], for detec-
tion of connectivity of spurious paths in Granger graphs
using causal priors on the unobserved time series. In this
work, we show that often times, when the delay values of
the edges are available in the causal prior information,
many directionally connected paths, identified by the m-
connectivity criteria, are disconnected considering the
delay values. As a result, coping with effects of unob-
served confounders is simpler in the Granger graphical
models.

3 Coping with effects of unobserved
confounders in Granger networks

In response to the second challenge, in this section, we
show that coping with hidden confounders’ effect is eas-
ier in Granger networks. In particular, in Granger net-
works, many directionally connected paths are discon-
nected considering the delay associated with the edges.
Thus, often times we require conditioning on fewer vari-
ables to block the spurious causation paths. We start
with a canonical example to introduce the main con-
cept of path delays. Via demonstration of the effect of
path delays in the three basic graphical structures, we
extend the “m-separation” criteria to include path de-
lays in identification of connectivity of the paths. We
show that the generalized criteria are able to detect
more blocked paths which yields to higher possibility
of successful causal identification. Note that the results
in this section are general and not limited to the linear
VAR models.

Consider the following set of linear autoregressive
equations:

(34) Xl(t) = 04X4(t - 2) +€1(t), Xg(t) = 63(t),
Xo(t) = BXa(t - 1) + v X5(t - 1) +e2(t), Xa(t) =ea(t),
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Figure 2: In this toy Granger graphical model, accord-
ing to m-separation criteria, when X, is unobserved, a
spurious edge X; < X3 is detected. However, the spu-
rious edge is not detected when 75 — 79 + 7 <1, where L
is the maximum lag in Granger causality test.

where €;(t),7=1,...,4 are independent noise processes.
The corresponding Granger graphical model is shown
in Fig. 2, with m, = 2,75 = 1 and 73 = 1. The
direction of the edges and the values of delays on them
are causal priors, obtained from field knowledge, which
are necessary for analysis of effects of hidden variables.
For example, consider three events defined as following:
X :rain in Los Angeles, CA, Y : rain in Riverside, CA
and Z : the approach of the coastal air masses. One
can observe that the effect of coastal air masses cannot
reach Riverside earlier than Los Angeles; consequently,
The edge Z — X must have smaller delay than Z - Y.

In analysis of the structure in Fig. 2, Eichler
[5] showed that in absence of X4 an spurious edge is
detected from X3 to X;. This spurious causation is
the result of the spurious path X; « Xy - X5 « X3
which is connected under the “m-separation” criteria.
However, a quick inspection shows that when 7 <1 the
spurious edge X3 — X; is never inferred. This implies
that in Granger networks, we might inspect not only
for graphical connectivity, but also for the delays in the
connected paths. This idea is scrutinized via the three
basic structures of directed graphs possible with three
time series (see Fig. 3).

The Co-parent Structure In the co-parent
structure (Fig. 3a), an unobserved time series (2)
causes two observed time series X and Y. The effect
of the cause Z reaches X and Y with possibly differ-
ent delays 71 and 7o, respectively. A simple inspection
shows that the identified direction of causality between
X and Y depends on the relative value of 7 and 75. In
particular,

LEMMA 3.1. In the co-parent structure in Fig. 3a,
when Z is unobserved and generated from a white

process, the following spurious edges are detected:

(3.5) TI < To = XY
T > To = Y- X
T1 =T = No Causality

In other words, the path from X to Y, when Z is
unobserved, is blocked if 71 > To while the path X <«
Z —Y 1is connected in m-connectivity criteria.

Proof. A proof is given in the supplementary materials.

The Collider Structure Before delving into the
theories, we first formally define the collider structure
in Granger causality. Suppose the time series Z are
generated from two independent time series X and Y
as follows:

Zi= f(X(t-1),...,X(t-L),Y(t-1),...,Y(t- L)) +¢z,

where the noise term ez is N (0,0). The causal
relationships between X, Y and Z include X - Z and
Y — Z, where Z is called the Collider Node. Fig. 3b
shows an example of the collider structure where the
effects of X and Y reach to Z with 7 and 75 delays,
respectively. Next, we discuss our results on the collider
structure in Lemma 3.2.

LEMMA 3.2. In the inference of Granger causality, ob-
serving the collider node does not create spurious edge
between the parents of the collider node.

Proof. The formal proof is given in the supplementary
materials.

The Chain Structure The third structure the
chain structure as shown in Fig. 3c. It is already known
that given the variable Z, no edges from X to Y will be
detected; while when Z is not given, the path X - Y is
connected.

To Summarize the results of observations in the fun-
damental structures, consider the following definition of
path delay:

DEFINITION 3.1. Consider a path P of length p—1 from
X; to X; defined by a set of ordered nodes { Xy }h_;
where X1y = X; and X,y = X; is given. Define the
path delay as T;,(P) = Zﬁ;} QY, (k+1) T(k),(k+1) where
(k) (k+1) = +1 if the edge between Xy and X1y is
oriented as X 1y = X(g+1) and gy, (k+1) = —1 otherwise.

In other words, start from X; and add the delay of
edges if they are towards X; and subtract otherwise.
For example, in the example given in Fig. 3.4 the path
delay from X3 to X; is computed as 73 — 75 + 71. Using
the definition of path delay, we can state the following
general theorem.
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Figure 3: Three of four possible directed graphs created by three nodes (a) the coparent, (b) the collider and (c)
the chain structures. The fourth structure is the chain with reversed edge directions.

THEOREM 3.1. Consider a Granger network G(V,E)
with set of nodes V. = {X;} for i = 1,...,n, set of
directed edges E and the edge delays 1; ; € Z* for every
edge X; — X; € E. Suppose the unobserved time series
are generated from white processes. Then, every path P
from an arbitrary node X; pointing to X; is connected
if it is both m-connected and the path delay T; ;(P) > 0.

Proof. A proof based on step by step reduction of the
path using the three fundamental structures is provided
in the supplementary materials. The intuition behind
the theorem is rather simple if we accept the directional
information transfer interpretation of Granger graphical
models: a spurious edge is detected whenever the
information from the effect reaches the cause with a
positive delay.

Note that the profound implication of Theorem
3.1 is that the time order information that is usually
assumed available in confounder analysis can be used
more efficiently in the Granger causality analysis. If
the time order between hidden variables are given, we
can make stricter rules for the connectivity of paths in
the Granger causality framework by ruling out many
paths that would be identified as connected by m-
separation. This makes the unidentifiability problem
less likely in Granger networks with hidden variables.
The next example demonstrates the advantages implied
by Theorem 3.1.

EXAMPLE 3.1. Consider the Granger graph in Fig. 4.
Time series X1, Xs and X3 are observed while X4 and
X5 are unobserved. The goal is to find the Granger
causal effect of X1 on X3.

Solution. The true causal path is X; - X5 — X3,
however the X; < Xy - X5 « X3 path is a potential
confounding path. The m-connectivity criteria states
that unless X, is observed, the causality from X; to X3
will not be identifiable. However, utilizing the delay of
the path X; « Xy - X5 « X3, unidentifiability only
occurs when the path delay 75 ; > 0 and we have higher
possibility of successful causal inference.

TQ@
1 T3
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Figure 4: An example of canceling spurious causation.
Time series X1, Xo and X3 are observed while X, and
X5 are unobserved.

While whiteness of the unobserved variables is
satisfied in many applications, even in the cases that
the hidden time series are not white, the analysis in
the supplementary materials shows that the unidentified
spurious causations need to propagate through long
paths and undergo significant attenuation which makes
Theorem 3.1 approximately hold.

4 Consistency of Granger causality methods

After the analysis of spurious causality in Granger
causality given its fundamental assumptions, we are
ready to analyze the consistency results of different ap-
proaches to uncover Granger causality. In this section,
we first review the consistency of two main Granger
causality analysis techniques, significance tests and
Lasso-Granger, in low dimensional regime where suf-
ficient number of observations are given. First we
show that in presence of hidden coparent variables, no
Granger causality test can be consistent. To solve the
problem, we show that in the causally sufficient sys-
tem, the consistency results are established for both
approaches. Next we show that in high dimensional
regime, unlike Lasso-Granger, the significance test is
inconsistent; leading to the main incentive for the
use of Lj regularized methods in high dimensional
regimes. Thus, we introduce the semi-parametric ap-
proach Copula-Granger and show that while it is con-
sistent in high dimensions, it can capture non-linearity
in the data.

First we have the following inconsistency result in



the presence of hidden variables.

PROPOSITION 4.1. In the presence of hidden variables,
no test for Granger causality can be consistent.

Proof. Similar to [24], consider the common cause sce-
nario as shown in Fig. 3a with 75 > 71. It can be easily
seen that in absence of Z, X will be identified as the
Granger cause for Y.

In order to avoid the situations described in Proposition
4.1, a common practice is to make the following Causal
Sufficiency assumption, [27, ch. 5].

ASSUMPTION 4.1. A causal system is Causally Suffi-
cient if no common cause of any two observed variables
in the system is left out.

The next proposition studies the consistency of
significance tests and Lasso-Granger to uncover Granger
causal relationships. Following [31], we define the Model
Selection consistency for Granger causality tests using
the following probability

P[Error] = P[{(i, )  Bij # 0} # {(i, 1)  Bij # 0}].

where B is the coefficient vector inferred via a Granger
causality inference algorithm. We say that a method is
consistent if its probability of errors goes to zero as the
number of observations increase.

PROPOSITION 4.2. Given the causal sufficiency in a
VAR system, both of significance test and Lasso-
Granger tests do mnot include spurious causation.

Furthermore, given sufficient number of observa-
tions (T/L > n + 1), the causal estimates are
consistent; i.e.  for significance tests P[Error] <

cLNT — Lexp (—%(T - L)) for some constant ¢, where
T is the length of time series, and L is the maximal lag;
and for Lasso-Granger, subject to the Irrepresentable
Condition in [31], the model selection error decays with
rate o(c' Lexp(=T")) for some 0 <v <1 and some con-
stant c’.

Proof. Proofs via different approaches can be found in
the literature, see [17, ch. 2.3] and [31]. For complete-
ness, we also provide a proof in the supplementary mate-
rials using asymptotic normality of maximum likelihood
estimation.

Remarks 1. The result in Proposition 4.2 states
that the error decreases exponentially as the length
of the time series increase for both approaches. Also
it states that when L <« T large value of L linearly
degrades the performance, whereas in the case of L ~T

the exponential term will be dominant and the error will
increase exponentially with L.
2. The consistency results also imply that learning
linear Granger causal relationships is a simpler task
than learning undirected graphical models [19]. This
is intuitive since learning the edges for one node is a
variable selection process isolated from that for other
nodes and therefore no constraint on the neighborhood
nodes is required.

Moving to high dimensional regime, we will show
that the significance tests are inconsistent in high di-
mensions.

PROPOSITION 4.3. In high dimensions, where T|L <
n + 1, the significant test is inconsistent. The inferred
coefficients using ridge regression decay according to
following rate:

= B if (n+1)L<T
ExelBi]= { (g if (n+ 1)L>T.
as the penalization parameter in the ridge regression
A = 0. The expectation is over outcomes of the data
X and noise €. The Ly variable selection methods are
consistent subject to incoherence conditions, [20].

Proof. A proof based on properties of random design
matrix is provided in the supplementary materials. Sev-
eral other authors also have pointed out the inconsis-
tency of the ridge regression, and consequently signifi-
cance tests, in high dimensions before, see [20, 29] and
the references therein; however to the best knowledge of
the authors, the above small sample result is novel.

Proposition 4.3 highlights the fact that the inadver-
tent choice of large lag length L can move the system
to high dimensional regime and result in inconsistency
of the significance test.

All the consistency results so far are for linear
Granger causality inference techniques. Here we pro-
pose the Granger Non-paranormal (G-NPN) model and
design the Copula-Granger inference technique to cap-
ture the non-linearity of the data while retaining the
high dimensional consistency of Lasso-Granger.

DEFINITION 4.1. Granger Non-paranormal (G-
NPN) model We say a set of time series X =
(X1,...,X,) has Granger-Nonparanormal distribution
G-NPN(X, B, F) if there exist functions {F;}}_, such
that F;(X;) for j = 1,...,n are jointly Gaussian and
can be factorized according to the VAR model with coef-
ficients B ={B; ;}. More specifically, the joint distribu-
tion for the transformed random variables Z; = F;(X;)



can be factorized as following
pz(z) =N (z(1,...,L))
n T n
T TT pa(z (01 ) 81279, o),
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where ppr(z|p, o) is the Gaussian density function with
2

mean @ and variance o-.

Based on the copula technique [16], The G-NPN
model aims to separate the marginal properties of the
data from its dependency structure. The marginal dis-
tribution of the data can be efficiently estimated using
the non-parametric techniques with exponential conver-
gence rate [30, ch. 2]. The estimation of the dependency
structure requires more effort; because there are at least
O(n?) pairwise dependency relationships. Thus, we re-
sort to L regularized techniques for efficient estima-
tion of the dependency structure in high dimensional
settings.

Learning Granger Non-paranormal models consists
of three steps: (i) Find the empirical marginal distribu-
tion for each time series F}. (ii) Map the observations
into the copula space as f;(X?) = 7i; + 7,0~ (E(Xf))
(i) Find the Granger causality among f;(X?). In prac-
tice we have to use the Winsorized estimator of the dis-
tribution function to avoid the large numbers ®~!(0%)
and ®71(17):

Ey={ Fi(X;) ifd, <Fj(X;)<1-6,
(1-6,) it F(X;)>1-6,

First we have the following proposition that con-
nects the Granger causality results identified by the
Copula-Granger method to the true Granger causality
values:

PROPOSITION 4.4. The independence relationships in
the copula space are the same as the independence
relationships among original time series.

Proof. Since X 1Y if and only if g(X) 1 h(Y') for any
arbitrary random variables X and Y and deterministic
one-to-one transformation functions g(.) and h(.), the
proposition is established.

The next theorem establishes the consistency rate
of the Copula-Granger method.

THEOREM 4.1. Consider the time series X;(t)
for i« = 1,....n and t = 1,....,7 gener-
ated according to G - NPN(X,B,F). Se-

-1
lect Op_p = (4(T—L)1/4\/7rlog(T—L)) and

Ar_p, < /(T - L)log(nL). Suppose the incoherent de-

sign condition in [20] holds for both covariance matrices
C = E[X,(t)X,(#)] and C = E[F,(X,(t))F; (X, ()]
for i,5 = 1,...,N and t,s = t—-L,...,t = 1. The
Copula-Granger estimate of the B is asymptotically
consistent as T — oo

. 1 L
(4.6) 18 - Bijl, = Op (KT‘L\/@) ’

where B; ; are estimates of B; ; using Copula-Granger,
s is the number of mon-zero coefficients among nL
coefficients under analysis and Kp_y, is proportional to

w(ﬁ’"i(”;ez) where Gmaz and Gmin(m) are mazimum and
min n

m-sparse minimum eigenvalue of the matriz C and e, is
a saparisty multiplier sequence as defined in [20]. The
subindex P in Op denotes convergence in probability.

Proof. The proof provided in the supplementary ma-
terials relies on the result of [16] which shows that
the covariance matrix of the samples transformed by
the non-parametric Winsorized distribution estimator is
concentrated around the true covariance matrix. Using
this concentration bound, we can bound the maximum
eigenvalue of the matrix C — C. Repeating the steps of
[20] gives the rate above.

Theorem 4.1 states that the convergence rate for
Copula-Granger is the same as the one for Lasso which
suggests efficient Granger graph learning in high dimen-
sions via Copula-Granger.

5 Experiments

In this section, we conduct experiments on synthetic
datasets and a Twitter application dataset to study the
properties of significance tests, Lasso-Granger and the
semi-parametric approach for Granger causality anal-
ysis and verify our theoretical results. In all the ex-
periments, we use implementation of Lasso in GLM-
net package [9] and tune the penalization parameter of
Lasso via AIC [1]. In the prediction task, we train the
algorithm on the 90% of the data and test it on the rest.

Verification of the Theoretical Consistency
Results We generated multiple synthetic datasets to
verify the claim in Theorem 3.1. We provide an example
of such experiments. Fig. 5a shows the graph of
a synthetic dataset generated to verify the claim in
Lemma 3.2. In this dataset, X,Y and Z are observed,
but U and V are unobserved. Fig. 5b shows the
causality relationships identified by three algorithms
when we set the length of the time series to 500. As
we can see none of the edges Z — Y and X - Y
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Figure 5: (a-c) Edge detection probabilities in the collider scenario. (d-e¢) Accuracy of Lasso-Granger, Significance
test and Copula-Granger methods in the non-linear settings. The time series are selected to be short (7" = 30).

Table 1: The top ten influential users detected by the algorithms.

Significance Test

Lasso-Granger

Granger-Copula

Name # of Tweets Name # of Tweets Name # of Tweets
imzadil 43 monsterroxanne 13 prayer_network 85
thinkingofrob 49 untoothershaiti 265 contactolatino 77
wyclef 41 trendsbyminute 122 woodringstpreux 158
bduguay 31 lustlove 85 epiccolorado 75
gregdominica 24 clarlune 51 lumicelestial 74
margofranssen 35 lupmaria 49 viequesbound 114
joannasimkin 27 haiti_tweets 33 shirley1376 55
porque2012 31 srgryph 30 kareenaristide 101
mekaemanuel 22 hope_for_haiti 26 nancyl19087 49
catweazle1961 30 mrlyphe 24 alaingabriel 97
333 698 885

are detected by algorithms. In Fig. 5c the length of
time series is reduced to 50. Neither Lasso-Granger nor
Copula-Granger identify any edge, while the significance
test approach over-rejects the null hypothesis. These
results also confirm the loss due to large lags when the
length of the time series is short.

The Effect of Non-Linearity Similar to [13],
we design a non-linear system with a parameter to
control the amount of non-linearity. We choose the
nonlinear function g(z) = = + bz® and b e [0,1]
where b is used to control it non-linearity. Using
this function we define the following set of time se-
ries: X1(t) = X0, [Xi(t-1) +bXP(t-1)] + £1(¢) and
X;(t)=¢€;(t), j=1,...,n, where g;(t) for j=1,...,n
are white A/(0,0.1) noises. Fig. 5 shows the effect of
non-linearity on the performance of the three algorithms
for high dimensional (n = 20 for Fig. 5d) and low dimen-
sional (n =10 for Fig. 5e) cases. Note the robustness of
the copula approach with respect to nonlinearity. Fig.
5e points out the fact that in low dimensional settings
the ridge regression with small penalization terms has
lower bias and is more accurate.

Social Networking Dataset We used a complete
Twitter dataset to analyze the tweets about “Haiti
earthquake” by applying different Granger causality
analysis methods to identify the potential top influen-
tial on this topic (i.e. those Twitter accounts with the

~

@
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Figure 6: Aggregate number of tweets about Haiti in 17
days after the earthquake. The time axis is divided to
1000 intervals.

Table 2: The RMS prediction error.

[ Method | RMSE |
Significance Test | 5.2x 107>
Lasso-Granger 3.8x1073
Granger-Copula | 3.9x1073

highest number of effect to the others). We divided the
17 days after the Haiti Earthquake on Jan. 12, 2010
into 1000 interval and generated a multivariate time se-
ries dataset by counting the number of tweets on this
topic for the top 1000 users who tweeted most about
it. Fig. 6 shows the aggregate number of tweets about
Haiti in the dataset. Table 2 compares the prediction
performance of the algorithms. Associating the number



of outgoing edges with the social influence of a node,
we find the most influential users identified by each al-
gorithm by counting the number of outgoing edges for
each user. The top ten most influential users identified
by each algorithm are listed in Table 1. For each user,
we also count the number of tweets by the user about
the topic in the interval of study. The top ten influen-
tial users identified by Copula-Granger technique have
significantly more tweets which confirms the superior
performance of the Copula-Granger approach.

6 Conclusion

In this paper, we studies the theoretical properties of
large—scale Granger causality inference algorithms. We
utilized the confounder path delays to find a subset
of time series that via conditioning on them we are
able to cancel out the spurious confounder effects.
After study of consistency of different Granger causality
techniques, we propose Copula-Granger and show that
while it is consistent in high dimensions and scalable
for large data, it can efficiently capture non-linearity
in the data. For future work we are interested in
theoretical analysis of properties of a wider class of
algorithms. Investigation of different techniques for high
dimensional non-linear Granger causality inference is
another line of future work.
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7 Supplementary Materials
7.1 Proofs of Section 3

7.1.1 Proof of Lemma 3.1 Without loss of gener-
ality let’s assume 7 < 7. We need to show that there
is an spurious edge from X to Y and there is no spuri-
ous edge from Y to X. Formally, we need to show that
Y(@) &« XE-7)|Y(-1,...,t = L) for 7 =1,...,L.
Using the SEM notation, as shown in Fig. 7a, we can
see that there is always a directional path from Y'(¢)
via Z(t-13) to X(t — 12 +71). However, all paths from
Y({-7),7=1,...,L to X(t) are blocked. Note that if
Z(t) is not white, there exists at least a spurious path
which goes through history of Z(t); however in practice
the attenuation of this path is significant enough that
makes the Lemma approximately hold for non-white un-
observed variables.

7.1.2 Proof of Lemma 3.2 An argument similar
to the previous proof can be used here to show that
Y@) L X(t-m)|Y(t-1,...,t = L) for 7 =1,...,L.
Fig. 7b shows the scenario corresponding to 7 =1 and
7o = 2. We can see that the observations at ¢t — 1 block
all the directed paths from past to X (¢) and Y (¢) which
concludes the proof.

7.1.3 Proof of Theorem 3.1 Proof can be estab-
lished by induction. Informally, the proof is a sequence
of reduction of the fundamental structures to there
equivalent spurious edge. The final path will be one of
the three fundamental structures for which the equation
T}.; > 0 is satisfied.

7.2 Proof of Proposition 4.2 The proof is done in
two steps: (i) finding the convergence rate of Maximum
Likelihood estimation of VAR models and (ii) Proposi-
tion 7.1 to complete the proof.

Proof. Convergence rate of Maximum Likelihood
estimation of VAR models The main idea of the
proof is that learning edges for every node is a variable
selection problem isolated from other nodes. Define the
consistency by introducing the probability of errors for
VAR-type models as follows:

P[Error] =P[3¢: |EJ (0)] > a|Bi,; = O]P[B;,; = 0]
+P[VL: [B;;(0)| < aolBi; % O]P[B;; # 0],

where ¢ can take values in the 1,...,L range. In the
significance test method, first perform an ordinary least

squares to obtain 3; ;. Then construct tests as following:

(7.7) Hy < Bi (1) =0,
(7.8) Ha: B;.5(2) =0,
(7.9) s
(7.10) HE i (L) = 0.

We report an edge if any of the hypotheses in Eq.
(7.10) is rejected. The consistency of the test above
can be established using asymptotic normality of the
ordinary least squares estimate. For significance tests
in the form of f; ;(£) < oy for some v < a the error can
be bounded as following:

P[Error| < P[Identify x; — x;|z; 4 ;]

L —_
ZZ P[153:.;(€)| > aolBi; = 0]
=1

Qo
QLQ(mv)'
where Q(t) is the tail probability of the Gaussian
distribution and v is the variance of individual 5;
(without loss of generality they are assumed to be
equal.). Since Q(t) <t™! exp(—%tQ) for ¢t > 0, the above
probability can be bounded as follows

02

(7.11)  P[Error] < 2¢LVT - Lexp( 5 (T - L)) ,

where ¢ = QLO Uniform consistency is established due
to existence of uniformly consistent tests for association
[24].

Obtaining the probability of error for Lasso requires
further assumptions in [31]; it can be shown that the
model selection error is linearly proportional to L and
diminishes with rate o(exp(-T")), for some 0 < v < 1.}

PROPOSITION 7.1. Suppose in a VAR model with some
unobserved time series. If Assumption 4.1 holds. The
graph G learned Significance test and any consistent Ly
variable selection method does not have any spurious
causal edge. It may be different with the true Granger
graph G in identification of direct causality structures.

Proof. The proof follows from the fact that given causal
sufficiency (Assumption 4.1) an unobserved variable can
have two possibilities: (i) it is not a descendant of
another observed variable. In this case it can be merged

TNote that as long as a method selects individual elements of

Bi,; separately, the error will scale linearly with L for L « T'. The
Group-Lasso which selects all elements of 3; ; at once improves
this linear dependence.
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Figure 7: The diagrams for proving (a) Lemma 3.1 and (b)Lemma 3.2. The green circles are observed variables

and the red path shows a d-connected path.

with noise term in the VAR model or (ii) it has an
observed parent X. In this case all the causal paths such
as X - Z - Y where Z unobserved can be converted
to a direct causality X — Y structures. The resulting
VAR model can be consistently inferred as shown in
Proposition 4.2.

7.3 Proof of Lemma 7.1 First Lets establish an-
other lemma.

LEMMA 7.1. Supposey = XB +¢€ where X is a n X p
design matriz with iid Gaussian random elements, 3 is
a px 1 constant vector and € is a iid Gaussian random
vector. Let ,@A denote the solution of ridge regression
with reqularization parameter . We have the following
result for A - 0:

B ifp<n

EX’EV’A]:{ "8 ifp>n.

Proof. The Ridge regression solution can be written
as By = (XX + AI)"'X"y. Suppose the Singular
Value Decomposition (SVD) of X is in the form of
X = UDVT. Substitution of the decomposition in the
regression yields By = V(D7D + XI)"'DTUTy. Defining
Dy = (D™D +M)™'DT and using the assumption that
y = X3 + ¢ yields:
(7.12) Br=VD\DV'B+VDy\Ue.

Taking expectation with respect to € eliminates
the second term because of independence of € and
X. The matrix DyD is a p x p matrix in the form

. d3 d2 .
of dlag(ﬁ,...,W,O,...,O). The first term in the

right hand side of Eq. (7.12) can be interpreted as (i)
rotation via VT, (ii) setting p — n elements to zero via

multiplication with Dy D and finally (iii) rotating back

to original space via V. Because of randomness of X,
V' will be uniformly rotating random matrix. Using a
geometrical argument we can complete the proof. Fig.
8 shows the three steps: (1) rotate clockwise by 6 (blue
arrow), (2) Project into one dimension (green on vertical
axis) and (3) rotate counterclockwise by 6 (the inclined
green arrow). Note that there is always another arrow
from the process for —6 rotations (shown in red) which
neutralizes the components in the vertical direction.

Figure 8: The illustration of the three step process
rotation-projection-rotation in two dimensions.

Note that since we assume the rotation is uniformly
random, for each rotation +6 (shown in green) there is
neutralizing vector from —6. Thus for 3 = (1,0)" in Fig.
8 we have:

>y 2
Ex c[Br] = Egc[sin0] = i fo sin? 0df = %

The proof holds for any arbitrary standard basis.
Since the ridge regression solution is a linear function of
3, we can decompose any 3 as 81(1,0)T + 82(0,1)7 and
use the above proof for each basis. This concludes the
proof.



Now Lemma 7.1 can be easily shown:

Proof. The proof is based on a direct application of
Lemma 7.1 which implies all the edge values decay
as the dimensionality increases. Note that in the
the Granger causality test we perform a regression
with T — L observations and nlL features which yields
Ex.c[Br] = (“£71)3 as A — 0 which highlights the
effect of large L choice.

7.4 Proof of Theorem 4.1

Proof. In order to prove Theorem 4.1 we need to
show that the corresponding regression problem with
Winzorized mapped version of variables is consistent.
Here we show the proof for the bias term; the proof for
the variance term follows the same lines.

Consider the following linear model:

y=PB"x+e,

where x is a p x 1 zero mean Gaussian random
vector, 3 is the coefficient vector and ¢ is a zero-mean
Gaussian noise. Suppose in observation of n samples x;
fori=1,...,n, we have access to noisy versions of them
X; and g;. We know that the estimation of covariance
based on Z; is consistent with the following rate [16]

an an logplogzn
xS = S| OP(\/ o b

where §J”k = (X™X),; and S’J”k = (X'X);; is our
estimate of covariance using the tilted samples x;.

We assume that the matrix A = C' - C is positive
semi-definite. We can relax this assumption, but we
leave it as future work. Modify the bound in Eq. 22 of
[20] as following:

(7.13) Y Cv < A5 7]l + Pmax (D)

Bounding ¢mar(A) < Ko HlaX|SJ7~Lk —:S\‘;‘k| for some
constant Ky and deriving the lower bound in Eq. 26
using the fact that @min(A) > 0 yields the following
equation:

25

7.14 Kbmin |73 < —2Y"
(7.14) Pmin [71l3 J——

Since @max(A) diminishes with respect to qﬁmm(é’ )
according to results from [16] and having the incoherent
design assumption [20] for lower bound of ¢, (C) the
proof establishes by following the steps in [20)].



