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INTRODUCTION
Karlheinz Brandenburg and Mark Kahrs

With the advent of multimedia, digital signal processing (DSP) of sound has emerged
from the shadow of bandwidth-limited speech processing. Today, the main appli-
cations of audio DSP are high quality audio coding and the digital generation and
manipulation of music signals. They share common research topics including percep-
tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless
very important topics are hearing aids using signal processing technology and hardware
architectures for digital signal processing of audio. In all these areas the last decade
has seen a significant amount of application oriented research.

The topics covered here coincide with the topics covered in the biannual work-
shop on “Applications of Signal Processing to Audio and Acoustics”. This event is
sponsored by the IEEE Signal Processing Society (Technical Committee on Audio
and Electroacoustics) and takes place at Mohonk Mountain House in New Paltz, New
York.

A short overview of each chapter will illustrate the wide variety of technical material
presented in the chapters of this book.

John Beerends: Perceptual Measurement Techniques. The advent of perceptual
measurement techniques is a byproduct of the advent of digital coding for both speech
and high quality audio signals. Traditional measurement schemes are bad estimates for
the subjective quality after digital coding/decoding. Listening tests are subject to sta-
tistical uncertainties and the basic question of repeatability in a different environment.
John Beerends explains the reasons for the development of perceptual measurement
techniques, the psychoacoustic fundamentals which apply to both perceptual measure-
ment and perceptual coding and explains some of the more advanced techniques which
have been developed in the last few years. Completed and ongoing standardization
efforts concludes his chapter. This is recommended reading not only to people inter-
ested in perceptual coding and measurement but to anyone who wants to know more
about the psychoacoustic fundamentals of digital processing of sound signals.
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Karlheinz Brandenburg: Perceptual Coding of High Quality Digital Audio.
High quality audio coding is rapidly progressing from a research topic to widespread
applications. Research in this field has been driven by a standardization process within
the Motion Picture Experts Group (MPEG). The chapter gives a detailed introduction
of the basic techniques including a study of filter banks and perceptual models. As the
main example, MPEG Audio is described in full detail. This includes a description of
the new MPEG-2 Advanced Audio Coding (AAC) standard and the current work on
MPEG-4 Audio.

William G. Gardner: Reverberation Algorithms. This chapter is the first in a
number of chapters devoted to the digital manipulation of music signals. Digitally
generated reverb was one of the first application areas of digital signal processing
to high quality audio signals. Bill Gardner gives an in depth introduction to the
physical and perceptual aspects of reverberation. The remainder of the chapter treats
the different types of artificial reverberators known today. The main quest in this
topic is to generate natural sounding reverb with low cost. Important milestones in the
research, various historic and current types of reverberators are explained in detail.

Simon Godsill, Peter Rayner and Olivier Cappé: Digital Audio Restoration.
Digital signal processing of high quality audio does not stop with the synthesis or
manipulation of new material: One of the early applications of DSP was the manipula-
tion of sounds from the past in order to restore them for recording on new or different
media. The chapter presents the different methods for removing clicks, noise and other
artifacts from old recordings or film material.

Mark Kahrs: Digital Audio System Architecture. An often overlooked part of the
processing of high quality audio is the system architecture. Mark Kahrs introduces
current technologies both for the conversion between analog and digital world and
the processing technologies. Over the years there is a clear path from specialized
hardware architectures to general purpose computing engines. The chapter covers
specialized hardware architectures as well as the use of generally available DSP chips.
The emphasis is on high throughput digital signal processing architectures for music
synthesis applications.

James M. Kates: Signal Processing for Hearing Aids. A not so obvious application
area for audio signal processing is the field of hearing aids. Nonetheless this field
has seen continuous research activities for a number of years and is another field
where widespread application of digital technologies is under preparation today. The
chapter contains an in-depth treatise of the basics of signal processing for hearing
aids including the description of different types of hearing loss, simpler amplification
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and compression techniques and current research on multi-microphone techniques and
cochlear implants.

Jean Laroche: Time and Pitch Scale Modification of Audio Signals. One of
the conceptionally simplest problems of the manipulation of audio signals is difficult
enough to warrant ongoing research for a number of years: Jean Laroche explains
the basics of time and pitch scale modification of audio signals for both speech and
musical signals. He discusses both time domain and frequency domain methods
including methods specially suited for speech signals.

Dana C. Massie: Wavetable Sampling Synthesis. The most prominent example
today of the application of high quality digital audio processing is wavetable sam-
pling synthesis. Tens of millions of computer owners have sound cards incorporating
wavetable sampling synthesis. Dana Massie explains the basics and modern technolo-
gies employed in sampling synthesis.

T.F. Quatieri and R.J. McAulay: Audio Signal Processing Based on Sinusoidal
Analysis/Synthesis. One of the basic paradigms of digital audio analysis, coding
(i.e. analysis/synthesis) and synthesis systems is the sinusoidal model. It has been
used for many systems from speech coding to music synthesis. The chapter contains
the unified view of both the basics of sinusoidal analysis/synthesis and some of the
applications.

Julius O. Smith III: Principles of Digital Waveguide Models of Musical Instru-
ments. This chapter describes a recent research topic in the synthesis of music
instruments: Digital waveguide models are one method of physical modeling. As in
the case of the Vocoder for speech, a model of an existing or hypothetical instrument
is used for the sound generation. In the tutorial the vibrating string is taken as the
principle illustrative example. Another example using the same underlying principles
is the acoustic tube. Complicated instruments are derived by adding signal scattering
and reed-bore or bow-string interactions.

Summary This book was written to serve both as a text book for an advanced
graduate course on digital signal processing for audio or as a reference book for the
practicing engineer. We hope that this book will stimulate further research and interest
in this fascinating and exciting field.
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1 AUDIO QUALITY DETERMINATION
BASED ON PERCEPTUAL

MEASUREMENT TECHNIQUES
John G. Beerends

Royal PTT Netherlands N.V.

KRN Research, P. Box 421, AK Leidenham

The Netherlands

J.G.Beerends@research.kpn.com

Abstract: A new, perceptual, approach to determine audio quality is discussed.
The method does not characterize the audio system under test but characterizes the
perception of the output signal of the audio system. By comparing the degraded output
with the ideal (reference), using a model of the human auditory system, predictions can
be made about the subjectively perceived audio quality of the system output using any
input signal. A perceptual model is used to calculate the internal representations of both

the degraded output and reference. A simple cognitive model interprets differences
between the internal representations. The method can be used for quality assessment
of wideband music codecs as well as for telephone-band (300-3400 Hz) speech codecs.
The correlation between subjective and objective results is above 0.9 for a wide variety
of databases derived from subjective quality evaluations of music and speech codecs.
For the measurement of quality of telephone-band speech codecs a simplified method
is given. This method was standardized by the International Telecommunication Union
(Telecom sector) as recommendation P.861.

1.1 INTRODUCTION

With the introduction and standardization of new, perception based, audio (speech
and music) codecs, [ISO92st, 1993], [ISO94st, 1994], [ETSIstdR06, 1992], [CCIT-
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TrecG728, 1992], [CCITTrecG729, 1995], classical methods for measuring audio
quality, like signal to noise ratio and total harmonic distortion, became useless.
During the standardization process of these codecs the quality of the different proposals
was therefore assessed only subjectively (see e.g. [Natvig, 1988], [ISO90, 1990] and
[ISO91, 1991]). Subjective assessments are however time consuming, expensive and
difficult to reproduce.

A fundamental question is whether objective methods can be formulated that can
be used for prediction of the subjective quality of such perceptual coding techniques in
a reliable way. A difference with classical approaches to audio quality assessment is
that system characterizations are no longer useful because of the time varying, signal
adaptive, techniques that are used in these codecs. In general the quality of modern
audio codecs is dependent on the input signal. The newly developed method must
therefore be able to measure the quality of the codec using any audio signal, that is
speech, music and test signals. Methods that rely on test signals only, either with or
without making use of a perceptual model, can not be used.

This chapter will present a general method for measuring the quality of audio
devices including perception based audio codecs. The method uses the concept of the
internal sound representation, the representation that matches as close as possible the
one that is used by subjects in their quality judgement. The input and output of the
audio device are mapped onto the internal signal representation and the difference in
this representation is used to define a perceptual audio quality measure (PAQM). It
will be shown that this PAQM has a high correlation with the subjectively perceived
audio quality especially when differences in the internal representation are interpreted,
in a context dependent way, by a cognitive module. Furthermore a simplified method,
derived from PAQM, for measuring the quality of telephone-band (300-3400 Hz)
speech codecs is presented. This method was standardized by the ITU-T (International
Telecommunication Union - Telecom sector) as recommendation P.861 [ITUTrecP861,
1996].

1.2 BASIC MEASURING PHILOSOPHY

In the literature on measuring the quality of audio devices one mostly finds measure-
ment techniques that characterize the audio device under test. The characterization
either has build in knowledge of human auditory perception or the characterization has
to be interpreted with knowledge of human auditory perception.

For linear, time-invariant systems a complete characterization is given by the im-
pulse or complex frequency response [Papoulis, 1977]. With perceptual interpretation
of this characterization one can determine the audio quality of the system under test.
If the design goal of the system under test is to be transparent (no audible differences
between input and output) then quality evaluation is simple and brakes down to the
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requirement of a flat amplitude and phase response (within a specified template) over
the audible frequency range (20-20000 Hz).

For systems that are nearly linear or time-variant, the concept of the impulse (com-
plex frequency) response is still applicable. For weakly non-linear systems the char-
acterization can be extended by including measurements of the non-linearity (noise,
distortion, clipping point). For time-variant systems the characterization can be ex-
tended by including measurements of the time dependency of the impulse response.
Some of the additional measurements incorporate knowledge of the human auditory
system which lead to system characterizations that have a direct link to the perceived
audio quality (e.g. the perceptually weighted signal to noise ratio).

The advantage of the system characterization approach is that it is (or better that
it should be) largely independent of the test signals that are used. The characteriza-
tions can thus be measured with standardized signals and measurement procedures.
Although the system characterization is mostly independent of the signal the subjec-
tively perceived quality in most cases depends on the audio signal that is used. If we
take e.g. a system that adds white noise to the input signal then the perceived audio
quality will be very high if the input signal is wideband. The same system will show
a low audio quality if the input signal is narrowband. For a wideband input signal
the noise introduced by the audio system will be masked by the input signal. For a
narrowband input signal the noise will be clearly audible in frequency regions where
there is no input signal energy. System characterizations therefore do not characterize
the perceived quality of the output signal.

A disadvantage of the system characterization approach is that although the char-
acterization is valid for a wide variety of input signals it can only be measured on
the basis of knowledge of the system, This leads to system characterizations that are
dependent on the type of system that is tested. A serious drawback in the system
characterization approach is that it is extremely difficult to characterize systems that
show a non-linear and time-variant behavior.

An alternative approach to the system characterization, valid for any system, is the
perceptual approach. In the context of this chapter a perceptual approach is defined
as an approach in which aspects of human perception are modelled in order to make
measurements on audio signals that have a high correlation with the subjectively
perceived quality of these signals and that can be applied to any signal, that is, speech,
music and test signals.

In the perceptual approach one does not characterize the system under test but one
characterizes the audio quality of the output signal of the system under test. It uses
the ideal signal as a reference and an auditory perception model to determine the
audible differences between the output and the ideal. For audio systems that should be
transparent the ideal signal is the input signal. An overview of the basic philosophy
used in perceptual audio quality measurement techniques is given in Fig. 1.1.
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Figure 1.1 Overview of the basic philosophy used in the development of perceptual
audio quality measurement techniques. A computer model of the subject is used to
compare the output of the device under test (e.g. a speech codec or a music codec)
with the ideal, using any audio signal. If the device under test must be transparent then
the ideal is equal to the input.
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If the perceptual approach is used for the prediction of subjectively perceived audio
quality of the output of a linear, time-invariant system then the system characterization
approach and the perceptual approach must lead to the same answer, In the system
characterization approach one will first characterize the system and then interpret the
results using knowledge of both the auditory system and the input signal for which one
wants to determine the quality. In the perceptual approach one will characterize the
perceptual quality of the output signals with the input signals as a reference.

The big advantage of the perceptual approach is that it is system independent and
can be applied to any system, including systems that show a non-linear and time-
variant behavior. A disadvantage is that for the characterization of the audio quality of
a system one needs a large set of relevant test signals (speech and music signals).

In this chapter an overview is presented of the perceptual audio quality measure
(PAQM) [Beerends and Stemerdink, 1992] and it will be shown that the PAQM ap-
proach can be used for the measurement of the quality of music and speech codecs.
The PAQM method is currently under study within the ITU-R (International Telecom-
munication Union - Radio sector) [ITURsg10con9714, 1997], [ITURsg 10con9719,
1997] for future standardization of a perception based audio quality measurement
method. A simplified method, derived from PAQM, for measuring the quality of
telephone-band (300-3400 Hz) speech codecs was standardized by the ITU-T (In-
ternational Telecommunication Union - Telecom sector) as recommendation P.861
[ITUTrecP861, 1996] [ITUTsg 12rep31.96, 1996]. Independent validation of this
simplified method, called perceptual speech quality measure (PSQM), showed supe-
rior correlation between objective and subjective results, when compared to several
other methods [ITUTsg12con9674, 1996].

A general problem in the development of perceptual measurement techniques is
that one needs audio signals for which the subjective quality, when compared to a
reference, is known. Creating databases of audio signals and their subjective quality
is by no means trivial and many of the problems that are encountered in subjective
testing have a direct relation to problems in perceptual measurement techniques. High
correlations between objective and subjective results can only be obtained when the
objective and subjective evaluation are closely related, In the next section some

1992], [Ghitza, 1994] [Beerends and Stemerdink, 1994b] or on music codec quality
[Paillard et al., 1992], [Brandenburg and Sporer, 1992], [Beerends and Stemerdink,
1992] [Colomes et al., 1994]. Although one would expect that a model for the
measurement of the quality of wide band music codecs can be applied to telephone-
band speech codecs, recent investigations show that this is rather difficult [Beerends,
1995].

[Schroeder et al., 1979], [Gray et al., 1980], [Nocerino et al., 1985], [Quackenbush
et al., 1988], Hayashi and Kitawaki, 1992], [Halka and Heute, 1992], [Wang et al.,

Until recently several perceptual measurement techniques have been proposed but
most of them are either focussed on speech codec quality [Gray and Markel, 1976],
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important points of discussion are given concerning the relation between subjective
and objective perceptual testing.

1.3 SUBJECTIVE VERSUS OBJECTIVE PERCEPTUAL TESTING

Before one can start predicting MOS scores several problems have to be solved, The
first one is that different subjects have different auditory systems leading to a large range
of possible models. If one wants to determine the quality of telephone-band speech
codecs (300-3400 Hz) differences between subjects are only of minor importance.
In the determination of the quality of wideband music codecs (compact disc quality,
20-20000 Hz) differences between subjects are a major problem, especially if the
codec shows dynamic band limiting in the range of 10-20 kHz. Should an objective

In general it is not allowed to compare MOS values obtained in different experi-
mental contexts. A telephone-band speech fragment may have a MOS that is above
4.0 in a certain experimental context while the same fragment may have a MOS that is
lower than 2.0 in another context. Even if MOS values are obtained within the same
experimental context but within a different cultural environment large differences in
MOS values can occur [Goodman and Nash, 1982]. It is therefore impossible to de-
velop a perceptual measurement technique that will predict correct MOS values under
all conditions.

In the speech codec evaluations, absolute category rating (ACR) was carried out with
quality labels ranging from bad (MOS=1.0) to excellent (MOS=5.0) [CCITTrecP80,
1994]. In ACR experiments subjects do not have access to the original uncoded
audio signal. In music codec evaluations a degradation category rating (DCR) scale
was employed with quality labels ranging from “difference is audible and very
annoying” (MOS=1.0) to “no perceptible difference” (MOS=5.0). The music codec
databases used in this paper were all derived from DCR experiments where subjects
had a known and a hidden reference [ITURrecBS1116, 1994].

All the subjective results that will be used in this chapter come from large ITU
databases for which subjects were asked to give their opinion on the quality of an audio
fragment using a five point rating scale. The average of the quality judgements of the
subjects gives a so called mean opinion score (MOS) on a five point scale, Subjective
experiments in which the quality of telephone-band speech codecs (300-3400 Hz)
or wideband music codecs (20-20000 Hz compact disc quality) were evaluated are
used. For both, speech and music codec evaluation, the five point ITU MOS scale is
used but the procedures in speech codec evaluation [CCITTrecP80, 1994] are different
from the experimental procedures in music codec evaluation [CCIRrec562, 1990],
[ITURrecBS1116, 1994].

In the development of perceptual measurement techniques one needs databases with
reliable quality judgements, preferably using the same experimental setup and the same
common subjective quality scale.
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perceptual measurement technique use an auditory model that represents the best
available (golden) ear, just model the average subject, or use an individual model for
each subject [Treurniet, 1996]. The answer depends on the application. For prediction
of mean opinion scores one has to adapt the auditory model to the average subject.
In this chapter all perceptual measurements were done with a threshold of an average
subject with an age between 20 and 30 years and an upper frequency audibility limit
of 18 kHz. No accurate data on the subjects were available.

Another problem in subjective testing is that the way the auditory stimulus is
presented has a big influence on the perceived audio quality. Is the presentation is in
a quiet room or is there some background noise that masks small differences? Are the
stimuli presented with loudspeakers that introduce distortions, either by the speaker
itself or by interaction with the listening room? Are subjects allowed to adjust the
volume for each audio fragment? Some of these differences, like loudness level and
background noise, can be modelled in the perceptual measurement fairly easy, whereas
for others it is next to impossible. An impractical solution to this problem is to make
recordings of the output signal of the device under test and the reference signal (input
signal) at the entrance of the ear of the subjects and use these signals in the perceptual
evaluation.

In this chapter all objective perceptual measurements are done directly on the
electrical output signal of the codec using a level setting that represents the average
listening level in the experiment. Furthermore the background noise present during
the listening experiments was modelled using a steady state Hoth noise [CCITTsup13,
1989]. In some experiments subjects were allowed to adjust the level individually for
each audio fragment which leads to correlations that are possibly lower than one would
get if the level in the subjective experiment would be fixed for all fragments. Correct
setting of the level turned out be very important in the perceptual measurements.

It is clear that one can only achieve high correlations between objective measure-
ments and subjective listening results when the experimental context is known and can
be taken into account correctly by the perceptual or cognitive model.

The perceptual model as developed in this chapter is used to map the input and
output of the audio device onto internal representations that are as close as possible
to the internal representations used by the subject to judge the quality of the audio
device. It is shown that the difference in internal representation can form the basis
of a perceptual audio quality measure (PAQM) that has a high correlation with the
subjectively perceived audio quality. Furthermore it is shown that with a simple
cognitive module that interprets the difference in internal representation the correlation
between objective and subjective results is always above 0.9 for both wideband music
and telephone-band speech signals. For the measurement of the quality of telephone-
band speech codecs a simplified version of the PAQM, the perceptual speech quality
measure (PSQM), is presented.
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Before introducing the method for calculating the internal representation the psy-
choacoustic fundamentals of the perceptual model is explained in the next chapter.

1.4 PSYCHOACOUSTIC FUNDAMENTALS OF CALCULATING THE
INTERNAL SOUND REPRESENTATION

In thinking about how to calculate the internal representation of a signal one could
dream of a method where all the transformation characteristics of the individual el-
ements of the human auditory system would be measured and modelled. In this
exact approach one would have the, next to impossible, task of modelling the ear, the
transduction mechanism and the neural processing at a number of different abstraction
levels.

Literature provides examples of the exact approach [Kates, 1991b], [Yang et al.,
1992], [Giguère and Woodland, 1994a], [Giguère and Woodland, 1994b] but no results
on large subjective quality evaluation experiments have been published yet. Prelimi-
nary results on using the exact approach to measure the quality of speech codecs have
been published (e.g. [Ghitza, 1994]) but show rather disappointing results in terms of
correlation between objective and subjective measurements. Apparently it is very diffi-
cult to calculate the correct internal sound representation on the basis of which subjects
judge sound quality. Furthermore it may not be enough to just calculate differences in
internal representations, cognitive effects may dominate quality perception.

One can doubt whether it is necessary to have an exact model of the lower abstraction
levels of the auditory system (outer-, middle-, inner ear, transduction). Because audio
quality judgements are, in the end, a cognitive process a crude approximation of the
internal representation followed by a crude cognitive interpretation may be more ap-
propriate then having an exact internal representation without cognitive interpretation
of the differences.

In finding a suitable internal representation one can use the results of psychoacoustic
experiments in which subjects judge certain aspects of the audio signal in terms of
psychological quantities like loudness and pitch. These quantities already include
a certain level of subjective interpretation of physical quantities like intensity and
frequency. This psychoacoustic approach has led to a wide variety of models that
can predict certain aspects of a sound e.g. [Zwicker and Feldtkeller, 1967], [Zwicker,
1977], [Florentine and Buus, 1981], [Martens, 1982], [Srulovicz and Goldstein, 1983],
[Durlach et al., 1986], [Beerends, 1989], [Meddis and Hewitt, 1991]. However, if one
wants to predict the subjectively perceived quality of an audio device a large range of the
different aspects of sound perception has to be modelled. The most important aspects
that have to be modelled in the internal representation are masking, loudness of partially
masked time-frequency components and loudness of time-frequency components that
are not masked.
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Figure 1.2 From the masking pattern it can be seen that the excitation produced by a
sinusoidal tone is smeared out in the frequency domain. The right hand slope of the
excitation pattern is seen to vary as a function of masker intensity (steep slope at low
and flat slope at high intensities).
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

For stationary sounds the internal representation is best described by means of a
spectral representation. The internal representation can be measured using a test signal
having a small bandwidth. A schematic example for a single sinusoidal tone (masker)
is given in Fig. 1.2 where the masked threshold of such a tone is measured with a
second sinusoidal probe tone (target). The masked threshold can be interpreted as
resulting from an internal representation that is given in Fig. 1.2 as an excitation
pattern. Fig. 1.2 also gives an indication of the level dependence of the excitation
pattern of a single sinusoidal tone. This level dependence makes interpretations in
terms of filterbanks doubtful.

For non-stationary sounds the internal representation is best described by means of
a temporal representation. The internal representation can be measured by means of a
test signal of short duration. A schematic example for a single click (masker) is given
in Fig. 1.3 where the masked threshold of such a click is measured with a second click
(target). The masked threshold can be interpreted as the result of an internal, smeared
out, representation of the puls (Fig. 1.3, excitation pattern).
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Figure 1.3 From the masking pattern it can be seen that the excitation produced by a
click is smeared out in the time domain.
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

An example of a combination of time and frequency-domain masking, using a tone
burst, is given in Fig. 1.4.

For the examples given in Figs. 1.2-1.4 one should realize that the masked threshold
is determined with a target signal that is a replica of the masker signal. For target
signals that are different from the masker signal (e.g. a sine that masks a band of noise)
the masked threshold looks different, making it impossible to talk about the masked
threshold of a signal. The masked threshold of a signal depends on the target, while
the internal representation and the excitation pattern do not depend on the target.

In Figs. 1.2-1.4 one can see that any time-frequency component in the signal is
smeared out along both the time and frequency axis. This smearing of the signal
results in a limited time-frequency resolution of the auditory system. Furthermore it
is known that two smeared out time-frequency components in the excitation domain
do not add up to a combined excitation on the basis of energy addition. Therefore the
smearing consists of two parts, one part describing how the energy at one point in the
time-frequency domain results in excitation at another point, and a part that describes
how the different excitations at a certain point, resulting from the smearing of the
individual time-frequency components, add up.

Until now only time-frequency smearing of the audio signal by the ear, which leads
to an excitation representation, has been described. This excitation representation is
generally measured in dB SPL (Sound Pressure Level) as a function of time and
frequency. For the frequency scale one does, in most cases, not use the linear Hz
scale but the non-linear Bark scale. This Bark scale is a pitch scale representing the
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Figure 1.4 Excitation pattern for a short tone burst. The excitation produced by a short
tone burst is smeared out in the time and frequency domain.
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

psychophysical equivalent of frequency. Although smearing is related to an important
property of the human auditory system, viz. time-frequency domain masking, the
resulting representation in the form of an excitation pattern is not very useful yet. In
order to obtain an internal representation that is as close as possible to the internal
representation used by subjects in quality evaluation one needs to compresses the
excitation representation in a way that reflects the compression as found in the inner
ear and in the neural processing.

The compression that is used to calculate the internal representation consists of
a transformation rule from the excitation density to the compressed Sone density as
formulated by Zwicker [Zwicker and Feldtkeller, 1967]. The smearing of energy
is mostly the result of peripheral processes [Viergever, 1986) while compression is a
more central process [Pickles, 1988]. With the two simple mathematical operations,
smearing and compression, it is possible to model the masking properties of the
auditory system not only at the masked threshold, but also the partial masking [Scharf,
1964] above masked threshold (see Fig. 1.5).
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Figure 1.5 Overview on how masking is modelled in the internal representation model.
Smearing and compression with = E0.04 results in masking. The first representation
(top) is in terms of power P and may represent clicks in the time domain or sines in
the frequency domain. X represents the signal, or masker, and N the noise, or target.
The left side shows transformations of the masker, in the middle the transformation of
the target in isolation. The right side deals with the transformation of the composite
signal (masker + target). The second representation is in terms of excitation E and
shows the excitation as a function of time or frequency. The third representation is
the internal representation using a simple compression = E 0.04 . The bottom line
shows the effect of masking, the internal representation of the target in isolation, (N),
is significantly larger than the internal representation of the target in the presence of a
strong masker (X+N) - (X).
(Reprinted with permission from [Beerends, 1995], ©Audio Engineering Society,
1995)
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1.5 COMPUTATION OF THE INTERNAL SOUND REPRESENTATION

As a start in the quantification of the two mathematical operations, smearing and
compression, used in the internal representation model one can use the results of
psychoacoustic experiments on time-frequency masking and loudness perception. The
frequency smearing can be derived from frequency domain masking experiments where
a single steady-state narrow-band masker and a single steady-state narrow-band target
are used to measure the slopes of the masking function [Scharf and Buus, 1986],
[Moore, 1997]. These functions depend on the level and frequency of the masker
signal. If one of the signals is a small band of noise and the other a pure tone then the
slopes can be approximated by Eq. (1.1) (see Terhardt 1979, [Terhardt, 1979]):

S 1 = 31 dB/Bark, target frequency < masker frequency; (1.1)

S2 = (22 + min(230/ f, 10) – 0.2L) dB/Bark,

target frequency > masker frequency;

with f the masker frequency in Hz and L the level in dB SPL. A schematic example
of this frequency-domain masking is shown in Fig. 1.2. The masked threshold can be
interpreted as resulting from a smearing of the narrow band signals in the frequency
domain (see Fig. 1.2). The slopes as given in Eq. (1.1) can be used as an
approximation of the smearing of the excitation in the frequency domain in which case
the masked threshold can be interpreted as a fraction of the excitation.

If more than one masker is present at the same time the masked energy threshold
of the composite signal Mcomposite is not simply the sum of the n individual masked
energy thresholds M i but is given approximately by:

(1.2)

This addition rule holds for simultaneous (frequency-domain) [Lufti, 1983], [Lufti,
1985] and non-simultaneous (time-domain) [Penner, 1980], [Penner and Shiffrin,
1980] masking [Humes and Jesteadt, 1989] although the value of the compression
power α may be different along the frequency (α f req ) and time (α t ime ) axis.

In the psychoacoustic model that is used in this chapter no masked threshold is
calculated explicitly in any form. Masking is modelled by a combination of smearing
and compression as explained in Fig. 5. Therefore the amount of masking is dependent
on the parameters α f req and α t i m e which determine, together with the slopes S1  and
S 2 , the amount of smearing. However the values for α f req and α t i m e  found in literature
were optimized with respect to the masked threshold and can thus not be used in our
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model. Therefore these two α 's will be optimized in the context of audio quality
measurements.

In the psychoacoustic model the physical time-frequency representation is calcu-
lated using a FFT with a 50% overlapping Hanning (sin²) window of approximately
40 ms, leading to a time resolution of about 20 ms. Within this window the frequency
components are smeared out according to Eq. (1.1) and the excitations are added
according to Eq. (1.2) Due to the limited time resolution only a rough approximation
of the time-domain smearing can be implemented.

From masking data found in the literature [Jesteadt et al., 1982] an estimate was
made how much energy is left in a frame from a preceding frame using a shift of half
a window (50% overlap). This fraction can be expressed as a time constant τ in the
expression:

with ∆ t = time distance between two frames = T f . The fraction of the energy present
in the next window depends on the frequency and therefore a different τ was used for
each frequency band. This energy fraction also depends on the level of the masker
[Jesteadt et al., 1982] but this level-dependency of τ yielded no improvement in the
correlation and was therefore omitted from the model. At frequencies above 2000 Hz
the smearing is dominated by neural processes and remains about the same [Pickles,
1988]. The values of τ are given in Fig. 1.6 and give an exponential approximation of
time-domain masking using window shifts in the neighborhood of 20 ms.

An example of the decomposition of a sinusoidal tone burst in the time-frequency
domain is given in Fig. 1.4. It should be realised that these time constants τ only
give an exponential approximation, at the distance of half a window length, of the
time-domain masking functions.

After having applied the time-frequency smearing operation one gets an excitation
pattern representation of the audio signal in (dB exc , seconds, Bark). This representation
is then transformed to an internal representation using a non-linear compression
function. The form of this compression function can be derived from loudness
experiments.

Scaling experiments using steady-state signals have shown that the loudness of
a sound is a non-linear function of the intensity. Extensive measurements on the
relationship between intensity and loudness have led to the definition of the Sone. A
steady-state sinusoid of 1 kHz at a level of 40 dB SPL is defined to have a loudness of one
Sone. The loudness of other sounds can be estimated in psychoacoustic experiments.
In a first approximation towards calculating the internal representation one would map
the physical representation in dB/Bark onto a representation in Sone/Bark:

(1.4)

in which k is a scaling constant (about 0.01), P the level of the tone in µPa, P 0 the
absolute hearing threshold for the tone in µPa, and γ the compression parameter, in



Figure 1.6 Time constant τ, that is used in the time-domain smearing, as a function of
frequency. This function is only valid for window shifts of about 20 ms and only allows
a crude estimation of the time-domain smearing, using a α time of 0.6.
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

the literature estimated to be about 0.6 [Scharf and Houtsma, 1986]. This compression
relates a physical quantity (acoustic pressure P) to a psychophysical quantity (loudness

).
The Eqs (1.1), (1.2) and (1.4) involve quantities that can be measured directly.

After application of Eq. (1.1) to each time frequency component and addition of all the
individual excitation contributions using (1.2), the resulting excitation pattern forms
the basis of the internal representation. (The exact method to calculate the excitation
pattern is given in Appendix A, B and C of [Beerends and Stemerdink, 1992] while a
compact algorithm is given in Appendix D of [Beerends and Stemerdink, 1992]).

Because Eq. (1.4) maps the physical domain directly to the internal domain it has
to be replaced by a mapping from the excitation to the internal representation. Zwicker
gave such a mapping (eq. 52,17 in [Zwicker and Feldtkeller, 1967]):

(1.5)

in which k is an arbitrary scaling constant, E the excitation level of the tone, E0

the excitation at the absolute hearing threshold for the tone, s the “schwell” factor as
defined by Zwicker [Zwicker and Feldtkeller, 1967] and γ a compression parameter
that was fitted to loudness data. Zwicker found an optimal value γ of about 0.23.

Although the γ of 0.23 may be optimal for the loudness scale it will not be appro-
priate for the subjective quality model which needs an internal representation that is
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as close as possible to the representation that is used by subjects to base their qual-
ity judgements on. Therefore γ is taken as a parameter which can be fitted to the
masking behavior of the subjects in the context of audio quality measurements. The
scaling k has no influence on the performance of the model. The parameter γ was
fitted to the ISO/MPEG 1990 (International Standards Organization/Motion Picture
Expert Group) database [ISO90, 1990] in terms of maximum correlation (minimum
deviation) between objective and subjective results.

The composite operation, smearing followed by compression, results in partial
masking (see Fig. 1.5). The advantage of this method is that the model automatically
gives a prediction of the behavior of the auditory system when distortions are above
masked threshold.

Summarizing, the model uses the following transformations (see Fig. 1.7):

�

�

�

�

�

The input signal x(t) and output signal y(t) are transformed to the frequency
domain, using an FFT with a Hanning (sin²) window w(t) of about 40 ms.
This leads to the physical signal representations Px (t, f ) and Py ( t , f ) in (dB,
seconds, Hz) with a time-frequency resolution that is good enough as a starting
point for the time-frequency smearing.

The frequency scale f (in Hz) is transformed to a pitch scale z (in Bark) and the
signal is filtered with the transfer function a0 ( z) from outer to inner ear (free or
diffuse field). This results in the power-time-pitch representations p (x t, z) and
py(t, z) measured in (dB, seconds, Bark). A more detailed description of this
transformation is given in Appendix A of [Beerends and Stemerdink, 1992].

The power-time-pitch representations px (t, z) and py ( t, z ) are multiplied with
a frequency-dependent fraction e –T f / τ z( ) using Eq. (1.3) and Fig. 1.6, for
addition with α time  within the next frame (Tf  = time shift between two frames
≈ 20 ms). This models the time-domain smearing of x(t) and y (t).

The power-time-pitch representations p x ( t, z) and p y (t, z ) are convolved with
the frequency-smearing function Λ, as can be derived from Eq. (1.1), leading
to excitation-time-pitch (dB exc , seconds,  Bark) representations Ex (t, z) and
Ey ( t, z) (see Appendices B, C, D of [Beerends and Stemerdink, 1992]). The
form of the frequency-smearing function depends on intensity and frequency,
and the convolution is carried out in a non-linear way using Eq. (1.2) (see
Appendix C of [Beerends and Stemerdink, 1992]) with parameter α f req .

The excitation-time-pitch representations Ex ( t, z ) and E y (t, z) (dB exc , sec-
onds, Bark) are transformed to compressed loudness-time-pitch representations

x (t, z) and y (t, z) (compressed Sone, seconds, Bark) using Eq. (1.5) with
parameter γ (see Appendix E of [Beerends and Stemerdink, 1992]).
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In psychoacoustic literature many experiments on masking behavior can be found
for which the internal representation model should, in theory, be able to predict the
behavior of subjects. One of these effects is the sharpening of the excitation pattern
after switching off an auditory stimulus [Houtgast, 1977], which is partly modelled
implicitly here in the form of the dependence of the slope S2 in Eq. (1.1) on intensity.
After “switching off” the masker the representation in the next frame in the model is
a “sharpened version of the previous frame”.

Another important effect is the asymmetry of masking between a tone masking
a band of noise versus a noiseband masking a tone [Hellman, 1972]. In models
using the masked threshold this effect has to be modelled explicitly by making the
threshold dependent on the type of masker e.g. by calculating a tonality index as
performed within the psychoacoustic models used in the ISO/MPEG audio coding
standard [ISO92st, 1993]. Within the internal representation approach this effect is
accounted for by the nonlinear addition of the individual time frequency components
in the excitation domain.

1.6 THE PERCEPTUAL AUDIO QUALITY MEASURE (PAQM)

After calculation of the internal loudness-time-pitch representations of the input and
output of the audio device the perceived quality of the output signal can be derived from
the difference between the internal representations. The density functions x (t, z)
(loudness density as a function of time and pitch for the input x) and scaled y(t, z)
are subtracted to obtain a noise disturbance density function n (t, z). This n (t, z) is
integrated over frequency resulting in a momentary noise disturbance n (t) (see Fig.
1.7)

The momentary noise disturbance is averaged over time to obtain the noise distur-
bance n . We will not use the term noise loudness because the value of γ is taken such
that the subjective quality model is optimized; in that case n does not necessarily
represent noise loudness. The logarithm (log 10 ) of the noise disturbance is defined as
the perceptual audio quality measure (PAQM).

The optimization of α f req , α t i m e and γ is performed using the subjective audio
quality database that resulted from the ISO/MPEG 1990 audio codec test [ISO90,
1990]. The optimization used the standard error of the estimated MOS from a third
order regression line fitted through the PAQM, MOS datapoints. The optimization
was carried out by minimization of the standard error of the estimated MOS as a
function of α f req , α t ime , γ.

� The compressed loudness-time-pitch representation y ( t, z) of the output of
the audio device is scaled independently in three different pitch ranges with
bounds at 2 and 22 Bark. This operation performs a global pattern matching
between input and output representations and already models some of the higher,
cognitive, levels of sound processing.
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Figure 1.7 Overview of the basic transformations which are used in the development
of the PAQM (Perceptual Audio Quality Measure). The signals x(t) and y (t) are
windowed with a window w(t) and then transformed to the frequency domain. The
power spectra as function of time and frequency, Px (t, ƒ) and Py (t, ƒ ) are transformed
to power spectra as function of time and pitch, px (t, z) and py (t, z) which are convolved
with the smearing function resulting in the excitations as a function of pitch Ex (t, z )
and Ey (t, z). After transformation with the compression function we get the internal
representations x ( t , z ) and y ( t , z ) from which the average noise disturbance n

over the audio fragment can be calculated.
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)
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The optimal values of the parametersα freq and α t ime depend on the sampling of
the time-frequency domain. For the values used in our implementation, ∆ z = 0.2
Bark and ∆ t = 20 ms (total window length is about 40 ms), the optimal values of the
parameters in the model were found to be α f req = 0.8, α t i m e = 0.6 and γ = 0.04.
The dependence of the correlation on the time-domain masking parameterα t i m e turned
out to be small.

Because of the small γ that was found in the optimization the resulting density as
function of pitch (in Bark) and time does not represent the loudness density but a
compressed loudness density. The integrated difference between the density functions
of the input and the output therefore does not represent the loudness of the noise but
the compressed loudness of the noise.

The relationship between the objective (PAQM) and subjective quality measure
(MOS) in the optimal settings ofα f req , α t i m e  and γ, for the ISO/MPEG 1990 database
[ISO90, 1990], is given in Fig. 1.8. ¹

Figure 1.8 Relation between the mean opinion score and the perceptual audio quality
measure (PAQM) for the 50 items of the ISO/MPEG 1990 codec test [ISO90, 1990] in
loudspeaker presentation.
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)
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The internal representation of any audio signal can now be calculated by using
the transformations given in the previous section. The quality of an audio device can
thus be measured with test signals (sinusoids, sweeps, noise etc) as well as “real life”
signals (speech, music). Thus the method is universally applicable. In general audio
devices are tested for transparency (i.e. the output must resemble the input as closely
as possible) in which case the input and output are both mapped onto their internal
representations and the quality of the audio device is determined by the difference
between these input (the reference) and output internal representations.

1.7 VALIDATION OF THE PAQM ON SPEECH AND MUSIC CODEC
DATABASES

The optimization of the PAQM that is described in the previous section results in a
PAQM that shows a good correlation between objective and subjective results. In
this section the PAQM is validated using the results of the second ISO/MPEG audio
codec test (ISO/MPEG 1991 [ISO91, 1991]) and the results of the ITU-R TG10/2
1993 [ITURsg10cond9343, 1993] audio codec test. In this last test several tandeming
conditions of ISO/MPEG Layer II and III were evaluated subjectively while three
different objective evaluation models presented objective results.

This section also gives a validation of the PAQM on databases that resulted from
telephone-band (300-3400 Hz) speech codec evaluations.

The result of the validation using the ISO/MPEG 1991 database is given in Fig.
1.9. A good correlation (R3=0.91) and a reasonable low standard error of the estimate
(S3=0.48) between the objective PAQM and the subjective MOS values was found.

A point of concern is that for the same PAQM values sometimes big deviations in
subjective scores are found (see Fig. 1.9). ²

The result of the validation using the ITU-R TG10/2 1993 database (for the Contri-
bution Distribution Emission test) is given in Fig. 1.10³ and shows a good correlation
and low standard error of the estimate (R3=0.83 and S3=0.29) between the objective
PAQM and the subjective MOS. These results were verified by the Swedish Broadcast-
ing Corporation [ITURsg 10cond9351, 1993] using a software copy that was delivered
before the ITU-R TG10/2 test was carried out.

The two validations that were carried out both use databases in which the subjective
quality of the output signals of music codecs was evaluated. If the PAQM is really a
universal audio quality measure it should also be applicable to speech codec evaluation.
Although speech codecs generally use a different approach towards data reduction of
the audio bitstream than music codecs the quality judgement of both is always carried
with the same auditory system. A universal objective perceptual approach towards
quality measurement of speech and music codecs must thus be feasible. When looking
into the literature one finds a large amount of information on how to measure the quality
of speech codecs (e.g. [Gray and Markel, 1976], [Schroeder et al., 1979], [Gray et al.,
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Figure 1.9 Relation between the mean opinion score (MOS) and the perceptual audio
quality measure (PAQM) for the 50 items of the ISO/MPEG 1991 codec test [ISO91,
1991] in loudspeaker presentation. The filled circles are items whose quality was judged
significantly lower by the model than by the subjects.
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

1980], [Nocerino et al., 1985], [Quackenbush et al., 1988], [Hayashi and Kitawaki,
1992], [Halka and Heute, 1992], [Wang et al., 1992], [Ghitza, 1994] [Beerends and
Stemerdink 1994b]), but non of the methods can be used for both narrowband speech
and wideband music codecs.

To test whether the PAQM can be applied to evaluation of speech codec quality
a validation was setup using subjective test results on the ETSI GSM (European

Telecommunications Standards Institute, Global System for Mobile communications)
candidate speech codecs. Both the GSM full rate (13 kbit/s, [Natvig, 1988]) and
half rate (6 kbit/s, [ETSI91tm74, 1991]) speech codec evaluations were used in the
validation. In these experiments the speech signals were judged in quality over a
standard telephone handset [CCITTrecP48, 1989]. Consequently in validating the
PAQM both the reference input speech signal and the degraded output speech signal
were filtered using the standard telephone filter characteristic [CCITTrecP48, 1989].
Furthermore the speech quality evaluations were carried out in a controlled noisy
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Figure 1.10 Relation between MOS and PAQM for the 43 ISO layer II tandeming
conditions of the ITU-R TG10/2 1993 [ITURsg10cond9343, 1993] audio codec test
(Reprinted with permission from [Beerends and Stemerdink, 1994a], ©Audio Engi-
neering Society, 1994)

environment using Hoth noise as a masking background noise. Within the PAQM
validation this masking noise was modelled by adding the correct spectral level of
Hoth noise [CCITTsup13, 1989] to the power-time-pitch representations of input and
output speech signal.

The results of the validation on speech codecs are given in Figs. 1.11 and 1.12. One
obvious difference between this validation and the one carried out using music codecs
is the distribution of the PAQM values. For music the PAQM values are all below –0.5
(see Figs. 1.9, 1.10) while for speech they are mostly above –0.5 (see Figs. 1.11,4

1.12 5 ). Apparently the distortions in these databases are significantly larger than those
in the music databases. Furthermore the correlation between objective and subjective
results of this validation are worse then those of the validation using music codecs.

1.8 COGNITIVE EFFECTS IN JUDGING AUDIO QUALITY

Although the results of the validation of the PAQM on the music and speech codec
databases showed a rather good correlation between objective and subjective results,
improvements are still necessary. The reliability of the MOS predictions is not good
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Figure 1.11 Relation between the MOS and the PAQM for the ETSI GSM full rate
speech database. Crosses represent data from the experiment based on the modulated
noise reference unit, circles represent data from the speech codecs.

enough for the selection of the speech or music codec with the highest audio quality.
As stated in the section on the psychoacoustic fundamentals of the method, it may
be more appropriate to have crude perceptual model combined with a crude cognitive
interpretation then having an exact perceptual model. Therefore the biggest improve-
ment is expected to come from a better modelling of cognitive effects. In the PAQM
approach as presented until now, the only cognitive effect that is modelled is the over-
all timbre matching in three different frequency regions. This section will focus on
improvements in the cognitive domain and the basic approach as given in Fig. 1.1 is
modified slightly (see Fig. 1.13) by incorporating a central module which interprets
differences in the internal representation

Possible central, cognitive, effects that are important in subjective audio quality
assessment are:

1. Informational masking, where the masked threshold of a complex target
masked by a complex masker may decrease after training by more than 40
dB [Leek and Watson, 1984].
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2. Separation of linear from non-linear distortions. Linear distortions of
the input signal are less objectionable than non-linear distortions.

3. Auditory scene analysis, in which decisions are made as to which parts
of an auditory event integrate into one percept [Bregman, 1990].

4. Spectro-temporal weighting. Some spectra-temporal regions in the audio
signal carry more information, and may therefore be more important, than
others. For instance one expects that silent intervals in speech carry no
information are therefore less important.

1) Informational masking can be modelled by defining a spectra-temporal com-
plexity, entropy like, measure. The effect is most probably dependent on the amount
of training that subjects are exposed to before the subjective evaluation is carried
out. In general, quality evaluations of speech codecs are performed by naive listeners
[CCITTrecP80, 1994], while music codecs are mostly evaluated by expert listeners
[CCIRrec562, 1990], [ITURrecBS1116, 1994].

For some databases the informational masking effect plays a significant role and
modelling this effect turned out to be mandatory for getting high correlations between
objective and subjective results [Beerends et al., 1996]. The modelling can best be
done by calculating a local complexity number over a time window of about 100 ms. If

Figure 1.12 The same as Fig. 1.11 but for the ETSI GSM half rate speech database.
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Figure 1.13 Basic approach used in the development of PAQMC , the cognitive cor-
rected PAQM. Differences in internal representation are judged by a central cognitive
module.
(Reprinted with permission from [Beerends, 1995], ©Audio Engineering Society,
1995)

this local complexity is high then distortions within this time window are more difficult
to hear then when the local complexity is low [Beerends et al., 1996].

Although the modelling of informational masking gives higher correlations for some
databases, other databases may show a decrease in correlation. No general formulation
was found yet that could be used to model informational masking in a satisfactory,
general applicable, way. Modelling of this effect is therefore still under study and not
taken into account here.

2) Separation of linear from non-linear distortions can be implemented fairly
easy by using adaptive inverse filtering of the output signal. However it gave no
significant improvement in correlation between objective and subjective results using
the available databases (ISO/MPEG 1990, ISO/MPEG 1991, ITU-R 1993, ETSI GSM
full rate 1988, ETSI GSM half rate 1991).

Informal experiments however showed that this separation is important when the
output signal contains severe linear distortions.
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3) Auditory scene analysis is a cognitive effect that describes how subjects sep-
arate different auditory events and group them into different objects. Although a
complete model of auditory scene analysis is beyond the scope of this chapter the
effect was investigated in more detail. A pragmatic approach as given in [Beerends
and Stemerdink, 1994a] turned out to be very successful in quantifying an auditory
scene analysis effect. The idea in this approach is that if a time-frequency compo-
nent is not coded by a codec, the remaining signal still forms one coherent auditory
scene while introduction of a new unrelated time-frequency component leads to two
different percepts. Because of the split in two different percepts the distortion will be
more objectionable then one would expect on the basis of the loudness of the newly
introduced distortion component. This leads to a perceived asymmetry between the
disturbance of a distortion that is caused by not coding a time-frequency component
versus the disturbance caused by the introduction of a new time-frequency component.

In order to be able to model this cognitive effect it was necessary to quantify to what
extent a distortion, as found by the model, resulted from leaving out a time-frequency
component or from the introduction of a new time-frequency component in the signal.
One problem was that when a distortion is introduced in the signal at a certain time-
frequency point there will in general already be a certain power level at that point.
Therefore a time-frequency component will never be completely new. A first approach
to quantify the asymmetry was to use the power ratio between output and input at a
certain time-frequency point to quantify the “newness” of this component. When the
power ratio between the output y and input x, py / px at a certain time-frequency point
is larger than 1.0 an audible distortion is assumed more annoying than when this ratio
is less than 1.0.

In the internal representation model the time-frequency plane is divided in cells
with a resolution of 20 ms along in the time axis (time index m) and of 0.2 Bark along
the frequency axis (frequency index l). A first approach was to use the power ratio
between the output y and input x , py /px in every (∆ t ∆ f, ) cell (m, l) as a correction
factor for the noise disturbance Ln (m, l ) in that cell (nomenclature is chosen to be
consistent with [Beerends and Stemerdink, 1992]).

A better approach turned out to be to average the power ratio py / px between the
output y and input x over a number of consecutive time frames. This implies that
if a codec introduces a new time-frequency component this component will be more
annoying if it is present over a number of consecutive frames. The general form of the
cognitive correction is defined as:

with

(1.6)
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(1.7)

and an additional clipping of the noise disturbance in each time window C n (m ) =

Σl = m a x i m u m
C n (m , l ) at a level of 20.l = 1

The simple modelling of auditory scene analysis with the asymmetry factor C( m, l )
gave significant improvements in correlation between objective and subjective results.
However it was found that for maximal correlation the amount of correction, as quan-
tified by the parameter λ , was different for speech and music. When applied to music
databases the optimal corrected noise disturbance was found for λ = 1.4 (PAQM C 1.4 )
whereas for speech databases the optimal λ was around 4.0 (PAQMC 4.0 ).

The results for music codec evaluations are given in Fig. 1.146 (ISO/MPEG 1991)
and Fig. 1.15 7 (ITU-R TG10/2 1993) and show a decrease in the standard error of the
MOS estimate of more than 25%. For the ISO/MPEG 1990 database no improvement
was found. For speech the improvement in correlation was slightly less but as it turned
out the last of the listed cognitive effects, spectro-temporal weighting, dominates
subjective speech quality judgements. The standard error of the MOS estimate in the
speech databases could be decreased significantly more when both the asymmetry and
spectra-temporal weighting are modelled simultaneously.

4) Spectra-temporal weighting was found to be important only in quality judge-
ments on speech codecs. Probably in music all spectra-temporal components in the
signal, even silences, carry information, whereas for speech some spectra-temporal
components, like formants, clearly carry more information then others, like silences.
Because speech databases used in this paper are all telephone-band limited spectral
weighting turned out to be only of minor importance and only the weighting over time
had to be modelled.

This weighting effect over time was modelled in a very simple way, the speech
frames were categorized in two sets, one set of speech active frames and one set of
silent frames. By weighting the noise disturbance occurring in silent frames with
a factor W sil between 0.0 (silences are not taken into account) and 0.5 (silences are
equally important as speech) the effect was quantified.

A problem in quantifying the silent interval behavior is that the influence of the
silent intervals depends directly on the length of these intervals. If the input speech
does not contain any silent intervals the influence is zero. If the input speech signal
contains a certain percentage of silent frames the influence is proportional to this
percentage. Using a set of trivial boundary conditions with spn the average noise
disturbance over speech active frames and siln the average noise disturbance over
silent frames one can show that the correct weighting is:

with:
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W n the noise disturbance corrected with a weight factor Wsil ,
W s p = (1— W sil ) / W sil ,
Psil the fraction of silent frames,

Ps p the fraction of speech active frames (Psil + Ps p = 1.0).

When both the silent intervals and speech active intervals are equally important,
such as found in music codec testing, the weight factor Wsil is equal to 0.5 and Eq.
(1.7) brakes down to W n = P sp . spn + psil . sil n . For both of the speech databases
the weight factor for silent interval noise for maximal correlation between objective
and subjective results was found to be 0.1 showing that noise in silent intervals is less
disturbing than equally loud noise during speech activity.

When both the asymmetry effect, resulting from the auditory scene analysis, and
the temporal weighting are quantified correctly, the correlation between subjective
and objective results for both of the speech databases improves significantly. Using
λ = 4.0 (asymmetry modelling) and a silent interval weighting of 0.1 (denoted as

Figure 1.14 Relation between the mean opinion score (MOS) and the cognitive cor-
rected PAQM (PAQMC 1.4 ) for the 50 items of the ISO/MPEG 1991 codec test [ISO91,
1991] in loudspeaker presentation.
(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)
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Figure 1.15 Relation between MOS and cognitive corrected PAQM (PAQM C1.4 ) for the
43 ISO layer II tandeming conditions of the ITU-R TG10/2 1993 [ITURsg10cond9343,
1993] audio codec test.
(Reprinted with permission from [Beerends and Stemerdink, 1994a], ©Audio Engi-
neering Society, 1994)

PAQMC 4 . 0 ,W 0.1 ) the decrease in the standard error of the MOS estimate is around
40% for both the ETSI GSM full rate (see Fig. 1.16) 8 and half rate database (see Fig.
1.17 9 ).

One problem of the resulting two cognitive modules is that predicting the sub-
jectively perceived quality is dependent on the experimental context. One has to set
values for the asymmetry effect and the weighting of the silent intervals in advance.

1.9 ITU STANDARDIZATION

Within the ITU several study groups deal with audio quality measurements. However,
only two groups specifically deal with objective perceptual audio quality measure-
ments. ITU-T Study Group 12 deals with the quality of telephone-band (300-3400 Hz)
and wide-band speech signals, while ITU-R Task Group 10/4 deals with the quality of
speech and music signals in general.
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Figure 1.16 Relation between the MOS and the cognitive corrected PAQM
(PAQMC4.0, W 0.1 ) for the ETSI GSM full rate speech database. Crosses represent data
from the experiment based on the modulated noise reference unit, circles represent
data from the speech codecs.

1.9.1 ITU-T, speech quality

Within ITU-T Study Group 12 five different methods for measuring the quality of
telephone-band (300-3400 Hz) speech signals were proposed.

The first method, the cepstral distance, was developed by the NTT (Japan). It uses
the cepstral coefficients [Gray and Markel, 1976] of the input and output signal of the
speech codec.

The second method, the coherence function, was developed by Bell Northern Re-
search (Canada). It uses the coherent (signal) and non-coherent (noise) powers to
derive a quality measure [CCITT86sg12con46,1986].

The third method was developed by the Centre National D’Etudes des Télé-
communication (France) and is based on the concept of mutual information. It is
called the information index and is described in the ITU-T series P recommendations
[CCITTsup3, 1989] (supplement 3, pages 272-281).

The fourth method is a statistical method that uses multiple voice parameters and a
non linear mapping to derive a quality measure via a training procedure on a training set
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Figure 1.17 The same as Fig. 1.16 but for the ETSI GSM half rate speech database
using PAQMC 4.0, W 0.1 .

of data. It is an expert pattern recognition technique and was developed by the National
Telecommunication Information Administration (USA) [Kubichek et al., 1989].

The last method that was proposed is the perceptual speech quality measure (PSQM),
a method derived from the PAQM as described in this chapter. It uses a simplified
internal representation without taking into account masking effects that are caused

by time-frequency smearing. Because of the band limitation used in telephone-band
speech coding and because distortions are always rather large, masking effects as
modelled in the PAQM are less important. In fact it has been shown that when
cognitive effects as described in the previous chapter are not taken into account the
modelling of masking behavior caused by time-frequency smearing may even lead to
lower correlations [Beerends and Stemerdink, 1994b]. Within the PSQM masking is
only taken into account when two time-frequency components coincide in both the
time and frequency domain. The time frequency mapping that is used in the PSQM
is exactly the same as the one used in the PAQM. Further simplifications used in the
PSQM are:
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� No outer ear transfer function a0 (z).

� A simplified mapping from intensity to loudness.

� A simplified cognitive correction for modelling the asymmetry effect.

An exact description of the PSQM method is given in [ITUTrecP861, 1996].
Although the PSQM uses a rather simple internal representation model the corre-

lation with the subjectively perceived speech quality is very high. For the two speech
quality databases that were used in the PAQM validation the method even gives a minor
improvement in correlation. Because of a difference in the mapping from intensity to
loudness a different weighting for the silent intervals has to be used (compare Figs.
1.16, 1.17 with 1.18, 10 1.19 11 ).

Figure 1.18 Relation between the MOS and the PSQM for the ETSI GSM full rate
speech database. Squares represent data from the experiment based on the modulated
noise reference unit, circles represent data from the speech codecs.

Within ITU-T Study Group 12 a benchmark was carried out by the NTT (Japan)
on the five different proposals for measuring the quality of telephone-band speech
codecs. The results showed that the PSQM was superior in predicting the subjec-
tive MOS values. The correlation on the unknown benchmark database was 0.98
[ITUTsg12con9674, 1996]. In this benchmark the asymmetry value λ for the PSQM
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Figure 1.19 The same as Fig. 1.18 but for the ETSI GSM half rate speech database
using the PSQM.

was fixed and three different weighting factors for the silent intervals were evalu-
ated. The PSQM method was standardized by the ITU-T as recommendation P.861
[ITUTrecP861, 1996], objective quality measurement of telephone-band (300-3400
Hz) speech codecs.

A problem in the prediction of MOS values in speech quality evaluations is the
weight factor of the silent intervals which depends on the experimental context. Within
the ITU-T Study Group 12 benchmark the overall best performance was found for a
weight factor of 0.4. However as can be seen in Fig. 1.19 the optimum weight
factor can be significantly lower. In recommendation P.861 this weight factor of the
silent intervals is provisionally set to 0.2. An argument for a low setting of the silent
interval weight factor is that in real life speech codecs are mostly used in conversational
contexts. When one is talking over a telephone connection the noise on the line present
during talking is masked by ones own voice. Only when both parties are not talking
this noise becomes apparent. In the subjective listening test however this effect does
not occur because subjects are only required to listen. In all ITU-T and ETSI speech
codec tests the speech material contained about 50% speech activity, leading to an
overestimation of the degradation caused by noise in silent intervals.
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Figure 1.20 Relation between the PSQM and the MOS in experiment 2 of the ITU-T
8 kbit/s 1993 speech codec test for the German language. The silent intervals are
weighted with the optimal weighting factor (0.5). Squares represent data from the
experiment based on the modulated noise reference unit, the other symbols represent
data from the speech codecs.

When the silent interval weighting in an experiment is known the PSQM has a very
high correlation with the subjective MOS. In order to compare the reliability of subjec-
tive and objective measurements one should correlate two sets of subjective scores that
are derived from the same set of speech quality degradations and compare this result
with the correlation between the PSQM and subjective results. During the standardiza-
tion of the G.729 speech codec [CCITTrecG729, 1995] a subjective test was performed
at four laboratories with four different languages using the same set of speech degra-
dations [ITUTsg12sq2.93, 1993], [ITUTsg12sq3.94, 1994]. The correlation between
the subjective results and objective results, using the optimal weight factor, was be-
tween 0.91 and 0.97 for all four languages that were used [Beerends94dec, 1994]. The
correlation between the subjective scores of the different languages varied between
0.85 and 0.96. For two languages, German and Japanese, the results are reproduced
in Figs. 1.20 12 , 1.21 13 and 1.22 14 . These results show that the PSQM is capable of
predicting the correct mean opinion scores with an accuracy that is about the same as
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Figure 1.21 The same as Fig. 1.20 but for the Japanese language.

the accuracy obtained from a subjective experiment, once the experimental context is
known.

1.9.2 ITU-R, audio quality

Within ITU-R Task Group 10/4 the following six methods for measuring the quality
of audio signals were proposed:

� Noise to Mask Ratio (NMR, Fraunhofer Gesellschaft, Institut für Integrierte
Schaltungen, Germany, [Brandenburg and Sporer, 1992])

� PERCeptual EVALuation method (PERCEVAL, Communications Research Cen-
tre,
Canada [Paillard et al., 1992])

� Perceptual Objective Model (POM, Centre Commun d’Etudes de Télédiffusion
et Télécommunication, France, [Colomes et al., 1994])

� Disturbance Index (DI, Technical University Berlin, [Thiede and Kabot, 1996])

� The toolbox (Institut für Rundfunk Technik, Germany)
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Figure 1.22 Relation between the Japanese and German MOS values using the sub-
jective data of experiment 2 of the ITU-T 8 kbit/s 1993 speech codec test. Squares
represent data from the experiment based on the modulated noise reference unit, the
other symbols represent data from the speech codecs.

� Perceptual Audio Quality Measure (PAQM, Royal PTT Netherlands, [Beerends
and Stemerdink, 1992], [Beerends and Stemerdink, 1994a])

The context in which these proposals were validated was much wider than the context
used in the ITU-T Study Group 12 validation. Besides a number of audio codec
conditions several types of distortions were used in the subjective evaluation. Because
of this wide context each proponent was allowed to put in three different versions of
his objective measurement method.

The wide validation context made it necessary to extend the PAQM method to
include some binaural processing. Furthermore different implementations of the
asymmetry effect were used and also a first attempt to model informational masking
was included [Beerends et al., 1996].

Although the PAQM method showed highest correlation between objective and
subjective results none of the eighteen (3*6) methods could be accepted as ITU-R
recommendation [ITURsg10con9714, 1997]. Currently in a joint effort between the
six proponents a new method is being developed, based on all eighteen proposals.
[ITURsg10con9719, 1997].
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1.10 CONCLUSIONS

Notes

NAG curve fitting routine.

A method for measuring audio quality, based on the internal representation of the
audio signal, has been presented. The method does not characterize the audio system,
but the perception of the output signal of the audio system. It can be applied to
measurement problems where a reference and a degraded output signal are available.
For measurement of audio codec quality the input signal to the codec is used as a
reference and the assumption is made that all differences that are introduced by the
codec lead to a degradation in quality.

In the internal representation approach the quality of an audio device is measured
by mapping the reference and output of the device from the physical signal representa-
tion (measured in dB, seconds, Hertz) onto a psychoacoustic (internal) representation
(measured in compressed Sone, seconds, Bark). From the difference in internal
representation the perceptual audio quality measure (PAQM) can be calculated which
shows good correlation with the subjectively perceived audio quality.

The PAQM is optimized using the ISO/MPEG music codec test of 1990 and validated
with several speech and music databases. The PAQM can be improved significantly
by incorporation of two cognitive effects. The first effect deals with the asymmetry
between the disturbance of a distortion that is caused by not coding a time-frequency
component versus the disturbance caused by the introduction of a new time-frequency
component. The second effect deals with the difference in perceived disturbance
between noise occurring in silent intervals and noise occurring during the presence
of audio signals. This last correction is only relevant in quality measurements on
speech codecs. When both cognitive effects are modelled correctly the correlations
between objective and subjective results are above 0.9 using three different music
codec databases and two different speech codec databases.

For measurement of the quality of telephone-band speech codecs a simplified
method, the perceptual speech quality measure (PSQM), is presented. The PSQM was
benchmarked together with four other speech quality measurement methods within
ITU-T Study Group 12 by the NTT (Japan). It showed superior performance in pre-
dicting subjective mean opinion scores. The correlation on the unknown benchmark
database was 0.98 [ITUTsg12con9674, 1996].  The PSQM method was standard-
ized by the ITU-T as recommendation P.861 [ITUTrecP861, 1996], objective quality
measurement of telephone-band (300-3400 Hz) speech codecs.

1. The 95% confidence intervals of the MOS lie in the range of 0.1-0.4. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error of
the estimate (R3=0.97 and S3=0.35) are derived from the third order regression line that is drawn using a
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2. The 95% confidence intervals of the MOS lie in the range of 0.1-0.4. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error of
the estimate (R3=0.9 1 and S3=0.48) are derived from the third order regression line that is drawn using a
NAG curve fitting routine.

3. The 95% confidence intervals of the MOS lie in the range of 0.1-0.5. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error
of the estimate (R3=0.83 and S3=0.29) are derived from the third order regression line that is drawn using
a NAG curve fitting routine. The result as given in this figure was validated by the Swedish Broadcasting
Corporation [ITURsg10cond9351, 1993].

4. The correlation and standard error of the estimate (R3=0.81 and S3=0.35) are derived from the third
order regression line that is drawn using a NAG curve fitting routine.

5. The correlation and standard error of the estimate (R3=0.83 and S3=0.44) are derived from the third
order regression line.

6. The 95% confidence intervals of the MOS lie in the range of 0.1-0.4. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The filled circles are the same items as
indicated in Fig. 1.9. The correlation and standard error of the estimate (R3=0.96 and S3=0.33) are derived
from  the third order  regression line that is  drawn using a NAG curve fitting routine.

7. The 95% confidence intervals of the MOS lie in the range of 0.1-0.5. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error
of the estimate (R3=0.91 and S3=0.22) are derived from the third order regression line that is drawn using
a NAG curve fitting routine. The result as given in this figure was validated by the Swedish Broadcasting
Corporation [ITURsg10cond9351, 1993].

8. The correlation and standard error of the estimate (R3=0.94 and S3=0.20) are derived from the third
order regression line that is drawn using a NAG curve fitting routine.

9. The correlation and standard error of the estimate (R3=0.94 and S3=0.27) are derived from the third
order regression line.

10. The correlation and standard error of the estimate (R3=0.96 and S3=0.17) are derived from the third
order regression line that is drawn using a NAG curve fitting routine.

11. The correlation and standard error of the estimate (R3=0.96 and S3=0.23) are derived from the third
order regression line.

S2) order regression line calculated with a NAG curve fitting routine. The second order regression line is
12. The correlations and standard errors that are given are derived from a first (R1, S1) and second (R2,

drawn
13. The silent intervals are weighted with the optimal weighting factor (0.4). The correlations and

standard errors that are given are derived from a first (R1, S1) and second (R2, S2) order regression line.
The second order regression line is drawn line.

S2) order regression line calculated with a NAG curve fitting routine. The second order regression line is
14. The correlations and standard errors that are given are derived from a first (R1, S1) and second (R2,

drawn.
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Abstract: Perceptual coding of high quality digital audio signals or in short “audio
compression” is one of the basic technologies of the multimedia age. This chapter
introduces the basic ideas of perceptual audio coding and discusses the different options
for the main building blocks of a perceptual coder. Several well known algorithms are
described in detail.

2.1 INTRODUCTION

Perceptual coding of high quality digital audio is without doubt one of the most exciting
chapters in applying signal processing to audio technology. The goal of this chapter is
to describe the basic technologies and to introduce some of the refinements which are
used to make decompressed sound perceptually equivalent to the original signal.

While the aggregate bandwidth for the transmission of audio (and video) signals
is increasing every year, the demand increases even more. This leads to a large
demand for compression technology. In the few years since the first systems and the
first standardization efforts, perceptual coding of audio signals has found its way to a
growing number of consumer applications. In addition, the technology has been used
for a large number of low volume professional applications.
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Application areas of audio coding. Current application areas include

� Digital Broadcasting: e.g. DAB (terrestrial broadcasting as defined by the Eu-
ropean Digital Audio Broadcasting group), WorldSpace (satellite broadcasting).

� Accompanying audio for digital video: This includes all of digital TV.

� Storage of music including hard disc recording for the broadcasting environment.

� Audio transmission via ISDN, e.g. feeder links for FM broadcast stations

� Audio transmission via the Internet.

Requirements for audio coding systems. The target for the development of per-
ceptual audio coding schemes can be defined along several criteria. Depending on the
application, they are more or less important for the selection of a particular scheme.

� Compression efficiency: In many applications, to get a higher compression ratio
at the same quality of service directly translates to cost savings. Therefore
signal quality at a given bit-rate (or the bit-rate needed to achieve a certain signal
quality) is the foremost criterion for audio compression technology.

� Absolute achievable quality: For a number of applications, high fidelity audio
(defined as no audible difference to the original signal on CD or DAT) is required.
Since no prior selection of input material is possible (everything can be called
music), perceptual coding must be lossy in the sense that in most cases the
original bits of a music signal cannot be recovered. Nonetheless it is important
that, given enough bit-rate, the coding system is able to pass very stringent
quality requirements.

� Complexity: For consumer applications, the cost of the decoding (and sometimes
of the encoding, too) is relevant. Depending on the application, a different
tradeoff between different kinds of complexity can be used. The most important
criteria are:

– Computational complexity: The most used parameter here is the signal pro-
cessing complexity, i.e. the number of multiply-accumulate instructions
necessary to process a block of input samples. If the algorithm is imple-
mented on a general purpose computing architecture like a workstation or
PC, this is the most important complexity figure.

– Storage requirements: This is the main cost factor for implementations on
dedicated silicon (single chip encoders/decoders). RAM costs are much
higher than ROM cost, so RAM requirements are most important.
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– Encoder versus decoder complexity: For most of the algorithms described
below, the encoder is much more complex than the decoder. This asym-
metry is useful for applications like broadcasting, where a one-to-many
relation exists between encoders and decoders. For storage applications,
the encoding can even be done off-line with just the decoder running in
realtime.

As time moves along, complexity issues become less important. Better systems
which use more resources are acceptable for more and more applications.

Algorithmic delay: Depending on the application, the delay is or is not an im-
portant criterion. It is very important for two way communications applications
and not relevant for pure storage applications. For broadcasting applications
some 100 ms delay seem to be tolerable.

Editability: For some applications, it is important to access the audio within a
coded bitstream with high accuracy (down to one sample). Other applications
demand just a time  resolution in the order of one coder frame size (e.g. 24 ms)
or no editability at all. A related requirement is break-in, i.e. the possibility to
start decoding at any point in the bitstream without long synchronization times.

Error resilience: Depending on the architecture of the bitstream, perceptual
coders are more or less susceptible to single or burst errors on the transmission
channel. This can be overcome by application of error-correction codes, but
with more or less cost in terms of decoder complexity and/or decoding delay.

�

�

�

Source coding versus perceptual coding. In speech, video and audio coding the
original data are analog values which have been converted into the digital domain using
sampling and quantization. The signals have to be transmitted with a given fidelity,
not necessarily without any difference on the signal part. The scientific notation for
the ”distortion  which  optimally can be achieved using a  given  data  rate” is  the rate
distortion function ([Berger, 1971]). Near optimum results are normally achieved using
a combination of removal of data which can be reconstructed (redundancy removal)
and the removal of data which are not important (irrelevancy removal). It should be
noted that in most cases it is not possible to distinguish between parts of an algorithm
doing redundancy removal and parts doing irrelevancy removal.

In source coding the emphasis is on the removal of redundancy. The signal is coded
using its statistical properties. In the case of speech coding a model of the vocal tract is
used to define the possible signals that can be generated in the vocal tract. This leads to
the transmission of parameters describing the actual speech signal together with some
residual information. In this way very high compression ratios can be achieved.

For generic audio coding, this approach leads only to very limited success [Johnston
and Brandenburg, 1992]. The reason for this is that music signals have no predefined



42 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

method of generation. In fact, every conceivable digital signal may (and probably will
by somebody) be called music and sent to a D/A converter. Therefore, classical source
coding is not a viable approach to generic coding of high quality audio signals.

Different from source coding, in perceptual coding the emphasis is on the removal
of only the data which are irrelevant to the auditory system, i.e. to the ear. The signal is
coded in a way which minimizes noise audibility. This can lead to increased noise as
measured by Signal-to-Noise-Ratio (SNR) or similar measures. The rest of the chapter
describes how knowledge about perception can be applied to code generic audio in a
very efficient way.

2.2 SOME FACTS ABOUT PSYCHOACOUSTICS

The main question in perceptual coding is: What amount of noise can be introduced
to the signal without being audible? Answers to this question are derived from
psychoacoustics. Psychoacoustics describes the relationship between acoustic events
and the resulting auditory perceptions [Zwicker and Feldtkeller, 1967], [Zwicker and
Fastl, 1990], [Fletcher, 1940].

The few basic facts about psychoacoustics given here are needed to understand
the description of psychoacoustic models below. More about psychoacoustics can
be found in John Beerend’s chapter on perceptual measurement in this book and in
[Zwicker and Fastl, 1990] and other books on psychoacoustics (e.g. [Moore, 1997]).

The most important keyword is ’masking’. It describes the effect by which a fainter,
but distinctly audible signal (the maskee) becomes inaudible when a correspondingly
louder signal (the masker) occurs simultaneously. Masking depends both on the spec-
tral composition of both the masker and the maskee as well as on their variations with
time.

2.2.1 Masking in the Frequency Domain

Research on the hearing process carried out by many people (see [Scharf, 1970]) led
to a frequency analysis model of the human auditory system. The scale that the ear
appears to use is called the critical band scale. The critical bands can be defined in
various ways that lead to subdivisions of the frequency domain similar to the one
shown in table 2.1. A critical band corresponds to both a constant distance on the
cochlea and the bandwidth within which signal intensities are added to decide whether
the combined signal exceeds a masked threshold or not. The frequency scale that is
derived by mapping frequencies to critical band numbers is called the Bark scale. The
critical band model is most useful for steady-state tones and noise.

Figure 2.1 (according to [Zwicker, 1982]) shows a masked threshold derived from
the threshold in quiet and the masking effect of a narrow band noise (1 kHz, 60 dB
sound pressure level; masker not indicated in the figure). All signals with a level below
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Table 2.1 Critical bands according to [Zwicker, 1982]

z/Bark

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

fu /Hz f o/H z ∆ fG /Hz

0 100 100
100 200 100
200 300 100
300 400 100
400 510 110
510 630 120
630 770 140
770 920 150
920 1080 160

1080 1270 190
1270 1480 210
1480 1720 240
1720 2000 280
2000 2320 320
2320 2700 380
2700 3150 450
3150 3700 550
3700 4400 700
4400 5300 900
5300 6400 1100
6400 7700 1300
7700 9500 1800
9500 12000 2500

12000 15500 3500

f m /Hz

50
150
250
350
450
570
700
840

1000
1170
1370
1600
1850
2150
2500
2900
3400
4000
4800
5800
7000
8500

10500
13500

the threshold are not audible. The masking caused by a narrow band noise signal is
given by the spreading function. The slope of the spreading function is steeper towards
lower frequencies. A good estimate is a logarithmic decrease in masking over a linear
Bark scale (e.g., 27 dB / Bark). Its slope towards higher frequencies depends on the
loudness of the masker, too. Louder maskers cause more masking towards higher
frequencies, i.e., a less steep slope of the spreading function. Values of -6 dB / Bark
for louder signals and -10 dB / Bark for signals with lower loudness have been reported
[Zwicker and Fastl, 1990]. The masking effects are different depending on the tonality
of the masker. A narrow band noise signal exhibits much greater ’masking ability’
when masking a tone compared to a tone masking noise [Hellman, 1972].
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Figure 2.1 Masked thresholds: Masker: narrow band noise at 250 Hz, 1 kHz, 4 kHz
(Reprinted from [Herre, 1995] ©1995, courtesy of the author)

Additivity of masking. One key parameter where there are no final answers from
psychoacoustics yet is the additivity of masking. If there are several maskers and the
single masking effects overlap, the combined masking is usually more than we expect
from a calculation based on signal energies. More about this can be found in John
Beerends chapter on perceptual measurement techniques in this book.

2.2.2 Masking in the Time Domain

The second main masking effect is masking in the time domain. As shown in Figure 2.2,
the masking effect of a signal extends both to times after the masker is switched of
(post-masking, also called forward masking) and to times before the masker itself is
audible (pre-masking, also called backwards masking). This effect makes it possible
to use analysis/synthesis systems with limited time resolution (e.g. high frequency
resolution filter banks) to code high quality digital audio. The maximum negative
time difference between masker and masked noise depends on the energy envelope of
both signals. Experimental data suggest that backward masking exhibits quite a large
variation between subjects as well as between different signals used as masker and
maskee. Figure 2.3 (from [Spille, 1992]) shows the results of a masking experiment
using a Gaussian-shaped impulse as the masker and noise with the same spectral density
function as the test signal. The test subjects had to find the threshold of audibility for
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Figure 2.2 Example of pre-masking and post-masking (according to [Zwicker, 1982])
(Reprinted from [Sporer, 1998] ©1998, courtesy of the author)

the noise signal. As can be seen from the plot, the masked threshold approaches the
threshold in quiet if the time differences between the two signals exceed 16 ms. Even
for a time difference of 2 ms the masked threshold is already 25 dB below the threshold
at the time of the impulse. The masker used in this case has to be considered a worst
case (minimum) masker.

If coder-generated artifacts are spread in time in a way that they precede a time
domain transition of the signal (e.g. a triangle attack), the resulting audible artifact is
called “pre-echo”. Since coders based on filter banks always cause a spread in time
(in most cases longer than 4 ms) of the quantization error, pre-echoes are a common
problem to audio coding systems.

2.2.3 Variability between listeners

One assumption behind the use of hearing models for coding is that “all listeners are
created equal”, i.e. between different listeners there are no or only small deviations in
the basic model parameters. Depending on the model parameter, this is more or less
true:

� Absolute threshold of hearing:
It is a well known effect that the absolute threshold of hearing varies between
listeners and even for the same listener over time with a general trend that the
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Figure 2.3 Masking experiment as reported in [Spille, 1992] (Reprinted from [Sporer,
1998] © 1998, courtesy of the author)

listening capabilities at high frequencies decrease with age. Hearing deficiencies
due to overload of the auditory system further increase the threshold of hearing
for part of the frequency range (see the chapter by Jim Kates) and can be found
quite often. Perceptual models have to take a worst case approach, i.e. have to
assume very good listening capabilities.

� Masked threshold:
Fortunately for the designers of perceptual coding systems, variations for the
actual masked thresholds in frequency domain are quite small. They are small
enough to warrant one model of masking with a fixed set of parameters.

� Masking in time domain:
The experiments described in [Spille, 1992] and other observations (including
the author) show that there are large variations in the ability of test subjects
to recognize small noise signals just before a loud masker (pre-echoes). It is
known that the capability to recognize pre-echoes depends on proper training
of the subjects, i.e. you might not hear it the first time, but will not forget the
effect after you heard it for the 100th time. At present it is still an open question
whether in addition to this training effect there is a large variation between
different groups of listeners.
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Figure 2.4 Example of a pre-echo. The lower curve (noise signal) shows the form of
the analysis window

� Perception of imaging and imaging artifacts:
This item seems to be related to the perception of pre-echo effects (test subjects
who are very sensitive for pre-echoes in some cases are known to be very
insensitive to imaging artifacts). Not much is known here, so this is a topic for
future research.

As can be seen from the comments above, research on hearing is by no means a
closed topic. Very simple models can be built very easily and can already be the base
for reasonably good perceptual coding systems. If somebody tries to built advanced
models, the limits of accuracy of the current knowledge about psychoacoustics are
reached very soon.

2.3 BASIC IDEAS OF PERCEPTUAL CODING

The basic idea about perceptual coding of high quality digital audio signals is to hide
the quantization noise below the signal dependent thresholds of hearing. Since the
most important masking effects are described using a description in the frequency
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domain, but with stationarity ensured only for short time periods of around 15 ms,
perceptual audio coding is best done in time/frequency domain. This leads to a basic
structure of perceptual coders which is common to all current systems.

2.3.1 Basic block diagram

Figure 2.5 shows the basic block diagram of a perceptual encoding system.

Figure 2.5 Block diagram of a perceptual encoding/decoding system (Reprinted from
[Herre, 1995] © 1995, courtesy of the author)

� Filter bank:
A filter bank is used to decompose the input signal into subsampled spectral
components (time/frequency domain). Together with the corresponding filter
bank in the decoder it forms an analysis/synthesis system.

� Perceptual model:
Using either the time domain input signal or the output of the analysis filter
bank, an estimate of the actual (time dependent) masked threshold is computed
using rules known from psychoacoustics. This is called the perceptual model of
the perceptual encoding system.

� Quantization and coding:
The spectral components are quantized and coded with the aim of keeping
the noise, which is introduced by quantizing, below the masked threshold.
Depending on the algorithm, this step is done in very different ways, from simple
block companding to analysis-by-synthesis systems using additional noiseless
compression.
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� Frame packing:
A bitstream formatter is used to assemble the bitstream, which typically consists
of the quantized and coded spectral coefficients and some side information, e.g.
bit allocation information.

These processing blocks (in various ways of refinement) are used in every perceptual
audio coding system.

2.3.2 Additional coding tools

Along the four mandatory main tools, a number of other techniques are used to enhance
the compression efficiency of perceptual coding systems. Among these tools are:

� Prediction:
Forward- or backward adaptive predictors can be used to increase the redundancy
removal capability of an audio coding scheme. In the case of high resolution
filter banks backward adaptive predictors of low order have been used with
success [Fuchs, 1995].

� Temporal noise shaping:
Dual to prediction in time domain (with the result of flattening the spectrum of
the residual), applying a filtering process to parts of the spectrum has been used
to control the temporal shape of the quantization noise within the length of the
window function of the transform [Herre and Johnston, 1996].

�

�

[van der Waal and Veldhuis, 1991, Herre et al., 1992].

M/S stereo coding:
The masking behavior of stereo signals is improved if a two-channel signal can be
switched between left/right and sum/difference representation. Both broadband
and critical band-wise switching has been proposed [Johnston, 1989a].

Intensity stereo coding:
For high frequencies, phase information can be discarded if the energy envelope
is reproduced faithfully at each frequency, This is used in intensity stereo coding

� Coupling channel:
In multichannel systems, a coupling channel is used as the equivalent to an n-
channel intensity system. This system is also known under the names dynamic
crosstalk or generalized intensity coding. Instead of n different channels, for part
of the spectrum only one channel with added intensity information is transmitted
[Fielder et al., 1996, Johnston et al., 1996].

� Stereo prediction:
In addition to the intra-channel version, prediction from past samples of one
channel to other channels has been proposed [Fuchs, 1995].
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� Spectrum flattening:
As a special version to enhance the efficiency of the quantization and coding
module, an LPC analysis has been proposed to normalize the spectral values
[Iwakami et al., 1995].

2.3.3 Perceptual Entropy

The term “Perceptual Entropy” (PE, see [Johnston, 1988]) is used to define the lowest

model. The PE is defined as
In practice, the calculation of the PE requires an analysis filter bank and a perceptual

data rate which is needed to encode some audio signal without any perceptual difference
to the original. An estimate of the PE (there is not enough theory yet to calculate a
”real” PE) can be used to determine how easy or how difficult it is to encode a given
music item using a perceptual coder.

(2.1)

where N is the number of frequency components between f l and f u , f l is the lower
frequency limit (e.g. fl = 0 Hz), f u is the upper frequency limit (e.g. f u = 20000
Hz), signal(f) is the amplitude of the frequency component f and threshold( f ) is the
estimated threshold level at the frequency f. This definition of the PE of course needs
the existence of a concept of audibility resp. an auditory threshold. Examples for this
are given later in this chapter.

2.4.1 Filter banks

2.4 DESCRIPTION OF CODING TOOLS

The filter bank is the deciding factor for the basic structure of a perceptual coding sys-
tem. Figure 2.6 shows the basic block diagram of an static n-channel analysis/synthesis
filter bank with downsampling by k. If k = n, it is called a filter bank with critical
sampling. A number of basic parameters can be used to describe filter banks used for
audio coding:

� Frequency resolution:
Over the past years, two main types of filter banks have been used for high
quality audio coding:

– Low resolution filter banks (e.g. 32 subbands), normally combined with a
quantization and coding module which works on blocks in time direction.
These are frequently called subband coders.
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– High frequency resolution filter banks (e.g. 512 subbands), normally com-
bined with a quantization and coding module which works by combining
adjacent frequency lines. These have traditionally been called transform
coders.

Figure 2.6 Basic block diagram of an n-channel analysis/synthesis filter bank with
downsampling by k (Reprinted from [Herre, 1995] © 1995, courtesy of the author)

A higher resolution filter bank for most signals exhibits a larger transform gain.
For this reason, high frequency resolution filter banks are the tool of choice for
audio coding systems built for maximum coding efficiency at low bit-rates.

Mathematically, all transforms used in today’s audio coding systems can be seen
as filter banks. All uniform subband filter banks can be seen as transforms of
L input samples into N spectral components as derived for example in [Edler,
1995, Temerinac and Edler, 1993]. There is no basic difference between both
approaches, so any attempt to distinguish between subband coders and transform
coders is against current scientific knowledge. Therefore, in the following we
will use the term “filter bank” synonymously to “subband filter bank” and/or
“transform”.

� Perfect reconstruction:
Perfect reconstruction filter banks allow the lossless reconstruction of the input
signal in an analysis–synthesis system without quantization. While not a neces-
sary feature, the use of a perfect reconstruction filter bank simplifies the design
of a coding system, While at some point other filter banks have been proposed
for use in perceptual coders (e.g. wave digital filters, see [Sauvagerd, 1988]),
all currently used filter banks are either perfect reconstruction or near perfect
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�
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reconstruction (very small reconstruction error in the absence of quantization of
the spectral components).

Prototype window:
Especially in the case of low bit-rates (implying that a lot of quantization noise
is introduced), the filter characteristics of the analysis and synthesis filters as
determined by the prototype window / windowing function are a key factor for
the performance of a coding system.

Uniform or non-uniform frequency resolution:
Both uniform or non-uniform frequency resolution filter banks have been pro-
posed since the first work on high quality audio coding. While a non-uniform
frequency resolution is closer to the characteristics of the human auditory sys-
tem, in practical terms uniform frequency resolution filter banks have been more
successful. This may be due to the fact that even at high frequencies for some
signals the larger coding gain of a high frequency resolution is needed [Johnston,
1996].

Static or adaptive filter bank:
In an analysis/synthesis filter bank, all quantization errors on the spectral com-
ponents show up on the time domain output signal as the modulated signal
multiplied by the synthesis window. Consequently, the error is smeared in time
over the length of the synthesis window / prototype filter. As described above,
this may lead to audible errors if premasking is not ensured. This pre-echo effect
(a somewhat misleading name, a better word would be pre-noise) can be avoided
if the filter bank is not static, but switched between different frequency/time res-
olutions for different blocks of the overlap/add. An example of this technique
called adaptive window switching is described below.

The following section gives a short overview of filter banks which are currently used
for audio coding purposes.

QMF filter banks. Quadrature mirror filters (QMF, see [Esteban and Galand, 1977])
have often been proposed for audio coding. The most common configuration is the
tree of filters with a two-way split. In one of the early examples [Theile et al., 1987]
the ’64d’ filter design from [Johnston, 1980] has been used. The decomposition tree
is set up so that the filter bands resemble critical bands. The QMF halfband filters
are non-perfect reconstruction, but with perfect alias cancellation by design. The
reconstruction error of the analysis/synthesis pair can be held at small amplitudes by
increasing the filter length.

Instead of standard QMF filters, generalized QMF-techniques (GQMF) have been
used as well [Edler, 1988].

The disadvantages of the QMF-tree technique are
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Non-perfect reconstruction: The passband ripple which is typical for QMF filter
designs can lead to time domain artifacts which can be audible even if they are
at very low amplitudes.

Long system delay: The overall system delay can reach 250 ms, if the technique
is used to design a filter bank with a frequency partitioning similar to critical
bands.

High computational complexity: The number of multiplications per sample
which is needed to compute a QMF-tree filter bank using e.g. 64-tap filters is
much higher compared to polyphase filter banks or FFTs.

�

�

�

Wavelet based filter banks. In the last few years a number of audio coding systems
have been proposed using wavelet based filters [Sinha and Tewfik, 1993]. A thorough
description of the theory of wavelet based filter banks can be found in [Vetterli and
Kova  evi , 1995].

Polyphase filter banks. Polyphase filter banks as used in audio coding have been
introduced in [Rothweiler, 1983]. These are equally spaced filter banks which com-
bine the filter design flexibility of generalized QMF banks with low computational
complexity. Most current designs are based on the work in [Rothweiler, 1983].

The filter bank used in the MPEG/Audio coding system will be used as an example.
A 511 tap prototype filter is used. Figure 2.7 shows the prototype filter (window
function). It has been optimized for a very steep filter response and a stop band
attenuation of better than 96 dB. Figure 2.8 shows the frequency response of the filter
bank. In addition to the attenuation requirements it was designed as a reasonable
tradeoff between time behavior and frequency localization [Dehery, 1991].

The advantage of polyphase filter banks as used for audio coding is the combina-
tion of the degrees of freedom for the prototype filter design and the relatively low
complexity of the filter bank.

Only equally-spaced filter banks can be designed using this technique. This is the
main disadvantage of polyphase filter banks.

Fourier Transform based filter banks (DFT, DCT): Some of the first work done
in coding of high quality audio signals used DFT and DCT based transforms as known
from image coding. The original idea of Adaptive Transform Coding (ATC) was
to decorrelate the signal via the transform. This technique had been introduced for
speech coding by [Zelinski and Noll, 1977] (see the description in [Jayant and Noll,
1982], too). The extension of this technique to high quality audio coding was first
presented in [Brandenburg et al., 1982]. To reduce blocking artifacts, windowing and
overlap/add techniques have been used. [Portnoff, 1980] gives a framework of FFT-
based short time analysis/synthesis systems using windowing. The first perceptual
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Figure 2.7 Window function of the MPEG-1 polyphase filter bank (Reprinted from
[Sporer, 1998] © 1998, courtesy of the author)

transform coding systems all implemented an overlap of 1/16 of the block length
[Krahé, 1988, Brandenburg, 1987, Johnston, 1989b].

Another, now commonly used viewpoint is to look at a transform based and win-
dowed analysis/synthesis system as a polyphase structure. The window takes the part
of a prototype filter. The transform does the modulation of the filtered signal into the
baseband.

In the last years all new high frequency resolution (transform) based coding systems
use MDCT techniques (see below) instead of DFT or DCT.

The advantage of the transform-based approach is low computational complexity.
An analysis/synthesis system with as much as 512 frequency components can be
realized using, for example, 10 multiplications per time domain sample.

Time domain aliasing cancellation based filter banks. The Modified Discrete
Cosine Transform (MDCT) was first proposed in [Princen et al., 1987] as a sub-
band/transform coding scheme using Time Domain Aliasing Cancellation (TDAC). It
can be viewed as a dual to the QMF-approach doing frequency domain aliasing can-
cellation. The window is constructed in a way that satisfies the perfect reconstruction
condition:

(2.2)
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Figure 2.8 Frequency response of the MPEG-1 polyphase filter bank (Reprinted from
[Sporer, 1998] © 1998, courtesy of the author)

where N is the window length. The equation above already assumes that analysis
window and synthesis window are equal. While this is not a necessary condition, it is
widely the case.

Normally, an overlap factor of two is used together with a sine window:

(2.3)

The transform kernel is a DCT with a time-shift component added:

(2.4)

where N is the block length in time, M = N /2 is the block length in the frequency
domain, h ( k), k = 0, ..., N – 1 is the window, x t (k) are the samples of the tth block,
and X t ( m ), m = 0, ..., M – 1 are the frequency domain values.
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As can be seen from the equation above, there is frequency domain subsampling.
As a result, the analysis/synthesis system does critical sampling of the input signal,
that is the number of time/frequency components for transform block is equal to the
update length of the input time domain sequence.

MDCT or similar schemes are used in several audio coding systems [Brandenburg,
1988, Mahieux et al., 1990, Brandenburg et al., 1991] [Davidson et al., 1990, Iwadare
et al., 1992] because they combine critical sampling with the good frequency resolu-
tion provided by a sine window and the computational efficiency of a fast FFT-like
algorithm. Typically, 128 to 2048 equally spaced bands are used.

As a further advantage of MDCT-like filter banks it should be noted that the time
domain aliasing property needs to be valid for each half of the window independently
from the other. Thus hybrid window forms (with different types of window functions
for the first or second half) can be used. This leads to the realization of adaptive
window switching systems ([Edler, 1989], see below).

The MDCT is known under the name Modulated Lapped Transform ([Malvar,
1990]) as well. Extensions using an overlap of more than a factor of two have been
proposed [Vaupelt, 1991, Malvar, 1991] and used for coding of high quality audio
[Vaupelt, 1991]. This type of filter banks can be described within the framework
of cosine-modulated filter banks ([Koilpillai and Vaidyanathan, 1991][Ramstadt and
Tanem, 1991, Malvar, 1992]).

Other window functions than the sine window have been proposed as well (see
[Bosi et al., 1996b, Fielder et al., 1996]). Using Kaiser-Bessel-Derived window
functions, a filter characteristic exhibiting better side-lobe suppression is possible.
This is explained in [Fielder et al., 1996].

Hybrid filter banks. Filter banks which consist of a cascade of different types of
filter banks are called hybrid filter banks. They have been introduced in [Brandenburg
and Johnston, 1990] to build an analysis/synthesis system which combines the different
frequency resolution at different frequencies possible with QMF-tree structures with
the computational efficiency of FFT-like algorithms. In the example of [Brandenburg
and Johnston, 1990], the input signal is first subdivided into 4 bands using a QMF-tree.
To avoid artifacts due to the QMF-filter bank, an 80-tap filter has been used. Each of
the 4 bands is further subdivided into 64 or 128 frequency lines using an MDCT. A
total of 320 frequency lines is generated. The time resolution for each line is between
21 ms for the lowest frequencies to 2.7 ms for the highest frequencies.

In ISO/MPEG Layer 3, a different approach to hybrid coding has been used (see
Figure 2.9. To ensure compatibility to Layers 1 and 2, the same polyphase filter bank
is used as the first filter in the hybrid filter bank. Each of the 32 polyphase subbands
is normally further subdivided into 18 frequency lines using an MDCT. By using the
window switching technique described below the subdivision can be switched to 6
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Figure 2.9 Block diagram of the MPEG Layer 3 hybrid filter bank (Reprinted from
[Herre, 1995] © 1995, courtesy of the author)

lines for either all of the 32 polyphase subbands or for only the 30 higher polyphase
subbands.

In summary it can be stated that hybrid filter banks allow increased flexibility in the
design by including the possibility to have different frequency resolutions at different
frequencies. Another degree of freedom which is gained by using hybrid filter banks
is the adaptive switching of the filter bank to different time/frequency behavior. On the
downside, a somewhat increased complexity compared to solutions based on cosine-
modulated filter banks is necessary to implement adaptive hybrid systems.

Alias reduction for hybrid filter banks. One possible problem of all cascaded filter
banks specific to hybrid filter banks needs to be mentioned. Since the frequency
selectivity of the complete filter bank can be derived as the product of a single filter
with the alias components folded in for each filter, there are spurious responses (alias
components) possible at unexpected frequencies. Crosstalk between subbands over a
distance of several times the bandwidth of the final channel separation can occur. The
overall frequency response shows peaks within the stopbands.

In [Edler, 1992] a solution to this problem has been proposed. It is based on the
fact that every frequency component of the input signal influences two subbands of the
cascaded filter bank, one as a signal component and the other as an aliasing component.
Since this influence is symmetric, a compensation can be achieved using a butterfly
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structure with the appropriate weighting factors. No complete cancellation of the
additional alias terms can be achieved, but an optimization for the overall frequency
response can be done. The resulting frequency response of the hybrid filter banks
shows an improvement of the aliasing side lobes by about 5 – 10 dB.

Adaptive filter banks. In the basic configuration, all filter banks described above
feature a time/frequency decomposition which is constant over time. As mentioned
above, there are possibilities to switch the characteristics of a filter bank, going from
one time/frequency decomposition to another one. We explain the basic principle
using the example of MPEG Audio Layer 3:

The technique is based on the fact that alias terms which are caused by subsampling
in the frequency domain of the MDCT are constrained to either half of the window.
Adaptive window switching as used in Layer 3 is based on [Edler, 1989]. Figure 2.10
shows the different windows used in Layer 3, Figure 2.11 shows a typical sequence
of window types if adaptive window switching is used. The function of the different

a) normal window b) start window

c) short window d) stop window

Figure 2.10 Window forms used in Layer 3 (Reprinted from [Sporer, 1998] © 1998,
courtesy of the author)

window types is explained as follows:

�

�

Long window:
This is the normal window type used for stationary signals.

Short window:
The short window has basically the same form as the long window, but with
1/3 of the window length. It is followed by an MDCT of 1/3 length. The time



PERCEPTUAL CODING OF HIGH QUALITY DIGITAL AUDIO 59

resolution is enhanced to 4 ms at 48 kHz sampling frequency. The combined
frequency resolution of the hybrid filter bank in the case of short windows is 192
lines compared to 576 lines for the normal windows used in Layer 3.

Figure 2.11 Example sequence of window forms (Reprinted from [Sporer, 1998]
© 1998, courtesy of the author)

�

�

Start window:
In order to switch between the long and the short window type, this hybrid
window is used. The left half has the same form as the left half of the long
window type. The right half has the value one for 1/3 of the length and the shape
of the right half of a short window for 1/3 of the length. The remaining 1/3 of
the window is zero. Thus, alias cancellation can be obtained for the part which
overlaps the short window.

Stop window:
This window type enables the switching from short windows back to normal
windows. It is the time reverse of the start window.

A criterion when to switch the window form is necessary to control the adaptive
block switching. One possible criterion to switch the filter bank is derived from the
threshold calculation. If pre-echo control is implemented in the perceptual model as
described below, pre-echo conditions result in a much increased estimated Perceptual
Entropy (PE) [Johnston, 1988], i.e. in the amount of bits needed to encode the signal.
If the demand for bits exceeds the average value by some extend, a pre-echo condition
is assumed and the window switching logic is activated. Experimental data suggest that
a big surge in PE is always due to pre-echo conditions. Therefore pre-echo detection
via the threshold calculation works more reliable than purely time domain energy
calculation based methods.

2.4.2 Perceptual models

As discussed above, the model of hearing built into a perceptual coding system forms
the heart of the algorithm. A lot of systems (like MPEG Audio, see below) just define
the transmission format, thus allowing changes and improvements to the perceptual
model even after a standard is fixed and a lot of decoders are deployed at the customers.



60 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

The main task of the perceptual model in a perceptual encoding system is to
deliver accurate estimates of the allowed noise (just masked threshold) according to
the time/frequency resolution of the coding system. Additional tasks include

�

�

�

the control of adaptive block switching for adaptive filter banks,

the control of a bit reservoir if applicable,

the control of joint stereo coding tools like M/S and/or intensity coding

To solve these tasks, perceptual models often work directly on the time domain input
data thus allowing a time and/or frequency resolution of the model which is better than
the time and/or frequency resolution of the main filter bank of the perceptual coding
system.

A trivial example. In the simplest case, a static model can be used. In the case of
a frequency domain coding system, a worst-case SNR necessary for each band can be
derived from the masking curves. Here a bit allocation strategy assigns the number of
bits according to

(2.5)

that is, the number of bits per band i is derived from the worst-case SNR
S N Rworst( i ) for this band.

This model has been used in the earliest known digital perceptual audio coding
system [Krasner, 1979]. Similar models have been used for the Low-Complexity-
Adaptive Transform Coding (LC-ATC, [Seitzer et al., 1988]) and AC-2 ([Davidson
et al., 1990]) systems.

More advanced models try to estimate a time-dependent Signal-to-Mask-Ratio
(SMR) for each band used in the coder. Because the knowledge about masking effects
is limited at this time and because different theories about additivity of masking or the
effects of tonality exist, there is no such thing as ’the correct psychoacoustic model’.

Estimation of tonality. Following early research work by Scharf (see [Scharf, 1970])
and Hellman (see [Hellman, 1972]) one way to derive an estimate of the masked
threshold is to distinguish between the masking estimates for noise maskers masking
tonal signals and tone maskers masking noise signals. To do this, an estimate of the
tonality of a signal is necessary. For complex signals we find that a tonality index
v (t ,ω) depending on time t and frequency ω leads to the best estimation of a masked
threshold. To get such an estimate, a tonality measure using a simple polynomial
predictor has been proposed in [Brandenburg and Johnston, 1990].
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Two successive instances of magnitude and phase are used to predict magnitude
and phase at each frequency line:

r(t ,ω) magnitude at time t and frequency ω
Φ( t ,ω) phase at time t and frequency ω

The predicted values and of r and Φ are calculated as:

(2.6)

(2.7)

(2.8)

(2.9)

The Euclidean distance between the predicted and the actual values is the unpredictabil-
ity (sometimes called the ’chaos-measure’)c(t ,ω):

(2.10)

If the signal at frequency is very tonal, the prediction will be accurate andc( t, ω)
will be very small. If the signal is noise-like, c( t, ω) assumes values up to 1 with a
mean of 0.5. Therefore the chaos measure can be limited to the range 0.05 to .5 with
0.05 considered fully tonal and 0.5 considered fully noise-like:

(2.11)

The chaos measure c(t ,ω) can be mapped to a tonality measure v (t ,ω) via a nonlinear
mapping:

(2.12)

The tonality index v (t,ω) denotes the final result of the tonality estimation and can be
applied to a perceptual model as for example the one described below.

MPEG-1 perceptual model 2. As an example for actual perceptual models we give
a description of the “perceptual model 2” as it is described in the informative annex of
MPEG-1 audio [MPEG, 1992].

The frequency domain representation of the data is calculated via an FFT after
applying a Hann window with a window length of 1024 samples. The calculation is
done with a shift length equal to the block structure of the coding system. As described
below, the shift length is 576 samples for Layer 3 of the ISO/MPEG-Audio system.

The separate calculation of the frequency domain representation is necessary be-
cause the filter bank output values (polyphase filter bank used in Layer 1/2 or hybrid
filter bank used in Layer 3) can not easily be used to get a magnitude/phase represen-
tation of the input sequence as needed for the estimation of tonality.
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The magnitude values of the frequency domain representation are converted to a
1/3-critical band energy representation. This is done by adding the magnitude values
within a threshold calculation partition.

The tonality estimation is based on the simple polynomial predictor as described
above.

(2.13)

where b is the threshold calculation partition index, lowb and high b are the lowest
and the highest frequency line in b and r(ω) is the magnitude at frequency ω.

A weighted unpredictability cb is derived from the unpredictability measure, c(ω),
which has been computed according to the procedure described above.

(2.14)

A convolution of these values with the cochlear spreading function follows. Due
to the non-normalized nature of the spreading function, the convolved versions of eb

and cb should be renormalized. The convolved unpredictability, cb , is mapped to the
tonality index, tb , using a log transform just as the unpredictability was mapped to the
tonality index, c(t, ω), from equation (2.12).

The next step in the threshold estimation is the calculation of the just-masked noise
level (also called masking level) in the cochlear domain using the tonality index and
the convolved spectrum. This is done by first calculating the required signal to noise
ratio S N Rb for each threshold calculation band b.

(2.15)

where minvalb is a tabulated minimum value per threshold calculation band. TMNb

and NMTb are estimates for the masking capabilities of tone masking noise and noise
masking tone [Scharf, 1970, Hellman, 1972].

If necessary, pre-echo control occurs at this point. This is done by using an actual
threshold estimation which would be valid for the current block even if the sound which
could cause pre-echo artifacts would be deleted from the signal. A good approximation
for this hypothetical deletion is to use the data of the last block as an estimate for the
current block. To have data of earlier blocks available, the preliminary estimated
threshold is stored. It will be used for pre-echo control in the next input data block.

The final step to get the preliminary estimated threshold is the adjustment for the
threshold in quiet. Since the sound pressure level of the final audio output is not known
in advance, the threshold in quiet is assumed to be some amount below the LSB for
the frequencies around 4 kHz.
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The preliminary threshold of the current block is then modified using the preliminary
threshold of the last block.

(2.16)

where thr b is the final estimated masked threshold for the threshold calculation
band b, thrpb is the preliminary threshold, throldb  is the preliminary threshold of the
last block of data and rpelev is a constant. It introduces a weighting to the threshold
data of the last block. We use rpelev = 2.

All calculations up to now have been done using the threshold calculation partitions,
that is without any knowledge about the frequency partitioning used by the coding
system. To map these values to coder partitions, all the estimated threshold values are
first mapped to spectral densities. From there, using again the magnitude values r(ω) ,
the signal to mask ratios SMR n are derived. n denotes the coder partition or coder
subband number.

(2.17)

with e n denoting the signal energy in the coder partition or coder subband n and
thr n describing the estimated masked threshold for the coder partition n.

The values SMR n can be used either directly in the case of coding systems using
noise allocation or to control a bit allocation algorithm.

2.4.3 Quantization and coding

The quantization and coding tools in an encoder do the main data-reduction work.
As in the case of filter banks, a number of design options are possible and have been
explored.

� 

Quantization and coding control structures:
The two approaches currently in wide use are

Coding alternatives:
The quantized spectral components are stored and/or transmitted either directly
as quantized values according to a bit allocation strategy (including bit packing)
or as entropy coded words.

Quantization alternatives:
Most systems apply uniform quantization. One exception to this rule is the
application of non-uniform quantization with a power law in MPEG-1 and
MPEG-2 audio.

�

�

– Bit allocation (direct structure):
A bit allocation algorithm driven either by data statistics or by a perceptual
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model decides how many bits are assigned to each spectral component.
This is performed before the quantization is done.

– Noise allocation (indirect structure):
The data are quantized with possible modifications to the quantization step
sizes according to a perceptual model. A count of how many bits are used
for each component can only be done after the process is completed.

� Tools to improve quantization and coding:
A lot of small variations to the basic ideas have been applied to further remove
redundancy of the quantized values. Examples can be found e.g. in the docu-
ments describing standardized systems. [MPEG, 1992, MPEG, 1994a, MPEG,
1997a, ATSC, 1995].

The following sections describe some of the widely used tools for quantization and
coding in more detail.

Block companding. This method is also known under the name “block floating
point”. A number of values, ordered either in time domain (successive samples) or in
frequency domain (adjacent frequency lines) are normalized to a maximum absolute
value. The normalization factor is called the scalefactor (or, in some cases, exponent).
All values within one block are then quantized with a quantization step size selected
according to the number of bits allocated for this block. A bit allocation algorithm
is necessary to derive the number of bits allocated for each block from the perceptual
model. In some cases, a simple bit allocation scheme without an explicit perceptual
model (but still obeying masking rules) is used.

Non-uniform scalar quantization. While usually non-uniform scalar quantization
is applied to reduce the mean squared quantization errors like in the well known
MAX quantizer, another possibility is to implement some default noise shaping via the
quantizer step size. This is explained using the example of the quantization formula
for MPEG Layer 3 or MPEG-2 Advanced Audio Coding:

The basic formula is

(2.18)

where xr (i) is the value of the frequency line at index i, quant is the actual quantizer
step size, nint is the ‘nearest integer’ function and is(i) is the quantized absolute value
at index i.

The quantization is of the mid-tread type, i.e. values around zero get quantized to
zero and the quantizer is symmetric.

In this case, bigger values are quantized less accurately than smaller values thus
implementing noise shaping by default.
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Vector quantization. In vector quantization, not the individual filter bank output
samples are quantized, but n-tuples of values. This technique is used in most current
speech and video coding techniques. Recently, vector quantization has been applied in
a scheme called TWIN-VQ ([Iwakami et al., 1995]). This system has been proposed
for MPEG-4 audio coding (see [MPEG, 1997b]).

Noise allocation followed by scalar quantization and Huffman coding. In this
method, no explicit bit allocation is performed. Instead, an amount of allowed noise
equal to the estimated masked threshold is calculated for each scalefactor band. The
scalefactors are used to perform a coloration of the quantization noise (i.e. they modify
the quantization step size for all values within a scalefactor band) and are not the
result of a normalization procedure. The quantized values are coded using Huffman
coding. The whole process is normally controlled by one or more nested iteration
loops. The technique is known as analysis-by-synthesis quantization control. It was
first introduced for OCF [Brandenburg, 1987], PXFM [Johnston, 1989b] and ASPEC
[Brandenburg et al., 1991]. In a practical application, the following computation steps
are performed in an iterative fashion:

�

�

�

�

Scaling

Inner loop
The quantization of the actual data is performed including the buffer control.

Calculation of the actual quantization noise
The quantization noise is calculated by subtracting the reconstructed from the
unquantized signal values and summing the energies per scalefactor band.

For each scalefactor band which violates the masked threshold as known from
the calculation of the psychoacoustic model, the signal values are amplified.
This corresponds to a decrease of the quantizer step size only for these bands.

Check for termination of iteration loop
If no scaling was necessary or another reason to terminate the loop applies,
end the iterations. If not, continue with quantization using the modified signal
values.

Huffman coding. One very successful tool for high quality audio coding is static
Huffman coding applying different Huffman code tree tables according to the local
statistics of the signal. As an example for refinements to the basic concept of Huffman
coding, the following paragraph describes the noiseless coding techniques used within
MPEG Layer 3.

Codes are transmitted only up to the highest numbered frequency line with a
quantized value different from zero. The actually coded values are divided into one
region called big values, where the frequency lines are coded with a 2-dimensional
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Huffman code and another region at higher frequencies (below the values which default
to zero) containing only quantized values not exceeding magnitude 1. The values in
the latter region are quantized using a 4-dimensional Huffman code. The big values
region is split into 3 subregions. Each of them uses a separately selectable Huffman
code table. A set of 16 possible Huffman code tables is used. For each section the

Table 2.2 Huffman code tables used in Layer 3

Table Quantization Table size Number of bits per ESC
number levels pair of zeroes

0 0 0 x 0 0
1 3 2 x 2 1
2 5 3 x 3
3 5 3 x 3 2
4 not used
5 7 4 x 4
6 7 4 x 4 3
7 11 6 x 6
8 11 6 x 6 2
9 11 6 x 6 3
10 15 8 x 8
11 15 8 x 8 2
12 15 8 x 8 4
13 31 16 x 16
14 not used
15 31 16 x 16 3
16 33 16 x 16 *

24 33 16 x 16 4 *

table which is best adapted to the current signal statistics is searched. By individually
adapting code tables to subregions coding efficiency is enhanced  and simultaneously
the sensitivity against transmission errors is decreased. The largest tables used in
Layer 3 contain 16 by 16 entries. Larger values are coded using an escape mechanism.
The table entry belonging to the largest value signals that the value is coded via a
PCM-code.

The table numbers 17 to 23 and 25 to 31 are used to point to tables 16 resp. 24 but
with different lengths of the codeword part which is coded using the escape mechanism.

1

1

1

1

1

1



PERCEPTUAL CODING OF HIGH QUALITY DIGITAL AUDIO 67

Short time buffering. While all systems described here are designed to work in a
fixed bit-rate environment, it is desirable to support some locally varying bit-rates.
Beyond the aim of smoothing out some local variations in the bit-rate demand, this is
used to reduce the probability of audible pre-echoes even in systems where window
switching is applied.

As described above, the pre-echo control in the perceptual model can lead to a PE
signalling a bit-rate demand which is increased by a possibly large factor.

Figure 2.12 Example for the bit reservoir technology (Layer 3)

A buffer technique called bit reservoir was introduced to satisfy this additional need
for bits. It can be described as follows:

The amount of bits corresponding to a frame is no longer constant, but varying
with a constant long term average. To accommodate fixed rate channels, a maximum
accumulated deviation of the actual bit-rate to the target (mean) bit-rate is allowed. The
deviation is always negative, i.e. the actual mean bit-rate is never allowed to exceed
the channel capacity. An additional delay in the decoder takes care of the maximum
accumulated deviation from the target bit-rate.

If the actual accumulated deviation from the target bit-rate is zero, then (by def-
inition) it holds that the actual bit-rate equals the target bit-rate. In this case the bit
reservoir is called empty. If there is an accumulated deviation of n bits then the next
frame may use up to n bits more than the average number without exceeding the mean
bit-rate. In this case the bit reservoir is said to ’hold n bits’.

This is used in the following way in Layer 3: Normally the bit reservoir is kept at
somewhat below the maximum number (accumulated deviation). If there is a surge in
PE due to the pre-echo control then additional bits ’taken from the reservoir’ are used
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to code this particular frame according to the PE demand. In the next few frames every
frame is coded using some bits less than the average amount. The bit reservoir gets
’filled up’ again.

Figure 2.12 shows an example (for Layer 3) of the succession of frames with
different amounts of bits actually used. A pointer called main-data-begin is used to
transmit the information about the actual accumulated deviation from the mean bit-rate
to the decoder. The side information is still transmitted with the frame rate as derived
from the channel capacity (mean rate). The main-data-begin pointer is used to find the
main information in the input buffer of the decoder.

2.4.4 Joint stereo coding

As for the underlying audio coding methods itself the goal of joint stereo coding
is to reduce the amount of information which is transmitted to the receiver without
introducing audible artifacts. This is done by using the stereo redundancy and the
irrelevancy of certain stereo coding artifacts.

Contrary to popular believe, for most signals there is not much correlation between
the time signals corresponding to the left and right channel of a stereo source [Bauer and
Seitzer, 1989b]. Only the power spectra of both channels are often highly correlated
[Bauer and Seitzer, 1989a]. For binaural recordings this fact can easily be derived from
a look at room acoustics and the way the signal is recorded. If the delay of some sound
due to room acoustics is less than the time resolution of the filter bank, we find the
resulting signals on both channels in the same sample period of the filter bank output.
Generally it is true that stereo redundancy can be used more easily in high frequency
resolution systems.

Looking for stereo irrelevancy we find that the ability of the human auditory system
to discriminate the exact location of audio sources decreases at high frequencies
[Blauert, 1983]. The cues to get spatial impression are mainly taken from the energy
maxima in space at each frequency.

Pitfalls of stereo coding. Unfortunately for the coding system designer, in addition
to the lack of redundancy between the stereo channels there are a number of issues
which complicate stereo coding. In some cases, the necessary bit-rate for stereo coding
exceeds the one for coding of two mono channels. Other effects forbit joint stereo
coding for some classes of signals.

An especially interesting topic is the discussion of the “stereo unmasking effect”. It
describes the situation that certain coding artifacts which are masked in single channel
coding can become audible when presented as a stereo signal coded by a dual mono
coding system. The underlying psychoacoustic effects have been studied intensively by
Blauert [Blauert, 1983]. The key parameter in the determination of stereo unmasking
is the Binaural Masking Level Difference (BMLD). This effect is most pronounced at
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low frequencies. In any case the maximum masking is occurring when the direction
of the virtual quantization noise source coincides with the direction of the main signal
source.

The precedence effect describes the effect that sound sources are sometimes local-
ized not according to the loudness of left versus right channel but on the origin of
the first (not the loudest) wavefront. This time relationship between signals can be
distorted by certain joint stereo coding techniques resulting in an altered stereo image.

General ideas. To apply the general findings to bit-rate reduction, the first idea is to
rotate the stereo plane into the main axis direction (as shown in Figure 2.13. This has to
be done independently for different frequencies, i.e. for each subband or each critical

Figure 2.13 Main axis transform of the stereo plane (Reprinted from [Herre, 1995]

© 1995, courtesy of the author)

band. The idea has not been implemented in any real world audio coding system
because more bits are spent to transmit the direction information than are gained by
this method. Two methods which have been used very successfully can be derived as
simplifications of the main axis transform idea:

M/S stereo coding simplifies on the original idea by reducing the number of possible
directions (to two).

Intensity stereo coding does not reduce the number of directions but keeps only the
main channel information for each subband.

[Johnston, 1989a]. A matrixing operation similar to the technique used in FM stereo
transmission is used in the coder with the appropriate dematrixing in the decoder:

M/S stereo coding. M/S stereo coding was introduced to low bit-rate coding in
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Instead of transmitting the left and right signal, the normalized sum and difference
signals are handled (see Figure 2.14). They are referred to as the middle (M) and the

Figure 2.14 Basic block diagram of M/S stereo coding (Reprinted from [Herre, 1995]

© 1995, courtesy of the author)

side (S) channel. The matrixing operation can be done in the time domain (i.e. before
the analysis filter bank) as well as in the frequency domain (i.e. after the analysis
filter bank). Figure 2.15 shows the matrix operation. M/S stereo coding can be seen
as a special case of a main axis transform of the input signal (see [van der Waal and
Veldhuis, 1991]).

Figure 2.15 Signal flow graph of the M/S matrix (Reprinted from [Herre, 1995] © 1995,
courtesy of the author)

The main features of M/S stereo processing can be described as follows [Herre
et al., 1992]:

� Emphasis on redundancy removal
The main focus of M/S joint stereo coding is on the redundancy removal for
mono-like signals which often are critical for dual mono coding systems due
to the stereo unmasking effects described below. The maximum gain is the
theoretical gain of a main axis transform of a two-dimensional signal. However,
stereo irrelevancy effects can be used in an M/S coding framework, too.

� Perfect reconstruction
The matrixing done in M/S joint stereo coding is invertible. Without the quanti-
zation and coding of the matrix output the processing is completely transparent.
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Therefore M/S coding is applicable to higher bit-rate very high quality coding,
too.

� Signal dependend bit-rate gain
The added coding efficiency of M/S stereo coding depends heavily on the actual
signal. It varies from a maximum of nearly 50% if the left and right channel
signals are equal (or exactly out of phase) to situations where M/S must not be
used because of the possibility of new reverse unmasking effects.

� Useful for the whole spectral range
Because M/S matrixing basically preserves the full spatial information, it may
be applied to the full audio spectral range without the danger of the introduction
of severe artifacts.

Intensity stereo coding. Intensity stereo coding is another simplified approximation
to the general idea of directional transform coding. For each subband which is trans-
mitted using intensity stereo modes, just the intensity information is retained. The
directional information is transmitted via the coding of independent scalefactor values
for the left and right channels. Thus, only the energy envelope is transmitted for both
channels. Due to the irrelevancy of exact location information at high frequencies this

Figure 2.16 Basic principle of intensity stereo coding (Reprinted from [Herre, 1995]

© 1995, courtesy of the author)

method is relatively successful. The main spatial cues are transmitted, however some
details may be missing. It seems that this is especially obvious if the decoded signal is
audited using headphones (see [MPEG, 1991]).

The main features of intensity stereo coding can be described as follows:

� Emphasis on irrelevancy reduction
While signals with a large correlation of left versus right time domain signal still
benefit from intensity stereo coding, the main emphasis is on the reduced spatial
resolution at high frequencies.
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� Not perfect reconstruction
The signal components which are orthogonal in respect to the transmitted energy
maximum are not transmitted, resulting in a loss of spatial information. The
energy of the stereo signal is preserved, however. The potential loss of spatial
information is considered to be less annoying than other coding artifacts. There-
fore intensity stereo coding is mainly used at low bit-rates to prevent annoying
coding artifacts.

� Saving of 50% of the sample data
For the frequency range where intensity stereo coding is applied, only one
channel of subband data has to be transmitted. If we assume that intensity stereo
coding is applied for half of the spectrum, we can assume a saving of about 20%
of the net bit-rate. The maximum saving is at about 40%.

� Useful only for the high frequency range
As explained above, intensity stereo encoding is used only for part of the spec-
trum. Extending intensity stereo processing towards low frequencies can cause
severe artifacts such as a major loss of directional information.

Coupling channels. In multichannel systems, a coupling channel is used as the
equivalent to an n-channel intensity stereo system. This system is also known under
the names dynamic crosstalk or generalized intensity coding. Instead of n different
channels, for part of the spectrum only one channel with added intensity information is
transmitted. Coupling channels are used in AC-3 ([Fielder et al., 1996]) and MPEG-2
AAC ([Johnston et al., 1996]).

In the coupling channel as used in MPEG-2 AAC [Johnston et al., 1996], the spectral
data transmitted in the coupling element can be applied to any number of channels.
Instead of replacing the data as in classical intensity coding, the coupling channel is
added to the other channels. This enables coding of a residual signal in each of the
channels.

2.4.5 Prediction

Prediction as a tool for high quality audio coding has been proposed a number of
times (see for example [Edler, 1988, Singhal, 1990, Dimino and Parladori, 1995,
Fuchs, 1995]). Prediction improves the redundancy reduction especially for near
stationary signals. Dependent on the overall type of the coding system (low or high
frequency resolution), different prediction strategies have found to be most efficient.
The following example shows how prediction is used in a recent high frequency
resolution coding system (MPEG-2 Advanced Audio Coding, the description below
follows [Bosi et al., 1996b]).
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For high frequency resolution filter bank based coders the transmission of prediction
coefficients would take a huge amount of additional side information. Therefore, a
short (two tap) backward adaptive predictor is used. An attenuation factor is applied
to the predictor to lower the long term impact of a connection loss. Prediction is
switched on and off to ensure it is only used in blocks with an actual prediction gain.
Additionally, the predictors are reset in certain intervals. In this way, small differences
in the arithmetic accuracy between encoder and decoder do not lead to audible errors
and can be tolerated.

2.4.6 Multi-channel: to matrix or not to matrix

A newer addition to perceptual encoding of high quality digital audio are systems which
faithfully reproduce multichannel sound. The most common presentation structure is
the 5 channel system as seen in Figure 2.17. A center channel is added to the usual left
and right channels to increase the stability of the sound stage. With a center channel
present, a sound source in the center (like a news speaker) stays in the center even if
the listener is located slightly of-center. Two surround channels are added to give a
much improved sound stage.

Figure 2.17 ITU Multichannel configuration

To enable a smooth transition between two-channel stereo and discrete surround
sound transmission, different matrix systems have been proposed. One system is
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employed in the MPEG-2 backward compatible coding (see [MPEG, 1994a]) and uses
an automatic downmix of the five original signals to yield a two-channel stereo signal
which contains all parts of the original signal. Other systems ([ATSC, 1995],[MPEG,
1997a] propose to do a downmix of a 5-channel signal at the receiver end if a two
channel presentation is needed. The following equation describes the mixdown of five
to two channels. L, R, C, LS  and R S are the left, right, center, left surround and
right surround channels of the multichannel signal. LC and R C are the compatible
left and right channels generated from the five channel signal. The matrix-mixdown
coefficient a is usually selected to be one of 1/ ,1/2,1/(2 ), 0.

(2.19)

(2.20)

Both compatibility matrixing in the encoder as well as downmix in the decoder have
specific disadvantages. Encoder matrixing can lead to noise leakage in the decoder.
This can be overcome, but at the expense of an increased bit-rate demand. Decoder
matrixing can lead to some artifacts, too. However, this has not been observed to
the same amount as the encoder matrixing artifacts. In both cases, the optimum two-
channel mix is probably different from the automatic downmix from five channels.

2.5 APPLYING THE BASIC TECHNIQUES: REAL CODING SYSTEMS

As examples how to apply the basic techniques several well known perceptual coders
are described below. The selection was based on the familiarity of the author with the
schemes, not on the scientific or commercial importance of the systems. An overview
containing more details about commercially available coding systems can be found in
[Brandenburg and Bosi, 1997].

2.5.1 Pointers to early systems (no detailed description)

Instead of detailed descriptions it shall suffice to point to examples of early work
on high quality audio coding. The first reference known to the author mentioning
the idea of perceptual coding is [Blauert and Tritthart, 1975]. The original paper
stimulating research on perceptual coding is [Schroeder et al., 1979]. Other references
to early work on high quality audio coding are [Krasner, 1979, Schroeder and Voessing,
1986, Brandenburg et al., 1982].
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2.5.2 MPEG Audio

Since 1988 ISO/IEC JTC1/SC29 WG11, called MPEG (Moving Pictures Experts
Group) undertakes the standardization of compression techniques for video and audio.
Three low bit-rate audio coding standards have been completed:

� MPEG-1 Audio [MPEG, 1992] became IS (International Standard) in 1992.
It was designed to fit the demands of many applications including storage on
magnetic tape, digital radio and the live transmission of audio via ISDN. A
target system consisting of three modes called layers was devised. Layer 1 was
originally optimised for a target bit-rate of 192 kbit/s per channel (as used in the
Digital Compact Cassette, DCC), Layer 2 for a target bit-rate of 128 kbit/s per
channel and Layer 3 for a target bit-rate of 64 kbit/s per channel. Sampling rates
of 32 kHz, 44.1 kHz and 48 kHz are specified.

� MPEG-2 Audio [MPEG, 1994a] consists of two extensions to MPEG-1:

– Backwards compatible multichannel coding adds the option of forward
and backwards compatible coding of multichannel signals including the
5.1 channel configuration known from cinema sound.

– Coding at lower sampling frequencies adds sampling frequencies of 16
kHz, 22.05 kHz and 24 kHz to the sampling frequencies supported by
MPEG-1. This adds coding efficiency at very low bit-rates.

Both extensions do not introduce new coding algorithms over MPEG-1 Audio.

� MPEG-2 Advanced Audio Coding [MPEG, 1997a] contains the definition of
a second generation audio coding scheme for generic coding of stereo and
multichannel signals including 5.1 and 7.1 configurations. This was formerly
known under the name MPEG-2 NBC (non backwards-compatible coding).

MPEG-1 Layer 1 and Layer 2. The coding scheme contains the basic polyphase
filter bank to map the digital audio input into 32 subbands, fixed segmentation to format
the data into blocks, a psychoacoustic model to determine the adaptive bit allocation,
and quantization using block companding and frame coding. The following description
follows the lines of the basic block diagram of a perceptual coding system as shown
in Figure 2.5.

The polyphase filter bank used in MPEG-1 uses a 511-tap prototype filter as de-
scribed on page 53.

For each polyphase subband there are three main types of information to transmit:

� Bit allocation
This determines the number of bits used to code each subband samples. The
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quantizer is controlled by the bit allocation as well. In Layer 1 there are 4
bits used to transmit the bit allocation for each subband. In Layer 2 there are
different possible bit allocation patterns depending on total bit-rate and sampling
rate. This reduces the number of bits spent on bit allocation information at low
bit-rates.

� Scalefactors
A block floating point technique (block companding) is used to quantize the
subband samples. The calculation of scalefactors is performed every 12 subband
samples. The maximum absolute value of the 12 subband samples is quantized
with a quantizer step size of 2 dB. With 6 bits allocated for the quantized
scalefactors, the dynamic range can be up to 120 dB. Only scalefactors for
subbands with a non-zero bit allocation are transmitted.

� Subband samples
The subband samples are transmitted using the wordlength defined by the bit
allocation for each subband. Uniform quantization and mid-tread quantizers are
used.

Compared to Layer 1 (as described above), Layer 2 provides additional coding of
bit allocation, scalefactors and samples. Different framing is used (24 ms versus 8 ms
in Layer 1). The bit allocation is valid for the whole frame while scalefactors are
used as exponents to blocks of 12 subband samples as in Layer 1. A scalefactor select
information is used to flag whether a scalefactor is transmitted for each of the 3 blocks
in a frame, for two of them or if one is valid for all 3 blocks. The scalefactor select
information (scsfi) is coded using 2 bits per subband and frame. Whereas in Layer
1 the possible bit allocations are 0 and 2 to 15 bits, in Layer 2 additional fractional
bit allocations are possible. They include quantizers using 3, 5, 7 and 9 quantization
levels. Since many subbands are typically quantized with no more quantization levels,
this results in a considerable bit-rate saving.

The bit allocation is derived from the SMR-values which have been calculated in
the psychoacoustic model. This is done in an iterative fashion. The objective is to
minimize the noise-to-mask ratio over every subband and the whole frame. In each
iteration step the number of quantization levels is increased for the subband with the
worst (maximum) noise-to-mask ratio. This is repeated until all available bits have
been spent.

MPEG-1 Layer 3. Layer 3 combines some of the features of Layer 2 with the
additional coding efficiency gained by higher frequency resolution and Huffman coding
as found in ASPEC ([Brandenburg, 1991]). Figure 2.18 shows a block diagram.

Most of the features of Layer 3 have been described above.
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The hybrid filter bank used in Layer 3 has been described on page 56. The filter
bank is switchable with three possible selections corresponding to a 576 line, 216 line
and 192 line frequency resolution.

Figure 2.18 Block diagram of an MPEG-1 Layer 3 encode

Other coding tools in Layer 3 include a different (nonuniform) quantizer, analysis-
by-synthesis control of the quantization noise and Huffman coding of the quantized
values to increase the coding efficiency. All these have already been described earlier
in this chapter.

In terms of joint stereo coding techniques, Layer 3 supports a combination of M/S
coding (broad band) and intensity stereo coding (see [Herre et al., 1992]).

MPEG-2 Audio.  MPEG-2 audio coding contains two large additions to the MPEG-1
audio standard:

ISO/IEC IS 13818-3 is called “backward compatible MPEG-2 audio coding”
(MPEG-2 BC) and contains extensions to MPEG-1 audio covering backwards com-
patible (matrixed) multichannel coding, bitstream definition extensions to cover mul-
tilingual services and the extension of all coding modes of MPEG-1 to lower sampling
frequencies.

ISO/IEC IS 13818-7 is called “MPEG-2 Advanced Audio Coding” and covers a new,
non backwards compatible audio coding system for flexible channel configurations
including stereo and multichannel services.

Backwards compatible multichannel coding. IS 13818-3 contains the definition of
a backward-compatible multichannel coding system. The MPEG-1 L and R channels
are replaced by the matrixed signals LC and R C according to equations (2.19) and
(2.20), where LC and RC are encoded with an MPEG-1 encoder. Therefore an MPEG-
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1 decoder can reproduce a comprehensive downmix of the full 5 channel information.
The basic frame format is identical to the MPEG-1 bitstream format. The additional

Figure 2.19 Transmission of MPEG-2 multichannel information within an MPEG-1
bitstream

channels e.g. C, LS and R S are transmitted in the MPEG-1 ancillary data field.
During dematrixing in the decoder it can happen that the signal in a particular

channel is derived from two channels with the signals being out of phase (cancelling
each other). In this case, the corresponding quantization noise might not be out of
phase and therefore survive the dematrixing. It then becomes audible as a dematrixing
artifact. This way, quantization noise generated by coding of one channel can become
audible in other channels.

As in the case of MPEG-1, there are three versions of the multichannel extension
called Layer 1, Layer 2 and Layer 3. Layer 1 and Layer 2 MC extensions basically
both use a bitstream syntax similar to Layer 2. As in the case of MPEG-1, Layer 3 is
the most flexible system. As one special feature, MPEG-2 MC Layer 3 permits use
of a flexible number of extension channels. While the original idea behind this was to
alleviate the dematrixing artifact problem for some worst case items, this idea can be
used to do simulcast of two-channel stereo and 5-channel extension without the artistic
restrictions of a fixed compatibility matrix.

Coding at lower sampling frequencies. Another extension of MPEG-1 is the ad-
dition of modes using lower sampling frequencies, i.e. below 32 kHz. These modes
are useful for the transmission of both wideband speech and medium quality audio at
bit-rates between 64 and 16 kbit/s per channel, with applications for commentary as
well as for Internet audio systems and whenever the bit-rate budget is very limited.
The basic idea behind the addition of lower sampling frequencies (LSF) is the increase
of coding gain for higher frequency resolution filter banks. Another advantage of LSF



is an improved ratio of main information to side (esp. header) information. In a 1994
listening test [MPEG, 1994b] it was shown that 64 kb/s total bit-rate joint stereo Layer
3 at 24 kHz sampling frequencies approaches the quality (in reference to a 11 kHz
signal) which was found in 1990 for the 64 kbit/s per channel ASPEC system.
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2.5.3 MPEG-2 Advanced Audio Coding (MPEG-2 AAC)

MPEG-2 AAC has been designed to reduce the bit-rate where broadcast quality can
be achieved as much as possible according to the state of the art. A number of
new or improved coding tools have been introduced in order to improve the coding
efficiency. This paragraph gives only a very short description of the main features.
More information can be found in [Bosi et al., 1996b].

The block diagram of the MPEG-2 AAC encoder is shown in Figure 2.20. A brief
description of the basic tools of the MPEG-2 AAC system follows:

Gain Control. A four-band polyphase quadrature filter bank (PQF) splits the input
signal into four equally-spaced frequency bands. This tool is used for the scaleable
sampling rate (SSR) profile only. Its time domain gain control component can be
applied to reduce pre-echo effects.

Filterbank. A modified discrete cosine transform (MDCT/IMDCT) is used for the
filter bank tool. The MDCT output consists of 1024 or 128 frequency lines. The
window shape is selected between two alternative window shapes.

Temporal Noise Shaping (TNS). The TNS tool is used to control the temporal
shape of the quantization noise within each window of the transform. This is done by
applying a filtering process to parts of the spectral data.

Intensity Coding/Coupling. The intensity coding/coupling tool combines channel
pairs or multiple channels and transmits only a single channel plus directional infor-
mation for parts of the spectrum.

Prediction. Prediction is used to improve the redundancy reduction for stationary
signals. This tool is implemented as a second order backward adaptive predictor.

M/S Stereo Coding. The M/S stereo coding tool allows to encode either Left and
Right or Mid and Side of a channel pair for selected spectral regions in order to improve
coding efficiency.

Scalefactors. The spectrum is divided in several groups of spectral coefficients called
scalefactor bands which share one scalefactor. A scalefactor represents a gain value
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Figure 2.20 Block diagram of the MPEG-2 AAC encoder
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which is used to change the amplitude of all spectral coefficients in that scalefactor
band. This process provides shaping of the quantization noise according to the masked
thresholds as estimated in the perceptual model.

Quantization. In the quantization tool a non-uniform quantizer (as in Layer 3) is
used with a step size of 1.5 dB.

Noiseless Coding. Huffman coding is applied for the quantized spectrum, the differ-
ential scalefactors, and directional information. A total of 12 static Huffman codebooks
are employed to code pairs or quadruples of spectral values.

Perceptual Model. A psychoacoustic model similar to IS 11172-3 psychoacoustic
model II is employed.

2.5.4 MPEG-4 Audio

The newest coding system which is reported here is currently still under development.
MPEG-4 audio, planned for completion in late 1998, will actually consist of a family
of coding algorithms targeted for different bit-rates and different applications.

Bridging the gap between signal synthesis, speech coding and perceptual audio
coding. The target bit-rates of MPEG-4 audio are from around 2 kbit/s up to 64 kbit/s
per channel. Depending on the application, generic audio coding or speech coding is
required. To fulfill this wide range of needs, MPEG-4 audio will contain a number of
different algorithms. MPEG-4 audio will use MPEG-2 Advanced Audio Coding for
the higher bit-rates utilize coding tools based on MPEG-2 AAC as well as other
proposals for lower bit-rates.

Scaleable audio coding. The main innovation of MPEG-4 audio besides the added
flexibility is scaleability. In the context of MPEG-4 audio this is defined as the property
that some part of a bitstream is still sufficient for decoding and generating a meaningful
audio signal with lower fidelity, bandwidth or a selected content. Depending whether
this embedded coding is realized as a number of large (e.g. 8 kbit/s) steps or with
a fine granularity, it is called large step or small step scaleability. While scaleability
can always be implemented via simulcast of different encoded versions of a signal,
MPEG-4 audio calls for solutions with a small or no hit in coding efficiency due to the
scaleability feature.

Figure 2.21 shows a block diagram of the configuration for scaleability of the
planned MPEG-4 audio standard.

In the extreme case, scaleability can actually improve the coding efficiency at a
certain bit-rate: If a good quality speech coder is used for the core layer the resulting
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Figure 2.21 MPEG-4 audio scaleable configuration
Parametric core: Very low bit-rate coder based on parametric methods
CELP core: Speech coder
T/F-core: Time/frequency transform based perceptual coder

quality for speech signals may improve at combined bit-rates where this type of signal
normally results in audible artifacts.

2.6 CURRENT RESEARCH TOPICS

Up to now, the most advanced perceptual coding systems have been built within
the framework of the MPEG-Audio standardization effort. In parallel, research on
alternative algorithms has been going on at universities and research institutes not
involved in MPEG. The following paragraphs list just a few areas of active research
on high quality audio coding.

Filterbanks. There is still continued research on filter banks for high quality audio
coding. Topics include wavelet based filter banks, low delay filter banks [Schuller,
1995] or variable filter banks allowing a higher degree of variability than classic
window switching [Princen and Johnston, 1995].

Perceptual Models. It seems that the search for more accurate psychoacoustic mod-
els will not be over for some time to come. Progress at very low bit-rates and for
variable rate coding depends on the availability of better perceptual models. One area
with promising results is the application of nonlinear models as proposed in [Baumgarte
et al., 1995].

Quantization and Coding. While no major new ideas have been introduced for some
time, refinements and variations on the currently used methods for quantization and
coding are still an active research topic. Examples include experiments with arithmetic
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coding as conducted during the MPEG-2 NBC core experiment process [MPEG, 1996]
or tools to improve the efficiency of currently used systems for some signal classes
[Takamizawa et al., 1997].

Lossless and near lossless coding. For contribution and archiving purposes, the use
of low bit-rate audio coding is dangerous to the final audio quality. If signals are coded
in tandem at very low bit-rates, coding artifacts are accumulating and become audible.
To overcome this problems, lossless and near lossless (high coding margin) systems
have been proposed (see [Cellier, 1994, Brandenburg and Henke, 1993]). While no
standardization is planned for such systems, there is ongoing work towards improved
systems for lossless and near lossless coding.

2.7 CONCLUSIONS

The art of perceptual audio coding is still in between research (with a solid scientific
foundation) and engineering (where it is important that things work even if nobody
knows why). While the rate of innovation has somewhat slowed down, high quality
audio coding is still a young research field with more results to be expected in the
future.
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Abstract: This chapter discusses reverberation algorithms, with emphasis on algo-
rithms that can be implemented for realtime performance. The chapter begins with a
concise framework describing the physics and perception of reverberation. This includes
a discussion of geometrical, modal, and statistical models for reverberation, the perceptual
effects of reverberation, and subjective and objective measures of reverberation. Algo-
rithms for simulating early reverberation are discussed first, followed by a discussion of
algorithms that simulate late, diffuse reverberation. This latter material is presented in
chronological order, starting with reverberators based on comb and allpass filters, then
discussing allpass feedback loops, and proceeding to recent designs based on inserting
absorptive losses into a lossless prototype implemented using feedback delay networks
or digital waveguide networks.

3.1 INTRODUCTION

Our lives are for the most part spent in reverberant environments. Whether we are
enjoying a musical performance in a concert hall, speaking to colleagues in the office,
walking outdoors on a city street, or even in the woods, the sounds we hear are invariably
accompanied by delayed reflections from many different directions. Rather than
causing confusion, these reflections often go unnoticed, because our auditory system
is well equipped to deal with them. If the reflections occur soon after the initial sound,
the result is not perceived as separate sound events. Instead, the reflections modify
the perception of the sound, changing the loudness, timbre, and most importantly,
the spatial characteristics of the sound. Late reflections, common in very reverberant
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(3.1)

environments such as concert halls and cathedrals, often form a background ambience
which is quite distinct from the foreground sound.

Interestingly, the presence of reverberation is clearly preferred for most sounds,
particularly music. Music without reverberation sounds dry and lifeless. On the other
hand, too much reverberation, or the wrong kind of reverberation, can cause a fine
musical performance to sound muddy and unintelligible. Between these extremes is
a beautiful reverberation appropriate for the music at hand, which adds fullness and
a sense of space. Consequently, a number of concert halls have built reputations for
having fine acoustics, based on the quality of the perceived reverberation.

The importance of reverberation in recorded music has resulted in the the creation
of artificial reverberators, electro-acoustic devices that simulate the reverberation of
rooms. Early devices used springs or steel plates equipped with transducers. The
advent of digital electronics has replaced these devices with the modern digital rever-
berator, which simulates reverberation using a linear discrete-time filter. These devices
are ubiquitous in the audio production industry. Almost every bit of audio that we hear
from recordings, radio, television, and movies has had artificial reverberation added.
Artificial reverberation has recently found another application in the field of virtual
environments, where simulating room acoustics is critical for producing a convincing
immersive experience.

The subject of this paper is the study of signal processing algorithms that simulate
natural room reverberation. The emphasis will be on efficient algorithms that can be
implemented for real-time performance.

3.1.1 Reverberation as a linear filter

From a signal processing standpoint, it is convenient to think of a room containing
sound sources and listeners as a system with inputs and outputs, where the input and
output signal amplitudes correspond to acoustic variables at points in the room. For
example, consider a system with one input associated with a spherical sound source,
and two outputs associated with the acoustical pressures at the eardrums of a listener.
To the extent that the room can be considered a linear, time-invariant (LTI) system¹,
a stereo transfer function completely describes the transformation of sound pressure
from the source to the ears of a listener. We can therefore simulate the effect of the
room by convolving an input signal with the binaural impulse response (BIR):

where hL (t) and h R (t) are the system impulse responses for the left and right ear,
respectively; x(t) is the source sound; and yL (t) and y R (t) are the resulting signals
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for the left and right ear, respectively. This concept is easily generalized to the case of
multiple sources and multiple listeners.

3.1.2 Approaches to reverberation algorithms

We will speak of a reverberation algorithm, or more simply, a reverberator, as a linear
discrete-time system that simulates the input-output behavior of a real or imagined
room. The problem of designing a reverberator can be approached from a physical or
perceptual point of view.

The physical approach. The physical approach seeks to simulate exactly the prop-
agation of sound from the source to the listener for a given room. The preceding
discussion of binaural impulse responses suggests an obvious way to do this, by sim-
ply measuring the binaural impulse response of an existing room, and then rendering
the reverberation by convolution.

When the room to be simulated doesn’t exist, we can attempt to predict its impulse
response based on purely physical considerations. This requires detailed knowledge of
the geometry of the room, properties of all surfaces in the room, and the positions and
directivities of the sources and receivers. Given this prior information, it is possible to
apply the laws of acoustics regarding wave propagation and interaction with surfaces
to predict how the sound will propagate in the space. This technique has been termed
auralization in the literature and is an active area of research [Kleiner et al., 1993].
Typically, an auralization system first computes the impulse response of the specified
room, for each source-receiver pair. These finite impulse response (FIR) filters are
then used to render the room reverberation.

The advantage of this approach is that it offers a direct relation between the physical
specification of the room and the resulting reverberation. However, this approach is
computationally expensive and rather inflexible. Compared to other algorithms we
will study, real-time convolution with a large filter response is somewhat expensive,
even using an efficient algorithm. Furthermore, there is no easy way to achieve real-
time parametric control of the perceptual characteristics of the resulting reverberation
without recalculating a large number of FIR filter coefficients.

The perceptual approach. The perceptual approach seeks to reproduce only the
perceptually salient characteristics of reverberation. Let us assume that the space of all
percepts caused by reverberation can be spanned by N independent dimensions, which
correspond to independently perceivable attributes of reverberation. If each perceptual
attribute can be associated with a physical feature of the impulse response, then we
can attempt to construct a digital filter with N parameters that reproduces exactly
these N attributes. In order to simulate the reverberation from a particular room, we
can measure the room response, estimate the N parameters by analyzing the impulse



88 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

response, and then plug the parameter estimates into our “universal” reverberator.
The reverberator should then produce reverberation that is indistinguishable from the
original, even though the fine details of the impulse responses may differ considerably.

This approach has many potential advantages:

� The reverberation algorithm can be based on efficient infinite impulse response
(IIR) filters.

� The reverberation algorithm will provide real-time control of all the perceptually
relevant parameters. The parameters do not need to be correlated as they often
are in real rooms.

� Ideally, only one algorithm is required to simulate all reverberation.

� Existing rooms can be simulated using the analysis/synthesis approach outlined
above.

One disadvantage of this method is that it doesn’t necessarily provide an easy way
to change a physical property of the simulated room.

The perceptually motivated method is essentially the approach that has been taken
in the design of reverberation algorithms, with several caveats. First, there is a great
deal of disagreement as to what the perceivable attributes of reverberation are, and
how to measure these from an impulse response. Second, it is difficult to design
digital filters to reproduce these attributes. Consequently, the emphasis has been to
design reverberators that are perceptually indistinguishable from real rooms, without
necessarily providing the reverberator with a complete set of independent perceptual
controls.

In this paper, we will concentrate on the perceptually motivated method, because
the resulting recursive algorithms are more practical and useful. We first present
a concise physical and perceptual background for our study of reverberation, then
discuss algorithms to simulate early reverberation, and conclude with a discussion of
late reverberation algorithms.

3.2 PHYSICAL AND PERCEPTUAL BACKGROUND

The process of reverberation starts with the production of sound at a location within
a room. The acoustic pressure wave expands radially outward, reaching walls and
other surfaces where energy is both absorbed and reflected. Technically speaking, all
reflected energy is reverberation. Reflection off large, uniform, rigid surfaces produces
a reflection the way a mirror reflects light, but reflection off non-uniform surfaces is a
complicated process, generally leading to a diffusion of the sound in various directions.
The wave propagation continues indefinitely, but for practical purposes we can consider
the propagation to end when the intensity of the wavefront falls below the intensity of
the ambient noise level.
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Assuming a direct path exists between the source and the listener, the listener
will first hear the direct sound, followed by reflections of the sound off nearby sur-
faces, which are called early echoes. After a few hundred milliseconds, the number
of reflected waves becomes very large, and the remainder of the reverberant decay is
characterized by a dense collection of echoes traveling in all directions, whose intensity
is relatively independent of location within the room. This is called late reverberation
or diffuse reverberation, because there is equal energy propagating in all directions. In
a perfectly diffuse soundfield, the energy lost due to surface absorption is proportional
to the energy density of the soundfield, and thus diffuse reverberation decays exponen-
tially with time. The time required for the reverberation level to decay to 60 dB below
the initial level is defined as the reverberation time.

3.2.1 Measurement of reverberation

Measuring reverberation in a room usually consists of measuring an irnpulse response
for a specific source and receiver. Pistol shots, balloon pops, and spark generators
can be used as impulsive sources. Another possibility is to use an omnidirectional
speaker driven by an electronic signal generator. Typical measurement signals include
clicks, chirps (also known as time delay spectrometry [Heyser, 1967]), and various
pseudo-random noise signals, such as maximum length (ML) sequences [Rife and
Vanderkooy, 1987] and Golay codes [Foster, 1986]. The click (unit impulse) signal
allows a direct measurement of the impulse response, but results in poor signal to noise
ratio (SNR) because the signal energy is small for a given peak amplitude. The chirp
and noise signals have significantly greater energy for a given peak amplitude, and
allow the impulse response to be measured with improved SNR by deconvolving the
impulse response from the recorded signal. The measurement signals are deliberately
chosen to make the deconvolution easy to perform.

Figure 3.1 shows the impulse response of a concrete stairwell, plotting pressure as
a function of time. The direct response is visible at the far left, followed by some
early echoes, followed by the exponentially decaying late reverberation. The early
echoes have greater amplitude than the direct response due to the directivities of the
measurement speaker and microphone.

Rooms may contain a large number of sources with different positions and directivity
patterns, each producing an independent signal. The reverberation created in a concert
hall by a symphony orchestra cannot be characterized by a single impulse response.
Fortunately, the statistical properties of late reverberation do not change significantly
as a function of position. Thus, a point to point impulse response does characterize
the late reverberation of the room, although the early echo pattern is dependent on the
positions and directivities of the source and receiver.
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Figure 3.1 Impulse response of reverberant stairwell measured using ML sequences.

The fact that the early and late reverberation have different physical and perceptual
properties permits us to logically split the study of reverberation into early and late
reverberation.

3.2.2 Early reverberation

Early reverberation is most easily studied by considering a simple geometrical model
of the room. These models depend on the assumption that the dimensions of reflective
surfaces in the room are large compared to the wavelength of the sound. Consequently,
the sound wave may be modeled as a ray that is normal to the surface of the wavefront
and reflects specularly, like light bouncing off a mirror, when the ray encounters a wall
surface. Figure 3.2 shows a wall reflection using the ray model. The source is at point
A, and we are interested in how sound will propagate to a listener at point B.

The reflected ray may also be constructed by considering the mirror image of the
source as reflected across the plane of the wall. In figure 3.2, the image source thus
constructed is denoted A'. This technique of reflecting sources across wall surfaces is
called the source image method. The method allows a source with reflective boundaries
to be modeled as multiple sources with no boundaries.

The image source A' is a first order source, corresponding to a sound path with a
single reflection. Higher order sources corresponding to sound paths with multiple
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Figure 3.2 Single wall reflection and corresponding image source A'.

reflections are created by reflecting lower order sources across wall boundaries. Fre-
quently the resulting sources are “invisible” to the listener position, and this condition
must be tested explicitly for each source. When the room is rectangular, as shown in
figure 3.3, the pattern of image sources is regular and trivial to calculate. Calculation
of the image source positions in irregularly-shaped rooms is more difficult, but the
problem has been solved in detail [Borish, 1984]. The number of image sources of
order k is roughly N k , where N is the number of wall surfaces. The source image
method is impractical for studying late reverberation because the number of sources
increases exponentially, and the simplified reflection model becomes inaccurate.

Figure 3.3 A regular pattern of image sources occurs in an ideal rectangular room.

In order to calculate the impulse response at the listener’s position, the contributions
from all sources are summed. Each source contributes a delayed impulse (echo),
whose time delay is equal to the distance between the source and the listener divided
by the speed of sound. The echo amplitude is inversely proportional to the distance
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travelled, to account for spherical expansion of the sound, and proportional to the
product of the reflection coefficients of the surfaces encountered. This model ignores
any frequency dependent absorption, which normally occurs during surface reflections
and air propagation. A more accurate model uses linear filters to approximate these
frequency dependent losses [Lehnert and Blauert, 1992], such that the spectrum of
each echo reaching the listener is determined by the product of the transfer functions
involved in the history of that echo:

(3.2)

where A(ω) is the spectrum of the echo, S is the set of walls encountered, Γ j(ω) is
the frequency dependent transfer function that models reflection with the jth wall, and
G(ω) models the absorptive losses and time delay due to air propagation.

The simplifying assumptions that permit us to consider only specular reflections are
no longer met when the wall surfaces contain features that are comparable in size to the
wavelength of the sound. In this case, the reflected sound will be scattered in various
directions, a phenomenon referred to as diffusion. The source image model cannot be
easily extended to handle diffusion. Most auralization systems use another geometrical
model, called ray tracing [Krokstad et al., 1968], to model diffuse reflections. A
discussion of these techniques is beyond the scope of this paper.

The early response consists largely of discrete reflections that come from specific
directions, and we now consider how to reproduce the directional information. It is well
known that the auditory cues for sound localization are embodied in the transformation
of sound pressure by the torso, head, and external ear (pinna) [Blauert, 1983]. A
head-related transfer function (HRTF) is a frequency response that describes this
transformation from a specific free field source position to the eardrum. HRTFs are
usually measured using human subjects or dummy-head microphones, and consist of
response pairs, for the left and right ears, corresponding to a large number of source
positions surrounding the head. When computing the binaural transfer function of a
room using the geometrical models just discussed, we must convolve each directional
echo with the HRTF corresponding to the direction of the echo [Wightman and Kistler,
1989, Begault, 1994].

The binaural directional cues captured by HRTFs are primarily the interaural time
difference (ITD) and interaural intensity difference (IID) which vary as a function of
frequency. Echoes that arrive from lateral directions (i.e. from either side of the lis-
tener) are important for modifying the spatial character of the perceived reverberation.
The ITD of a lateral sound source is well modeled by a delay corresponding to the
difference in path lengths between the two ears. Similarly, the IID may be modeled as
a lowpass filtering of the signal arriving at the opposite (contralateral) ear.
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3.2.3 Perceptual effects of early echoes

The perceptual effects of early reflections can be studied by considering a simple
soundfield consisting of the direct sound and a single delayed reflection. This situation
is easy to reproduce in an anechoic chamber or with headphones. Using musical
signals, when both the direct sound and reflection are presented frontally and the
reflection delay is greater than about 80 msec, the reflection will be perceived as a
distinct echo of the direct sound if it is sufficiently loud. As the reflection delay
becomes smaller, the reflection and direct sound fuse into one sound, but with a tonal
coloration attributed to the cancellation between the two signals at a periodic set of
frequencies. The reflection can also increase the loudness of the direct sound. The
delay and gain thresholds corresponding to the different percepts depend strongly on
the source sound used for the experiment.

When the reflection comes from a lateral direction, the reflection can profoundly
affect the spatial character of the sound. For small reflection delays (< 5 msec), the
echo can cause the apparent location of the source to shift. Larger delays can increase
the apparent size of the source, depending on its frequency content, or can create the
sensation of being surrounded by sound.

In the literature, various terms are used to describe the spatial sensations attributed
to lateral reflections, including spaciousness, spatial impression, envelopment, and
apparent source width (ASW). Despite the lack of consistent terminology, it is generally
accepted that spaciousness is a desirable attribute of reverberation [Beranek, 1992]. It
has been hypothesized that lateral reflections affect the spatial character of the sound by
directly influencing the localization mechanisms of the auditory system [Griesinger,
1992]; the presence of the lateral energy causes large interaural differences which
would not otherwise occur in the presence of frontal (or medial) energy alone.

In Barron and Marshall’s research into this phenomena using musical signals, it was
determined that the degree of spatial impression was directly related to the sine of the
reflection incidence angle, reaching a maximum for 90 degree (fully lateral) incidence
[Barron and Marshall, 1981]. They proposed a simple acoustical measurement that
predicted the spatial impression, called the lateral fraction (LF). LF is the ratio of early
energy received by a dipole microphone (null axis facing forward) to the total early
energy. A binaural acoustical measurement that has superceded LF for predicting
spatial impression is the interaural cross-correlation coefficient (IACC) [Hidaka et al.,
1995]:

(3.3)

IACC =  I A C F(τ ) max , for – 1 < τ  < + 1 ms
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where pL and p R are the pressures at the entrance to the left and right ear canals,
respectively, and the integration limits t1 and t2 are chosen to be 0 and 80 msec,
respectively, when the “early” IACC E is calculated. IACF (τ ) is the normalized
cross-correlation function of the left and right ear pressures with a time lag of τ, and
IACC is the maximum of this function over a range of ±1 msec, to account for the
maximum interaural time delay. The time lag corresponding to the maximum value of
IACF estimates the lateral direction of the source sound [Blauert and Cobben, 1978].
A broadening of the IACF, and consequently a lower IACC value, corresponds to
increased spatial impression.

3.2.4 Reverberation time

Sabine’s pioneering research started the field of modern room acoustics and established
many important concepts, most notably the concept of reverberation time (RT) [Sabine,
1972]. His initial experiments consisted of measuring the reverberant decay time of
a room, and observing the change in decay time as absorptive material was added to
the room. Sabine determined that the reverberant decay time was proportional to the
volume of the room and inversely proportional to the amount of absorption:

(3.4)

where Tr is the reverberation time required for the sound pressure to decay 60 dB, V is
the volume of the room, and A is a measure of the total absorption of materials in the
room. Because the absorptive properties of materials vary as a function of frequency,
the reverberation time does as well. Most porous materials, such as carpeting and
upholstery, are more absorptive at higher frequencies, and consequently the RT of
most rooms decreases with increasing frequency.

Reverberation time can be measured by exciting a room to steady state with a noise
signal, turning off the sound source, and plotting the resulting squared pressure as a
function of time. The time required for the resulting energy decay curve (EDC) to
decay 60 dB is defined as the RT. Narrowband noise centered at some frequency can
be used to measure the RT at that frequency. The particular energy decay curve so
obtained will depend on details of the noise signal used. By averaging many successive
measurements using different noise signals, one obtains a more accurate estimate of
the true energy decay curve.

Schroeder has shown that this averaging is unnecessary [Schroeder, 1965]. The true
energy decay curve can be obtained by integrating the impulse response of the room
as follows:

(3.5)
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where h(t) is the impulse response of the room which may be narrowband filtered to
yield the EDC for some particular frequency. The integral (often called a Schroeder
integral) computes the energy remaining in the impulse response after time t.

A useful way to display reverberation as a function of time and frequency is to
start with the impulse response, bandpass filter it into frequency bands, compute the
Schroeder integrals, and display the result as a 3-D surface. This has been proposed
by several authors [Jot, 1992b, Jot, 1992a, Griesinger, 1995] and the concept has been
formalized by Jot as the energy decay relief, EDR( t, ω ), which is a time-frequency
representation of the energy decay. Thus, EDR(0, ω) gives the power gain as a
function of frequency and EDR(t, ω 0 ) gives the energy decay curve for some frequency
ω0 . Figure 3.4 shows the energy delay relief of occupied Boston Symphony Hall
displayed in third octave bands. As expected, the reverberation decays faster at higher
frequencies.

The late portion of the EDR can be described in terms of the frequency response
envelope G(ω) and the reverberation time Tr (ω), both functions of frequency [Jot,
1992b]. G(ω) is calculated by extrapolating the exponential decay backwards to time
0 to obtain a conceptual EDR(0, ω) of the late reverberation. For diffuse reverberation,
which decays exponentially, G(ω) = EDR(0, ω). In this case, the frequency response
envelope G(ω) specifies the power gain of the room, and the reverberation time Tr (ω)
specifies the energy decay rate. The smoothing of these functions is determined by the
frequency resolution of the time-frequency distribution used.

3.2.5 Modal description of reverberation

When the room is highly idealized, for instance if it is perfectly rectangular with rigid
walls, the reverberant behavior of the room can be described mathematically in closed
form. This is done by solving the acoustical wave equation for the boundary conditions
imposed by the walls of the room. This approach yields a solution based on the natural
resonant frequencies of the room, called normal modes. For the case of a rectangular
room shown in figure 3.3, the resonant frequencies are given by [Beranek, 1986]:

where:
f n  = n th normal frequency in Hz.
nx , ny , nz = integers from 0 to ∞ that can be chosen separately.
Lx , Ly , Lz  = dimensions of the room in meters.
c= speed of sound in m/sec.

(3.6)

The number N f of normal modes below frequency f is approximately [Kuttruff,
1991]:



96 APPLICATIONS OF  DSP  TO  AUDIO AND ACOUSTICS

Figure 3.4 Energy decay relief for occupied Boston Symphony Hall. The impulse
response  was measured at 25 kHz sampling rate  using a balloon burst source  on
stage and a dummy-head microphone in the 14th row. The Schroeder integrals are
shown in third octave bands with 40 msec time resolution.  At  higher frequencies  there
is a substantial early sound component, and the reverberation  decays faster. The
frequency response  envelope at  time  0  contains  the non-uniform  frequency response
of the balloon burst and the dummy-head microphone. The late spectral shape is a
consequence of integrating measurement noise. The SNR of this measurement is
rather poor, particularly at low frequencies, but the reverberation time can be calculated
accurately by linear  regression  over a  portion  of the decay which is exponential (linear
in dB).
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(3.7)

where V is the volume of the room ( V = L x Ly L z ). Differentiating with respect to f,
we obtain the modal density as a function of frequency:

(3.8)

The number of modes per unit bandwidth thus grows as the square of the frequency.
For instance, consider a concert hall sized room with dimensions 44m x 25m x 17m
whose volume is 18,700 m³. Below 10,000 Hz, there are approximately 1.9 x 10 9

normal modes. At 1000 Hz, the modal density per Hz is approximately 5800, and thus
the average spacing between modes is less than 0.0002 Hz.

When a sound source is turned on in an enclosure, it excites one or more of the normal
modes of the room. When the source is turned off, the modes continue to resonate
their stored energy, each decaying at a separate rate determined by the mode’s damping
constant, which depends on the absorption of the room. This is entirely analogous to
an electrical circuit containing many parallel resonances [Beranek, 1986]. Each mode
has a resonance curve associated with it, whose inxquality factor (Q) depends on the
damping constant.

3.2.6 Statistical model for reverberation

The behavior of a large, irregularly shaped room can also be described in terms of its
normal modes, even though a closed form solution may be impossible to achieve. It
can be shown that equation 3.8 regarding modal density is generally true for irregular
shapes [Kuttruff, 1991]. At high frequencies, the frequency response of the room is
determined by a great many modes whose resonance curves overlap. At each fre-
quency, the complex frequency response is a sum of the overlapping modal responses,
which may be regarded as independent and randomly distributed. If the number of

frequency response can be modeled as independent Gaussian random variables. Con-
sequently, the resulting pressure magnitude response follows the well known Raleigh

contributing terms is sufficiently large, the real and imaginary parts of the combined

probability distribution. This yields a variety of statistical properties of reverberation
in large rooms, including the average separation of maxima and the average height of
a maximum [Schroeder, 1954, Schroeder, 1987, Schroeder and Kuttruff, 1962]. This
statistical model for reverberation is justified for frequencies higher than:

(3.9)

where Tr is the reverberation time in seconds, and V is the volume of the room in m³.
The average separation of maxima in Hz is given by:
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(3.10)

(3.11)

(3.12)

For example, a concert hall with volume of 18,700 m³ and an RT of 1.8 sec will have
∆ f max = 2.2 Hz, for frequencies greater than f g = 20 Hz.

Another statistic of interest is the temporal density of echoes, which increases with
time. This can be estimated by considering the source image model for reverberation,
which for a rectangular room leads to a regular pattern of source images (figure 3.3).
The number of echoes Nt that will occur before time t is equal to the number of
image sources enclosed by a sphere with diameter ct centered at the listener [Kuttruff,
1991]. Since there is one image source per room volume, the number of image sources
enclosed by the sphere can be estimated by dividing the volume of the sphere by the
volume of the room:

Differentiating with respect to t, we obtain the temporal density of echoes:

Although this equation is not accurate for small times, it shows that the density of
echoes grows as the square of time.

3.2.7 Subjective and objective measures of late reverberation

A practical consequence of architecture is to permit acoustical performances to large
numbers of listeners by enclosing the sound source within walls. This dramatically
increases the sound energy to listeners, particularly those far from the source, relative
to free field conditions. A measure of the resulting frequency dependent gain of the
room can be obtained from the EDR evaluated at time 0. This frequency response can
be considered to be an equalization applied by the room, and is often easily perceived.

In the absence of any other information, the mid-frequency reverberation time is
perhaps the best measure of the overall reverberant characteristics of a room. We
expect a room with a long RT to sound more reverberant than a room with a short
RT, However, this depends on the distance between the source and the listener, which
affects the level of the direct sound relative to the level of the reverberation. The
reverberant level varies little throughout the room, whereas the direct sound falls off
inversely proportional to distance. Thus, the ratio of direct to reverberant level is an
important perceptual cue for source distance [Blauert, 1983, Begault, 19921.

One acoustical measure of the direct to reverberant ratio is called the clarity index,
and is defined as:
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(3.13)

where p(t) is the impulse response of the room. This is essentially an early to late
energy ratio, which correlates with the intelligibility of music or speech signals in
reverberant environments. It is generally accepted that early energy perceptually fuses
with the direct sound and thus increases intelligibility by providing more useful energy,
whereas late reverberation tends to smear syllables and note phrases together.

When there is a sufficient amount of late reverberant energy, the reverberation forms
a separately perceived background sound. The audibility of the reverberation depends
greatly on the source sound as well as the EDR, due to masking of the reverberation
by the direct sound [Gardner and Griesinger, 1994, Griesinger, 1995]. Consequently,
the early portion of the reverberant decay, which is audible during the gaps between
notes and syllables, contributes more to the perception of reverberance than does the
late decay, which is only audible after complete stops in the sound. Existing measures

IACC over the time limit 0.08 < t < 3 sec [Hidaka et al., 1995] (see equation 3.3).
We expect this to yield low values for nearly all rooms, and thus a high degree of
spaciousness in the late reverberation.

for reverberance focus on the initial energy decay. The most used measure is the early
decay time (EDT), typically calculated as the time required for the Schroeder integral
to decay from 0 to - 10 dB, multiplied by 6 to facilitate comparison with the RT.

Because late reverberation is spatially diffuse, the left and right ear signals will
be largely uncorrelated. The resulting impression is that the listener is enveloped by
the reverberation. A measurement of this, called IACCL , is obtained by calculating

Various experiments have been performed in an effort to determine an orthogonal set
of perceptual attributes of reverberation, based on factor analysis or multidimensional
scaling. A typical experiment presents subjects with pairs of reverberant stimuli,
created by applying different reverberant responses to the same source sound, and the
subjects estimate the subjective difference between each pair [Jullien et al., 1992]. The
resulting distances are used to place the reverberant response data in an N-dimensional
space such that error between the Cartesian distance and the subjective distance is
minimized. The projection of the data points onto the axes can then be correlated with
known objective or subjective properties of the data to assign meaning to the axes.
A fundamental problem with this approach is that the number of dimensions is not
known a priori, and it is difficult to assign relevance to higher dimensions which are
added to improve the fit. In Jullien’s experiments, 11 independent perceptual factors
were found. The corresponding objective measures can be categorized as energy ratios
or energy decay slopes calculated over different time-frequency regions of the EDR.
Only one factor (a lateral energy measure) is not derivable from the EDR.
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3.2.8 Summary of framework

The geometrical models allow the prediction of a room’s early reverberant response,
which will consist of a set of delayed and attenuated impulses. More accurate modeling
of absorption and diffusion will tend to fill in the gaps with energy. Linear filters can
be used to model absorption, and to a lesser extent diffusion, and allow reproduction
of the directional properties of the early response.

The late reverberation is characterized by a dense collection of echoes traveling
in all directions, in other words a diffuse sound field. The time decay of the diffuse
reverberation can be broadly described in terms of the mid frequency reverberation
time. A more accurate description considers the energy decay relief of the room.
This yields the frequency response envelope and the reverberation decay time, both
functions of frequency. The modal approach reveals that reverberation can be described
statistically for sufficiently high frequencies. Thus, certain statistical properties of
rooms, such as the mean spacing and height of frequency maxima, are independent of
the shape of the room.

Early reverberation perceptually fuses with the direct sound, modifying its loud-
ness, timbre, and spatial impression. Lateral reflections are necessary for the spatial
modification of the direct sound. The level of the direct sound relative to the rever-
beration changes as a function of source distance, and serves as an important distance
cue. Generally speaking, increased early energy relative to total energy contributes to
the intelligibility of the signal, though this may not be subjectively preferred.

There are a large number of subjective attributes of reverberation which have been
discussed in the literature. Most of these are monaural attributes directly correlated with
acoustical measures that can be derived from the EDR. Consequently, it is convenient
to think of the EDR as representative of all the monaural objective measures of a room
impulse response. Presumably, the fine details of this shape are irrelevant, particularly
in the late response, but no systematic study has been done to determine the resolution
required to perceptually reproduce a reverberant response from its EDR.

Thus, in order to simulate a perceptually convincing room reverberation, it is
necessary to simulate both the pattern of early echoes, with particular concern for
lateral echoes, and the late energy decay relief. The latter can be parameterized as the
frequency response envelope and the reverberation time, both of which are functions
of frequency. The challenge is to design an artificial reverberator which has sufficient
echo density in the time domain, sufficient density of maxima in the frequency domain,
and a natural colorless timbre.

3.3 MODELING EARLY REVERBERATION

We are now prepared to discuss efficient algorithms that can render reverberation in
real-time. For the case of early reverberation, the filter structures are fairly obvious.
As we have already mentioned, convolution is a general technique that can be used to
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render a measured or predicted reverberant response. Implementing convolution using
the direct form FIR filter (figure 3.5) is extremely inefficient when the filter size is
large. Typical room responses are several seconds long, which at a 44.1 kHz sampling
rate would translate to an 88,200 point filter for a 2 second response (for each channel).
The early response consisting of the first 100 msec would require a 4410 point filter.
These filter sizes are prohibitively large for direct form implementation. However, it
is possible to implement convolution efficiently using a block processing algorithm
based on the Fast Fourier transform (FFT) [Oppenheim and Schafer, 1989].

One problem with using block convolution methods for real-time processing is the
input/output propagation delay inherent in block algorithms. Gardner has proposed
a hybrid convolution algorithm that eliminates the propagation delay by segmenting
the impulse response into blocks of exponentially increasing size [Gardner, 1995].
Convolution with the first block is computed using a direct form filter, and convolution
with the remaining blocks is computed using frequency domain techniques. For large
filter sizes, this hybrid algorithm is vastly more efficient than the direct form filter.

Figure 3.5 Canonical direct form FIR filter with single sample delays.

When the early response is derived from the source image model without any
special provisions to model diffusion or absorption, the early response will be sparsely
populated with delayed and attenuated impulses. Consequently, it is possible to
efficiently implement this filter using a direct form structure with long delays between
filter taps. An example of this is shown in figure 3.6, which is a structure proposed
by Schroeder for generating a specific early echo pattern in addition to a late diffuse
reverberation [Schroeder, 1970b]. The FIR structure is implemented with the set of
delays m i and tap gains ai, and R (z) is a filter that renders the late reverberation.
Because this filter receives the delayed input signal, the FIR response will occur before
the late response in the final output.

Moorer proposed a slightly different structure, shown in figure 3.7, where the late
reverb is driven by the output of the early echo FIR filter [Moorer, 1979]. Moorer
described this as a way of increasing the echo density of the late reverberation. The
delays D1  and D2 can be adjusted so that the first pulse output from the late reverberator
corresponds with the last pulse output from the FIR section. The gain g serves
to balance the amount of late reverberation with respect to the early echoes. An
important feature of this structure, apart from the early echo modeling, is the control
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Figure 3.6 Combining early echoes and late reverberation [Schroeder, 1970b]. R(z )
is a reverberator.

it permits of the overall decay shape of the reverberation. For instance, if the FIR
response has a wide rectangular envelope and the late reverberator has a relatively fast
exponential decay, then the cascade response will have an flat plateau followed by a
rapid decay. Such a multislope decay can be a useful and popular effect for musical
signals [Griesinger, 1989].

Figure 3.7 FIR filter cascaded with reverberator R( z) [Moorer, 1979].

Modeling the early echoes using a sparse FIR filter results in an early response that
can have an overly discrete sound quality, particularly with bright impulsive inputs.
In practice it is necessary to associate some form of lowpass filtering with the early
response to improve the sound quality. The simplest possible solution uses a single
lowpass filter in series with the FIR filter [Gardner, 1992], where the filter response
can be set empirically or by physical consideration of the absorptive losses.

In the structure shown in figure 3.6, Schroeder suggested replacing the gains ai with
frequency dependent filters Ai (z). These filters can model the frequency dependent
absorptive losses due to wall reflections and air propagation. Each filter is composed
by considering the history of reflections for each echo, as given in equation 3.2. If
the reverberator is intended for listening over headphones, we can also associate with
each echo a directional filter intended to reproduce localization cues. This structure
is shown in figure 3.8, where A(z) is the transfer function which models absorptive
losses, and H L (z) and H R (z) are the HRTFs corresponding to the direction of the
echo.

Considering that the early echoes are not perceived as individual events, it seems
unlikely that the spectral characteristics of each echo need to be modeled so carefully
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Figure 3.8 Associating absorptive and directional filters with early echoes.

[Begault, 1994, Beth, 1995, Jot et al., 1995]. It is far more efficient to sum sets of
echoes together and process them with the same filter, such that all the echoes in a
set have the same absorption and spatial location. Another possibility is to reproduce
the interaural time and intensity difference separately for each echo, and lump the
remaining spectral cues into an average directional filter for each set of echoes [Jot
et al., 1995]. This is shown in figure 3.9. Each echo has an independent gain and
interaural time and intensity difference, allowing for individual lateral locations. The
final filter reproduces the remaining spectral features, obtained by a weighted average
of the various HRTFs and absorptive filters.

If the reverberation is not presented binaurally, the early lateral echoes will not
produce spatial impression, but will cause tonal coloration of the sound. In this
case it may be preferable to omit the early echoes altogether. This is an important
consideration in professional recording, and is the reason why orchestras are often
moved to the concert hall floor when recording, to avoid the early stage reflections
[Griesinger, 1989].

We conclude the section on early reverberation with an efficient algorithm that
renders a convincing sounding early reverberation, particularly in regards to providing
the sensation of spatial impression. Figure 3.10 shows Griesinger’s binaural echo
simulator that takes a monophonic input and produces stereo outputs intended for
listening over headphones [Griesinger, 1997]. The algorithm simulates a frontally
incident direct sound plus six lateral reflections, three per side. The echo times
are chosen arbitrarily between 10 and 80 msec in order to provide a strong spatial
impression, or may be derived from a geometrical model. The algorithm is a variation
of the preceding structures: two sets of echoes are formed, and each set is processed
through the same directional filter. Here the directional filter is modeled using a delay
of 0.8 msec and a one-pole lowpass filter (figure 3.11) with a 2 kHz cutoff.

Various degrees of spatial impression can be obtained by increasing the gain of the
echoes (via the ge parameter). Whether the spatial impression is heard as a surrounding
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Figure 3.9 Average head-related filter applied to a set of early echoes Iateralized
using delays ∆ti and gains gi [Jot et al., 1995]. T is the sampling period. If ∆ ti /T is
non-integer, then an interpolated delay is required.

Figure 3.10 Binaural early echo simulator [Griesinger, 1997]. ∆t = 0.8 msec.
H LP ( z) is a one-pole lowpass filter (figure 3.11) with fc = 2 kHz.

Figure 3.11 One-pole, DC-normalized lowpass filter.
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spaciousness or as an increase in the source width depends on the input signal and the
strength and timing of the reflections. This early echo simulator sounds very good
with speech or vocal music as an input signal.

3.4 COMB AND ALLPASS REVERBERATORS

Now we discuss algorithms that reproduce late reverberation. The material is presented
in roughly chronological order, starting with reverberators based on comb and allpass
filters, and proceeding to more general methods based on feedback delay networks.

3.4.1 Schroeder’s reverberator

The first artificial reverberators based on discrete-time signal processing were con-
structed by Schroeder in the early 1960’s [Schroeder, 1962], and most of the important
ideas about reverberation algorithms can be traced to his original papers. Schroeder’s
original proposal was based on comb and allpass filters. The comb filter is shown in
figure 3.12 and consists of a delay whose output is recirculated to the input. The z
transform of the comb filter is given by:

(3.14)

where m is the length of the delay in samples and g is the feedback gain. The time
response of this filter is an exponentially decaying sequence of impulses spaced m
samples apart. The system poles occur at the complex mth roots of g , and are thus
harmonically spaced on a circle in the z plane. The frequency response is therefore
shaped like a comb, with m periodic peaks that correspond to the pole frequencies.

Schroeder determined that the comb filter could be easily modified to provide a flat
frequency response by mixing the input signal and the comb filter output as shown in
figure 3.13. The resulting filter is called an allpass filter because its frequency response
has unit magnitude for all frequencies. The z transform of the allpass filter is given by:

(3.15)

The poles of the allpass filter are thus the same as for the comb filter, but the allpass
filter now has zeros at the conjugate reciprocal locations. The frequency response of
the allpass filter can be written:

(3.16)

In this form it is easy to see that the magnitude response is unity, because the first
term in the product, e – jωm , has unit magnitude, and the second term is a quotient of
complex conjugates, which also has unit magnitude. Thus,
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Figure 3.12 Comb filter: (clockwise from top-left) flow diagram, time response, fre-
quency response, and pole diagram.

Figure 3.13 Allpass filter formed by modification of a comb filter: (clockwise from
top-left) flow diagram, time response, frequency response, and pole-zero diagram.
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(3.17)

The phase response of the allpass filter is a non-linear function of frequency, leading
to a smearing of the signal in the time domain.

Let us consider attempting to create a reverberator using a single comb or allpass
filter. For the case of a comb filter, the reverberation time Tr is given by:

(3.18)

where gi is the gain of the comb filter, mi is the length of the delay in samples, and T is
the sampling period. For a desired reverberation time, we can choose the delay length
and the feedback gain to tradeoff modal density for echo density. Of course, there
are serious problems with using a single comb filter as a reverberator. For short delay
times, which yield rapidly occurring echoes, the frequency response is characterized
by widely spaced frequency peaks. These peaks correspond to the frequencies that
will be reverberated, whereas frequencies falling between the peaks will decay quickly.
When the peaks are widely spaced, the comb filter has a noticeable and unpleasant
characteristic timbre. We can increase the density of peaks by increasing the delay
length, but this causes the echo density to decrease in the time domain. Consequently,
the reverberation is heard as a discrete set of echoes, rather than a smooth diffuse
decay.

An allpass filter has a flat magnitude response, and we might expect it to solve
the problem of timbral coloration attributed to the comb filter. However, the response
of an allpass filter sounds quite similar to the comb filter, tending to create a timbral
coloration. This is because our ears perform a short-time frequency analysis, whereas
the mathematical property of the allpass filter is defined for an infinite time integration.

By combining two elementary filters in series, we can dramatically increase the
echo density, because every echo generated by the first filter will create a set of echoes
in the second. Comb filters are not good candidates for series connection, because the
only frequencies that will pass are those that correspond to peaks in both comb filter
respones. However, any number of allpass filters can be connected in series, and the
combined response will still be allpass. Consequently, series allpass filters are useful
for increasing echo density without affecting the magnitude response of the system.

A parallel combination of comb filters with incommensurate delays is also a useful
structure, because the resulting frequency response contains peaks contributed by all
of the individual comb filters. Moreover, the combined echo density is the sum of the
individual densities. Thus, we can theoretically obtain arbitrary density of frequency
peaks and time echoes by combining a sufficient number of comb filters in parallel.

Schroeder proposed a reverberator consisting of parallel comb filters and series
allpass filters [Schroeder, 1962], shown in figure 3.14. The delays of the comb filters
are chosen such that the ratio of largest to smallest is about 1.5 (Schroeder suggested
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a range of 30 to 45 msec). From equation 3.18, the gains gi of the comb filters are set
to give a desired reverberation time Tr  according to

(3.19)

The allpass delays t5  and t6  are much shorter than the comb delays, perhaps 5 and 1.7

Figure 3.14 Schroeder’s reverberator consisting of a parallel comb filter and a series
allpass filter [Schroeder, 1962].

msec, with both allpass gains set to around 0.7. Consequently, the comb filters produce
the long reverberant decay, and the allpass filters multiply the number of echoes output
by the comb filters.

3.4.2 The parallel comb filter

The z transform of the parallel comb structure is given by [Jot and Chaigne, 1991]:

(3.20)

where N is the number of comb filters. The poles are given by solutions to the
following equation:
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(3.21)

For each comb filter, the pole moduli are the same, and given by:

(3.22)

Assuming all the gains gi are set from the same reverberation time Tr , the pole moduli
γ i will be the same for all comb filters. Thus, all the resonant modes of the parallel
comb structure will decay at the same rate. If the pole moduli were not all the same,
the poles with the largest moduli would resonate the longest, and these poles would
determine the tonal characteristic of the late decay [Moorer, 1979, Griesinger, 1989].
Consequently, to avoid tonal coloration in the late decay, it is important to respect
condition 3.22 regarding the uniformity of pole modulus [Jot and Chaigne, 1991].

When the delay lengths of the comb filters are chosen to be incommensurate, in
other words sharing no common factors, the pole frequencies will all be distinct (except
at frequency 0). Furthermore, in the time response, the echoes from two comb filters i
and k will not overlap until sample number m i mk.

3.4.3 Modal density and echo density

Two important criteria for the realism of a reverberation algorithm are the modal
density and the echo density. The modal density of the parallel combs, expressed as
the number of modes per Hz, is [Jot and Chaigne, 1991]:

(3.23)

where τi is the length of delay i in seconds, and τ  is the mean delay length. It is
apparent that the modal density of the parallel combs is constant for all frequencies,
unlike real rooms, whose modal density increases as the square of frequency (equa-
tion 3.8). However, in real rooms, once the modal density passes a certain threshold,
the frequency response is characterized by frequency maxima whose mean spacing is
constant (equations 3.9 and 3.10). It is therefore possible to approximate a room’s
frequency response by equating the modal density of the parallel comb filters with
the density of frequency maxima in the room’s response [Schroeder, 1962]. The total
length of the comb delays, expressed in seconds, is equal to the modal density of the
parallel comb filter, expressed as number of modes per Hz. Equating this to the density
of frequency maxima of real rooms, we obtain the following relation between the total
length of the delays and the maximum reverberation time we wish to simulate [Jot,
1992b]:
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(3.24)

where D f is the density of frequency maxima according to the the statistical model
for late reverberation (equal to the reciprocal of ∆ f m a x  in equation 3.10) and Tm a x is
the maximum reverberation time desired.

Equation 3.24 specifies the minimum amount of total delay required. In practice,
low modal density can lead to audible beating in response to narrowband signals.
A narrowband signal may excite two neighboring modes which will beat at their
difference frequency. To alleviate this, the mean spacing of modes can be chosen so
that the average beat period is at least equal to the reverberation time [Stautner and
Puckette, 1982]. This leads to the following relationship:

(3.25)

For the case of the parallel comb filter, following constraint 3.22 guarantees that all
the modes will decay at the same rate, but does not mean they will all have the same
initial amplitude. As shown in figure 3.12, the height of a frequency peak is 1/ (1 – g) .
Following equation 3.18, longer delays will have smaller feedback gains, and hence
smaller peaks. The modes of the parallel comb filter can be normalized by weighting
the input of each comb filter with a gain proportional to its delay length [Jot, 1992b].
In practice, these normalizing gains are not necessary if the comb delay lengths are
relatively similar.

The echo density of the parallel combs is the sum of the echo densities of the
individual combs. Each comb filter i outputs one echo per time τ i , thus the combined
echo density, expressed as the number of echoes per second, is [Jot and Chaigne,
1991]:

(3.26)

This approximation is valid when the delays are similar. It is apparent that the echo
density is constant as a function of time, unlike real rooms, whose echo density
increases with the square of time (equation 3.12). Schroeder suggested that 1000
echoes per second was sufficient to sound indistinguishable from diffuse reverberation
[Schroeder, 1962]. Griesinger has suggested that 10000 echoes per second may
be required, and adds that this value is a function of the bandwidth of the system
[Griesinger, 1989]. The mathematical definition of echo density includes all echoes
regardless of amplitude, and does not consider system bandwidth. Jot has suggested
the term time density to refer to the perceptual correlate of echo density, and he relates
this to the crest factor of the impulse response [Jot, 1992b]. Griesinger obtains a
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measure of the time density of an impulse response by counting all echoes within 20
dB of the maximum echo in a 20 msec sliding window [Griesinger, 1989].

From equations 3.23 and 3.26, we can derive the number of comb filters required
to achieve a given modal density D m and echo density De [Jot and Chaigne, 1991]:

(3.27)

Schroeder chose the parameters of his reverberator to have an echo density of 1000
echoes per second, and a frequency density of 0.15 peaks per Hz (one peak per 6.7 Hz).
Strictly applying equation 3.27 using these densities would require 12 comb filters with
a mean delay of 12 msec. However, this ignores the two series allpass filters, which
will increase the echo density by approximately a factor of 10 [Schroeder, 1962]. Thus,
only 4 comb filters are required with a mean delay of 40 msec.

3.4.4 Producing uncorrelated outputs

The reverberator in figure 3.14 is a monophonic reverberator with a single input and
output. Schroeder suggested a way to produce multiple outputs by computing linear
combinations of the comb filter outputs [Schroeder, 1962]. This requires that the
allpass filters be placed in front of the comb filters, as shown in figure 3.15. A mixing
matrix is then used to form multiple outputs, where the number of rows is equal to the
number of comb filters, and the number of columns is equal to the number of outputs.
Schroeder suggested that the coefficients of the mixing matrix have values of +1 or
-1, and Jot suggests that the mixing matrix have orthogonal columns [Jot, 1992b].
The purpose of the linear combinations is to produce outputs which are mutually
uncorrelated. For example, the mixing matrix

[ +1
+1
+1
+1

+ 1
– 1
+ 1
– 1

] (3.28)

when used in the system of figure 3.15 produces a stereo reverberator which is quite
spacious and enveloping when listened to over headphones.

Given two outputs y1 (t) and y 2 (t) that are mutually uncorrelated, we can mix these
signals to achieve any desired amount of interaural cross-correlation (see equation 3.3),
as shown in equation 3.29 and figure 3.16 [Martin et al., 1993, Jot, 1992b]:

yL( t ) = cos(θ) y 1 (t ) + sin(θ)y2 (t) (3.29)

yR (t ) = sin(θ 1)y (t ) + cos(θ) y2 (t)
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Figure 3.15 Mixing matrix M used to form uncorrelated outputs from parallel comb
filters [Schroeder, 1962]. Ai ( z) are allpass filters, and Ci (z ) are comb filters.

θ = arcsin( I A C C )/2

Figure 3.16 Controlling IACC in binaural reverberation [Martin et al., 1993, Jot, 1992b].

3.4.5 Moorer’s reverberator

Schroeder’s original reverberator sounds quite good, particularly for short reverberation
times and moderate reverberation levels. For longer reverberation times or higher
levels, some sonic deficiencies become noticeable and these have been described by
various authors [Moorer, 1979, Griesinger, 1989, Jot and Chaigne, 1991]:

� The initial response sounds too discrete, leading to a grainy sound quality,
particularly for impulsive input sounds, such as a snare drum.

� The amplitude of the late response, rather than decaying smoothly, can exhibit
unnatural modulation, often described as a fluttering or beating sound.

� For longer reverberation times, the reverberation sounds tonally colored, usually
referred to as a metallic timbre.
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� The echo density is insufficient, and doesn’t increase with time.

All reverberation algorithms are susceptible to one or more of these faults, which
usually do not occur in real rooms, certainly not good sounding ones. In addition to
these criticisms, there is the additional problem that Schroeder’s original proposal does
not provide a frequency dependent reverberation time.

Moorer later reconsidered Schroeder’s reverberator and made several improvements
[Moorer, 1979]. The first of these was to increase the number of comb filters from 4 to
6. This was necessary in order to effect longer reverberation times, while maintaining
sufficient frequency and echo density according to equation 3.27. Moorer also inserted
a one-pole lowpass filter into each comb filter feedback loop, as shown in figure 3.17.
The cutoff frequencies of the lowpass filters were based on a physical consideration of
the absorption of sound by air. Adding the lowpass filters caused the reverberation time
to decrease at higher frequencies and Moorer noted that this made the reverberation
sound more realistic. In addition, several other benefits were observed. The response
to impulsive sounds was greatly improved, owing to the fact that the impulses are
smoothed by the lowpass filtering. This improves the subjective quality of both the
early response and the late response, which suffers less from a metallic sound quality
or a fluttery decay.

Figure 3.17 Comb filter with lowpass filter in feedback loop [Moorer, 1979].

Despite these improvements many problems remained. The frequency dependent
reverberation time is the net result of the lowpass filtering, but it is not possible
to specify a function Tr (ω) which defines the reverberation time as a function of
frequency.  Furthermore, the recurring problems of metallic sounding decay and fluttery
late response are reduced but not entirely eliminated by this reverberator.

3.4.6 Allpass reverberators

We now study reverberators that are based on a series association of allpass filters².
Schroeder experimented with reverberators consisting of 5 allpass filters in series,
with delays starting at 100 msec and decreasing roughly by factors of 1/3, and with
gains of about 0.7 [Schroeder, 1962]. Schroeder noted that these reverberators were
indistinguishable from real rooms in terms of coloration, which may be true with
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stationary input signals, but other authors have found that series allpass filters are
extremely susceptible to tonal coloration, especially with impulsive inputs [Moorer,
1979, Gardner, 1992]. Moorer experimented with series allpass reverberators, and
made the following comments [Moorer, 1979]:

� The higher the order of the system, the longer it takes for the echo density to
build up to a pleasing level.

� The smoothness of the decay depends critically on the particular choice of the
delay and gain parameters.

� The decay exhibits an annoying, metallic ringing sound.

The z transform of a series connection of N allpass filters is:

(3.30)

where m i and g i are the delay and gain, respectively, of allpass filter i. It is possible to
ensure that the pole moduli are all the same, by basing the gains on the delay length as
indicated by equation 3.19. However, this does not solve the problem of the metallic
sounding decay.

Gardner has described reverberators based on a “nested” allpass filter, where the
delay of an allpass filter is replaced by a series connection of a delay and another
allpass filter [Gardner, 1992]. This type of allpass filter is identical to the lattice form
shown in figure 3.18. Several authors have suggested using nested allpass filters for
reverberators [Schroeder, 1962, Gerzon, 1972, Moorer, 1979]. The general form of
such a filter is shown in figure 3.19, where the allpass delay is replaced with a system
function A( z ), which is allpass. The transfer function of this form is written:

(3.31)

The magnitude squared response of H (z ) is:

(3.32)

which is verified to be allpass if A(z ) is allpass [Gardner, 1992, Jot, 1992b]. This filter
is not realizable unless A( z ) can be factored into a delay in series with an allpass filter,
otherwise a closed loop is formed without delay. The advantage of using a nested
allpass structure can be seen in the time domain. Echoes created by the inner allpass
filter are recirculated to itself via the outer feedback path. Thus, the echo density of a
nested allpass filter increases with time, as in real rooms.
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Figure 3.18 Lattice allpass structure.

Figure 3.19 Generalization of figure 3.18.

A useful property of allpass filters is that no matter how many are nested or cascaded
in series, the response is still allpass. This makes it very easy to verify the stability of
the resulting system, regardless of complexity. Gardner suggested a general structure
for a monophonic reverberator constructed with allpass filters, shown in figure 3.20
[Gardner, 1992]. The input signal flows through a cascade of allpass sections A ( z),i

and is then recirculated upon itself through a lowpass filter H LP (z) and an attenuating
gain g. Gardner noted that when the output of the allpass filters was recirculated to the
a sufficient delay, the characteristic metallic sound of the series allpass
was greatly reduced.

Figure 3.20 Reverberator formed by adding absorptive losses to an allpass feedback
loop [Gardner, 1992].
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The output is formed as a linear combination of the outputs of the allpass sections.
The stability of the system is guaranteed, provided the magnitude of the loop gain is less
than 1 for all frequencies (i.e. |gH LP (e jω) | <  1 for all ω). The overall transfer function
of this system is in general not allpass, due to phase cancellation between the output
taps and also the presence of the outer feedback loop. As the input signal is diffused
through the allpass filters, each tap outputs a different response shape. Consequently,
it is possible to customize the amplitude envelope of the reverberant decay by adjusting
the coefficients a i . The reverberation time can be adjusted by changing the feedback
gain g. The lowpass filter simulates frequency dependent absorptive losses, and lower
cutoff frequencies generally result in a less metallic sounding, but duller, late response.

Figure 3.21 shows a complete schematic of an allpass feedback loop reverberator
described by Dattorro [Dattorro, 1997], who attributes this style of reverberator to
Griesinger. The circuit is intended to simulate an electro-acoustical plate reverberator,
characterized by a rapid buildup of echo density followed by an exponential reverberant
decay. The monophonic input signal passes through several short allpass filters, and
then enters what Dattorro terms the reverberator “tank”, consisting of two systems
like that of figure 3.20 which have been cross-coupled. This is a useful structure for
producing uncorrelated stereo outputs, which are obtained by forming weighted sums
of taps within the tank. The reverberator incorporates a time varying delay element in
each of the cross-coupled systems. The purpose of the time varying delays is to further
decrease tonal coloration by dynamically altering the resonant frequencies.

There are many possible reverberation algorithms that can be constructed by adding
absorptive losses to allpass feedback loops, and these reverberators can sound very
good. However, the design of these reverberators has to date been entirely empirical.
There is no way to specify in advance a particular reverberation time function Tr (ω),
nor is there a deterministic method for choosing the filter parameters to eliminate tonal
coloration.

3.5 FEEDBACK DELAY NETWORKS

Gerzon generalized the notion of unitary multichannel networks, which are
N-dimensional analogues of the allpass filter [Gerzon, 1976]. An N-input, N-output
LTI system is defined to be unitary if it preserves the total energy of all possible input
signals. Similarly, a matrix M is unitary if ||Mu || = ||u || for all vectors u , which is
equivalent to requiring that MT M = M MT = I, where I is the identity matrix. It is
trivial to show that the product of two unitary matrices is also unitary, and consequently
the series cascade of two unitary systems is a unitary system. Simple unitary systems
we have encountered include a set of N delay lines, and a set of N allpass filters.
It is also easy to show that an N-channel unitary system and an M-channel unitary
system can be combined to form an (N + M ) channel unitary system by diagonally
juxtaposing their system matrices. Gerzon showed that a feedback modification can be
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Figure 3.21 Dattorro’s plate reverberator based on an allpass feedback loop, in-
tended for 29.8 kHz sampling rate [Dattorro, 1997]. H 1 (z) and H 2(z) are low-
pass filters described in figure 3.11; H 1( z) controls the bandwidth of signals enter-
ing the reverberator, and H 2(z ) controls the frequency dependent decay. Stereo
outputs yL and yR are formed from taps taken from labelled delays as follows:
y L = a [266] + a [2974] – b[1913] + c[1996] – d [1990] – e[187] – f [1066], yR =
d [353] + d[3627] – e[1228] + f [2673] – a[2111] – b[335] – c[121]. In practice, the
input is also mixed with each output to achieve a desired reverberation level. The time
varying functions u (t) and v (t) are low frequency ( ≈ 1 Hz) sinusoids that span 16
samples peak to peak. Typical coefficients values are g1 = 0.75, g 2 = 0.625, g 3 =
0.7, g 4 = 0.5, g 5 = 0.9.
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made to a unitary system without destroying the unitary property [Gerzon, 1976], in a
form completely analogous to the feedback around the delay in an allpass filter. Gerzon
applied these principles to the design of multichannel reverberators, and suggested the
basic feedback topologies found in later work [Gerzon, 1971, Gerzon, 1972].

Stautner and Puckette proposed a four channel reverberator consisting of four delay
lines with a feedback matrix [Stautner and Puckette, 1982], shown in figure 3.22.
The feedback matrix allows the output of each delay to be recirculated to each delay
input, with the matrix coefficients controlling the weights of these feedback paths. The
structure can be seen as a generalization of Schroeder’s parallel comb filter, which
would arise using a diagonal feedback matrix. This structure is capable of much
higher echo densities than the parallel comb filter, given a sufficient number of non-
zero feedback coefficients and incommensurate delay lengths. The delays were chosen
in accordance with Schroeder’s suggestions.

Figure 3.22 Stautner and Puckette’s four channel feedback delay network [Stautner
and Puckette, 1982].

Stautner and Puckette make a number of important points regarding this system:

� Stability is guaranteed if the feedback matrix A is chosen to be the product of a
unitary matrix and a gain coefficient g, where  g  < 1. They suggest the matrix:

(3.33)

where g controls the reverberation time. If  g = 1, A is unitary.
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� The outputs will be mutually incoherent, and thus can be used in a four channel
loudspeaker system to render a diffuse soundfield.

� Absorptive losses can be simulated by placing a lowpass filter in series with each
delay line.

� The early reverberant response can be customized by injecting the input signal
appropriately into the interior of the delay lines.

The authors note that fluttering and tonal coloration is present in the late decay of
this reverberator. They attribute the fluttering to the beating of adjacent modes, and
suggest that the beat period be made greater than the reverberation time by suitably
reducing the mean spacing of modes according to equation 3.25. To reduce the tonal
coloration, they suggest randomly varying the lengths of the delays.

3.5.1 Jot’s reverberator

We now discuss the recent and important work by Jot, who has proposed a reverberator
structure with two important properties [Jot, 1992b]:

� A reverberator can be designed with arbitrary time and frequency density while
simultaneously guaranteeing absence of tonal coloration in the late decay.

� The resulting reverberator can be specified in terms of the desired reverberation
time T r (ω) and frequency response envelope G(ω).

This is accomplished by starting with an energy conserving system whose impulse
response is perceptually equivalent to stationary white noise. Jot calls this a reference
filter, but we will also use the term lossless prototype. Jot chooses lossless prototypes
from the class of unitary feedback systems. In order to effect a frequency dependent
reverberation time, absorptive filters are associated with each delay in the system. This
is done in a way that eliminates coloration in the late response, by guaranteeing the
local uniformity of pole modulus.

Jot generalizes the notion of a monophonic reverberator using the feedback delay
network (FDN) structure shown in figure 3.23. The structure is a completely general
specification of a linear system containing N delays.

Using vector notation and the z transform, the equations for the output of the system
y (z) and the delay lines si (z) are [Jot and Chaigne, 1991]:

y (z) = c Ts(z) + dx(z) (3.34)

s(z) = D (z)[As(z) + b x(z)] (3.35)

where:
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Figure 3.23 Feedback delay network as a general specification of a reverberator con-
taining N delays [Jot and Chaigne, 1991]

(3.36)

(3.37)

The FDN can be extended to multiple inputs and outputs by replacing the vec-
tors b and c with appropriate matrices. The system transfer function is obtained by
eliminating s(z ) from the preceding equations [Jot and Chaigne, 1991]:

(3.38)

The system zeros are given by [Rocchesso and Smith, 1994]:

(3.39)

The system poles are given by those values of z that nullify the denominator of
equation 3.38, in other words the solutions to the characteristic equation:
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(3.40)

Assuming A is a real matrix, the solutions to the characteristic equation 3.40 will
either be real or complex-conjugate pole pairs. Equation 3.40 is not easy to solve in
the general case, but for specific choices of A the solution is straightforward. For
instance, when A is diagonal, the system represents Schroeder’s parallel comb filter,
and the poles are given by equation 3.21. More generally, when A is triangular, the
matrix A – D ( z – 1 ) is also triangular; and because the determinant of a triangular
matrix is the product of the diagonal entries, equation 3.40 reduces to:

(3.41)

This is verified to be identical to equation 3.21. Any series combination of elementary
filters – for instance, a series allpass filter – can be expressed as a feedback delay
network with a triangular feedback matrix [Jot and Chaigne, 1991].

3.5.2 Unitary feedback loops

Another situation that interests us occurs when the feedback matrix A is chosen to
be unitary, as suggested by Stautner and Puckette. Because the set of delay lines is
also a unitary system, a unitary feedback loop is formed by the cascade of the two
unitary systems. A general form of this situation is shown in figure 3.24, where U1 z)
corresponds to the delay matrix, and U2 (z) corresponds to the feedback matrix.

Figure 3.24 Unitary feedback loop [Jot, 1992b].

Because a unitary system preserves the energy of input signals, it is intuitively
obvious that a unitary feedback loop will conserve energy. It can be shown that the
system poles of a unitary feedback loop all have unit modulus, and thus the system
response consists of non-decaying eigenmodes [Jot, 1992b].

Another way to demonstrate this is to consider the state variable description for the
FDN shown in figure 3.23. It is straightforward to show that the resulting state transition
matrix is unitary if and only if the feedback matrix A is unitary [Jot, 1992b, Rocchesso
and Smith, 1997]. Thus, a unitary feedback matrix is sufficient to create a lossless

(
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FDN prototype. However, we will later see that there are other choices for the feedback
matrix that also yield a lossless system.

3.5.3 Absorptive delays

Jot has demonstrated that unitary feedback loops can be used to create lossless proto-
types whose impulse responses are perceptually indistinguishable from stationary white
noise [Jot and Chaigne, 1991]. Moorer previously noted that convolving source signals
with exponentially decaying Gaussian white noise produces a very natural sounding
reverberation [Moorer, 1979]. Consequently, by introducing absorptive losses into a
suitable lossless prototype, we should obtain a natural sounding reverberator. Jot’s
method for introducing absorptive losses guarantees that the colorless quality of the
lossless prototype is maintained. This is accomplished by associating a gain ki  < 1
with each delay i in the filter, as shown in figure 3.25.

Figure 3.25 Associating an attenuation with a delay.

The logarithm of the the gain is proportional to the length of the delay:

k i = γm i (3.42)

Provided all the delays are so modified, this has the effect of replacing z with z/ γ in
the expression for the system function H(z), regardless of the filter structure. Starting
from a lossless prototype whose poles are all on the unit circle, the above modification
will cause all the poles to have a modulus equal to γ. Therefore, the lossless prototype
response h[n] will be multiplied by an exponential envelope γn where γ is the decay
factor per sampling period [Jot and Chaigne, 1991, Jot, 1992b]. By maintaining
the uniformity of pole modulus, we avoid the situation where the response in the
neighborhood of a frequency is dominated by a few poles with relatively large moduli.

The decay envelope is made frequency dependent by specifying frequency de-
pendent losses in terms of the reverberation time Tr ( ω). This is accomplished by
associating with each delay i an absorptive filter hi (z ), as shown in figure 3.26. The
filter is chosen such that the logarithm of its magnitude response is proportional to
the delay length and inversely proportional to the reverberation time, as suggested by
equation 3.19 [Jot and Chaigne, 1991]:

(3.43)

This expression ignores the phase response of the absorptive filter, which has the effect
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Figure 3.26 Associating an absorptive filter with a delay.

of slightly modifying the effective length of the delay. In practice, it is not necessary
to take the phase delay into consideration [Jot and Chaigne, 1991]. By replacing each
delay with an absorptive delay as described above, the poles of the prototype filter no
longer appear on a circle centered at the origin, but now lie on a curve specified by the
reverberation time Tr (ω) .

A consequence of incorporating the absorptive filters into the lossless prototype is
that the frequency response envelope of the reverberator will no longer be flat. For
exponentially decaying reverberation, the frequency response envelope is proportional
to the reverberation time at all frequencies. We can compensate for this effect by
associating a correction filter t(z ) in series with the reference filter, whose squared
magnitude is inversely proportional to the reverberation time [Jot, 1992b]:

(3.44)

After applying the correction filter, the frequency response envelope of the reverberator
will be flat. This effectively decouples the reverberation time control from the overall
gain of the reverberator. The final reverberator structure is shown in figure 3.27.
Any additional equalization of the reverberant response, for instance, to match the
frequency envelope of an existing room, can be effected by another filter in series with
the correction filter.

3.5.4 Waveguide reverberators

Smith has proposed multichannel reverberators based on a digital waveguide network
(DWN) [Smith, 1985]. Each waveguide is a bi-directional delay line, and junctions
between multiple waveguides produce lossless signal scattering. Figure 3.28 shows an
N-branch DWN which is isomorphic to the N-delay FDN shown in figure 3.23 [Smith
and Rocchesso, 1994].

The waves travelling into the junction are associated with the FDN delay line
outputs s i [n ]. The length of each waveguide is half the length of the corresponding
FDN delay, because the waveguide signal must make a complete round trip to return
to the scattering junction. An odd-length delay can be accommodated by replacing the
non-inverting reflection with a unit sample delay.
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Figure 3.27 Reverberator constructed by associating a frequency dependent absorp-
tive filter with each delay of a lossless FDN prototype filter [Jot and Chaigne, 1991].

Figure 3.28 Waveguide network consisting of a single scattering junction to which
N waveguides are attached. Each waveguide is terminated by an ideal non-inverting
reflection, indicated by a black dot [Smith and Rocchesso, 1994].
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The usual DWN notation defines the incoming and outgoing pressure variables as
p i

+  = s i [n] and pi
– = s i [n + mi ], respectively, and therefore the operation of the

scattering junction can be written in vector notation as

p– = A p+ (3.45)

where A is interpreted as a scattering matrix associated with the junction.
As we have already discussed, a lossless FDN results when the feedback matrix is

chosen to be unitary. Smith and Rocchesso have shown that the waveguide interpreta-
tion leads to a more general class of lossless scattering matrices [Smith and Rocchesso,
1994]. This is due to the fact that each waveguide may have a different characteristic
admittance. A scattering matrix is lossless if and only if the active complex power is
scattering-invariant, i.e., if and only if

where Γ is a Hermitian, positive-definite matrix which can be interpreted as a
generalized junction admittance. For the waveguide in figure 3.28, we have Γ =
diag(Γ 1 , ...Γ N ), where Γ i is the characteristic admittance of waveguide i. When A is 
unitary, we have Γ = I. Thus, unitary feedback matrices correspond to DWNs where
the waveguides all have unit characteristic admittance, or where the signal values are
in units of root power [Smith and Rocchesso, 1994].

Smith and Rocchesso have shown that a DWN scattering matrix (or a FDN feedback
matrix) is lossless if and only if its eigenvalues have unit modulus and its eigenvec-
tors are linearly independent. Therefore, lossless scattering matrices may be fully
parameterized as

A = T –1 DT (3.46)

where D is any unit modulus diagonal matrix, and T is any invertible matrix [Smith and
Rocchesso, 1994]. This yields a larger class of lossless scattering matrices than given
by unitary matrices. However, not all lossless scattering matrices can be interpreted as
a physical junction of N waveguides (e.g., consider a permutation matrix).

3.5.5 Lossless prototype structures

Jot has described many lossless FDN prototypes based on unitary feedback matrices.
A particularly useful unitary feedback matrix AN , which maximizes echo density
while reducing implementation cost, is taken from the class of Householder matrices
[Jot, 1992b]:
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(3.47)

where JN  is an N x N permutation matrix, and uN is an Nx1 column vector of 1’s. This
unitary matrix contains only two different values, both nonzero, and thus it achieves
maximum echo density when used in the structure of figure 3.27. Because uN u T

N is a
matrix containing all 1’s, computation of ANx consists of permuting the elements of
x according to J N , and adding to these the sum of the elements of x times the factor
– 2 / N . This requires roughly 2N operations as opposed to the N ² operations normally
required. When J N  is the identity matrix I N , the resulting system is a modification of
Schroeder’s parallel comb filter which maximizes echo density as shown in figure 3.29.

Figure 3.29 Modification of Schroeder’s parallel comb filter to maximize echo density
[Jot, 1992b].

Jot has discovered that this structure produces a periodic parasitic echo with period
equal to the sum of the delay lengths. This is a result of constructive interference
between the output signals of the delays, and can be eliminated by choosing the
coefficients ci in figure 3.27 such that every other channel undergoes a phase inversion
(multiplication by -1) [Jot, 1992b]. Another interesting possibility proposed by Jot is
choosing J N to be a circular permutation matrix. This causes the delay lines to feed
one another in series, which greatly simplifies the memory management in the final
implementation.

Rocchesso and Smith have suggested using unitary circulant matrices for the feed-
back matrix of a FDN [Rocchesso and Smith, 1994]. Circulant matrices have the
form:
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(3.48)

Multiplication by a circulant matrix implements circular convolution of a column
vector with the first row of the matrix. A circulant matrix A can be factored as
shown in equation 3.46 where T is the discrete Fourier transform (DFT) matrix and
D is a diagonal matrix whose elements are the DFT of the first row of A. The
diagonal elements of D are the eigenvalues of A. A circulant matrix is thus lossless
(and unitary) when its eigenvalues (the spectrum of the first row) have unit modulus.
The advantages of using a circulant matrix are that the eigenvalues can be explicitly
specified, and computation of the product can be accomplished in O (N log( N )) time
using the Fast Fourier transform (FFT).

All of the late reverberator structures we have studied can be seen as an energy
conserving system with absorptive losses inserted into the structure. When the ab-
sorptive losses are removed, the structure of the lossless prototype is revealed. This
is true for Schroeder’s parallel comb filter when the feedback coefficients are unity,
which corresponds to a FDN feedback matrix equal to the identity matrix. The allpass
feedback loop reverberator in figure 3.20 consists of a unitary feedback loop when
absorptive losses are removed. Stautner and Puckette’s FDN reverberator is also a
unitary feedback loop when  g = 1 (see equation 3.33). However, the method shown
for adding the absorptive losses in these reverberators does not necessarily prevent
coloration in the late decay. This can be accomplished by associating an absorptive
filter with each delay in the reverberator according to equation 3.43.

The parameters of the reference structure are the number of delays N, the lengths
of the delays m i , and the feedback matrix coefficients, If a large number of inputs
or outputs is desired, this can also affect the choice of the reference structure. The
total length of the delays in seconds, equal to the modal density, should be greater than
the density of frequency maxima for the room to be simulated. Thus, the minimum
total length required is Tr /4, after equation 3.24. A total delay of 1 to 2 seconds is
sufficient to produce a reference filter response that is perceptually indistinguishable
from white noise [Jot, 1992b], which gives an upper bound on the total delay required
for infinite reverberation times with broadband input signals. To improve the quality of
the reverberation in response to narrowband input signals, one may wish to use a total
delay at least equal to the maximum reverberation time desired, after equation 3.25.
The number of delays and the lengths of the delays, along with the choice of feed-
back matrix, determines the buildup of echo density. These decisions must be made
empirically by evaluating the quality of the reference filter response.
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Implementation of absorptive and correction filters

Once a lossless prototype has been chosen, the absorptive filters and the correction
filter need to be implemented based on a desired reverberation time curve. Jot has
specified a simple solution using first order IIR filters for the absorptive filters, whose
transfer functions are written [Jot, 1992b]:

Remarkably, this leads to a correction filter which is first order FIR:

(3.49)

(3.50)

The filter parameters are based on the reverberation time at zero frequency and the
Nyquist frequency, notated Tr (0) and Tr ( π), respectively:

(3.51)

The derivation of these parameters is detailed in the reference [Jot, 1992b]. The family
of reverberation time curves obtained from first order filters is limited, but leads to
natural sounding reverberation. Jot also describes methods for creating higher order
absorption and correction filters by combining first order sections.

3.5.7 Multirate algorithms

Jot’s method of incorporating absorptive filters into a lossless prototype yields a system
whose poles lie on a curve specified by the reverberation time. An alternative method to
obtain the same pole locus is to combine a bank of bandpass filters with a bank of comb
filters, such that each comb filter processes a different frequency range. The feedback
gain of each comb filter then determines the reverberation time for the corresponding
frequency band.

This approach has been extended to a multirate implementation by embedding
the bank of comb filters in the interior of a multirate analysis/synthesis filterbank
[Zoelzer et al., 1990]. A multirate implementation reduces the memory requirements
for the comb filters, and also allows the use of an efficient polyphase analysis/synthesis
filterbank [Vaidyanathan, 1993].
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3.5.8 Time-varying algorithms

There are several reasons why one might want to incorporate time variation into a
reverberation algorithm. One motivation is to reduce coloration and fluttering in the
reverberant response by varying the resonant frequencies. Another use of time variation
is to reduce feedback when the reverberator is coupled to an electro-acoustical sound
reinforcement system, as is the case in reverberation enhancement systems [Griesinger,
199l]. The time variation should always be implemented so as to yield a natural
sounding reverberation free from audible amplitude or frequency modulations. There
are several ways to add time variation to an existing algorithm:

� Modulate the lengths of the delays, e.g., as shown in figure 3.21.

� Vary the coefficients of the feedback matrix in the reference filter while main-
taining the energy conserving property, or similarly vary the allpass gains of an
allpass feedback loop reverberator.

� Modulate the output tap gains of an allpass feedback loop structure such as in
figure 3.20, or similarly vary the mixing matrix shown in equation 3.28.

There are many ways to implement variable delay lines [Laakso et al., 1996]. A
simple linear interpolator works well, but for better high frequency performance, it may
be preferable to use a higher order Lagrangian interpolator. Dattorro has suggested
using allpass interpolation, which is particularly suitable because the required modu-
lation rate is low [Dattorro, 1997]. Obviously, modulating the delay length causes the
signal passing through the delay to be frequency modulated. If the depth or rate of the
modulation is too great, the modulation will be audible in the resulting reverberation.
This is particularly easy to hear with solo piano music. The maximum detune should
be restricted to a few cents, and the modulation rate should be on the order of 1 Hz.

The notion of changing the filter coefficients while maintaining an energy conserving
system has been suggested by Smith [Smith, 1985], who describes the result as placing
the signal in a changing lossless maze. Smith suggests that all coefficient modulation
be done at sub-audio rates to avoid sideband generation, and warns of an “undulating”
sound that can occur with slow modulation that is too deep.

Although many commercial reverberators use time variation to reduce tonal col-
oration, very little has been published on time-varying techniques. There is no theory
which relates the amount and type of modulation to the reduction of tonal coloration
in the late response, nor is there a way to predict whether the modulation will be
noticeable. Consequently, all the time-varying methods are completely empirical in
nature.
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3.6 CONCLUSIONS

This paper has discussed algorithms for rendering reverberation in real-time. A
straightforward method for simulating room acoustics is to sample a room impulse
response and render the reverberation using convolution. Synthetic impulse responses
can be created using auralization techniques. The availability of efficient, zero delay
convolution algorithms make this a viable method for real-time room simulation. The
drawback of this method is the lack of parameterized control over perceptually salient
characteristics of the reverberation. This can be a problem when we attempt to use
these systems in interactive virtual environments.

Reverberators implemented using recursive filters offer parameterized control due
to the small number of filter coefficients. The problem of designing efficient, natural
sounding reverberation algorithms has always been to avoid unpleasant coloration and
fluttering in the decay. In many ways, Jot’s work has revolutionized the state of the
art, because it is now possible to design colorless reverberators without resorting to
solely empirical design methods. It is possible to specify in advance the reverberation
time curve of the reverberator, permitting an analysis/synthesis method for reverberator
design which concentrates on reproducing the energy decay relief of the target room.
Interestingly, many of the fundamental ideas can be traced back to Schroeder’s original
work, which is now more than thirty years old.

There are still problems to be solved. Reproducing a complicated reverberation
time curve using Jot’s method requires associating a high order filter with each delay
in the lossless prototype, and this is expensive. It is an open question whether the
constraint of uniform pole modulus necessarily requires one absorptive filter per delay
line (Jean-Marc Jot, personal communication, 1994). Many of the commercially
available reverberators probably use time-variation to reduce tonal coloration, yet the
study of time-varying algorithms has received almost no attention in the literature. A
general theory of tonal coloration in reverberation is needed to explain why certain
algorithms sound good and others sound bad.

The study of reverberation has been fertile ground for many acousticians, psychol-
ogists, and electrical engineers. There is no doubt it will continue to be so in the
future.
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Notes

1. Rooms are very linear but they are not time-invariant due to the motion of people and air. For
practical purposes we consider them to be LTI systems.

2. There are many ways to implement allpass filters [Moorer, 1979, Jot, 1992b]; two methods are shown
in Figures 3.13 and 3.14.
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Abstract: This chapter is concerned with the application of modern signal processing
techniques to the restoration of degraded audio signals. Although attention is focussed on
gramophone recordings, film sound tracks and tape recordings, many of the techniques
discussed have applications in other areas where degraded audio signals occur, such as
speech transmission, telephony and hearing aids.

We aim to provide a wide coverage of existing methodology while giving insight into
current areas of research and future trends.
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4.1 INTRODUCTION

The introduction of high quality digital audio media such as Compact Disk (CD) and
Digital Audio Tape (DAT) has dramatically raised general awareness and expectations
about sound quality in all types of recordings. This, combined with an upsurge in
interest in historical and nostalgic material, has led to a growing requirement for
restoration of degraded sources ranging from the earliest recordings made on wax
cylinders in the nineteenth century, through disc recordings (78 rpm, LP, etc.) and
finally magnetic tape recording technology, which has been available since the 1950’s.
Noise reduction may occasionally be required even in a contemporary digital recording
if background noise is judged to be intrusive.

Degradation of an audio source will be considered as any undesirable modification
to the audio signal which occurs as a result of (or subsequent to) the recording process.
For example, in a recording made direct-to-disc from a microphone, degradations
could include noise in the microphone and amplifier as well as noise in the disc cutting
process. Further noise may be introduced by imperfections in the pressing material,
transcription to other media or wear and tear of the medium itself. We do not strictly
consider any noise present in the recording environment such as audience noise at
a musical performance to be degradation, since this is part of the ‘performance’.
Removal of such performance interference is a related topic which is considered
in other applications, such as speaker separation for hearing aid design. An ideal
restoration would then reconstruct the original sound source exactly as received by
the transducing equipment (microphone, acoustic horn, etc.). Of course, this ideal can
never be achieved perfectly in practice, and methods can only be devised which come
close according to some suitable error criterion. This should ideally be based on the
perceptual characteristics of the human listener.

Analogue restoration techniques have been available for at least as long as magnetic
tape, in the form of manual cut-and-splice editing for clicks and frequency domain
equalization for background noise (early mechanical disk playback equipment will also
have this effect by virtue of its poor response at high frequencies). More sophisticated
electronic click reducers were based upon high pass filtering for detection of clicks,
and low pass filtering to mask their effect [Carrey and Buckner, 1976, Kinzie, Jr, and
Gravereaux, 1973].¹ None of these methods was sophisticated enough to perform a
significant degree of noise reduction without interfering with the underlying signal
quality. Digital methods allow for a much greater degree of flexibility in processing,
and hence greater potential for noise removal, although indiscriminate application of
inappropriate digital methods can be more disastrous than analogue processing!

Some of the earliest digital signal processing work for audio restoration involved
deconvolution for enhancement of a solo voice (Caruso) from an acoustically recorded
source (see Miller [Miller, 1973] and Stockham et al. [Stockham et al., 1975]). Since
then, research groups at Cambridge, Le Mans, Paris and elsewhere have worked in the
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area, developing sophisticated techniques for treatment of degraded audio. The results
of this research are summarized and referenced later in the chapter.

There are several distinct types of degradation common in audio sources. These
can be broadly classified into two groups: localized degradations and global degra-
dations. Localized degradations are discontinuities in the waveform which affect only
certain samples, including clicks, crackles, scratches, breakages and clipping. Global
degradations affect all samples of the waveform and include background noise, wow
and flutter and certain types of non-linear distortion. Mechanisms by which all of
these defects can occur are discussed later.

The chapter is organized as follows. We firstly describe models which are suitable
for audio signal restoration, in particular those which are used in later work. Subsequent
sections describe individual restoration problems separately, considering the alternative
methods available to the restorer. A concluding section summarizes the work and
discusses future trends.

4.2 MODELLING OF AUDIO SIGNALS

Many signal processing techniques will be model-based, either explicitly or implicitly,
and this certainly applies to most of the audio restoration algorithms currently available.
The quality of processing will depend largely on how well the modelling assumptions
fit the data. For an audio signal, which might contain speech, music and general
acoustical noises the model must be quite  general and robust to deviations from the
assumptions. It should also be noted that most audio signals are non-stationary in
nature, although practical modelling will often assume short-term stationarity of the
signal. We now discuss some models which are appropriate for audio signals.

A model which has found application in many areas of time series processing,
including audio restoration (see sections 4.3 and 4.7), is the autoregressive (AR) or all-
pole model (see Box and Jenkins [Box and Jenkins, 1970], Priestley [Priestley, 1981]
and also Makhoul [Makhoul, 1975] for an introduction to linear predictive analysis)
in which the current value of a signal is represented as a weighted sum of P previous
signal values and a white noise term:

The AR model is a reasonable representation for many stationary linear processes,
allowing for noise-like signals (poles close to origin) and near-harmonic signal (poles
close to unit circle). A more appropriate model for many situations might be the
autoregressive moving-average (ARMA) model which allows zeros as well as poles.
However, the AR model offers far greater analytic flexibility than the ARMA model,
so a high order AR model will often be used in practice to approximate an ARMA
signal (it is well known that an infinite order AR model can represent any finite-order

(4.1)
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ARMA model (see, e.g. [Therrien, 1992])). Model order for the autoregressive
process will reflect the complexity of the signal under consideration. For example, a
highly complex musical signal can require a model order of P > 100 to represent the
waveform adequately, while simpler signals may be modelled by an order 30 system.
Strictly, any processing procedure should thus include a model order selection strategy.
For many applications, however, it is sufficient to fix the model order to a value high
enough for representation of the most complex signal likely to be encountered. Clearly
no audio signal is truly stationary, so it will be necessary to implement the model in
a block-based or adaptive fashion. Suitable block lengths and adaptation rates will
depend upon the signal type, but block lengths between 500 and 2000 samples at the
44.1kHz sampling rate are generally found to be appropriate.

There are many well-known methods for estimating AR models, including maxi-
mum likelihood/least-squares [Makhoul, 1975] and methods robust to noise [Huber,
1981, Spath, 1991]. Adaptive parameter estimation schemes are reviewed in [Haykin,
1991]. The class of methods robust to noise, both block-based and adaptive, will
be of importance to many audio restoration applications, since standard parameter
estimation schemes can be heavily biased in the presence of noise, in particular im-
pulsive noise such as is commonly encountered in click-degraded audio. A standard
approach to this problem is the M-estimator [Huber, 1981, Spath, 1991]. This method
achieves robustness by iteratively re-weighting excitation values in the least-squares
estimator using a non-linear function such as Huber’s psi-function [Huber, 1964] or
Tukey's bisquare function [Mosteller and Tukey, 1977]. Applications of these methods
to parameter estimation, detection of impulses and robust filtering include [Martin,
1981, Arakawa et al., 1986, Efron and Jeen, 1992].

Another model which is a strong candidate for musical signals is the sinusoidal
model, which has been used effectively for speech applications
([McAulay and Quatieri, 1986b] and chapter 9 of this book). A constrained form
of the sinusoidal model is implicitly at the heart of short-time spectral attenuation
(STSA) methods of noise reduction (see section 4.5.1). The model is also a fundamen-
tal assumption of the pitch variation algorithms presented in section 4.6. In its general
form the signal can be expressed as:

(4.2)

This is quite a general model, allowing for frequency and amplitude modulation (by
allowing ai [n] and ωi(t) to vary with time) as well as the ‘birth’ and ‘death’ of individual
components (by allowing Pn to vary with time). However, parameter estimation for
such a general model is difficult, and restrictive constraints must typically be placed
upon the amplitude and frequency variations. The sinusoidal model is not suited to
modelling noise-like signals, although an acceptable representation can be achieved
by using a large number of sinusoids in the expansion.
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Other models include adaptations to the basic AR/ARMA models to allow for
speech-like periodic excitation pulses [Rabiner and Schafer, 1978a] and non-linearity
(see section 4.7). Further ‘non-parametric’ modelling possibilities arise from other
basis function expansions which might be more appropriate for audio signal analysis,
including Wavelets [Akansu and Haddad, 1992) and signal dependent transforms which
employ principal component-based analysis [Gerbrands, 1981]. Choice of model will
in general involve a compromise between prior knowledge of signal characteristics,
computational power and how critical the accuracy of the model is to the application.

4.3 CLICK REMOVAL

The term ‘clicks’ is used here to refer to a generic localized type of degradation
which is common to many audio media. We will classify all finite duration defects
which occur at random positions in the waveform as clicks. Clicks are perceived in
a number of ways by the listener, ranging from tiny ‘tick’ noises which can occur in
any recording medium, including modern digital sources, through the characteristic
‘scratch and ‘crackle’ noise associated with most analogue disc recording methods.
For example, a poor quality 78 rpm record might typically have around 2,000 clicks
per second of recorded material, with durations ranging from less than 20µs up to
4ms in extreme cases. See figure 4.1 for a typical example of a recorded music
waveform degraded by localized clicks. In most examples at least 90% of samples
remain undegraded, so it is reasonable to hope that a convincing restoration can be
achieved.

There are many mechanisms by which clicks can occur. Typical examples are
specks of dirt and dust adhering to the grooves of a gramophone disc (see figure 4.3
².) or granularity in the material used for pressing such a disc. Further click-type
degradation may be caused through damage to the disc in the form of small scratches
on the surface, Similar artifacts are encountered in other analogue media, including
optical film sound tracks and early wax cylinder recordings, although magnetic tape
recordings are generally free of clicks. Ticks can occur in digital recordings as a result
of poorly concealed digital errors and timing problems.

Peak-related dictortion, occurring as a result either of overload during recording or
wear and tear during playback, can give rise to a similar perceived effect to clicks, but
is really a different area which should receive separate attention (see section 4.7), even
though click removal systems can often go some way towards alleviating the worst
effects.

4.3.1 Modelling of clicks

Localized defects may be modelled in many different ways. For example, a defect may
be additive to the underlying audio signal, or it may replace the signal altogether for
some short period. An additive model has been found to be acceptable for most surface
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Figure 4.1 Click-degraded music waveform taken from 78 rpm recording

Figure 4.2 AR-based detection, P=50. (a) Prediction error filter (b) Matched filter.
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Figure 4.3 Electron micrograph showing dust and damage to the grooves of a 78rpm
gramophone disc.
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defects in recording media, including small scratches, dust and dirt. A replacement
model may be appropriate for very large scratches and breakages which completely

obliterate any underlying signal information, although such defects usually excite long-
term resonances in mechanical playback systems and must be treated differently (see
section 4.4). Here we will consider primarily the additive model, although many of
the results are at least robust to replacement noise.

An additive model for localized degradation can be expressed as:

(4.3)

where s[n] is the underlying audio signal, v[n] is a corrupting noise process and i[n] is
a 0/l ‘switching’ process which takes the value 1 only when the localized degradation
is present. Clearly the value of v[n] is irrelevant to the output when the switch is in
position 0. The statistics of the switching process i [n] thus govern which samples are
degraded, while the statistics of v[n] determine the amplitude characteristics of the
corrupting process.

This model is quite general and can account for a wide variety of noise characteristics
encountered in audio recordings. It does, however, assume that the degradation process
does not interfere with the timing content of the original signal, as observed in x[n] .
This is reasonable for all but very severe degradations, which might temporarily upset
the speed of playback, or actual breakages in the medium which have been mechanically
repaired (such as a broken disc recording which has been glued back together).

Any procedure which is designed to remove localized defects in audio signals must
take account of the typical characteristics of these artifacts. Some important features
which are common to many click- degraded audio media include:

� Degradation tends to occur in contiguous ‘bursts’ of corrupted samples, starting
at random positions in the waveform and of random duration (typically between
1 and 200 samples at 44.1 kHz sampling rates). Thus there is strong dependence
between successive samples of the switching process i[n ], and the noise cannot
be assumed to follow a classical impulsive noise pattern in which single impulses
occur independently of each other (the Bernoulli model). It is considerably
more difficult to treat clusters of impulsive disturbance than single impulses,
since the effects of adjacent impulses can cancel each other in the detection
space (‘missed detections’) or add constructively to give the impression of more
impulses (‘false alarms’).

The amplitude of the degradation can vary greatly within the same recorded
extract, owing to a range of size of physical defects. For example, in many
recordings the largest click amplitudes will be well above the largest signal
amplitudes, while the smallest audible defects can be more than 40dB below
the local signal level (depending on psychoacoustical masking by the signal and
the amount of background noise). This leads to a number of difficulties. In

�
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Many approaches are possible for the restoration of such defects. It is clear, however,
that the ideal system will process only on those samples which are degraded, leaving
the others untouched in the interests of fidelity to the original source. Two tasks can
thus be identified for a successful click restoration system. The first is a detection
procedure in which we estimate the process i [n], that is decide which samples are
degraded. The second is an estimation procedure in which we attempt to reconstruct
the underlying audio data when corruption is present. A method which assumes that
no useful information about the underlying signal is contained in the degraded samples
will involve a pure interpolation of the audio data using the undegraded samples, while
more sophisticated techniques will attempt in addition to extract extra information from
samples degraded with noise using some degree of noise modelling.

4.3.2 Detection

Click detection for audio signals involves the identification of samples which are not
drawn from the underlying audio signal; in other words they are drawn from a spurious
‘outlier’ distribution. We will see a close relationship between click detection and
work in robust parameter estimation and treatment of outliers, from fields as diverse as
medical signal processing, underwater signal processing and statistical data analysis.
In the statistical field in particular there has been a vast amount of work in the treatment
of outliers (see e.g. [Beckman and Cook, 1983, Barnett and Lewis, 1984] for extensive
review material, and further references in section 4.3.4). Various criteria for detection
are possible, including minimum probability of error, PE , and related concepts, but
strictly speaking the aim of any audio restoration is to remove only those artifacts
which are audible to the listener. Any further processing is not only unnecessary
but will increase the chance of distorting the perceived signal quality. Hence a truly
optimal system should take into account the trade-off between the audibility of artifacts
and perceived distortion as a result of processing, and will involve consideration of
complex psychoacoustical effects in the human ear (see e.g. [Moore, 1997]). Such
an approach, however, is difficult both to formulate and to realize, so we will limit
discussion here only to criteria which are well understood in a mathematical sense.

The simplest click detection methods involve a high-pass filtering operation on the
signal, the assumption being that most audio signals contain little information at high
frequencies, while impulses have spectral content at all frequencies. Clicks are thus
enhanced relative to the signal by the high-pass filtering operation and can easily be
detected by thresholding the filtered output. The method has the advantage of being
simple to implement and having no unknown system parameters (except for a detection

particular, large amplitude defects will tend to bias any parameter estimation
and threshold determination procedures, leaving smaller defects undetected. As
we shall see in section 4.3.2, threshold selection for some detection schemes
becomes a difficult problem in this case.
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threshold). This principle is the basis of most analogue de-clicking equipment [Carrey
and Buckner, 1976, Kinzie, Jr. and Gravereaux, 1973] and some simple digital click
detectors [Kasparis and Lane, 1993]. Of course, the method will fail if the audio signal
has strong high frequency content or the clicks are band-limited. Along similar lines,
wavelets and multiresolution methods in general [Akansu and Haddad, 1992, Chui,
1992a, Chui, 1992b] have useful localization properties for singularities in signals
(see e.g. [Mallatt and Hwang, 1992]), and a Wavelet filter at a fine resolution can be
used for the detection of clicks. Such methods have been studied and demonstrated
successfully by Montresor, Valière et al. [Valière, 1991, Montresor et al., 1990].

Other methods attempt to incorporate prior information about signal and noise into
a model-based detection procedure. Techniques for detection and removal of impulses
from autoregressive signals have been developed from robust filtering principles (see
section 4.2 and [Arakawa et al., 1986, Efron and Jeen, 1992]). These methods apply
non-linear functions to the autoregressive excitation sequence, and can be related to the
click detection methods of Vaseghi and Rayner [Vaseghi and Rayner, 1988, Vaseghi,
1988, Vaseghi and Rayner, 1990], which are now discussed. See also section 4.3.4 for
recent detection methods based on statistical decision theory.

Autoregressive (AR) model-based Click Detection. In this method ([Vaseghi and
Rayner, 1988, Vaseghi, 1988, Vaseghi and Rayner, 1990]) the underlying audio data
s [ n] is assumed to be drawn from a short-term stationary autoregressive (AR) process
(see equation (4.1)). The AR model parameters a and the excitation variance σ2

e are
estimated from the corrupted data x[n] using some procedure robust to impulsive noise,
such as the M-estimator (see section 4.2).

The corrupted data x[n] is filtered using the prediction error filter H( z ) = (1 –

to give a detection signal ed[n] :

(4.4)

Substituting for x[n] from (4.3) and using (4.1) gives:

(4.5)

which is composed of the signal excitation e[n] and a weighted sum of present and
σ [s 

noise with variance

2past impul sive noise values. If s[ n] is zero mean and has variance then e n] is white

. The reduction in  power here from signal
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to excitation can be 40dB or more for highly correlated audio signals. Consideration
of (4.5), however, shows that a single impulse contributes  the impulse response of the
prediction error filter, weighted by the impulse amplitude, to the detection signal ed [n] ,
with maximum amplitude corresponding to the maximum in the impulse response.
This means that considerable amplification of the impulse relative to the signal can
be achieved for all but uncorrelated, noise-like signals. It should be noted, however,
that this amplification is achieved at the expense of localization in time of the impulse,
whose effect is now spread over P + 1 samples of the detection signal ed[n]. This will
have adverse consequences when a number of impulses is present in the same vicinity,
since their impulse responses may cancel one another out or add constructively to
give false detections. More generally, threshold selection will be troublesome when
impulses of widely differing amplitudes are present, since a low threshold which is
appropriate for very small clicks will lead to false detections in the P detection values
which follow a large impulse.

Detection can then be performed by thresholding ed[n ]² to identify likely impulses.
Choice of threshold will depend upon the AR model, the variance of e[n] and the
size of impulses present (see [Godsill, 1993] for optimal thresholds under Gaussian
signal and noise assumptions), and will reflect trade-offs between false and missed
detection rates. See figure 4.2(a) for a typical example of detection using this method,
which shows how the impulsive interference is strongly amplified relative to the signal
component.

P + 1 coefficients which can be realized

Both  the prediction error detection algorithm and the matched filtering algorithm

An adaptation of this method, also devised by Vaseghi and Rayner, considers the
impulse detection problem from a matched filtering perspective [VanTrees, 1968].
The ‘signal’ is the impulse itself, while the autoregressive audio data is regarded as
coloured additive noise. The prediction error filter described above can then be viewed
as a pre-whitening stage for the autoregressive noise, and the full matched filter is given
by H ( z ) H (z —1 ), a non-causal filter with 2
with P samples of lookahead. The matched filtering approach provides additional
amplification of impulses relative to the signal, but further reduces localization of
impulses for a given model order. Choice between the two methods will thus depend
on the range of click amplitudes present in a particular recording and the degree of
separation of individual impulses in the waveform. See figure 4.2(b) for an example of
detection using the matched filter. Notice that the matched filter has high-lighted a few
additional impulse positions, but at the expense of a much more ‘smeared’ response
which will make accurate localization very awkward. Hence the prediction-error
detector is usually preferred in practice.

are efficient to implement and can be operated in real time using DSP microprocessors.
Results of a very high standard can be achieved if a careful strategy is adopted for
extracting the precise click locations from the detection signal. Iterative schemes
are also possible which re-apply the detection algorithms to the restored data (see
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section 4.3.3) in order to achieve improved parameter estimates and to ensure that any
previously undetected clicks are detected.

4.3.3 Replacement of corrupted samples

Once clicks have been detected, a replacement strategy must be devised to mask their
effect. It is usually appropriate to assume that clicks have in no way interfered with the
timing of the material, so the task is then to fill in the ‘gap’ with appropriate material
of identical duration to the click. As discussed above, this amounts to an interpolation
or generalized prediction problem, making use of the good data values surrounding
the corruption and possibly taking account of signal information which is buried in
the corrupted section. An effective technique will have the ability to interpolate gap
lengths from one sample up to at least 100 samples at a sampling rate of 44.1 kHz.

The replacement problem may be formulated as follows. Consider N samples of
audio data, forming a vector s. The corresponding click-degraded data vector is x, and
the (known) vector of detection values i [n] is i. The audio data s may be partitioned
into two sub-vectors, one containing elements whose value is known (i.e. i [n] = 0),
denoted by sk , and the second containing unknown elements which are corrupted by
noise (i [n ] = 1), denoted by su . Vectors x and i are partitioned in a similar fashion.
The replacement problem requires the estimation of the unknown data su , given the
observed (corrupted) data x. This will be a statistical estimation procedure for audio
signals, which are stochastic in nature, and estimation methods might be chosen to
satisfy criteria such as minimum mean-square error (MMSE), maximum likelihood
(ML), maximum a posteriori (MAP) or perceptual features.

Numerous methods have been developed for the interpolation of corrupted or miss-
ing samples in speech and audio signals. The ‘classical’ approach is perhaps the median
filter [Tukey, 1971, Pitas and Venetsanopoulos, 1990] which can replace corrupted
samples with a median value while retaining detail in the signal waveform. A suit-
able system is described in [Kasparis and Lane, 1993], while a hybrid autoregressive
prediction/ median filtering method is presented in [Nieminen et al., 1987]. Median
filters, however, are too crude to deal with gap lengths greater than a few samples.
Other techniques ‘splice’ uncorrupted data from nearby into the gap [Lockhart and
Goodman, 1986, Platte and Rowedda, 1985] in such a manner that there is no signal
discontinuity at the start or end of the gap. These methods rely on the periodic nature
of many speech and music signals and also require a reliable estimate of pitch period.

The most effective and flexible methods to date have been model-based, allowing
for the incorporation of reasonable prior information about signal characteristics. A
good coverage is given by Veldhuis [Veldhuis, 1990], and a number of interpolators
suited to speech and audio signals is presented. These are based on minimum variance
estimation under various modelling assumptions, including sinusoidal, autoregressive,
and periodic. The autoregressive interpolator, originally derived in [Janssen et al.,
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1986], was later developed by Vaseghi and Rayner [Vaseghi, 1988, Vaseghi and Rayner,
1988, Vaseghi and Rayner, 1990] for the restoration of gramophone recordings. This
interpolator and other developments based on autoregressive modelling are discussed
in the next section.

successful is the Least Squares AR-based (LSAR) method [Janssen et al., 1986, Veld-
huis, 1990], devised originally for the concealment of uncorrectable errors in CD
systems. Corrupted data is considered truly ‘missing’ in that no account is taken of its
value in making the interpolation. We present the algorithm in a matrix/vector notation
in which the locations of degraded samples can be arbitrarily specified within the data
block through the detection vector i.

Autoregressive  interpolation. An interpolation procedure which has proved highly

Consider a block of N data samples s which are drawn from a short-term stationary
AR process with parameters a. Equation 4.1 can be re-written in matrix/vector notation
as:

e = A s (4.6)

where A is an (( N – P ) × N ) matrix, whose (j – P )th row is constructed so as to
generate the prediction error, . Elements on the right
hand side of this equation can be partitioned into known and unknown sections as
described above, with A being partitioned by column. The least squares solution is
then obtained by minimizing the sum of squares E = eT e w.r.t. the unknown data
segment, to give the solution:

(4.7)

This interpolator has useful properties, being the minimum-variance unbiased estimator
for the missing data [Veldhuis, 1990]. Viewed from a probabilistic perspective, it
corresponds to maximization of p(s u | s k , a, σ2

e ) under Gaussian assumptions,³ and
is hence also the maximum a posteriori (MAP) estimator [Godsill, 1993, Veldhuis,
1990]. In cases where corruption occurs in contiguous bursts separated by at least P
‘good’ samples, the interpolator leads to a Toeplitz system of equations which can be
efficiently solved using the Levinson-Durbin recursion [Durbin, 1959]. See figure 4.4
for examples of interpolation using the LSAR method. A succession of interpolations
has been performed, with increasing numbers of missing samples from left to right in
the data (gap lengths increase from 25 samples up to more than 100). The autoregressive
model order is 60. The shorter length interpolations are almost indistinguishable from
the true signal (left-hand side of figure 4.4(a)), while the interpolation is much poorer
as the number of missing samples becomes large (right-hand side of figure 4.4(b)).
This is to be expected of any interpolation scheme when the data is drawn from a
random process, but the situation can often be improved by use of a higher order
autoregressive model. Despite poor accuracy of the interpoland for longer gap lengths,
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good continuity is maintained at the start and end of the missing data blocks, and the
signal appears to have the right ‘character’. Thus effective removal of click artifacts
in typical audio sources can usually be achieved.

The basic formulation given in (4.7) assumes that the AR parameters are known
a priori. In practice we may have a robust estimate of the parameters obtained
during the detection stage (see section 4.3.2). This, however, is strictly sub-optimal
and we should perhaps consider interpolation methods which treat the parameters as
unknown. Minimization of the term E = eT e w.r.t. both s u and a corresponds to
the joint least squares estimator for the parameters and the missing data, and also
to the approximate joint ML estimator.4 E, however, contains fourth-order terms in
the unknowns and cannot be minimized analytically. Janssen, Veldhuis and Vries
[Janssen et al., 1986] propose an alternating variables iteration which performs linear
maximizations w.r.t. data and parameters in turn, and is guaranteed to converge at
least to a local maximum of the likelihood. The true likelihood for the missing
data, p (s k |  s u ), can be maximized using the expectation-maximize (EM) algorithm
[Dempster et al., 1977], an approach which has been investigated by Ó Ruanaidh and
Fitzgerald [ÓRuanaidh, 1994, ÓRuanaidh and Fitzgerald, 1993]. Convergence to local
maxima of the likelihood is also a potential difficulty with this method.

The LSAR approach to interpolation performs well in most cases. However, certain
classes of signal which do not fit the modelling assumptions (such as periodic pulse-
driven voiced speech) and very long gap lengths can lead to an audible ‘dulling’ of
the signal or unsatisfactory masking of the original corruption. Increasing the order of
the AR model will usually improve the results; however, several developments to the
method are now outlined which can lead to better performance.

Vaseghi and Rayner [Vaseghi and Rayner, 1990] propose an extended AR model
to take account of signals with long-term correlation structure, such as voiced speech,
singing or near-periodic music. The model, which is similar to the long term prediction
schemes used in some speech coders, introduces extra predictor parameters around the
pitch period T, so that equation 4.1 becomes:

(4.8)

where Q is typically smaller than P. Least squares/ML interpolation using this model
is of a similar form to equation 4.7, and parameter estimation is straightforwardly
derived as an extension of standard AR parameter estimation methods (see section
4.2). The method gives a useful extra degree of support from adjacent pitch periods
which can only be obtained using very high model orders in the standard AR case.
As a result, the ‘under-prediction’ sometimes observed when interpolating long gaps
is improved. Of course, an estimate of T is required, but results are quite robust
to errors in this. Veldhuis [Veldhuis, 1990][chapter 4] presents a special case of this
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Figure 4.4 AR-based interpolation, P=60, classical chamber music, (a) short gaps,
(b) long gaps
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interpolation method in which the signal is modelled by one single ‘prediction’ element
at the pitch period (i.e. Q = 0 and P = 0 in the above equation).

A second modification to the LSAR method is concerned with the characteristics of
the excitation signal. We notice that the LSAR procedure (4.7) seeks to minimize the
excitation energy of the signal, irrespective of its time domain autocorrelation. This is
quite correct, and desirable mathematical properties result (see above). However, figure
4.6 shows that the resulting excitation signal corresponding to the corrupted region can
be correlated and well below the level of surrounding excitation. As a result, the ‘most
probable’ interpolands may under-predict the true signal levels and be over-smooth
compared with the surrounding signal. In other words, ML/MAP procedures do not
necessarily generate interpolands which are typical for the underlying model, which
is an important factor in the perceived effect of the restoration. Rayner and Godsill
[Rayner and Godsill, 1991] have devised a method which addresses this problem.
Instead of minimizing the excitation energy, we consider interpolands with constant
excitation energy. The excitation energy may be expressed as:

(4.9)

where E LS is the excitation energy corresponding to the LSAR estimate s LS
u . The

positive definite matrix Au
T A u can be factorized into ‘square roots’ by Cholesky

or any other suitable matrix decomposition [Golub and Van Loan, 1989] to give
A u

T Au = M T M, where M is a non-singular square matrix. A transformation of
variables u = M (su – s LS

u ) then serves to de-correlate the missing data samples,
simplifying equation (4.9) to:

(4.10)

from which it can be seen that the (non-unique) solutions with constant excitation
energy correspond to vectors u with constant L2 -norm. The resulting interpoland
can be obtained by the inverse transformation su = M – 1 u + s LS

u . One suitable
criterion for selecting u might be to minimize the autocorrelation at non-zero lags
of the resulting excitation signal, since the excitation is assumed to be white noise.
This, however, requires a non-linear minimization, and a practical alternative is to
generate u as Gaussian white noise with variance (E – E LS ) /l , where l is the number
of corrupted samples. The resulting excitation will have approximately the desired
energy and uncorrelated character. A suitable value for E is the expected excitation
energy for the AR model, provided this is greater than ELS , i.e. E = m a x( E σLS , N 2

e ).
Viewed within a probabilistic framework, the case when E = ELS + lσ2

e , where l is
the number of unknown sample values, is equivalent to drawing a sample from the
posterior density for the missing data, p(su   s k , a, σ2

e ). Figures 4.5-4.7 illustrate
the principles involved in this sampled interpolation method. A short section taken
from a modern solo vocal recording is shown in figure 4.5, alongside its estimated
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autoregressive excitation. The waveform has a fairly ‘noise-like’ character, and the
corresponding excitation is noise-like as expected. The standard LSAR interpolation
and corresponding excitation is shown in figure 4.6. The interpolated section (between
the dotted vertical lines) is reasonable, but has lost the random noise-like quality of the
original. Examination of the excitation signal shows that the LSAR interpolator has
done ‘too good’ a job of minimizing the excitation energy, producing an interpolant
which, while optimal in a mean-square error sense, cannot be regarded as typical of the
autoressive process. This might be heard as a momentary change in sound quality
at the point of interpolation. The sampling-based interpolator is shown in figure 4.7.

Its waveform retains the random quality of the original signal, and likewise the
excitation signal in the gap matches the surrounding excitation. Hence the sub-
optimal interpolant is likely to sound more convincing to the listener than the LSAR
reconstruction.

Ó Ruanaidh and Fitzgerald [ÓRuanaidh and Fitzgerald, 1994, ÓRuanaidh, 1994]
have successfully extended the idea of sampled interpolates to a full Gibbs’ Sampling
framework [Geman and Geman, 1984, Gelfand and Smith, 1990] in order to generate
typical interpolates from the marginal posterior density p (s u  s k ). The method is
iterative and involves sampling from the conditional posterior densities of su, a and
σ 2

e in turn, with the other unknowns fixed at their most recent sampled values. Once
convergence has been achieved, the interpolation used is the last sampled estimate
from p (su   s k , a, σ2

e ).

Other methods. Several transform-domain methods have been developed for click
replacement. Montresor, Valiére and Baudry [Montresor et al., 1990] describe a
simple method for interpolating wavelet coefficients of corrupted audio signals, which
involves substituting uncorrupted wavelet coefficients from nearby signal according to
autocorrelation properties. This, however, does not ensure continuity of the restored
waveform and is not a localized operation in the signal domain. An alternative method,
based in the discrete Fourier domain, which is aimed at restoring long sections of
missing data is presented by Maher [Maher, 1994]. In a similar manner to the sinusoidal
coding algorithms of McAulay and Quatieri [McAulay and Quatieri, 1986b], this
technique assumes that the signal is composed as a sum of sinusoids with slowly
varying frequencies and amplitudes (see equation 4.2). Spectral peak ‘tracks’ from
either side of the gap are identified from the Discrete Fourier Transform (DFT)
of successive data blocks and interpolated in frequency and amplitude to generate
estimated spectra for the intervening material. The inverse DFTs of the missing data
blocks are then inserted back into the signal. The method is reported to be successful
for gap lengths of up to 30ms, or well over 1000 samples at audio sampling rates. A
method for interpolation of signals represented by the multiple sinusoid model is given
in [Veldhuis, 1990][Chapter 6].
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Figure 4.5 Original signal and excitation (P =100)

Figure 4.6 LSAR interpolation and excitation (P = 100)
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Figure 4.7 Sampled AR interpolation and excitation (P =100)
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Godsill and Rayner [Godsill and Rayner, 1993a, Godsill, 1993] have derived an
interpolation method which operates in the DFT domain. This can be viewed as
an alternative to the LSAR interpolator (see section 4.3.3) in which power spectral
density (PSD) information is directly incorporated in the frequency domain. Real
and imaginary DFT components are modelled as independent Gaussians with variance
proportional to the PSD at each frequency. These assumptions of independence are
shown to hold exactly for random periodic processes [Therrien, 1989], so the method
is best suited to musical signals with strongly tonal content. The method can, however,
also be used for other stationary signals provided that a sufficiently long block length
is used (e.g. 500-2000 samples) since the assumptions also improve as block length
increases [Papoulis, 1991]. The Maximum a posteriori solution is of a similar form
and complexity to the LSAR interpolator, and is particularly useful as an alternative
to the other method when the signal has a quasi-periodic or tonal character. A robust
estimate is required for the PSD, and this can usually be obtained through averaged
DFTs of the surrounding data, although iterative methods are also possible, as in the
case of the LSAR estimator.

Recent statistical model-based detection and interpolation methods are discussed in
the next section.

4.3.4 Statistical methods for the treatment of clicks

The detection and replacement techniques described in the preceding sections can be
combined to give very successful click concealment, as demonstrated by a number
of research and commercial systems which are now used for the re-mastering of old
recordings. However, some of the difficulties outlined above concerning the ‘masking’
of smaller defects by large defects in the detection process, the poor time localization
of some detectors in the presence of impulse ‘bursts’ and the inadequate performance of
existing interpolation methods for certain signal categories, has led to further research
which considers the problem from a more fundamental statistical perspective.

In [Godsill and Rayner, 1992, Godsill and Rayner, 1995a, Godsill, 1993] click
detection is studied within a model-based Bayesian framework (see e.g. [Box and
Tiao, 1973, Bernardo and Smith, 1994]). The Bayesian approach is a simple and
elegant framework for performing decision and estimation within complex signal
and noise modelling problems such as this, and relevant Bayesian approaches to
the related problem of outlier detection in statistical data can be found in [Box and
Tiao, 1968, Abraham and Box, 1979, McCulloch and Tsay, 1994]. Detection is
formulated explicitly as estimation of the noise ‘switching’ process i [n] (see section
4.3.1) conditional upon the corrupted data x[n]. The switching process can be regarded
as a random discrete (1/0) process for which a posterior probability is calculated.
Detection is then achieved by determining the switching values which minimize risk
according to some appropriate cost function. In the most straightforward case, this
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will involve selecting switch values which maximize the posterior probability, leading
to the maximum a posteriori (MAP) detection. The posterior detection probability for
a block of N data points may be expressed using Bayes’ rule as:

(4.11)

where all terms are implicitly conditional upon the prior modelling assumptions, M.
The prior detection probability P(i) reflects any prior knowledge about the switching
process. In the case of audio clicks this might, for example, incorporate the knowledge
that clicks tend to occur as short ‘bursts’ of consecutive impulses, while the majority
of samples are uncorrupted. A suitable prior which expresses this time dependence is
the discrete Markov chain prior (see [Godsill and Rayner, 1995a, Godsill, 1993] for
discussion this point). The term p (x) is constant for any given set of observations,
and so can be ignored as a constant scale factor. Attention will thus focus on p(x i),
the detection-conditioned likelihood for a particular detection vector i. It is shown in
[Godsill and Rayner, 1995a, Godsill, 1993, Godsill and Rayner, 1992] that within the
additive noise modelling framework of (4.3), the likelihood term is given by

(4.12)

where p vu i is the probability density function for the corrupting noise values and ps
is the density for the underlying audio data. This formulation holds for any random
additive noise process which is independent of the signal. In particular, the calculation
of (4.12) is analytic in the case of linear Gaussian models, In [Godsill and Rayner,
1992, Godsill and Rayner, 1995a, Godsill, 1993] the autoregressive signal model with
Gaussian corruption is studied in detail.

In order to obtain the MAP detection estimate from the posterior probability
expression of equation (4.11) an exhaustive search over all 2N possible configurations
of the (1/0) vector i is necessary. This is clearly infeasible for any useful value of N , so
alternative strategies must be devised. A sequential approach is developed in [Godsill
and Rayner, 1995a, Godsill, 1993] for the Gaussian AR case. This is based around a
recursive calculation of the likelihood (4.12), and hence posterior probability, as each
new data sample is presented. The sequential algorithm performs a reduced binary tree
search through possible configurations of the detection vector, rejecting branches which
have low posterior probability and thus making considerable computational savings
compared with the exhaustive search. The method has been evaluated experimentally
in terms of detection error probabilities and perceived quality of restoration and found
to be a significant improvement over the autoregressive detection methods described
in section 4.3.2, although more computationally intensive.

Click detection within a Bayesian framework has introduced the concept of an ex-
plicit model for the corrupting noise process through the noise density pv u i . Effective
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noise modelling can lead to improvements not only in click detection, but also in re-
placement, since it allows useful signal information to be extracted from the corrupted
data values. This information is otherwise discarded as irrevocably lost, as in the
interpolators described in earlier sections. In fact, it transpires that an intrinsic part
of the likelihood calculation in the Bayesian detection algorithm (equation 4.12) is
calculation of the MAP estimate for the unknown data conditional upon the detection
vector i. This MAP interpolation can be used as the final restored output after detec-
tion, without resort to other interpolation methods. The form of this ‘interpolator’ is
closely related to the LSAR interpolator (section 4.3.3) and may be expressed as:

(4.13)

(see [Godsill and Rayner, 1995a][equations (12-14)]), where σ 2v is the variance of
the corrupting noise, which is assumed independent and Gaussian. Of course, the
quality of the restored output is now dependent on the validity of the assumed noise
statistics. The Bayesian detector itself shows considerable robustness to errors in
these assumptions [Godsill and Rayner, 1995a, Godsill, 1993], but the interpolator is
less tolerant. This will be particularly noticeable when the true noise distributions are
more ‘heavy-tailed’ than the Gaussian, a scenario for which there is strong evidence
in many degraded audio signals. The noise modelling can in fact be generalized to a
more realistic class of distributions by allowing the individual noise components v [n]
to have separate, unknown variances and even unknown correlation structure. We are
essentially then modelling noise sources as continuous scale mixtures of Gaussians:

where N (µ , λ) is the Gaussian distribution with mean µ and variance λ, and g( λ) is a
continuous ‘mixing’ density [West, 1984]. These extensions allow for non-Gaussian
defects with of widely varying magnitude and also for the noise correlation which might
be expected when the signal has been played through a mechanical pick-up system
followed by equalization circuitry. This noise modelling framework can be used to
develop highly robust interpolators, and a Bayesian approach which requires no prior
knowledge of AR parameters or noise statistics is presented in [Godsill and Rayner,
1995b], using an iterative EM-based solution. Similar noise modelling principles
can be used to extend the Bayesian detection algorithms, and Markov chain Monte
Carlo (MCMC) methods [Hastings, 1970, Geman and Geman, 1984, Gelfand and
Smith, 1990] are presented for the solution of this problem in [Godsill and Rayner,
1998, Godsill and Rayner, 1996b]. An example of these Bayesian iterative restoration
methods for removal of clicks is shown in figure 4.8 for a typical 78 rpm recording. The
same framework may be extended to perform joint removal of clicks and background
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Figure 4.8 Restoration using Bayesian iterative methods

noise in one single procedure, and some recent work on this problem can be found in
[Godsill and Rayner, 1996a] for autoregressive signals and in [Godsill, 1997a, Godsill,
1997b] for autoregressive moving-average (ARMA) signals.

The statistical methods described here provide a highly flexible framework for
audio restoration and signal enhancement in general. Solution for these complex
models is usually of significantly higher computational complexity than the techniques
described in earlier sections, but this is unlikely to be problematic for applications where
restoration quality is the highest priority. The methods are still in their infancy, but
we believe that future research work in the field will require sophisticated statistical
modelling of signals and noise, with associated increases in solution complexity, in
order to achieve improved fidelity of restoration. The Bayesian methods discussed
here are likely to find application in many other areas of audio processing (see later
sections).

4.4 CORRELATED NOISE PULSE REMOVAL

A further problem which is common to several recording media including gramophone
discs and optical film sound tracks is that of low frequency noise pulses. This form
of degradation is typically associated with large scratches or even breakages in the
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surface of a gramophone disc. The precise form of the noise pulse depends upon the
mechanical and electrical characteristics of the playback system, but a typical result
is shown in figure 4.9. A large discontinuity is observed followed by a decaying low
frequency transient. The noise pulses appear to be additively superimposed on the
undistorted signal waveform (see figure 4.10).

Low frequency noise pulses appear to be the response of the playback system to
extreme step-like or impulsive stimuli caused by breakages in the groove walls of
gramophone discs or large scratches on an optical film sound track. The audible
effect of this response is a percussive ‘pop’ indexNoise, Pop noise or ‘thump’ in the
recording. This type of degradation is often the most disturbing artifact present in a
given extract. It is thus highly desirable to eliminate noise pulses as a first stage in the
restoration process.

The effects of the noise pulse are quite long-term, as can be seen from figure 4.9, and
thus a straightforward interpolation using the methods of section 4.3.3 is not a practical
proposition. Since the majority of the noise pulse is of very low frequency it might
be thought that some kind of high pass filtering operation would remove the defect.
Unfortunately this does not work well either, since the discontinuity at the start of the
pulse has significant high frequency content. Some success has been achieved with
a combination of localized high pass filtering, followed by interpolation to remove
discontinuities. However it is generally found that significant artifacts remain after
processing or that the low frequency content of the signal has been damaged.

It should be noted that the problem of transient noise pulses can in principle be
circumvented by use of suitable playback technology. For example, in the case of
gramophone disks the use of a laser-based reader should eliminate any mechanical
resonance effects and thus reduce the artifact to a large click which can be restored
using the methods of previous sections. Of course, this does not help in the many
cases where the original source medium has been discarded after transcription using
standard equipment to another medium such as magnetic tape!

Template-based methods. The first digital approach to this problem was devised
by Vaseghi and Rayner [Vaseghi, 1988, Vaseghi and Rayner, 1988]. This technique,
which employs a ‘template’ for the noise pulse waveform, has been found to give good
results for many examples of broken gramophone discs. The observation was made
that the resonant sections (i.e. after the initial discontinuity) of successive noise pulses
in the same recording were nearly identical in shape (to within a scale factor). This
would correspond with the idea that noise pulses are simply the step response of a linear
time-invariant (LTI) mechanical system. Given the waveform of the repetitive section
of the noise pulse (the ‘template’ t[ n]) it is then possible to subtract appropriately scaled
versions from the corrupted signal x[n] wherever pulses are detected. The position M
and scaling G of the noise pulse are estimated by cross-correlating the template with
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Figure 4.9 Noise pulse from optical film sound track (‘silent’ section)

Figure 4.10 Signal waveform degraded by low frequency noise transient
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the corrupted waveform, and the restored signal is then obtained as:

(4.14)

where Nt is the length of the template. Any remaining samples close to the start of the
pulse which are irrevocably distorted can then be interpolated using a method such as
the LSAR interpolator discussed earlier (see section 4.3.3).

The template t [n] is obtained by long term averaging of many such pulses from
the corrupted signal. Alternatively, a noise-free example of the pulse shape may be
available from a ‘silent’ section of the recording or the lead-in groove of a gramophone
disc.

The template method has been very successful in the restoration of many recordings.
However, it is limited in several important ways which hinder the complete automation
of pulse removal. While the assumption of constant template shape is good for
short extracts with periodically recurring noise pulses (e.g. in the case of a broken
gramophone disc) it is not a good assumption for many other recordings. Even where
noise pulses do correspond to a single radial scratch or fracture on the record the
pulse shape is often found to change significantly as the recording proceeds, while
much more variety is found where pulses correspond to randomly placed scratches
and breakages on the recording. Further complications arise where several pulses
become superimposed as is the case for several closely spaced scratches. These effects
may be partly due to the time-varying nature of the mechanical system as the stylus
moves towards the centre of the disk, but also non-linearity in the playback apparatus.
There is some evidence for the latter effect in optical film sound track readers [Godsill,
1993], where the frequency of oscillation can be observed to decrease significantly as
the response decays.

Correct detection can also be a challenge. This may seem surprising since the
defect is often very large relative to the signal. However, audible noise pulses do occur
in high amplitude sections of the signal. In such cases the cross-correlation method
of detection can give false alarms from low frequency components in the signal; in
other circumstances noise pulses can be missed altogether. This is partly as a result of
the correlated nature of the signal which renders the cross-correlation procedure sub-
optimal. A true matched filter for the noise pulse would take into account the signal
correlations (see e.g. [Van Trees, 1968]) and perhaps achieve some improvements in
detection. This issue is not addressed here, however, since other restoration methods
are now available.

Model-based separation methods. A full study of the noise pulse mechanism would
involve physical modelling of the (possibly non-linear) playback system for both
gramophone systems and optical sound track readers. A full description is beyond the
scope of this article (see [Roys, 1978] for some more detail), but can be used to shed
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further light upon this and other audio restoration areas including click removal and
background noise reduction.

A linear modelling approach to noise pulse removal is presented in [Godsill, 1993].
In this it is assumed that the corrupted waveform x consists of a linear sum of the
underlying audio waveform s and resonant noise pulses v :

x = s + v . (4.15)

We note that s and v are the responses of the playback system, including mechanical
components and amplification/ equalization circuitry, to the recorded audio and noise
signals, respectively. The assumption of a linear system allows the overall response
x to be written as the linear superposition of individual responses to signal and noise
components.

Here the noise pulses are modelled by a low order autoregressive process which
is driven by a low level white noise excitation with variance σ2

v0 most of the time,
and bursts of high level impulsive excitation with variance σ 2

v 1 » σ2
v 0 at the initial

discontinuity of the noise transient. We can define a binary noise switching process
i[n] to switch between low and high variance components in a similar way to the click
generation model of section 4.3. This modelling approach is quite flexible in that it
allows for variations in the shape of individual noise pulses as well as for the presence
of many superimposed pulses within a short period. The restoration task is then one
of separating the two superimposed responses, s and v. If the audio signal’s response
is also modelled as an autoregressive process then the MAP estimator for s under
Gaussian assumptions is obtained from:

(4.16)

Terms of this equation are defined similarly to those for the LSAR interpolator of
section 4.3.3, with subscript ‘v’ referring to the autoregressive process for the noise
pulses. ΛΛ v is a diagonal matrix whose mth diagonal element λv [m] is the variance of
the mth noise excitation component, i.e.

(4.17)

This signal separation algorithm requires knowledge of both AR systems, including
noise variances and actual parameter values, as well as the switching vector i which
indicates which noise samples have impulsive excitation and which have low level
excitation. These can be treated as unknowns within a similar iterative statistical
framework to that outlined for click removal in section 4.3.4, and this could form a
useful piece of future research. In practice, however, these unknowns can usually
be estimated by simpler means. The switching process can be estimated much as
clicks are detected (see section 4.3.2), with a higher threshold selected to indicate large
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disturbances which are likely to be noise pulses. The autoregressive system for the
noise can often be estimated from a noise pulse captured during a ‘silent’ section of the
recording or from a similar type of pulse taken from another recording, and the very
large (or even infinite) value chosen for the high level excitation variance σ2

v1 . The
autoregressive system for the underlying audio data is then estimated from uncorrupted
data in the vicinity of the noise pulses, usually in the section just prior to the start of
the section to be restored.

Even with suitable estimation schemes for the unknown parameters, the separation
formula of equation (4.16) is of relatively high computational complexity, since the
noise process can affect thousands of samples following the initial impulsive discon-
tinuity. This problem can be partially overcome by restoring samples which are fairly
distant from the initial transient using a simple linear phase high-pass filter. The sepa-
ration algorithm is then constrained to give continuity with this filtered signal at either
end of the restored section in much the same way as the LSAR interpolator (section
4.3.3). Further computational savings can be achieved by working with a sub-sampled
version of the noise pulse waveform, since it is typically over-sampled by a factor of at
least one hundred for the much of its duration. This sub-sampling can be incorporated
into the separation algorithm by use of an analytic interpolation operator such as the
second order spline. An alternative scheme, which takes advantage of the Markovian
nature of the AR models, is based on Kalman filtering [Anderson and Moore, 1979).
This is currently being investigated and results will be reported in future publications.

Results from the model-based separation approach have demonstrated much more
generality of application and ease of automation than the templating technique, which
can be a highly operator-intensive procedure, and the perceived quality of output
is certainly at least as good as the templating method. Figures 4.11-4.13 show the
restoration of a particularly badly degraded 78 rpm recording which exhibits many
closely spaced noise transients. A second order autoregressive model was found to be
adequate for modelling the noise transients, while the signal was modelled to order
80. The restored signal (shown on a different scale) shows no trace of the original
corruption, and the perceptual results are very effective.

Summary. Two principal methods for removal of low frequency noise transients are
currently available. The model-based separation approach has shown more flexibility
and generality, but is computationally rather intensive. It is felt that future work in
the area should consider the problem from a realistic physical modelling perspective,
which takes into account linear and non-linear characteristics of gramophone and film
sound playback systems, in order to detect and correct these artifacts more effectively.
Such an approach could involve both experimental work with playback systems and
sophisticated non-linear modelling techniques. Statistical approaches related to those
outlined in the click removal work (section 4.3.4) may be applicable to this latter task.
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Figure 4.11 Degraded audio signal with many closely spaced noise transients

Figure 4.12 Estimated noise transients for figure 4.11
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Figure 4.13 Restored audio signal for figure 4.11 (different scale)
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4.5 BACKGROUND NOISE REDUCTION

Random, additive background noise is a form of degradation common to all analogue
measurement, storage and recording systems. In the case of audio signals the noise,
which is generally perceived as ‘hiss’ by the listener, will be composed of electrical
circuit noise, irregularities in the storage medium and ambient noise from the recording
environment. The combined effect of these sources will generally be treated as one
single noise process, although we note that a pure restoration should strictly not treat
the ambient noise, which might be considered as a part of the original ‘performance’.
Random noise generally has significant components at all audio frequencies, and thus
simple filtering and equalization procedures are inadequate for restoration purposes.

Analogue tape recordings typically exhibit noise characteristics which are stationary
and for most purposes white. At the other end of the scale, many early 78 rpm and
cylinder recordings exhibit highly non-stationary noise characteristics, such that the
noise can vary considerably within each revolution of the playback system. This
results in the characteristic ‘swishing’ effect associated with some early recordings. In
recording media which are also affected by local disturbances, such as clicks and low
frequency noise resonances, standard practice is to restore these defects prior to any
background noise treatment.

Noise reduction has been of great importance for many years in engineering disci-
plines. The classic least-squares work of Norbert Wiener[Wiener, 1949] placed noise
reduction on a firm analytic footing, and still forms the basis of many noise reduction
methods. In the field of speech processing a large number of techniques has been de-
veloped for noise reduction, and many of these are more generally applicable to noisy
audio signals. We do not attempt here to describe every existing method in detail,
since these are well covered in speech processing texts (see for example [Lim and
Oppenheim, 1979, Lim, 1983, Boll, 1991]). We do, however, discuss some standard
approaches which are appropriate for general audio signals and emerging techniques
which are likely to be of use in future work. It is worth mentioning that where methods
are derived from speech processing techniques, as in for example the spectral atten-
uation methods of section 4.5.1, sophisticated modifications to the basic schemes are
required in order to match the stringent fidelity requirements and signal characteristics
of an audio restoration system.

Certainly the most popular methods for noise reduction in audio signals to date are
based upon short-time Fourier processing. These methods, which can be derived from
non-stationary adaptations to the frequency-domain Wiener filter, are discussed fully
in section 4.5.1.

Within a model-based framework, Lim and Oppenheim [Lim and Oppenheim,
1978] studied noise reduction using an autoregressive signal model, deriving iterative
MAP and ML procedures. These methods are computationally intensive, although
the signal estimation part of the iteration is shown to have a simple frequency-domain
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Wiener filtering interpretation (see also [Paliwal and Basu, 1987, Koo et al., 1989] for
Kalman filtering realizations of the signal estimation step). It is felt that new and more
sophisticated model-based procedures may provide noise reducers which are compet-
itive with the well-known short-time Fourier based methods. In particular, modern
statistical methodology for solution of complex problems (for example, the Markov
chain Monte-Carlo (MCMC) methods discussed in section 4.3.4 for click removal)
allows for more realistic signal and noise modelling, including non-Gaussianity, non-
linearity and non-stationarity. Such a framework can also be used to perform joint
restoration of both clicks and random noise in one single process. A Bayesian approach
to this joint problem using an autoregressive signal model is described in [Godsill,
1993][section 4.3.2] and [Godsill and Rayner, 1996a] and in [Godsill, 1997a, God-
sill, 1997b] for the more general autoregressive moving average (ARMA) model,. In
addition, [Nied wiecki, 1994, Nied wiecki and Cisowski, 1996] present an extended
Kalman filter for joint removal of noise and clicks from AR- and ARMA-modelled
audio signals.

Other methods which are emerging for noise reduction include the incorporation of
psychoacoustical masking properties of human hearing [Canagarajah, 1991, Canagara-
jah, 1993, Tsoukalas et al., 1993] and noise reduction in alternative basis expansions,
in particular the wavelet domain [Berger et al., 1994] and sub-space representations
[Dendrinos et al., 1991, Ephraim and VanTrees, 1993, Ephraim and Van Trees, 1995].
These approaches address various short-comings of existing noise-reduction proce-
dures, and could thus lead to improvements over existing techniques.

4.5.1 Background noise reduction by short-time spectral attenuation

This section deals with a class of techniques known as Short-Time Spectral Attenuation
(STSA) 5. STSA is a single input noise reduction method that basically consists in
applying a time-varying attenuation to the short-time spectrum of the noisy signal.
STSA techniques are non-parametric and generally need little knowledge of the signal
to be processed. They rank among the most popular methods for speech enhancement
and their use has been widely predominant for the restoration of musical recordings.

Figure 4.14 Modeled restoration process
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General overview.

Hypotheses. Figure 4.14 shows the basic hypotheses common to all short-time spec-
tral attenuation techniques. It is supposed that the original audio signal s [n] has
been corrupted by an additive noise signal v [n] uncorrelated with s[n] and that the
only observable signal is the degraded signal x [n] [Lim, 1983]. In the field of au-
dio, restoration techniques applicable in such a situation are sometimes referred to as
non-complementary [Dolby, 1967] or one-ended [Etter and Moschytz, 1994] to differ-
entiate them from a class of frequently used denoising methods which rely on some
pre-processing of the signal prior to the degradation (see [Dolby, 1967]).

The knowledge concerning the noise is usually limited to the facts that it can be
considered as stationary and that it is possible to estimate its power spectral density
(or quantities that are directly related to it) [Lim and Oppenheim, 1979, Lim, 1986].

Figure 4.15 Background noise suppression by short-time spectral attenuation

Principle. Figure 4.15 shows the general framework of short-time spectral attenua-
tion: the first step consists in analyzing the signal with a (in geneneral, multirate) filter
bank, each channel of the filter-bank is then attenuated (multiplied by a real positive
gain, generally smaller than 1), and finally the sub-band signals are put back together
to obtain the restored signal. The time-varying gain to be applied in each channel is de-
termined by the so called noise suppression rule [McAulay and Malpass, 1980, Vary,
1985] which usually relies on an estimate of the noise power in each channel (repre-
sented by the dotted part of Figure 4.15). The two elements that really characterize a
particular STSA technique are the filter-bank characteristics and the suppression rule.

In most STSA techniques the short-time analysis of the signal is performed by
use of the Short-Time Fourier Transform (STFT) [Lim and Oppenheim, 1979, Boll,
1991, Ephraim and Malah, 1984, Moorer and Berger, 1986], or with a uniform filter-
bank that can be implemented by STFT [Sondhi et al., 1981, Vary, 1985, Lagadec
and Pelloni, 1983]. Note that in such cases the two interpretations (multirate filter-
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bank, and short-time Fourier transform) can be used interchangeably as they are fully
equivalent [Crochiere and Rabiner, 1983]. Examples of STSA techniques based on the
use of non-uniform filter banks can be found in [Petersen and Boll, 1981, McAulay
and Malpass, 1980].

In designing the filter-bank, it is necessary to bear in mind the fact that the sub-
band signals will sometimes be strongly modified by the attenuation procedure. As a
consequence, while it is of course desirable to obtain a (nearly) perfect reconstruction
in the absence of modification, it is also important to avoid effects such as sub-band
spectral aliasing which could create distortions in the restored signal [Crochiere and
Rabiner, 1983]. With the short-time Fourier transform, satisfying results are obtained
with a sub-band sampling rate two or three times higher than the critical-sampling rate
(ie. with a 50% to 66% overlap between successive short-time frames) [Cappé, 1991].

Historical considerations. Historically, short-time spectral attenuation was first de-
veloped for speech enhancement during the 1970s [Lim and Qppenheim, 1979, Boll,
1991, Sondhi et al., 198l]. The application of STSA to the restoration of audio record-
ings came afterwards [Lagadec and Pelloni, 1983, Moorer and Berger, 1986, Vaseghi,
1988, Vaseghi and Frayling-Cork, 1992, Valière, 1991, Etter and Moschytz, 1994]
with techniques that were generally directly adapted from earlier speech-enhancement
techniques.

Prior to works such as [Allen and Rabiner, 1977] and [Crochiere, 1980], there was
not necessarily an agreement about the equivalence of the filter-bank and the STFT
approaches (see also [Crochiere and Rabiner, 1983]). Traditionally, the filter-bank
interpretation is more intuitive for audio engineers [Lagadec and Pelloni, 1983, Moorer
and Berger, 1986, Etter and Moschytz, 1994] while the short-time spectrum is typically
a speech analysis notion [Lim and Oppenheim, 1979]. Also controversial is the
problem of short-time phase: in the STFT interpretation, the short-time attenuation
corresponds to a magnitude-only modification of the short-time spectrum. The fact
that only the magnitude of the short-time spectrum is processed has been given various
interpretations, including an experimental assessment for speech signals in [Wang and
Lim, 1982].

The most widespread opinion is that the phase need not be modified because of
the properties of the human auditory system [Lim and Oppenheim, 1979]. Strictly
speaking however, the assertion that the ear is “insensitive to the phase” was highlighted
by psychoacoustic findings only in the case of stationary sounds and for the phase of
the Fourier transform [Moore, 1997]. Moreover, it is well known that in the case of
STFT, phase variations between successive short-time frames can give rise to audible
effects (such as frequency modulation) [Vary, 1985].

It should however be emphasized that there is usually no choice but to keep the
unmodified phase because of the lack of hypotheses concerning the unknown signal
(recall that only the second order statistics of the signal and noise are supposed to be
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known). This is well known for techniques derived from Wiener filtering (time-domain
minimum mean squared error filtering), and a similar result is proved in [Ephraim and
Malah, 1984] for a frequency domain criterion (using strong hypotheses concerning the
independence of the short-time transform bins). Although other criteria could be used,
these results indicate that it may be be difficult to outperform the standard magnitude
attenuation paradigm without introducing more elaborate hypotheses concerning the
behavior of the signal.

Scope of the method. Until now, STSA techniques have been largely predominant
in the field of speech enhancement and appear to have been used almost exclusively
for the restoration of musical recordings.

One of the reasons for this wide application of STSA techniques is certainly the
fact that they correspond to a non-parametric approach which can be applied to a large
class of signals. By contrast, considering that most music recordings contain several
simultaneous sound sources, it is unlikely that some of the methods relying on very
specific knowledge of the speech signal properties (such as the model-based speech
enhancement techniques [Boll, 1991, Ephraim, 1992]) could be generalized for audio
restoration.

Another reason for the success of STSA techniques in the field of audio engineering
is maybe the fact that they have a very intuitive interpretation: they extend to a
large number of sub-bands the principle of well known analog devices used for signal
enhancement, such as the noise gate [Moorer and Berger, 1986] (see also [Etter and
Moschytz, 1994] for a link with compandors).

Suppression rules. Let X (p,θk ) denote the short-time Fourier transform of x[n],
where p is the time index, and θk the normalized frequency index (θk lies between 0 and
1 and takes N discrete values for k = 1, . . . , N , N being the number of sub-bands).
Note that the time index p usually refers to a sampling rate lower than the initial signal
sampling rate (for the STFT, the down-sampling factor is equal to hop-size between to
consecutive short-time frames) [Crochiere and Rabiner, 1983].

The result of the noise suppression rule can always be interpreted as the application
of a real gain G ( p, θk ) to each bin of the short-time transform X (p , θk ) of the noisy
signal. Usually, this gain corresponds to an ‘attenuation’, ie. lies between 0 and
1. For most suppression rules, G (p , θk ) depends only on the power level of the
noisy signal measured at the same bin |X ( p, θk ) |2 and on an estimate of the power
of the noise at the frequency θk , v (θk ) = E{|V (p, θk )|2 } (which does not depend
on the time index p because of the noise stationarity). In the following, the ratio
Q (p, θk ) = | X (p , θk )| 2 / v ( θk ) will be referred to as the relative signal level. Note
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that since the noise v[n] is un-correlated with the unknown signal s[n], we have

(4.18)

so that the expected value of the relative signal level is always larger than 1.
Standard examples of noise-suppression rules include the so-called Wiener6 sup-

pression rule, the power-subtraction (see Figure 4.16), the spectral subtraction [Boll,
1979, Lim and Oppenheim, 1979, McAulay and Malpass, 1980, Vary, 1985], as well as
several families of parametric suppression curves [Lim and Oppenheim, 1979, Moorer
and Berger, 1986, Etter and Moschytz, 1994].

Figure 4.16 Suppression rules characteristics: gain (dB) versus relative signal level
(dB). Solid line: Power subtraction; dashed line: Wiener.

All the suppression rules mentioned above share the same general behavior in that
G( p, θk ) = 1 when the relative signal level is high (Q (p ,θk ) > > 1), and

In many cases, the noise level v (θ k ) is artificially over-estimated (multiplied by a
factor  β  > 1) so that G (p, θk )  is null as soon as Q (p, θk ) ≤  β [Lim and Oppenheim,
1979, Moorer and Berger, 1986].

Reference [Boll, 1991] presents a detailed review of suppression rules that are
derived from a Bayesian point of view supposing a prior knowledge of the probability
distribution of the sub-band signals. These suppression rules are more elaborate in the
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sense that they generally depend both on the relative signal level (or a quantity directly
related to it) and on a characterization of the a priori information (a priori probability
of speech presence in [McAulay and Malpass, 1980], a priori signal-to-noise ratio in
[Ephraim and Malah, 1984]).

Finally, some suppression rules used for speech enhancement do not require any
knowledge of the noise characteristics [Bunnell, 1990, Cheng and O’shaughnessy,
1991]. These techniques, designed for improving speech intelligibility, can hardly
be generalized to the case of audio recordings since they generate non-negligible
distortions of the signal spectrum regardless of the noise level.

Evaluation.

‘Deterministic’ analysis. While it is rather difficult to analyze the results of STSA
techniques in a general case, it becomes relatively simple when it is supposed that
the unknown input signal is a pure tone, or more generally, a compound of several
pure tones with frequencies sufficiently spaced apart. This hypothesis is pertinent
since a large proportion of steady instrumental sounds can be efficiently described,
both perceptively and analytically, as a sum of slowly modulated pure tones [Deutsch,
1982, Benade, 1976, Hall, 1980].

Figure 4.17 Restoration of a sinusoidal signal embedded in white noise (of power
0 dB). (a) The noisy signal (the dotted lines feature the filter bank characteristics); (b)
The processed signal.

As pointed out in [Lagadec and Pelloni, 1983], short-time spectral attenuation
does not reduce the noise present in the sub-bands that contain signal components.
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Figure 4.17 shows an illustration of this fact for a sinusoidal signal embedded in white
noise: if the level of the sinusoid is large enough, the channels in which it lies are left
unattenuated while the other channels are strongly attenuated. As a consequence the
output signal consists of the sinusoidal signal surrounded by a narrow band of filtered
noise. Note also that if the sinusoid level is too low, all the channels are strongly
attenuated and the signal is completely cancelled.

Cancelling of the signal. For a sinusoidal signal of frequency θ (which is sup-
posed to correspond to the center frequency of one of the filters of the filter-bank), it is
easily checked (assuming that the additional noise power spectral density is sufficiently
smooth) that Eq. 4.18 becomes

(4.19)

where Ps is the power of the sinusoid, Sv (θ) the power spectral density of the noise at
frequency θ and W θ is the bandwidth of the sub-band filter centered around frequency
θ (see [Cappé and Laroche, 1995] for a demonstration in the STFT case).

As a consequence, the level of the signal components that are mistakenly cancelled
by the restoration process increases with the bandwidth of the analyzing filter-bank.
Although deceptively simple, this results nonetheless states that the signal enhancement
can be made more efficient by sharpening the channel bandwidth as much as allowed
by the stationarity hypothesis.

For the STFT case, the bandwidth of the filter-bank is inversely proportional to the
duration of the short-time frame and it is shown in [Cappé and Laroche, 1995], using
standard results concerning the simultaneous frequency masking phenomenon, that
the processing can suppress audible signal components (ie. components that were not
masked by the additive noise) if the short-time duration is well below 40 ms.

Audibility of the noise at the output. In the case where the signal component
is not cancelled, the processed signal exhibits a band of filtered noise located around
the sinusoidal component. It is clear that this phenomenon, if audible, is an important
drawback of the method because it makes the remaining nuisance noise correlated with
the signal, which was not the case for the original broad-band noise.

It is shown in [Cappé and Laroche, 1995] for the STFT case, that this effect is only
perceptible when the frame duration is short (smaller than 20-30 ms)7.

As for the results mentioned previously concerning signal cancellation, the obtained
audibility limit should only be considered as an order of magnitude estimate in real
situations since it does not take into account the possible mutual masking between
different signal components (a phenomenon which may prevail when the noise level
is very low) [Cappé and Laroche, 1995]. These results still support several earlier
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experimental findings [Moorer and Berger, 1986, Valière, 1991] concerning the in-
fluence of the STFT window duration in STSA techniques. In practice, the STFT
frame duration should be sufficiently long to avoid creating undesirable modulation
effects [Moorer and Berger, 1986] (audible band of noise remaining around signal
components). Moreover, for audio signals, the duration of the short-time frame can
generally be set advantageously to larger values than those used for speech [Valière,
1991] (because it lowers the limit of signal cancellation).

Transient signals. The previous results are related to the case of steady portions
of musical sounds, however it is well-known that musical recordings also feature many
transient parts (note onsets, percussions) that play an important part in the subjective
assessment of the signal characteristics [Hall, 1980, Deutsch, 1982].

As with many other techniques which make use of a short-time signal analyzer, it
is possible to observe specific signal distortions, generated by the restoration process,
which occur when transient signals are present [Johnston and Brandenburg, 1992]. In
STSA techniques the distortion manifests itself as a smearing of the signal waveform for
low-level signal transients. This phenomenon as well as its perceptive consequences
are amplified as the short-time frame duration increases [Valière, 1991, Cappé and
Laroche, 1995, Oppenheim and Lim, 1981].

The analysis of such transient effects is made more difficult by the fact that there
is no ‘prototype’ transient signal as simple and as pertinent as the pure tone was for
steady sounds. However, the results obtained in a simplistic case (the abrupt onset of a
pure tone) seem to indicate that the observed smearing of the transient part of low level
signals is mainly due to the modification of the signal spectrum by the suppression
rule [Cappé and Laroche, 1995]. This is in contrast with what happens in applications
where the magnitude of the short-time spectrum is not drastically modified, such as
time-scaling with STFT, where the smearing of transient signals is mostly caused by
the phase distortions [Griffin and Lim, 1984b, Oppenheim and Lim, 1981].

As a consequence, methods that exploit the redundancy of the magnitude of the
short-time spectra to restore a ‘correct' phase spectrum [Griffin and Lim, 1984b, Nawab
and Quatieri, 1988b] are not efficient in eliminating the transient distortions caused by
STSA.

Consequences of the random nature of the attenuation. In the previous section
we deliberately left apart a major problem: the fact that the attenuation is a random
quantity. The randomness of the attenuation comes from the fact that it is (in general)
determined as a function of the relative signal level which in turn involves the short-
time transform of the noisy signal. This aspect plays a key role in STSA because
the relative signal level is estimated by the periodogram (at least in the STFT case)
characterized by a very high variance.
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A well known result states that the values of the discrete Fourier transform of a
stationary random process are normally distributed complex variables when the length
of the Fourier transform is large enough (compared to the decay rate of the noise
correlation function) [Brillinger, 1981]. This asymptotic normal behavior leads to a
Rayleigh distributed magnitude and a uniformly distributed phase (see [McAulay and
Malpass, 1980, Ephraim and Malah, 1984] and [Papoulis, 1991]).

Using the normality assumption, it is shown in [Cappé and Laroche, 1995] that the
probability density of the relative signal level Q (omitting the two indexes p andθk) is

(4.20)

where I o(x ) denotes the modified Bessel function of order 0, and denotes the
average value of the relative signal level as obtained from Eq. 4.18. The corresponding
distributions are shown on figure 4.18 for 6 different average values of the relative
signal level.

Figure 4.18 Probability density of the relative signal level for different mean values
(from left to right: 0, 4, 8, 12, 16 and 20dB).

What is striking on figure 4.18 is the fact that even for signal components of non-
negligible levels (such as = 8dB), the relative signal levels can still take very low
values (below 0dB). As a consequence, the use of STSA generates strong random
variations of the low-level signal components [Cappé and Laroche, 1995]. Although
systematic, these variations are not always heard in practice because they are often
perceptively masked either by some other signal components (especially when the noise
level is low) or by the fraction of broad band noise that remains after the processing.
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The musical noise phenomenon.

What is musical noise?. The other important feature of figure 4.18 is that when
only the noise is present (when = 1), the observed relative signal level can still
take high values. It is thus practically possible to separate the noise from the low
level signal components on the basis of the relative signal level. As a result, the total
cancellation of the noise can only be obtained at the cost of some distortion of the
low-level components.

In most STSA techniques, the noise that remains after the processing has a very
unnatural disturbing quality, especially in a musical context [Moorer and Berger, 1986].
This phenomenon is generally referred to as musical noise [Ephraim and Malah,
1984] (also as ‘musical tones’ [Sondhi et al., 1981] or ‘residual noise’ [Etter and
Moschytz, 1994, Vaseghi and Frayling-Cork, 1992]). The musical noise phenomenon
is a direct consequence of the fact that the periodogram estimate used for evaluating
the relative signal level yields values that are (asymptotically) uncorrelated even for
neighboring bins [Brillinger, 1981]. This result, which holds for short-time transform
bins belonging to the same analysis frame is complemented by the fact that bins from
successive frames will also tends to be uncorrelated for frames which do not overlap in
time (again, under the hypothesis of a sufficiently fast decay of the noise autocorrelation
function).

Combining these two properties, it is easily seen that STSA transforms the original
broad band noise into a signal composed of short-lived tones with randomly distributed
frequencies. Moreover, with a ‘standard’ suppression rule (one that depends only on
the relative signal level as measured in the current short-time frame) this phenomenon
can only be eliminated by a crude overestimation of the noise level. Using the result of
Eq. 4.20 in the case where = 1, it is easily shown that the overestimation needed to
make the probability of appearance of musical noise negligible (below 0.1%) is about
9 dB [Cappé, 1991].

Solutions to the musical noise problem. Various empirical modifications of the basic
approach have been proposed to overcome this problem. A first possibility consists
of taking advantage of the musical noise characteristics: more precisely, the short
duration of the musical noise components (typically a few short-time frames) [Boll,
1979, Vaseghi and Frayling-Cork, 1992) and the fact that the appearance of musical
noise in one sub-band is independent of that in other sub-bands [Sondhi et al., 1981].
The main shortcoming of this type of approach is that, since they are based on average
statistical properties, the musical noise is reduced (ie. its appearance is made less
frequent) but not completely eliminated.

Another possibility is to use a smoothed estimate of the relative signal level. Time-
smoothing has been considered in [Boll, 1979] and [Etter and Moschytz, 1994], but
frequency smoothing can also be used [Canagarajah, 1993, Cappé, 1991]. Limitations
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of this smoothing approach include the fact that it can generate signal distortion,
particularly during transients, when time-smoothing is used. A more elaborate version
of the time-smoothing approach aimed at reducing signal distortion is described in
[Erwood and Xydeas, 1990].

Finally, an alternative approach consists in concealing the musical noise artifact
behind a sufficient level of remaining noise [Moorer and Berger, 1986, Canagarajah,
1993]. One simple way to proceed consists in constraining the computed gain to lie
above a preset threshold (which is achieved by the ‘noise floor’ introduced by
et al. [Berouti et al., 1979]).

The Ephraim and Malah suppression rule. Besides these procedures specifically
designed to counter the musical noise artifact, it has been noted that the suppression
rules proposed by Ephraim and Malah [Ephraim and Malah, 1983, Ephraim and Malah,
1984, Ephraim and Malah, 1985] do not generate musical noise [Ephraim and Malah,
1984, Valière, 1991, Cappé, 1994]. This is shown in [Cappé, 1994] to be a consequence
of the predominance of the time-smoothed signal level (the so called ‘a priori signal to
noise ratio’) over the usual ‘instantaneous’ relative signal level.

A nice feature of the Ephraim and Malah suppression rule is the ‘intelligent’ time-
smoothing of the relative signal level resulting from the use of an explicit statistical
model of the sub-band noise: a strong smoothing when the level is sufficiently low
to be compatible with the hypothesis that only the noise is present, and no smoothing
otherwise [Cappé, 1994]. Surprisingly, this behavior of the Ephraim and Malah
suppression rule is related to the principle adopted in [Erwood and Xydeas, 1990]
(which consists in varying the horizon of the time-smoothing depending on the signal
level). The Ephraim and Malah suppression rule therefore allows a very ‘natural’
means on fixed thresholds) of reducing the musical noise artifact without
introducing penalizing signal distortions.

When using the Ephraim and Malah suppression rule, it appears that it is still
useful to limit the attenuation in order to avoid the reappearance of the musical noise
phenomenon at low-levels. In practice, the average attenuation applied to the noisy
part can be easily controlled via one of the parameters of the method (see [Cappé,
1994]) in the range from 0dB to approximately - 15dB (with lower values the musical
noise effect can be audible in some cases). An interesting generalization consists in
specifying a frequency dependent average noise reduction in order to take into account
the fact that all regions of the noise spectrum do not contribute equally to the loudness
sensation [Moore, 1989, Zwicker and

Current trends and perspectives.

Improving the noise characterization.
that the noise is stationary is unrealistic and it is necessary to track the time-variations

In many real life applications, the hypothesis
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of the noise characteristics. For audio restoration, it seems that this aspect can play
an important part in the case of old analog disk recordings. Indeed, the noise present
on such recordings sounds ‘less regular’ than the tape hiss heard on analog tapes. It
is also common to observe a discrepancy between the noise characteristics measured
before and after the recorded part [Cappé, 1991].

Figure 4.19 Short-time power variations. (a) for a standard analog cassette; (b) for a
78 rpm recording. The signal power is estimated at a 10ms rate and normalized by its
average value.

An example of such a behavior can be seen on figure 4.19 which displays the
time variations of the short-time power8 for two noises measured on different audio
recording: on a standard analog cassette for part (a), on a 78 rpm record for part (b),
The sharp spikes seen on part (b) of figure 4.19 are simply due to the presence of
impulsive degradations in the disk noise, which of course is not the case for the tape
noise. However, the comparison between the two parts of figure 4.19 shows that the
range of the power variations is much more important for the analog disk noise (part
[b]) than for the tape noise (part [a]).

It is also interesting to note that the long-term power variations of the disk noise
(part [b] of figure 4.19) seem to be related to the disk rotation period (0.77s for a 78
rpm record). This result indicates that the noise present on this particular analog disk
is certainly not stationary, but that it could be cyclostationary [Gardner, 1994]. More
elaborate tests would be needed to determine if this noise is indeed cyclostationary,
and what type of cyclostationarity is actually involved (the simplest model would be
an amplitude modulated stationary process) [Gerr and Allen, 1994].
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In practice, it is important to emphasize that the various procedures that have been
proposed for updating the estimate of the noise characteristics in the context of speech
enhancement [Boll, 1979, McAulay and Malpass, 1980, Sondhi et al., 1981, Erwood
and Xydeas, 1990] are usually not applicable for audio signals: they rely on the
presence of signal pauses that are frequent in natural speech, but not necessarily in
musical recordings. The development of noise tracking procedures that are suited for
an application to audio signals thus necessitates a more precise knowledge of the noise
characteristics in cases where it cannot be considered stationary.

Use of perceptual noise-reduction criteria. Recently, efforts have been devoted to the
development of noise suppression strategies based on perceptual criteria [Canagarajah,
1991, Canagarajah, 1993, Tsoukalas et al., 1993, Mourjopoulos et al., 1992]. As of
today, the proposed techniques only make use of data concerning the simultaneous
masking effect in order to determine the frequency regions where the noise is most
audible. A surprising side effect of these techniques is that they notably reduce the
musical noise phenomenon [Canagarajah, 1993]. This feature can be attributed to the
strong smoothing of the frequency data in the upper frequency range performed in
these techniques to simulate the ear’s frequency integration properties.

Clearly more work needs to be done to take advantage of other known properties
of the auditory system in the context of noise reduction. Interesting clues include the
consideration of non-simultaneous masking effects that may be helpful in reducing
transient distortions, as well as absolute thresholds of hearing. A troublesome point
associated with the use of such perceptual criteria is that they require the knowledge of
the listening acoustic intensity [Moore, 1989]. For most applications this requirement
cannot be satisfied so that only a worst-case analysis is feasible. However, in cases
where the noise reduction is performed directly at the playback level, the adaptation
of the noise suppression rule to the effective acoustic intensity of the audio signal is
certainly a promising aspect.

Improving the properties of the short-time transform. Another interesting area of
research deals with the design of the short-time transform. It is striking to see that
while many efforts have been dedicated to the study of advanced suppression rules,
little has been done concerning the analysis part of the noise reduction-system.

The first approach that need to be more precisely evaluated is the use of non-uniform
filter banks [Petersen and Boll, 1981, Valière, 1991], especially if they are applied in
connection with perceptual criteria. Indeed, non-uniform filter banks allow a frequency
dependent specification of the time-resolution/bandwidth compromise which could be
adapted to the known features of our hearing system. The results of section 4.16 show
that a high frequency-resolution is needed anyway, at least in the lower part of the
spectrum, to ensure a sufficient separation of sinusoidal signal components from the
noise.
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A complementary approach is based on the observation that the use of a fixed anal-
ysis scheme may be too constraining, which leads to the design of analysis/synthesis
structures that are adapted to the local characteristics of the signal. For speech en-
hancement, various recent works report the successful use of subspace representations
in place of the STFT [Dendrinos et al., 1991, Ephraim and VanTrees, 1993, Ephraim
and Van Trees, 1995, Jensen et al., 1995]. The subspace representation is still frame-
based but it is characterized by a high frequency-resolution (see [Dendrinos et al.,
1991, Ephraim and Van Trees, 1995] for the link with damped sinusoidal models).
It has however been shown, using stationarity assumptions, that subspace approaches
are asymptotically equivalent to STSA techniques for large frame durations [Ephraim
and Van Trees, 1995]. For audio restoration, it can thus be expected that both type
of methods will yield comparable results. The Adapted Waveform Analysis method
described in [Berger et al., 1994] presents a different approach based on a wavelet
decomposition of the signal. This promising method basically operates by determin-
ing a basis of wavelets [Kronland-Martinet et al., 1987] which is best adapted to the
characteristics of the signal.

4.5.2 Discussion

A number of noise reduction methods have been described, with particular emphasis
on the short-term spectral methods which have proved the most robust and effective to
date. However, it is anticipated that new methodology and rapid increases in readily-
available computational power will lead in the future to the use of more sophisticated
methods based on realistic signal modelling assumptions and perceptual optimality
criteria.

4.6 PITCH VARIATION DEFECTS

A form of degradation commonly encountered in disc, magnetic tape and film sound
recordings is an overall pitch variation not present in the original performance. The
terms ‘wow’ and ‘flutter’ are often used in this context and are somewhat inter-
changeable, although wow tends to refer to variations over longer time-scales than
flutter, which often means a very fast pitch variation sounding like a tremolo effect.
This section addresses chiefly the longer term defects, such as those connected varia-
tions in gramophone turntable speeds, which we will refer to as wow, although similar
principles could be applied to short-term defects.

There are several mechanisms by which wow can occur. One cause is a variation
of rotational speed of the recording medium during either recording or playback. A
further cause is eccentricity in the recording or playback process for disc and cylinder
recordings, for example a hole which is not punched perfectly at the centre of a
gramophone disc. Lastly it is possible for magnetic tape and optical film to become
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unevenly stretched during playback or storage; this too leads to pitch variation in
playback. Accounts of wow are given in [Axon and Davies, 1949, Furst, 1946].

In some cases it may be possible to make a physical correction for this defect, as
the case of a gramophone disk whose hole is not punched centrally. In most cases,
however, no such correction is possible, and signal processing techniques must be
used. The only approach currently known to the authors is that of Godsill and Rayner
[Godsill, 1993, Godsill and Rayner, 1993b, Godsill, 1994], which is described here.

The physical mechanism by which wow is produced is equivalent to a non-uniform
warping of the time axis. If the undistorted time-domain waveform of the gramophone
signal is written as s(t) and the time axis is warped by a monotonically increasing
function fw ( t) then the distorted signal is given by:

(4.21)

If the time warping function f w () is known then it is possible to regenerate the
undistorted waveform s(t) as

(4.22)

A wow restoration system is thus primarily concerned with estimation of the time
warping function or equivalently the pitch variation function p w (t) = f ẃ (t). In the
discrete signal domain we have discrete observations x [n]  = x (nT), where T is the
sampling period. If the pitch variation function corresponding to each sampling instant,
denoted by pw[n ], is known then it is possible to estimate the undistorted signal using
digital resampling operations.

If we have good statistical models for the undistorted audio signal and the process
which generates the wow, it may then be possible to estimate the pitch variation pw[n ]
from the wow-degraded data x[n]. Any of the standard models used for audio signals
(see section 4.2) are possible, at least in principle. However, the chosen model must be
capable of capturing accurately the pitch variations of the data over the long time-scales
necessary for identification of wow. One suitable option is the generalized harmonic
model (see section 4.2, equation (4.2)). This represents tonal components in the signal
as sinusoids, allowing for a simple interpretation of the wow as a frequency modulation
which is common to all components present at a particular time.

Consider a fixed-frequency sinusoidal component si (t) = sin (w0 i t + ø 0 i ) from
a musical signal, distorted by a pitch variation function pw (t). The pitch-distorted
component x i(t) can be written as (see [Godsill, 1993]):

(4.23)
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Figure 4.20 Frequency tracks generated for example ‘Viola’. (Reprinted with permis-
sion from [Godsill, 1994], ©1994, IEEE)

which is a frequency-modulated sine-wave with instantaneous frequency ω0 i pw (t ).
The same multiplicative modulation factor pw( t ) will be applied to all frequency
components present at one time. Hence we might estimate pw [n ] as that frequency
modulation which is common to all sinusoidal components in the music. This principle
is the basis of the frequency domain estimation algorithm now described.

4.6.1 Frequency domain estimation

In this procedure it is assumed that musical signals are made up as additive combi-
nations of tones (sinusoids) which represent the fundamental and harmonics of all
the musical notes which are playing. Since this is certainly not the case for most
non-musical signals, we might expect the method to fail for, say, speech extracts or
acoustical noises. Fortunately, it is for musical extracts that pitch variation defects
are most critical. The pitch variation process is modelled as a smoothly varying
waveform with no sharp discontinuities, which is reasonable for most wow generation
mechanisms.

The method proceeds in three stages. The first stage involves estimation of the tonal
components using a DFT magnitude-based peak tracking algorithm closely related to
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Figure 4.21 Estimated (full line) and true (dotted line) pitch variation curves generated
for example ‘Viola’. (Reprinted with permission from [Godsill, 1994],©1994, IEEE)

Figure 4.22 Frequency tracks generated for example ‘Midsum’. (Reprinted with per-
mission from [Godsill, 1994], © 1994, IEEE)

that described in [McAulay and Quatieri, 1986b] and chapter 9. This pre-processing
stage, allowing for individual note starts and finishes, provides a set of time-frequency
‘tracks’ (see figures 4.20 and 4.22), from which the overall pitch variation is estimated.
It is assumed in this procedure that any genuine tonal components in the corrupted
signal will have roughly constant frequency for the duration of each DFT block.

The second stage of processing involves extracting smooth pitch variation infor-
mation from the time-frequency tracks. For the nth block of data there will be Pn

frequency estimates corresponding to the Pn tonal components which were being
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Figure 4.23 Pitch variation curve generated for example ‘Midsum’. (Reprinted with
permission from [Godsill, 1994], ©1994, IEEE)

tracked at that time. The ith tonal component has a nominal centre frequency f0i ,
which is assumed to remain fixed over the period of interest, and a measured frequency
f i [n]. Variations in fi [n] are attributed to the pitch variation value pw[n] and a noise
component vi[n]. This noise component is composed both of inaccuracies in the
frequency tracking stage and genuine ‘performance’ pitch deviations (such as vibrato
or tremolo) in tonal components. Smooth pitch variations which are common to all
tones present may then be attributed to the wow degradation, while other variations
(non-smooth or  not common to all tones) are rejected as noise, vi [n]. The approach
could of course fail during non-tonal (‘unvoiced’) passages or if note ‘slides’ dominate
the spectrum, and future work might aim to make the whole procedure more robust to
this possibility.

Each frequency track has a ‘birth’ and ‘death’ index bi and d i such that bi denotes
the first DFT block at which f0 i is present (‘active’) and di the last (each track is
then continuously ‘active’ between these indices). Frequencies are expressed on a
log-freuency scale, as this leads to linear estimates of the pitch curve (see [Godsill,
1993] for comparison with a linear-frequency scale formulation). The model equation
for the measured log-frequency tracks f il[n] is then:

(4.24)

where subscript ‘l’ denotes the logarithm of the frequency quantities previously defined.
P m a x is the total number of tonal components tracked in the interval of N data blocks.
At block n there are Pn active tracks, and the length of the ith track is then given by
N i = d i – bi + 1.
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If the noise terms vil [n ] are assumed i.i.d. Gaussian, the likelihood function for the
unknown centre frequencies and pitch variation values can be obtained. A singular
system of equations results if the Maximum likelihood (ML) (or equivalently least
squares) solution is attempted. The solution is regularized by incorporation of the prior
information that the pitch variation is a ‘smooth’ process, through a Bayesian prior
probability framework. A second difference-based Gaussian smoothness prior is used,
which leads to a linear MAP estimator for the unknowns (see [Godsill, 1993, Godsill,
1994] for full details). The estimate is dependent upon a regularizing parameter which
expresses the degree of second difference smoothness expected from the pitch variation
process. In [Godsill, 1993, Godsill, 1994) this parameter is determined experimentally
from the visual smoothness of results estimated from a small sample of data, but other
more rigorous means are available for estimation of such ‘hyperparameters’ given the
computational power (see, e.g. [Rajan, 1994, MacKay, 1992]). Examples of pitch
variation curves estimated from synthetic and real pitch degradation are shown in
figures 4.21 and 4.23, respectively.

The estimation of pitch variation allows the final re-sampling operation to proceed.
Equation (4.22) shows that, in principle, perfect reconstruction of the undegraded signal
is possible in the continuous time case, provided the time warping function is known.
In the discrete domain the degraded signal x[n] is considered to be a non-uniform
re-sampling of the undegraded signal s[n], with sampling instants given by the time-
warping function f w [n]. Note, however, that the pitch varies very slowly relative to the
sampling rate. Thus, at any given time instant it is possible to approximate the non-
uniformly sampled input signal as a uniformly sampled signal with sample rate 1/T' =
p w [n] /  T. The problem is then simplified to one of sample rate conversion for which
there are well-known techniques (see e.g. [Crochiere and Rabiner, 1983, Rabiner,
1982]). Any re-sampling or interpolation technique which can adjust its sample rate
continuously is suitable, and a truncated ‘sinc’ interpolation is proposed in [Godsill,
1993, Godsill and Rayner, 1993b, Godsill, 1994].

Summary. Informal listening tests indicate that the frequency-based method is ca-
pable of a very high quality of restoration in musical extracts which have a strong tonal
character. The procedure is, however, sensitive to the quality of frequency tracking and
to the constant-frequency harmonic model assumed in pitch estimation. New work in
the area might attempt to unify pitch variation estimation and frequency tracking into
a single operation, and introduce more robust modelling of musical harmonics.

4.7 REDUCTION OF NON-LINEAR AMPLITUDE DISTORTION

Many examples exist of audio recordings which are subject to non-linear amplitude
distortion. Distortion can be caused by a number of different mechanisms such as
deficiencies in the original recording system and degradation of the recording through
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excessive use or poor storage. This section formulates the reduction of non-linear
amplitude distortion as a non-linear time series identification and inverse filtering
problem. Models for the signal production and distortion process are proposed and
techniques for estimating the model parameters are outlined. The section concludes
with examples of the distortion reduction process.

An audio recording may be subject to various forms of non-linear distortion, some
of which are listed below:

1. Non-linearity in amplifiers or other parts of the system gives rise to intermodu-
lation distortion [Sinclair, 1989].

2. Cross-over distortion in Class B amplifiers [Sinclair, 1989].

3. Tape saturation due to over recording [Sinclair, 1989]: recording at too high a
level on to magnetic tape leads to clipping or severe amplitude compression of
a signal.

4. Tracing distortion in gramophone recordings [Roys, 1978]: the result of the
playback stylus tracing a different path from the recording stylus. This can occur
if the playback stylus has an incorrect tip radius.

5. Deformation of grooves in gramophone recordings [Roys, 1978]: the action of
the stylus on the record groove can result in both elastic and plastic deformation
of the record surface. Elastic deformation is a form of distortion affecting both
new and used records; plastic deformation, or record wear, leads to a gradual
degradation of the reproduced audio signal.

The approach to distortion reduction is to model the various possible forms of
distortion by a non-linear system, Rather than be concerned with the actual mechanics
of the distortion process, a structure of non-linear model is chosen which is thought to
be flexible enough to simulate the different types of possible distortion.

4.7.1 Distortion Modelling

A general model for the distortion process is shown in figure 4.24 where the input to
the nonlinear system is the undistorted audio signal S [n] and the output is the observed
distorted signal x [n].

The general problem of distortion reduction is that of identifying the non-linear
system and then applying the inverse of the non-linearity to the distorted signal x[n]
in order to recover the undistorted signal s[n]. Identification of the non-linear system
takes two main forms depending on the circumstances. The first is when the physical
system which caused the distortion is available for measurement. For example the
recording system which produced a distorted recording may be available. Under these
circumstances it is possible to apply a known input signal to the system and apply
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Figure 4.24 Model of the distortion process

system identification techniques in order to determine the non-linear transfer function
or apply adaptive techniques to recover the undistorted signal [Preis and Polchlopek,
1984, Schafer et al., 1981, Landau, 1960, Landau and Miranker, 1961]. The second, and
much more common, situation is when the only information available is the distorted
signal itself. The approach is now to postulate a model for both the undistorted signal
and the distortion process. Time series identification techniques must then be used
to determine values for the model parameters. This section will concentrate on this
situation which might be called blind identification.

Choice of a suitable non-linear model to represent the signal and distortion processes
is not a straightforward decision since there are many different classes from which to
choose.

4.7.2 Non-linear Signal Models

A non-linear time series model transforms an observed signal x [t] into a white noise
process e [t], and may be written in discrete form [Priestley, 1988] as:

where F' {.} is some non-linear function.
Assuming that F'{.} is an invertible function this may be expressed as:

(4.25)

This functional relationship may be expressed in a number of different forms; two of
which will be briefly considered.
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The Volterra Series. For a time invariant system defined by equation 4.25, it is
possible to form a Taylor series expansion of the non-linear function to give [Priestley,
1988]:

(4.26)

where the coefficients k0 , h i , h1 i1 ,i2 , . . . are the partial derivatives of the operator F.
Note that the summation involving hi1 in the discrete Volterra series corresponds to
the normal convolution relationship for a linear system with impulse response hi1 (n ) .
The Volterra Series is a very general class of non-linear model which is capable of
modelling a broad spectrum of physical systems. The generality of the model, while
making it very versatile, is also its main disadvantage: for successful modelling of an
actual system, a very large order of Volterra expansion is often needed, a task which
is generally not practical. In view of this, it becomes necessary to consider other
representations of non-linear time series.

NARMA Modelling. The NARMA (Non-Linear AutoRegressive Moving Average)
model was introduced by Leontaritis and Billings [Leontaritis and Billings, 1985] and
defined by:

Combining the terms x[n – 1], . . . x[n – P x ] and e[n – 1], . . . e[n – P e] into a single
vector w(n ) and expanding as a Taylor series gives the following representation of a
non-linear system [Chen and Billings, 1989].

(4.27)

where:
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The advantage of such an expansion is that the model is linear in the unknown param-
eters a so that many of the linear model identification techniques can also be applied
to the above non-linear model. Iterative methods of obtaining the parameter estimates
for a given model structure have been developed [Billings and Voon, 1986]. A num-
ber of other non-linear signal models are discussed by Priestley [Priestley, 1988] and
Tong [Tong, 1990].

4.7.3 Application of Non-linear models to Distortion Reduction

The general Volterra and NARMA models suffer from two problems from the point of
view of distortion correction. They are unnecessarily complex and even after identi-
fying the parameters of the model it is still necessary to recover the undistorted signal
by some means. In section 4.2 it was noted that audio signals are well-represented by
the autoregressive (AR) model defined by equation 4.1:

Thus a distorted signal may be represented as a linear AR model followed by a
non-linear system as shown in figure 4.25.

Figure 4.25 Model of the signal and distortion process

Two particular models will be considered for the non-linear system.

Memoryless Non-linearity. A special case of the Volterra system given by equa-
tion 4.26 is:



DIGITAL AUDIO RESTORATION 187

This is termed a memoryless non-linearity since the output is a function of only the
present value of the input s[n]. The expression may be regarded as a power series
expansion of the non-linear input-output relationship of the non-linearity. In fact this
representation is awkward from an analytical point of view and it is more convenient
to work in terms of the inverse function. Conditions for invertibility are discussed in
Mercer [Mercer, 1993].

An infinite order model is clearly impractical to implement. Hence it is necessary to
truncate the series:

(4.28)

A reasonable assumption is that there is negligible distortion for low-level signals,
ie {x[n] = s [n]; for s [n] ≈ 0} so that k 0 = 1. (Note that this assumption would
not be valid for crossover distortion). This model will be referred to in general as
the Autoregressive-Memoryless Non-linearity (AR-MNL) model and as the AR(P)-
MNL(Q) to denote a AR model of order P and a memoryless non-linearity of order
Q .

Note that if the non-linear parameters ki can be identified then the undistorted signal
{s[n ]} can be recovered from the distorted signal {x[n]} by means of equation 4.28.

Non-linearity with Memory. The AR-MNL model is clearly somewhat restrictive
in that most distortion mechanisms will involve memory. For example an amplifier
with a non-linear output stage will probably have feedback so that the memoryless
non-linearity will be included within a feedback loop and the overall system could not
be modelled as a memoryless non-linearity. The general NARMA model incorporates
memory but its use imposes a number of analytical problems. A special case of the
NARMA model is the NAR (Non-linear AutoRegressive) model in which the current
output x[n ] is a non-linear function of only past values of output and the present input
s [n ]. Under these conditions equation 4.27 becomes:

(4.29)
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The linear terms in x[n – i 1] have not been included since they are represented by the
linear terms in the AR model. This model will be referred to as Autoregressive Non-
linear Autoregressive (AR-NAR) model in general and as AR(P)-NAR(Q) model in
which the AR section has order P and only Q of the non-linear terms from equation 4.29
are included. Note that the undistorted signal {s[n]} can be recovered from the
distorted signal {x[n]} by use of equation 4.29 provided that the parameter values can
be identified.

4.7.4 Parameter Estimation

In order to recover the undistorted signal it is necessary to estimate the parameter
values in equations 4.28 and 4.29. A general description of parameter estimation is
given in many texts, e.g. Norton [Norton, 1988, Kay, 1993].

One powerful technique is Maximum Likelihood Estimation (MLE) which requires
the derivation of the Joint Conditional Probability Density Function (PDF) of the output
sequence {x[n]}, conditional on the model parameters. The input {e[n]} to the system
shown in figure 4.25 is assumed to be a white Gaussian noise (WGN) process with
zero mean and a variance of σ2 . The probability density of the noise input is:

Since {e [n]} is a WGN process, samples of the process are independent and the
joint probability for a sequence of data ({e [n]}, n = P + 1to N ) is given by:

(4.30)

The terms {e [1], e[2]...e[P]} are not included because they cannot be calculated in
terms of the observed output {x [n]} so that, strictly speaking, the above is a conditional
probability but there is little error if the number of observations N >> P.

An expression for the Joint Probability Density Function for the observations {x[n ]}
may be determined by transformations from {e[n ]} to {s[n ]} and from {s [n]} to {x [n]}.
This gives the likelihood function for the AR-MNL system as:
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where a is a vector containing the parameters a1 . . . a P of the AR model and k is
a vector containing the parameters k0 . . . k Q . The noise sequence {e[n]} may be
expressed in terms of the observed distorted signal {x[n]} using equations 4.1 and
4.28

The Likelihood function for the AR-NAR system is:

where a is the vector of AR parameters and k is a vector containing the parameters ai1 ,
a ]} may be expressed in terms ofi1 i 2 ,. . . of the NAR model. The noise sequence {e[n
the observed distorted signal {x [n]} using equations 4.1 and 4.29

The MLE approach involves maximising the Likelihood function with respect to a,
k and σ. The values of a, k and σ which maximise this equation are the Maximum
Likelihood estimates of the model.

Computational aspects. In general there is no analytic solution to maximising the
Likelihood equations so that it is necessary to perform a multidimensional optimisation
over the unknown model parameters. However before performing the optimisation it
is necessary to select a model of appropriate order; too low an order results in a poor
system which is unable to correct distortion, too high an order results in an unnecessarily
complicated model which imposes a heavy computational burden in determining the
optimal parameter values. Model order selection for the memoryless non-linearity is
simply a matter of choosing the order of the polynomial expansion in equation 4.28.
However the problem is more complex with the NAR model, equation 4.29, since the
number of permutations of terms can be extremely large. There is no intuitive means
for estimating which non-linear terms should be included and it is necessary to perform
the Maximum Likelihood optimisation for each combination of terms in order to find
an acceptable system. Such a global search over even a relatively limited subset of
the possible model terms is prohibitively expensive and iterative methods have been
developed to search the space of model functions to determine an acceptable, although
not necessarily optimal, system [Mercer, 1993].

In order to compare the performance of models containing different non-linear
terms it is necessary to use a criterion which achieves a compromise between the
overly simple model and the overly complex model. One such criterion is the Akaike
Information Criterion, AIC(φ) (see e.g. Akaike [Akaike, 1974]) given by:

AIC (φ) = – 2 log e {Maximised Likelihood Function} +

φ × [Number of Parameters] (4.32)
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The Akaike Information Criterion is used to select the model which minimises the
AIC(φ) function for a specified value of φ. In the original formulation of the above
equation, Akaike used a value of φ = 2 but an alternative selection criterion proposed
by Leontaritis and Billings [Leontaritis and Billings, 1987] is based on a value of
φ = 4.

4.7.5 Examples

Mercer [Mercer, 1993] presents results for the two models discussed. For the mem-
oryless non-linearity a section of music from a recording of a brass band was passed
through the non-linearity defined by:

k = [ 0.00 0.30 0.00 0.50 ].

An AR model of order 25 was assumed and a non-linearity with Q ≤ 9 was allowed.
Figure 4.26 shows a section of the original, distorted and restored signals.

In order to test the AR-NAR model a section of music was passed through the
non-linear system:

x [n] = 0.07x [n – 1] x [n – 4] x[ n – 6] + 0.05 x [n – 2] x [n – 2] x [n – 3]

+ 0.06 x[n – 3] x[n – 6] x[n – 8] + 0.06 x[n – 4] x[n – 7] x[n – 7]

+ 0.05x[n – 8] x [n – 9] x [n – 9] + s [n]

An AR(30)-NAR(Q) model was fitted to data blocks containing 5000 samples of the
distorted data. The non-linear terms allowed in the model were of the form:

w( n – i ) w(n – j ) w(n – k )
for i = 1 : 9, j = i : 9, k = j : 9.

and a model complexity of Q ≤ 20 was allowed. Typical results are shown in
figure 4.27 which shows a section of the original, distorted and restored signals.

4.7.6 Discussion

The techniques introduced in this section perform well on audio data which have been
distorted by the appropriate model. However extensive testing is required to determine
whether or not the non-linear models proposed are sufficiently flexible to model real
distortion mechanisms.

Further work is required on methods for searching the space of non-linear models
of a particular class (eg. AR-NAR) to determine the required model complexity.
This may perhaps be best achieved by extending the Maximum Likelihood approach
to a full Bayesian posterior probability formulation and using the concept of model
evidence [Pope and Rayner, 1994] to compare models of different complexity. Some
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Figure 4.26 Typical section of AR-MNL Restoration

Figure 4.27 Typical section of AR-NAR Restoration
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recent work in this field [Troughton and Godsill, 1997] applies Bayesian Markov chain
Monte Carlo (MCMC) methods to the problem of non-linear model term selection. It
is planned to extend this work in the near future to model selection for the AR-NAR
distortion models discussed earlier in this section.

4.8 OTHER AREAS

In addition to the specific areas of restoration considered in previous sections there are
many other possibilities which we do not have space here to address in detail. These
include processing of stereo signals, processing of multiple copies of mono recordings,
frequency range restoration and pitch adjustment.

Where stereo signals are processed, it is clearly possible to treat each channel as
a separate mono source, to which many of the above processes could be applied (al-
though correction of pitch variations would need careful synchronization!). However,
this is sub-optimal, owing to the significant degree of redundancy and the largely un-
correlated nature of the noise sources between channels. It is likely that a significantly
improved performance could be achieved if these factors were utilized by a restoration
system. This might be done by modelling cross-channel transfer functions, a difficult
process, owing to complex source modelling effects involving room acoustics. Initial
investigations have shown some promise, and this may prove to be a useful topic of
further research.

A related problem is that of processing multiple copies of the same recording. Once
again, the uncorrelated nature of the noise in each copy may lead to an improved
restoration, and the signal components will be closely related. In the simplest case, a
stereo recording is made from a mono source. Much of the noise in the two channels
may well be uncorrelated, in particular small impulsive-type disturbances which affect
only one channel of the playback system. Multi-channel processing techniques can then
be applied to extraction of the signal from the noisy sources. A Bayesian approach to
this problem, which involves simple FIR modelling of cross-channel transfer functions,
is described in [Godsill, 1993], while a joint AR-modelling approach is presented in
[Hicks and Godsill, 1994]. In the case where sources come from different records,
alignment becomes a major consideration. Vaseghi and Rayner [Vaseghi and Rayner,
1988, Vaseghi, 1988, Vaseghi and Rayner, 1989] use an adaptive filtering system for
this purpose in a dual-channel de-noising application.

In many cases the frequency response of the recording equipment is highly in-
adequate. Acoustic recording horns, for example, exhibit unpleasant resonances at
mid-range frequencies, while most early recordings have very poor high frequency
response. In the case of recording resonances, these may be identified and corrected
using a cascaded system model of source and recording apparatus. Such an approach
was investigated by Spenser and Rayner [Spenser and Rayner, 1989, Spenser, 1990].
In the case where high frequency response is lacking, a model which can predict
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high frequency components from low is required, since any low-level high frequency
information in the noisy recorded signal is likely to be buried deep in noise. Such
a process becomes highly subjective, since different instruments will have different
high frequency characteristics. The procedure may thus be regarded more as signal
enhancement than restoration.

Pitch adjustment will be required when a source has been played back at a different
(constant) speed from that at which it was recorded. This is distinct from wow (see
section 4.6) in which pitch varies continuously with time. Correction of this defect can
often be made at the analogue playback stage, but digital correction is possible through
use of sample-rate conversion technology (see section 4.6). Time-scale modification
(see the chapter by Laroche) is not required, since changes of playback speed lead to
a corresponding time compression/expansion. We note that correction of this defect
will often be a subjective matter, since the original pitch of the recording may not be
known exactly (especially in the case of early recordings).

4.9 CONCLUSION AND FUTURE TRENDS

This Chapter has attempted to give a broad coverage of the main areas of work in
audio restoration. Where a number of different techniques exist, as in the case of click
removal or noise reduction, a brief descriptive coverage of all methods is given, with
more detailed attention given to a small number of methods which the authors feel to
be of historical importance or of potential use in future research. In reviewing existing
work we point out areas where further developments and research might give new
insight and improved performance.

It should be clear from the text that fast and effective methods are now available
for restoration of the major classes of defect (in particular click removal and noise
reduction). These will generally run in real-time on readily available DSP hardware,
which has allowed for strong commercial exploitation by companies such as CEDAR
Audio Ltd. in England and the American-based Sonic Solutions in California. It
seems to the authors that the way ahead in audio restoration will be at the high
quality end of the market, and in developing new methods which address some of
the more complex problems in audio, such as correction of non-linear effects (see
section 4.7). In audio processing, particularly for classical music signals, fidelity of
results to the original perceived sound is of utmost importance. This is much more
the case than, say, in speech enhancement applications, where criteria are based on
factors such as intelligibility. In order to achieve significant improvements in high
quality sound restoration sophisticated algorithms will be required, based on more
realistic modelling frameworks. The new models must take into account the physical
properties of the noise degradation process as well as the psychoacousical properties
of the human auditory system. Such frameworks will typically not give analytic results
for restoration, as can be seen even for the statistical click removal work outlined in
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section 4.3.4, and solutions might, for example, be based on iterative methods such as
Expectation-maximize (EM) or Markov chain Monte Carlo (MCMC) which are both
powerful and computationally intensive. This is, however, likely to be in accord with
continual increases in speed and capacity of computational devices.

To conclude, the range of problems encountered in audio signals from all sources,
whether from recorded media or communications and broadcast channels, present
challenging statistical estimation problems. Many of these have now been solved
successfully, but there is still significant room for improvement in achieving the highest
possible levels of quality. It is hoped that the powerful techniques which are now
practically available to the signal processing community will lead to new and more
effective audio processing in the future.

Notes

1. the ‘Packburn’ unit achieved masking within a stereo setup by switching between channels

2. With acknowledgement to Mr. B.C. Breton, Scientific Imaging Group, CUED

3. provided that no samples are missing from the first P elements of s; otherwise a correction must be
made to the data covariance matrix (see [Godsill, 1993])

4. the approximation assumes that the parameter likelihood for the first P data samples is insignificant
[Box and Jenkins, 1970]

5. These techniques are also often referred to as ’spectral subtraction’. We will not use this terminology
in order to avoid ambiguities between the general principle and the particular technique described in [Boll,
1979], nor will we use the term ‘spectral estimation’ as quite a number of the STSA techniques are not based
on a statistical estimation approach.

6. This suppression rule is derived by analogy with the well-known Wiener filtering formula replacing
the power spectral density of the noisy signal by its periodogram estimate.

7. Strictly speaking, this effect could still be perceived for longer window durations when the relative
signal level approaches 1. However, it is then perceived more like an erratic fluctuation of the sinusoid level
which is hardly distinguishable from the phenomenon to be described in section 4.17.

8. More precisely, the quantity displayed is the signal power estimated from 10ms frames. As the
power spectral densities of the two types of noise exhibit a strong peak at the null frequency, the two noises
were pre-whitened by use of an all-pole filter [Cappé, 1991]. This pre-processing guarantees that the noise
autocorrelation functions decay sufficiently fast to obtain a robust power estimate even with short frame
durations [Kay, 1993].
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Abstract: Audio signal processing systems have made considerable progress over
the past 25 years due to increases in computational speed and memory capacity. These
changes can be seen by examining the implementation of increasingly complex algorithms
in less and less hardware. In this chapter, we will describe how machines have been
designed to implement DSP algorithms. We will also show how progress in integration

has resulted in the special purpose chips designed to execute a given algorithm.

5.1 INTRODUCTION

Audio signal processing systems have made considerable progress over the past 25
years due to increases in computational speed and memory capacity. These improve-
ments are a direct result of the ever increasing enhancements in silicon processing
technologies. These changes can be demonstrated by examining the implementation
of increasingly complex algorithms in less and less hardware. In this chapter, we will
describe how sound is digitized, analyzed and synthesized by various means. The
chapter proceeds from input to output with a historical bent.
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5.2 INPUT/OUTPUT

A DSP system begins at the conversion from the analog input and ends at the conversion
from the output of the processing system to the analog output as shown in the figure
5.1:

Figure 5.1 DSP system block diagram

Anti-aliasing filters (considered part of “Analog Conditioning”) are needed at the
input to remove out of band energy that might alias down into baseband. The anti-
aliasing filter at the output removes the aliases that result from the sampling theorem.

After the anti-aliasing filter, the analog/digital converter (ADC) quantizes the
continuous input into discrete levels. ADC technology has shown considerable im-
provement in recent years due to the development of oversampling and noise-shaping
converters. However, a look at the previous technologies [Blesser, 1978] [Blesser and
Kates, 1978][Fielder, 1989] will help appreciate the current state-of-the-art.

After digital processing, the output of the system is given to a digital/analog con-
verter (DAC) which converts the discrete levels into continuous voltages or currents.
This output must also be filtered with a low pass filter to remove the aliases. Subse-
quent processing can include further filtering, mixing, or other operations. However,
these shall not be discussed further.

5.2.1 Analog/Digital Conversion

Following the discussion in Bennett ( [Bennett, 1948]), we define the Signal to Noise
Ratio (SNR) for a signal with zero mean and a quantization error with zero mean as
follows: first, we assume that the input is a sine wave. Next, we define the root mean
square (RMS) value of the input as

(5.1)
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where ∆ is the smallest quantization level and b – 1 bits are present in the maximum
value. The noise energy of such a signal will be the integral of the quantization noise
over time:

This will give

(5.2)

(5.3)

Since SNR is σ RMS
σ noise

, and deriving the output in decibels, we get

(5.4)

or, the well known 6 dB per bit.
It is important to remember that this equation depends on the assumption that the

quantizer is a fixed point, “mid-tread” converter with sufficient resolution so that the
resulting quantization noise (enoise ) is white. Furthermore, the input is assumed to
be a full scale sinusoidal input. Clearly, few “real world” signals fit this description,
however, it suffices for an upper bound. In reality, the RMS energy of the input is quite
different due to the wide amplitude probability distribution function of real signals.
One must also remember that the auditory system is not flat (see the chapter by Kates)
and therefore SNR is at best an upper bound.

Given equation 5.4, we can see how many bits are required for high fidelity. Compact
Disks use 16 bits, giving a theoretical SNR of approximately 96 dB; however, this is
not as quiet as well constructed analog mixing desks  where SNRs of over 120 dB
are typically found. An equivalent digital system must therefore be prepared to
accommodate fixed point lengths exceeding 20 bits. Recent converters offer 24 bits
(but only 112 dB  SNR). Floating point converters can provide the same dynamic range
but with less SNR. We will discuss this shortly, but before it, we will examine the
typical fixed point converter.

Fixed Point Converters. The technology of fixed point converters before the intro-
duction of oversampling, is covered amply in a book by Analog Devices [Sheingold,
1986]. Terminology of converter performance are reviewed by Tewksbury, et al.
[Tewksbury et al., 1978] Besides oversampling converters (known as “Delta-Sigma”
or “Sigma-Delta”), there are four basic types of converters:
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� Successive Approximation

� Integration

� Counter (servo)

� Parallel

Audio applications ignore all but the first type; integration converters are too slow
to convert a sample in one sampling time. This is also true of counter converters,
since it takes 2b clock cycles to reach the full scale range for b bits. Parallel converters,
like the well known “flash” converter, are excessive in their use of silicon area for
large b because 2b comparators are needed as well as a large resistive dividers. There-
fore, we will concentrate on successive approximation and oversampling delta-sigma
converters.

Successive Approximation. A typical successive approximation converter is shown
in figure 5.2.

Figure 5.2 Successive Approximation Converter

Under control of a finite state machine, a b-bit shift register is used as the input to a
DAC. The output of the DAC is compared with the analog input; if the comparison is
negative, then the latest bit was an overestimation and therefore the bit should be zero;
otherwise the bit is a one. Clearly, the linearity of the DAC effects the overall linearity
of the system. Also, the input must not change during the conversion process therefore
the addition of a sample and hold must be considered. However, this also introduces
other sources of error including droop due to hold capacitor leakage and aperature
jitter in the sample and hold clock. However, these errors are further compounded
by slew rate limitations in the input and sample and hold amplifiers. These issues
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were addressed early by Stockham [Stocskham, 1972] and were covered extensively
by Talambiras [Talambiras, 1976][Talambiras, 1985]. A more recent analysis of jitter
effects in oversampling converters was given by Harris [Harris, 1990] who analyzed
jitter effects as a form of FM modulation.

Dither. Starting from Robert’s pioneering paper [Roberts, 1976], the use of dither in
audio was seriously analyzed by Vanderkooy and Lipshitz [Vanderkooy and Lipshitz,
1984]. The basic idea is simple: to whiten the quantization error, a “random” error
signal is introduced. While the introduction of noise will make the signal “noisier”,
it will also decorrelate the quantization error from the input signal (but not totally).
Vanderkooy and Lipshitz also propose the use of triangular dither derived from the
sum of two uniform random sources [Vanderkooy and Lipshitz, 1989].

Dither can be subtracted out (“subtractive dither”) after quantization and thereby
whiten the signal. But in most systems this may be either difficult or impossible to do
because the dither signal is not available. Therefore “non-subtractive” dither is the
most common use of dithering. Yamasaki [Yamasaki, 1983] discusses the use of large
amplitude dither (as much as 32∆ ) in subtractive dither systems.

A typical example of subtractive dither use in an A/D converter can be found in a
Teac patent [Nakahashi and Ono, 1990]. Notable features include the use of limiting
and overload detectors as well as the ability to control the dither amplitude. A clever
example of non-subtractive dither [Frindle, 1995][Frindle, 1992] separates the input
signal into two paths. One of the paths is now inverted and then both paths are added
to a random noise source. After the DAC, the two analog signals are subtracted; the
result is the sum of the conversion errors and twice the input signal.

Oversampling converters. Bennett’s [Bennett, 1948] pioneering paper points out that
the quantization noise is integrated over a frequency range. For a spectrally flat (i.e.,
white) signal the noise power is given by the following equation:

(5.5)

 is the sampling period (1/
frequency f s noise will decrease accordingly. This key fact can be calculated

given noise floor [Candy and Temes, 1992] as follows:

where f s  is the sampling rate and T s f s )). As the sampling
 increases, E

together with the noise power to derive the oversampling factor needed to achieve a

(5.6)

where  f s ' is the new sampling frequency. Inserting this into the integral in equation
5.3 will result in noise energy of ERMS , so then the SNR will decrease by 3 dB (one)

N
half bit) for each doubling of the sampling frequency.
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As shown in section 5.2, the resolution is a direct consequence of the degree of
oversampling. Audio converters have used oversampling ratios of a much as 128 times
leading to an improvement of 21 dB.

Another key development was the introduction of noise shaping. The idea is
to filter the error output of the quantizer and push the error energy into the higher
frequencies. This benefit depends critically on the design of the error filter. The
following analysis is after van de Plassche [van de Plassche, 1994]. Suppose that the
filter is a simple first-order function E(z ) = |1 – z – 1 |. Let ωs = 2πf

f s
where  f  is the

highest frequency component of the input signal. Then, evaluating the amplitude of
E ( z ) gives 2(1 – cos ω).  The shaped noise energy will be the area between D.C. and
ωs , or

(5.7)

where ∈  is the error, in this case, the error function E( z).
So, substituting E(z) into the integral of equation 5.7 gives the noise power of

e ²shaped = 2(ωs  – sin ωs )∈ ². Without noise shaping, the area will be simply the flat
integral, so then euniform  = ∈ ² ωs .

So, finally, the improvement due to error noise shaping will be the ratio of eshaped

euniform
=

Candy and Temes [Candy and Temes, 1992] list several criteria for choosing the
internal architecture of oversampling converters. These include

� Bit resolution for upsampling factor

� Complexity of the modulator/demodulator

� Stability

� Dithering

Higher order architectures have been successfully used to build converters for
digital audio applications [Adams, 1986][Hauser, 1991]. However, the complexity of
modulator and demodulator increases with the order. Higher order architectures also
exhibit stability problems [van de Plassche, 1994]. Dithering is a remedy to many of
the problems of low level signals (see the previous section) and has been used in sigma
delta converters as part of the noise shaping loop [Vanderkooy and Lipshitz, 1989].

Today, in 1997, a designer can find oversampling audio converters with a reported
resolution of up to 24 bits. In reality, the resulting noise is well below the theoretical
maximum (approximately 144 dB).

Besides the elimination of the sample-and-hold, oversampling converters also re-
duce the complexity of the anti-aliasing filter. Previous anti-aliasing filters required the
use of high order active filters (11th order elliptic for example) that resulted in phase
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distortion [Preis and Bloom, 1984]. The oversampling results in a higher Nyquist
frequency and therefore the filter rolloff can be much slower. The typical filter to
a Delta-sigma converter is a trivial one pole RC filter. However, note that fidelity
problems associated with slew rate limitations in input amplifiers [Talambiras, 1976]
[Talambiras, 1985] are not eliminated, however.

Floating Point Converters. A floating point converter represents the number as a
triple: (S, E, M), where S is the sign, E the exponent and M is the mantissa. The
exponent base (B) is a power of two. The mantissa is a rational number of the form
P/Q, where 0 ≤ P ≤ B | E | and Q is exactly B |E | .

For floating point representations, the variance of the error is

(5.10)

(5.8)

where σ∈ is the relative roundoff error. (This assumes that the error is multiplicative).
Therefore, the SNR of a floating point converter is

(5.9)

or, simplifying,

In order to evaluate this equation, we need a value for σ∈ . Kontro, et al. [Kontro
et al., 1992] used the Probability Distribution Function (PDF) of floating point roundoff
error in multiplication:

(5.11)

where  ∆ = 2 –b m and b m is the number of bits in the mantissa. This gives an
SNR floating of 6.26 + 6.02 b m dB.

One of the early research converters [Kriz, 1976][Kriz, 1975] used floating point
for both the DAC and ADC. Kriz used a 12 bit mantissa and a 3 bit exponent (the
missing bit is the sign bit) for a theoretical SNR of 78 dB. The DAC is shown in figure
5.3.

Note however, that the amplifier gain must be dynamically changed depending on
signal amplitude, which leads to discontinuities. Kriz also points out the slew rate
problems in the track and hold. His solution was to use a DC feedback loop with an
analog integrator.

Kriz also discusses the construction of a matching 16 bit ADC. He duplicated his
integrating solution but used a 8 bit DAC in the DC offset path as shown above.

Fielder [Fielder, 1985] discusses the use of a converter with 12 bit signed magnitude
and 6 dB gain steps resulting in a possible dynamic range of 115 dB. An equivalent
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Figure 5.3 16 Bit Floating Point DAC (from [Kriz, 1975])

fixed point converter would have 20 bits! However, as discussed above, the noise
performance isn’t as good because of the missing codes.

The subsequent development of high quality linear, fixed point converters has
largely eliminated floating point converters for audio applications. Note, however, that
Yamaha used floating point converters until only recently. This was a direct result of
using logarithmic arithmetic internally on their chips (see section 5.14). A relatively
recent example of an oversampling Sigma-Delta converter ( [Kalliojärvi et al., 1994])
combines oversampling sigma Delta conversion with floating point quantization.

Given the ever increasing number of floating point processors, coupled with the
need for better SNR (i.e., over 120 dB) might push the development of matching
floating point converters. More work remains to be done.

5.2.2 Sampling clocks

Jitter is the deviation of the sampling instant due to noise and other phenomena. Jitter
can be analyzed using a battery of statistical and probabilistic methods [Liu and Stanley,
1965]. In particular, Liu and Stanley analyze the jitter for a storage system where four
cases can be considered:

1. input only (“readin”)

2. output only (“readout”)

3. input and output with identical jitter (“locked”)

4. independent input and output jitter

Let us consider the accuracy required for the sampling clock in a DSP system. van
de Plassche has the following analysis: If the input is full range and near the Nyquist
frequency, then we have the greatest slope. Let us use a simple sinusoid as the input,
i.e., V = A sin (ωt ). The variation in the output of the converter that depends on the
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variation in the sampling time instant ∆ t will be ∆ v . The slope of the input is:

(5.12)

So, then if   ∆ A = 2 A
2n (peak to peak), then ∆ t = 2 –n 

ωcos( ωt ); since,ω = 2 πf, then

(5.13)

And, at t = 0, then we have

(5.14)

As an example, consider a CD-audio signal with 16 bits of resolution with a sampling
frequency of 44.1 MHz. The time uncertainty (∆ t 0) will be 110 picoseconds!

As the digital signal passes through cables and other degrading elements the jitter
can and will increase. More attention has been paid to these issues of late [Shelton,
1989][Lidbetter et al., 1988].

5.3 PROCESSING

The history of audio signal processors is directly correlated with the development of
silicon technology. As we will see, the first digital synthesizers were constructed from
discrete SSI TTL level components. In fact, early synthesizers like the Synclavier
used a mixture of digital and analog technology – a prime example being the use of a
multiplying DAC for envelope control [Alonso, 1979]. A review of early architecture
circa 1975 was given by Allen [Allen, 1975].

Further development of synthesizers was critically dependent on the technology
of multiplier implementation, TI’s early 2 bit by 4 bit Wallace Tree [Karen, 1993]
[Waser and Flynn, 1982] was introduced in 1974. The AMD25S10 was an early
improvement: 4 bits by 4 bits. Monolithic Memories’ 74S558 multiplier was 8 bits by
8 bits. The major improvement was the 16 by 16 multiplier (the TRW MPY-16). This
single chip did more for audio signal processing than almost any other device. It was
used for many of the IRCAM machines and also the Alles synthesizer.

Simultaneous improvements in ALU width during the same period can be witnessed
by the development of the AMD 2901 4 bit slice [Mick and Brick, 1980]. This flexible
ALU building block was very popular in the design of ALUs; combined with a TRW
multiplier the resulting machine architectures were flexible and powerful.

The use of Emitter Coupled Logic (ECL) is also possible [Blood, 1980] [Hastings,
1987] but it suffers because of low levels of integration (typically 2 and 4 bit wide
parts) as well a high demands for current and fans. In spite of these limitations, the
group at Lucasfilm used ECL technology for the ASP [Moorer et al., 1986]. For the
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era, ECL was the path to high speed computing (an independent example is the Dorado
[Clark et al., 1981a]).

Further increases in the density of chips led to the development of the modern signal
processor, beginning in 1979 with the Intel i2920. This was followed by the Texas
Instruments TMS 320 series (begining with the 32010) that rapidly captured a large
segment of the market. The 24 bit width of the Motorola 56000 was welcomed by the
digital audio community and found rapid use in many applications. The 56000 also
included parallel moves and well designed addressing modes.

In spite of constant improvement in processor technology, there are still applications
that are computationally expensive. This will lead to the use of multiple DSP chips in
multiprocessors as well as the development of special purpose chips for synthesis. All
of these developments will be discussed in the following sections.

5.3.1 Requirements

Before we can discuss the design and architecture of processors for audio DSP tasks,
we must discuss the requirements these processors must meet. Then, we will be in a
better position to see how the different implementations result in better results. So,
we will begin by dividing the requirements into the different tasks. Gordon [Gordon,
1985] has an overview of architecture for computer music circa 1985.

In typical use, a speech algorithm is just as usable for wideband audio with the
following caveats in mind: (1) higher sampling rates decrease the available processor
time per sample (2) higher frequency ranges may mean a greater number of poles and
zeros in signal modeling.

Analysis/Synthesis.

Linear Prediction (LPC). LPC is the most popular form of speech coding and
synthesis. While it is usually used for speech coding [Markel and Gray, 1976] it
can also be used for other time-varying filter models. The LPC analysis process can
be divided into two parts: excitation derivation and filter analysis. The filter analysis
uses an all-pole model derived from a specific acoustical model. For example, the
vocal tract can be modeled as an all pole lattice filter; the lattice filter coefficients
are derived from the acoustical vocal tract model (more specifically, the reflection
coefficients). LPC filter coefficients can be computed using any number of avenues
including the Covariance, Autocorrelation or Lattice methods. These methods all use
iterative matrix algebra; the implications for machine architecture are the need for fast
array indexing, multiplies and/or vector arithmetic.

The excitation signal depends on the source model (vocal cord models are used
in speech for both voice and unvoiced sources). LPC models can be used in other
circumstances, for example, the modeling of acoustic musical instruments where the
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excitation function represents the nonlinear source and the time-varying filter represents
the acoustic transmission line of the instrument. When modeling wideband signals, the
number of poles can become extremely high (more than 50 poles is not uncommon).

The Phase Vocoder. The Phase Vocoder [Flanagan and Golden, 1966][Gordon and
Strawn, 1985] is a common analysis technique because it provides an extremely
flexible method of spectral modification. The phase vocoder models the signal as
a bank of equally spaced bandpass filters with magnitude and phase outputs from
each band. Portnoff’s implementation of the Short Time Fourier Transform (STFT)
provides a time-efficient implementation of the Phase Vocoder. The STFT requires a
fast implementation of the Fast Fourier Transform (FFT), which typically involves bit
addressed arithmetic.

Perceptual Coding. More recently, coding techniques that take advantage of the
masking properties of the inner ear have been developed. These techniques are dis-
cussed in Brandenburg’s chapter. A typical perceptual model uses frequency domain
filtering followed by coding and compression. The receive end (decoder) receives
coded and compressed stream and decodes and expands the data. The resulting data
is converted back into audio data. Because of the extensive bandwidth reduction
of perceptual coding, such algorithms will be finding their way into more and more
commercial products including Digital Audio Broadcasting and Digital Video Disk
(DVD).

Perceptual coders are an interesting class of DSP algorithm; although it has a signal
processing ‘core” (typically the DCT (Discrete Cosine Transform)), the algorithm
spends most of its time in non-iterative code. For example, the MPEG coder has
algorithms that separate noise-components from harmonic-components as well as
Huffman coding and bit-rate coding. This code doesn’t exhibit the same tight loops
DSP processors were designed to handle.

Analysis. We can divide analysis algorithms into time and frequency domain pro-
cesses. Certainly, the division between these categories is arbitrary since we can mix
them together to solve an audio problem. However, it suffices for our purposes.

Time Domain Analysis. Perhaps the simplest and most traditional use of a DSP is
filtering. DSPs are designed to implement both Finite Impulse Response (FIR) and
Infinite Impulse Response (IIR) filters as fast as possible by implementing (a) a single
cycle multiply accumulate instruction (b) circular addressing for filter coefficients.
These two requirements can be found in all modern DSP architectures.
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The typical IIR filter is defined by the following equation:

(5.15)

(5.16)

(5.17)

As can be seen, it requires memory (N+M+1 locations) for the tapped delay lines
as well as N+M+1 filter coefficients. It also requires a multiplier with a result that is
accumulated by the sum. It is important that the accumulator have a “guard band” of
sufficient size to avoid overflow during accumulation. The FIR filter is similar except
it lacks the feedback terns.

Most audio filters are typically IIR filters because a). They are directly transformed
from their analog counterparts via the bilinear transform b). They are faster to compute
than the longer FIR version.

IIR filters can be implemented in any number of different ways, including direct
form, parallel form, cascaded second order sections and lattices.

It is easy to assume that the filter coefficients in equation 5.15 ( a[i] and b[j]) are
constant. In fact, there are many instances when this is not the case. For example,
in real-time audio processing a user moves a slide potentiometer (either physical or
possibly on the display); this is digitized and the host processor must change the
coefficients in various filters.

The filter coefficients must be updated at a regular interval. If the number of filters
coefficients is large (for example, a high order LPC filter) and/or a large number of
filters must operate in parallel, then this may interfere with the computation. Moorer
called it the “parameter update problem” [Moorer, 1981].

It should also be noted that in audio, many operations are calibrated in decibels.
This implies the need for a logarithm (base 10). If possible, such computations should
be avoided since the Taylor series calculation method is multiplier intensive. Short
cuts, such as direct table lookup are preferable when possible.

Frequency Analysis. The Discrete Fourier Transform (and its fast implementation,
the Fast Fourier Transform [Brigham, 1974]) (FFT) as well as its cousin, the Discrete
Cosine Transform [Rao and Yip, 1990] (DCT) require block operations, as opposed to
single sample inputs. The DFT can be described recursively, with the basis being the
2 point DFT calculated as follows:

where W = e – j(2π/ N ) . Since W 0
N  = 1 and W N/2

 N = – 1, then no multiplications are
required, just sign flipping. This is the well known “Butterfly” computation.
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Since either the inputs or outputs of the FFT are in bit reversed form, it is useful
to have a method to address the data. Although algorithms have been published for
bit-reversal [Karp, 1996], the added computation time may not be worth it. Therefore,
either table lookup may be used or carries can be propagated from left to right, which
produces the needed bit reversal. Since the added feature is just a modification of the
carry chain, it is deemed easy enough to implement (leaving aside the issue of the
implementation of the addressing mode).

5.3.2 Processing

Some algorithms have a hard time being categorized into one of analysis or synthesis.
This includes coders and rate changers. Coders, such as the audio coders discussed in
in the chapter by Brandenburg, require the use of a compression technique, such as a
Huffman code. Computation of this code at the encoder side is not nearly as simple as
its accompanying decoder.

Reverberation, discussed by Gardner in his chapter, points out the need for extremely
large memories. Reverberators can be implemented using time-domain filtering with
delays or in the frequency domain with convolution. In the time-domain implementa-
tion, the delays must be the length of the impulse response. Recall that at the size of
the memory will be M = T 60 / TS . For T60 = 2.0 seconds and TS = 20 microseconds,
M = 5 × 105, or a memory address of 19 bits. Therefore, the address space should be
larger than 16 bits. The lesson of large number of address bits (and pins!) may seem
obvious, but DSPs have used static RAM and therefore the required address space is
small to match small wallets.

The frequency domain implementation uses FFTs to convert the incoming window
of samples to the frequency domain, multiplies it by the impulse response of the room
and then uses the Inverse FFT to get back to the time domain. For large impulses, this
generates considerable delay. Gardner discusses how to avoid this in his chapter.

Restoration. With the introduction of the Compact Disc, the restoration of old record-
ings has become big business. However, the original tape (or disk) masters are often
in bad physical condition resulting in pops, clicks and other media maladies. Many
of these defects can be overcome with the use of DSP technology. The most famous
use of DSP technology was made by Stockham [Stockham et al., 1975] who restored
Caruso’s recordings from the early part of this century. Stockham used a cepstrum
based technique to do blind deconvolution to remove the effect of the recording horn
from the recorded master. Computationally, this demanded spectral analysis using the
FFT and further processing.

In the past five years, there has been extensive use of statistical methods to recover
signals partially obscured by noise (see the chapter by Godsill, Rayner and Cappé).
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5.3.3 Synthesis

We can divide synthesis techniques into four basic categories: Additive (Linear),
Subtractive, Nonlinear and Physical modeling. Synthesis algorithms depend critically
on the implementation of oscillators. For example, in the implementation of Frequency
Modulation (F.M.), the output of one oscillator will serve as the input to another. Since
the number of real time oscillators depends on the number of simple oscillators, it is
important to efficiently and speedily implement the realizations.

Low-noise oscillator synthesis is not trivial however most methods use lookup tables
with fractional interpolation. Oscillators can be implemented by (a) table lookup or
(b) IIR filters with poles located exactly on the unit circle.

Moore [Moore, 1977b] studied the effect of oscillator implementation using lookup
tables and found that linear interpolation produces the least distortion and that trunca-
tion produces the worst. This result was confirmed by Hartmann [Hartmann, 1987].
Another possibility is to use a recursive (IIR) filter with poles located on the unit
circle. This “coupled form” [Tierney et al., 1971] offers a alternate method that avoids
using memory space. Frequency resolution requirements were calculated by Snell in
a superpipeline oscillator design for dynamic Fourier synthesis [Snell, 1977].

Oscillators also require “control inputs” such as amplitude or frequency parameters.
These are often time-varying and so smooth interpolation may be required.

Linear Synthesis. The most popular method of synthesis is so-called “Additive
Synthesis”, where the output is a sum of oscillators. While it is commonly assumed that
the oscillators produce sinusoids (Fourier synthesis), in fact, they can be any waveform.
Furthermore, with “static” additive synthesis, a pre-mixed combination of harmonics
was stored in the lookup table. Unfortunately, this doesn’t permit inharmonic partials.
“Dynamic” Fourier synthesis allows the amplitudes and frequencies of the partials to
be varied relative to each other. Computationally, it is important to recognize the that
updating oscillator coefficients for large numbers of oscillators can be expensive.

Subtractive Synthesis. “Subtractive Synthesis” is the process of filtering a broad-
band source with a time-varying filter. The most classical example of this is vocal
tract synthesis using Linear Prediction Coding (LPC) (see section 5.3.1). This requires
a broadband (or noisy) source and, in the case of LPC, an IIR filter with time vary-
ing coefficients. The filter coefficients will require interpolation and storage. These
seemingly insignificant operations can not be ignored.

Nonlinear synthesis: Frequency Modulation. Frequency Modulation (FM), origi-
nally described by Chowning [Chowning, 1973], was patented by Stanford [Chowning,
1977] and later licensed to Yamaha and used in the now famous DX-7 synthesizer.
The FM equation



DIGITAL AUDIO SYSTEM ARCHITECTURE 209

(5.18)

requires two oscillators and two amplitude terms. All four of these inputs can be
described using envelopes or with constants. The envelopes involve the calculation
of either straight lines or exponential curves. The following equation (from the unit
generator gen4 from cmusic [Moore, 1990b]) permits both:

(5.19)

where x 1 ≤ x ≤ x 2 and α is the “transition parameter”:

� if α = 0, then f (x) = y 1 , a straight line

� if α < 0, then f (x) is exponential

� if α > 0, then f (x) is inverse exponential

Lastly, I (x) = .
FM instruments are made from cascades of FM oscillators where the outputs of

several oscillators are mixed together.

Physical Modelling. The last method of synthesis, physical modeling, is the mod-
eling of musical instruments by their simulating their acoustic models. One popular
model is the acoustic transmission line (discussed by Smith in his chapter), where
a non-linear source drives the transmission line model. Waves are propagated down
the transmission line until discontinuities (represented by nodes of impedance mis-
matches) are found and reflected waves are introduced. The transmission lines can be
implemented with lattice filters.

The non-linear sources are founded on differential equations of motion but their
simulation is often done by table lookup.

5.3.4 Processors

This section will be presented in a historical fashion from oldest to newest technology.
This will demonstrate the effect of technology on the design and implementation
of DSP systems and offer a perspective on the effect of underlying technology on
architecture of audio signal processing systems.

One of the earliest machines for audio manipulation was GROOVE, an experimental
machine built at Bell Laboratories [Mathews and Moore, 1970]. GROOVE was
composed of a digital computer controlling an analog synthesizer. The emphasis was
on the human interaction, not the analysis or synthesis of sound.
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Sequential (MSI scale) machines. The SPS-41 [Knudsen, 1975] was a very early
DSP. It had three sections: An ALU, loop control and I/O. The ALU processed complex
data in the form of two 16 bit words. A multiplier produces the requisite four products
forming another complex pair (note that the products must be scaled before storing the
result). The loop control has a very fast test: each instruction has four bits of “indirect
tests”. The four bits address a 16 word memory that permits the testing of 16 bits. The
I/O section is basically a DMA controller and resembles the PPUs of the CDC 6000
series [Thornton, 1970].

The Groove machine mentioned above was the inspiration for Moore’s “FRMBox”
[Moore, 1977a] [Moore, 1985]. It strongly resembles a CPU as shown in figure 5.4.
A centralized control unit polls the modules and stores the output from each board in a

Figure 5.4 Block diagram of Moore’s FRMbox

unique location in a centralized common memory. Each board was time multiplexed 32
times, so for an 8 board system there are 256 time slots per sample time. The controller
permits multiple sources for a given “virtual” generator via a memory pointer in the
control memory. The principal limitation is the size of the bus and the number of
virtual units on a given board. However, for a given sampling frequency there are
a maximum number of slots per sample time. For example, 256 slots at a 48 KHz
sampling frequency is 81 nanosecond per slot. It is possible, of course, to expand the
number of slots by adding multiple centralized controllers; but then the issue becomes
communication from one controller to another.

In 1973, a small company in San Francisco designed a custom processor from early
MSI scale logic. The design was done by Peter Samson [Samson, 1980][Samson,
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1985] and was eventually delivered to CCRMA at Stanford in 1975. For its era, it
was a large processor, using approximately 2500 integrated circuits and resembling a
large green refridgerator. The multipliers were constructed using a modified Wallace
Tree [Koren, 1993] and ran at 50 ns per multiply. The sample word width was 20 bits
although several data paths were smaller. The overall structure of the machine (known
at Stanford as the “Samson Box”) is shown in figure 5.5.

Figure 5.5 Samson Box block diagram

Briefly, each “instruction” is decoded and given to the appropriate part of the
machine. The separate fields of each instruction are interpreted by the specific section.

The timing of the machine is quite interesting. A sample time is divided into
processing, update and overhead ticks (a tick is 195 ns). There are always 8 overhead
ticks since the latency of the pipeline is 8 ticks. So, for a given sample rate, the number
of processing cycles is always known and can be divided by the programmer into time
spent calculating samples (processing) or updating of coefficients in memory by the
host computer (updates). A pause in updating is created via a LINGER command that
waits a specific number of ticks.

The architecture of the machine can be divided into three sections: generators,
modifiers and delay memory. Each section is pipelined and does not share hardware
with the other sections. The pipeline timing for generators is detailed below in Table
5.5:

The pipelining for modifiers is more complex: the control for each modifier is
different and is therefore not detailed here (see figure 4 of [Samson, 1980] for a sketch
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Table 5.1 Pipeline timing for Samson box generators

Tick
Oscillator

Generator
Envelope

0 Memory read
1 Add
2 Multiply
3 ROM lookup Addr Reg read
4 Multiply ROM lookup
5 Sign negation Sign negation
6 Multiply envelope & generator
7 Write into Sum memory

of the datapath). The “Samson Box” was used extensively for synthesis - not analysis.
In part this was due to the unique architecture of the machine and in part from the
difficulty of inserting real time data into the machine via the delay memory. Moorer
[Moorer, 1981] also points out that the command FIFO often got in the way of time
critical updates. Loy [Loy, 1981] mentions the lack of precision in the modifiers (20
bits) and generators (13 bits) sometimes produced audible results. One must remember,
however, that the time frame was the mid-1970s and so resulting integration was SSI
and MSI scale and word widths were costly in terms of area and wires.

The interconnect of the “Samson Box” was quite novel. It was called “sum memory”
and was implemented by parallel loading counters and then writing the result back
into RAM. The connection memory acted as a double-buffered multiport memory by
dividing the memory into “quadrants” as shown in figure 5.5.

The current generators and modifiers write into the current half while the previous
tick’s results are available to current processing. Because the output of the sum memory
may feed as many as three inputs, it must be time multiplexed over a single tick, which
leads to a short time available to the memory.

In 1976 Moorer [Moorer, 1980b] proposed a machine designed for closed-form
[Moorer, 1976] summations. With the exception of the amplitude and spectrum
envelope generators, it is a conventional microprogrammed machine with a instruction
decoder and input and output bus. The envelope generator allows up to 16 different
line segments; these are programmed to provide different instrumental timbres.

In 1979, TRW introduced the MPY16, a 16 by 16 bit multiplier. Alles [Alles, 1987]
[Alles, 1980] used this new chip to design a 32 voice synthesizer using only 110 chips.
Each voice was computed in one microsecond, resulting in a 31.25 KHz sampling rate.
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Each slot was further divided into 16 clock cycles (of 64 ns each). At IRCAM, P.
diGiugno designed an early machined named the “4A”.

Figure 5.6 diGiugno 4A processor

Note that the start and stop registers are used for creating linear ramps; these ramps
are used to control both amplitude and frequency parameters in oscillators. At the
endpoint of the ramp, an interrupt is generated on the host (an LSI-11). As Moorer
[Moorer, 1981] points out, this can lead to a considerable number of interrupts and
delays due to interrupt processing.

H. Alles visited IRCAM and together with P. Di Giugno designed the follow-on to
the 4A: the 4B [Alles and di Giugno, 1977]. This machine differed from the 4A in the
following ways:
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� Expanded interconnect (switch) registers (from 4 to 16)

� Larger wavetable

This was the direct result of improved technology. Also the wavetable was
writable from the host processor.

� New data paths to accommodate FM synthesis

The datapath is shown in figure 5.7.

Figure 5.7 IRCAM 4B data path

Alles [Alles, 1977] further expands on the 4B oscillator module by describing the
design of a matching filter and reverb module using the TRW multiplier. A separate
“switch” module allows for the arbitrary interconnection of the functional units. The
switch itself was a small processor with a simple instruction set.

The following problems were identified in the 4B:

� Undersampling the envelopes resulted in audible artifacts

� The interconnect was “hard-wired” and could not be reprogrammed by software

� Since parameter memory and interconnect memory were separate, it was impos-
sible to mix the two

The next generator synthesizer designed by DiGuigno was named the 4C [Moorer
et al., 1979]. The 4C represented a technological improvement over the 4B by using
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larger memories and a variable interconnect. It has five basic functional unit generators:
(2) Wavetable oscillators, (2) multiply/accumulators (1) envelope generator, (1) output
and (1) timer. Each one of these unit generators is time multiplexed 32 times. A block
diagram of the data path of the machine is shown in figure 5.8.

Figure 5.8 IRCAM 4C data path

Redrawn Figure 17.4 (omits some paths) from [Moorer et al., 1979]

Moorer [Moorer, 1981] points out the following shortcomings in the design of the
4C:

� Short table length: Short tables without interpolation result in distortion partic-
ularly with stored low frequency sounds

� Lack of time synchronization with updates: Because the 4C clock is different
from the host (PDP-11) clock, it is impossible to change parameters sample
synchronously.

� Fractional multiplier: There is no way to increase the magnitude of a product
except by hacking the output of the multiplier.

The last 4n machine from IRCAM was the 4X [Asta et al., 1980]. The system block
diagram of the machine is shown in figure 5.9.

Synthesis units are controlled from the host via an “interface unit” that permits DMA
transfers to the private bus (shown here in three buses Data,Ctrl and Addr). The
generators can input and output data to and from the data bus under control from the
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Figure 5.9 IRCAM 4X system block diagram

interface unit. The interconnection unit serves to connect the generator units together
via an interconnection memory implemented with queues (FIFOs). It also contains
timers for use in controlling amplitude and frequency envelopes. Unlike the previous
4n machines, the 4X included numerous “bypass” paths in the arithmetic pipeline of
the synthesis units.

The combination of the AMD 2901 4-bit slice together with the TRW multiplier was
very popular. A Sony design was used for a microprogrammable real-time reverberator
[Segiguchi et al., 1983]. They used five 2901s together with the TRW multiplier to
create a machine with a 170 ns cycle time. A simple 16 bit pipelined machine
designed for music synthesis was described by Wallraff [Wallraff, 1987]. The machine
was flexible enough to be used in other signal processing tasks. Another example of
such a machine was used in an early audio coder [Brandenburg et al., 1982-].

The TRW multiplier also found its way into the center of the Sony DAW-1000A
editor [Sony, 1986]. A simplified block diagram of the signal processor section is
shown in figure 5.10

Note that products can be fed backward; also note that crossfades are found in
ROMs which are input to just one side of the multiplier; the inputs including faders
and audio inputs are fed to the other side after been converted via logarithmic ROMs.

A very fast CPU customized for the calculation of second order sections was used
by Neve [Lidbetter, 1983] (in collaboration with the BBC) in 1979. They used a Time
Division Multiplex (TDM) parallel data bus with 16 time slots. At each time slot,
the “channel processor” executed 14 microinstructions (at a rate of 100 ns) of a filter
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Figure 5.10 Sony DAE-1000 signal processor

program. The TDM output of the channel processor(s) were combined and simply
mixed by a separate mixing processor.

The COmputer for Processing Audio Signals (COPAS) [McNally, 1979] was an
early microprogrammed mixer. It used a 48 bit microinstruction word executed every
163 ns (about 6 MHz) but could have been improved with a faster multiplier. For a
sampling rate of 32 KHz, the machine can execute 191 instructions. This was enough
to do 10 biquads (second order sections). It should be noted that the A/D was routed
through a microprocessor which offloads the main computational resource.

The Lucasfilm SoundDroid [Moorer, 1985b] was a complex system that included
a complicated microcoded machine as the arithmetic processor. The first edition of
this machine used a horizontally microprogrammed ECL processor called the Audio
Signal Processor (or ASP) [Moorer et al., 1986][Moorer, 1983]. The ASP had a 50
ns instruction clock and executed 400 MAcs per 48 KHz sample time by pipelining
multiplies and starting a multiply every microcycle. A separate host machine controls
the ASPS via a controller over a private bus. The various ASPS have connections to
high speed I/O devices whereas the ASP controller takes care of the slower speed
DACs and ADCs. Figure 5.11 shows the ALU data path of the ASP (redrawn and
simplified from figure 5.3 from [Moorer et al., 1986]). To avoid pipeline “bubbles”,
the ASP placed branch decisions in the data path by using the result of comparisons to
control the output of multiplexers.
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Figure 5.11 Lucasfilm ASP ALU block diagram

The large dynamic RAMs and interconnections to the update and DSP bus are shown
in figure 5.12. A direct connection between the disk drives and the signal processor’s
DRAM banks was provided in Lucasfilm’s ASP and SoundDroid processors, enabling
real-time multitrack digital audio storage and retrieval for mixing desks.

A special feature of the ASP is the time ordered update queue [Moorer, 1985a]
[Moorer, 1980a] shown in figure 5.13 (labeled “255 element queue”). The queue is
pipelined and uses pointers implemented in hardware. This queue can be used to
update data in either the dynamic RAMs or the static RAM coefficient memories. A
more striking application is the use of the update queue to automatically change the
microcode on external events. It should be obvious that such a queue is of particular
utility when dealing with time stamped musical events. Furthermore, it was equipped
with a bypass for passing real-time events (such as the first slope of an envelope upon
note-on) to the head of the queue, with associated events (e.g. the subsequent envelope
slopes and targets) inserted in time order into the queue.

At this point, the stage is set for the transition from MSI scale logic into LSI and
VLSI processors.

Sequential single processors. With the constant improvement of integration tech-
nology, it became possible to include a 16 by 16 multiplier as part of the ALU of a
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Figure 5.12 Lucasfilm ASP interconnect and memory diagram

Figure 5.13 Moorer’s update queue data path

microprocessor. Together with addressing modes designed for DSP applications (such
as bit reversal for FFTs and modular addressing for delay lines and filter coefficients),
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this produced a powerful combination. Serial input and output was also introduced
with DSPs. Serial I/O is quite reasonable for handling audio rates for a small num-
ber of channels. Many fixed point processors only have 16 bits of data and address.
The limited amount of address bits implies a limited amount of time for reverbera-
tion algorithms (at 44.1 KHz sampling rate, 16 bits of address is approximately 1.5
seconds.)

Although other DSPs were utilized before 1982, it was the introduction of the
Texas Instruments TI (Texas Instruments),TMS320 series that dramatically changed
the environment for DSP algorithm designers. For the first time, an inexpensive, com-
mercially available machine was capable of computing speech and modem algorithms
in real-time.

Lee [Lee, 1988][Lee, 1989] surveyed processor architecture circa 1988. He pointed
out that principal differences between the arithmetic sections in integer microprocessors
and DSPs are:

� more precision

� use of saturation arithmetic

� the ability to accumulate and shift products

The memory organization of DSPs are also different from “ordinary” processors
because (1) Memory is typical static RAM and virtual memory support is totally absent
(2) Several machines separate data and instruction streams (Harvard Architecture) (at
the cost of extra pins). Additionally, modular arithmetic address modes have been
added to most processors. This mode finds particular utility in filter coefficient pointers,
ring buffer pointers and, with bit reversed addressing, FFTs. One further difference is
the use of loop buffers for filtering. Although often called “instruction caches” by the
chip manufacturers, they are typically very small (for example, the AT&T DSP-16 has
16 instructions) and furthermore, the buffer is not directly interposed between memory
and the processor.

Fixed Point. Texas Instruments introduced the TMS320C10 in 1982. This chip cap-
tured a sizable market share due to its simple instruction set, fast multiply accumulate
and DSP addressing modes. The TMS320 also features a “Harvard Architecture”,
which doubles the number of address and data pins but also doubles the bandwidth.
The TMS320C10 was followed by the TMS320C20. This chip continues to have
considerable market share. The latest edition of this chip is the TMS320C50, which
has four times the execution rate of the original C10. There are other members of the
family [Lin et al., 1987] that implement various aspects of I/O interfaces and memory
configurations.

AT&T introduced a DSP early on called the DSP2 [Boddie et al., 1981]. Although
for internal consumption in Western Electric products, this chip led the way to the
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DSP-16. The DSP-16 was extremely fast and difficult to program. It featured only two
accumulators and 16 registers (two of these were special purpose). The serial I/O also
contains a small TDMA section that can be used for multiprocessor communication
(see section 5.17).

Motorola introduced the 56000 [Kloker, 1986] in 1986. The 56000 has been used
quite successfully in many digital audio projects because

� 24 bits of data width provided room for scaling, higher dynamic range, extra se-
curity against limit cycles in recursive filters, better filter coefficient quantization
and also additional room for dithering.

� The large accumulator (a 24 bit by 24 bit product + 8 bits of guard = 56 bits of
accumulator length) provided a large guard band for filters of high order.

Other positive aspects of the 56000 include memory moves in parallel with arith-
metic operations and modular addressing modes [Kloker and Posen, 1988]. The 56000
was used by the NeXT MusicKit [Smith et al., 1989] very effectively.

The Zoran 38000 has an internal data path of 20 bits as well as a 20 bit address
bus. The two accumulators have 48 bits. It can perform a Dolby AC-3 [Vernon, 1995]
five channel decoder in real time, although the memory space is also limited to one
Megaword. It has a small (16 instruction) loop buffer as well as a single instruction
repeat. The instruction set has support for block floating point as well as providing
simultaneous add and subtract for FFT butterfly computation.

Sony introduced a DSP (the CXD1160) that was quietly listed in the 1992 catalog
[Sony, 1992]. It has an astonishingly short instruction memory – only 64 instructions.
Likewise, the coefficient and data memories are also 64 locations. The CXD1160 is
unusual since it has a DRAM interface directly on chip. It also has a special 40 bit wide
serial interface that permits an external host to download instructions, coefficients or
data into the chip. This path is used to great effect in the (see section 5.19). The
serial I/O is designed to output stereo samples in one sample time; another uncommon
feature. The CDX1160 was superceded by the CXD2705 [Hingley, 1994] but was
never released to the public.

Other manufacturers have introduced 16 bit fixed point processors. IBM’s Mwave
is supposed to be for “Multimedia” operations but can only address 32K (15 bits) of
data memory. The product register is also only 32 bits (data is assumed to be fractional
form of only 15 bits) so constant rescaling is necessary. Perhaps its most noteworthy
addition is the wide use of saturation arithmetic in the instruction set and the large
number of DMA channels.

Analog Devices also has a 16 bit DSP (the ADSP-2100 series [Roesgen, 1986]) that
has found some limited use in audio applications. The 2100 series has limited on chip
memory and a limited number of pins (14) for the external memory. Use of a common
bus for arithmetic results limits the amount of processor parallelism. However, unlike
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other 16 bit processors, the ADSP-2100 series can be nicely programmed for multiple
precision operations.

The desire to keep many functional units operating in parallel through software
scheduling inspired Very Long Instruction Word (VLIW) architectures [Fisher, 1983].
Recently, new VLIW architectures for fixed point signal processing have been released.
MPACT [Kalapathy, 1997] (by Chromatic) is a VLIW machine designed for both audio
and video. As shown in figure 5.14, it has a large ALU and a fast memory interface.

Figure 5.14 MPACT block diagram

Notice how the outputs of the functional units are connected to a huge 792 (72 by
11) wire bus. This acts as a crossbar between outputs and inputs permitting arbitrary
connections. The large number of bus wires also permits a very large bus traffic rate
reaching one Gigabyte/second in the second generation part.

Floating Point. Integrated floating point units first arrived as separate coprocessors
under the direct control of the microprocessor. However, these processors performed
arithmetic with numerous sequential operations, resulting in performance too slow for
real-time signal processing.

AT&T introduced the first commercially available floating point DSP in 1986 [Bod-
die et al., 1986]. An important characteristic of the DSP-32 is the exposed four stage
pipe. This means scheduling is left up to the compiler or assembler. It was notable,
at the time, for its computational speed, but not its ease of use. The DSP-32 ran at 4
million multiply accumulates (MAcs) per second. The integer section executed 4 MIPs
at peak rate. The processor has double buffered serial DMA so the processor need
not be directly involved with stuffing data into I/O registers. Originally fabricated in
NMOS, it was recreated in CMOS as the DSP-32C [Fuccio et al., 1988]. The DSP-32C
ran at twice the speed of the NMOS version and also increased the address space to 24
bits. Note that the DSP-32 performed floating point arithmetic in an internal format
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that was not compatible with IEEE-754 [IEEE Computer Society Standards Commit-
tee, 1985]. The DSP-32C kept this incompatibility but introduced new instructions
to convert back and forth from the internal format to the IEEE 32 bit format. The
DSP-32C also introduced interrupts which the DSP-32 did not implement.

Texas Instruments C30/C40/C80
The TMS320C30 [Papamichalis and Simar, 1988] follows the basic architecture

of the TMS-320 series. Unlike the DSP-32, it uses pipeline interlocks. Like the
DSP-32, it features its own internal format for floating point numbers. Because of
the four stage pipeline organization, it can perform a number of operations in parallel.
It also features a delayed branch - something of a novelty in DSP processors. The
TMS320C40 [Simar et al., 1992] has six parallel bidirectional I/O ports controlled by
DMA on top of the basic TMS-320C30 architecture. These ports have been used for
multiprocessor communication.

Motorola 96000
Motorola introduced the 96002 [Sohie and Kloker, 1988] as an extension to the

existing 56000 architecture. The instruction set is an extension of the 56000 instruc-
tions, adding floating point instructions and implementing the IEEE 754 floating point
standard directly instead of converting to an internal format (like the DSP-32). It has
two parallel ports for multiprocessing.

ADSP-21000
The Analog Devices ADSP-21000 series offers IEEE arithmetic like the 96000

while maintaining the instruction format and addressing modes of the earlier 2100
series. The 21020 processor has a large external memory bus and can process a large
I/O rate. The relatively new Analog Devices SHARC (a.k.a. 21060) contains 256K
of static memory integrated on the chip along with the processor. The fast internal
memory avoids problems with memory stalls, but at the cost of a large die and a hefty
price tag. The SHARC also has a large number of pins resulting from the large number
of parallel ports (6 nibble wide ports and one byte port). This too increases chip cost
but like the TMS320C40 can be used for multiprocessor communication.

Applications. Besides the use of single DSPs as processor adjuncts (as in the NeXT
machine [Smith et al., 1989]), the WaveFrame Corporation introduced a modular
system [Lindemann, 1987] that uses the notion of a time division multiplexed bus
(like the FRMBox). Each slot was 354 ns. A single mixer board [Baudot, 1987]
had two memories, one for coefficients and the other for delayed sampled and past
outputs. These memories were multiplied together by a 32 by 32 bit multiplier and a
67 bit (3 guard bits) multiplier accumulator. The coefficients can be updated via a one
Megabit/second serial link (using 24 bit coefficients, that means one update every 24
microseconds.) The updates are calculated with a DSP chip. However, the DSP chip
was not fast enough to do the linear interpolation, so the interpolator was done with a
hardware multiplier.
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Custom chips. Because of the computational demand of multichannel or multivoice
audio processing, custom silicon has been proposed as one way to solve this basically
intractable problem. Also, going to custom silicon provides a manufacturer with a
not-so-subtle way to hide proprietary algorithms – it’s harder to reverse engineer a
chip than it is a program for a commercially available processor.

Yamaha. Yamaha has designed numerous custom chips to support its commercial
line of music boxes. A number of relevant details can be found in Yamaha’s patents.
The famous DX-7 has two chips: the first one was an envelope generator; the second
one generated the actual samples. The interconnection between these two sections can
be found in patents from 1986 and 1988 [Uchiyama and Suzuki, 1986][Uchiyama and
Suzuki, 1988]. These patents also describes the use of logarithmic numerical represen-
tation to reduce or eliminate multiplication and the use of Time Division Multiplexing
(TDM) for multivoice computation. The use of logarithmic representation can be seen
in the FM equation (equation 5.18). This is calculated from the inside out as follows
from a phase angle ωn t:

1. Lookup ωm t in the logarithmic sine table

2. Read the modulation factor I (t ) and convert to logarithmic form

3. Add (1) to (2) giving log(sin ωm t) + log( I (t ))

4. Convert back to linear form via an anti-log table giving I(t ) sin(ωm t)

5. A shift S can be applied, multiplying the output by a power of 2 resulting in
S I ( t ) sin(ωm t)

6. The carrier is added in, ωc t forming ωc t + S I (t ) sin(ωm t )

7. This is looked up in the logarithmic sine table in preparation for envelope scaling:
log(sin(ωc t + S I ( t ) sin(ωm t )))

8. Finally, the log of the amplitude term A( t) is added to the previous step and
looked up in the anti-log table giving A(t ) sin(ωc t + S I (t) sin(ωm t ))

As remarked earlier, the use of logarithmic arithmetic to avoid multiplication fits in
well with floating point converters.

Yamaha has also patented sampling architectures (see Massie’s chapter for more
information on sample rate conversion and interpolation in samplers). A recent patent
[Fujita, 1996] illustrates how fractional addressing from a phase accumulator is used
by an interpolation circuit to perform wide range pitch shifting.
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Wawrzynek. Wawrzynek [Wawrzynek and Mead, 1985][Wawrzynek, 1986]
[Wawrzynek, 1989] proposed the use of “Universal Processing Elements” (UPEs).
A UPE implements the following equation (5.20):

y = a + (m * b) + (1 – m) * d (5.20)

where a can be used to sum previous results, m is the scaling factor and b and d
are arbitrary constants. When d = 0, then the UPE computes a sum and a product.
When d ≠ 0, then the UPE computes a linear interpolation between b and d. The
UPEs are implemented in serial fashion, as first advocated by Jackson, Kaiser and
McDonald [Jackson et al., 1968] and further expounded by Lyon [Lyon, 1981]. The
UPEs can be used to implement filters, mixers and any sum of products. Note that
tables are lacking, therefore trigonometric functions must be approximated via their
Taylor series expansions or via a recursive oscillator (mentioned in section 5.3.3). A
second generation chip was proposed by Wawrzynek and von Eicken [Wawrzynek and
von Eicken, 1989] that included interprocessor communication however the parameter
update bandwidth was severely limited.

E-mu. E-mu Systems (now a subsidiary of Creative Technologies) has designed and
patented a number of custom chips for use in their synthesizers and samplers. One
example [Rossum, 1992] uses filter coefficient interpolation; the data path provides
for dual use of the multiplier; in one use, it is part of the interpolation machinery, in
the other path it is used to form the convolutional product and sum. A later example
[Rossum, 1994a] uses four times oversampling, pipelining and a pointer arithmetic to
implement a basic looping looping (see the chapter by Massie for more information
on sampler implementation) There are four memories on-chip: one for the current
address, one for the fractional part of the address (as part of the phase interpolator),
one for the phase increment and finally, an end point. When the address exceeds the
end point, then the memory pointer address is reset. Only one ALU is used on the
chip and the output is fed back to the input of the RAMS. It should be noted that this
patent also includes the use of logarithmic representations to avoid multiplication: all
sounds are stored logarithmically so they can be scaled by the amplitude waveform
with a simple addition.

Rossum also proposed the use of a cache memory [Rossum, 1994b] as part of
the memory lookup path in a sampler interpolator. Since in many cases, the phase
increment is less than one, the cache will be hit on the integer part of the table address,
consequently, the memory will be free to use for other voices.

This is illustrated in figure 5.15.

IRIS X-20. The X-20 [Cavaliere et al., 1992] was designed by the IRIS group as
a fundamental component of the MARS workstation. It can be considered a VLSI
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Figure 5.15 Rossum’s cached interpolator

follow-on of the 4n series of IRCAM. It had two data memories, one ROM, a 16 by
16 multiplier with a 24 bit output and a 24 bit ALU. It executed from an external fast
static memory of 512 instructions. With a clock rate of 20 MHz, it executed at a 40
KHz sample rate.

Sony OXF. Sony designed a custom chip for use in the OXF mixer [Eastty et al.,
1995]. It is quite interesting with two different sections: one section devoted to signal
processing and the other devoted to interpolation of coefficients. This is shown in
figure 5.16.

All signal paths in the processor are 32 bits with a few exceptions. There are four
basic sources: one from the vertical bus, one from the horizontal bus, one from DRAM
and one fed back from the output of the ALU or multiplier. Note that products must
be shifted before they can be accumulated.

The interpolation processor has a double buffered memory that permits updates
during processing. Note that interpolation happens on every sample, thereby avoiding
“zipper noise” due to coefficient quantization. This is an expensive strategy, however
it always works.

Ensoniq ESP2. Ensoniq described a custom chip in a patent [Andreas et al., 1996]
that included the following features: A single cycle average instruction (add and shift
right 1) and a limit instruction (used for checking end points of ramps). It included a
special purpose address generator unit (AGEN) that is connected directly to the memory
address bus. The AGEN was designed with reverb implementation in mind. Memory
is divided into 8 different regions; addresses are wrapped within region boundaries.
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Figure 5.16 Sony OXF DSP block diagram

The AGEN offers the ability to update the base register or address register during the
memory cycle.

Parallel machines. Interprocessor communication becomes the problem to solve
(for algorithms that won’t fit on a single processor, this assumes that the algorithm can
be decomposed for multiple processors and intermediate results can be communicated
between cooperating processors).

Typical approaches to loosely coupled multiprocessor architectures assume that
communication from one processor to another must be dynamic in nature, in particu-
lar, that the destination address of one datum can and will change from time to time.
Furthermore, such machines also assume that communication is generally uncontrolled
and the frequency of communication can vary from sporadic to overwhelming. This
is the most general case, but suffers because the interconnection network must accom-
modate ever changing destination addresses in packets. If the algorithm has static
addressing patterns, the need for dynamic routing hardware can be totally eliminated,
thereby saving cost and complexity.
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Cavaliere [Cavaliere, 1991] briefly reviews several parallel DSP architectures for
audio processing with an eye toward examining the interconnection strategies and their
use for audio algorithms.

Serial Interconnects. Audio serial rates (768 Kilobits/second per channel at 48 Kilo-
samples/second) present an opportunity for parallel DSP. By using standard telecom-
munication time division multiplexing (TDM), it’s possible to “trunk” multiple chan-
nels as well as use switching techniques.

DSP.* [Kahrs, 1988] (The name is a throwback to Cm* [Gehringer et al., 1987])
was designed around the TDM philosophy exemplified by Moore’s (see section 5.3.4).
An architectural block diagram of the system is shown in figure 5.17.

Figure 5.17 DSP.* block diagram

As shown in figure 5.17 processor modules are connected to the serial highway.
Each processor module has a unique address on the highway (this address is wired
on the card). There are two traces on the backplane per processor: one for the input
to the processor (from the switch) and one from the processor (to the switch). All
interprocessor communication is via the switch. The switch sits between the host
VME bus and the host processor and is programmed by the host processor.

All processors must use the same serial clocks to stay in synchronization with the
sample frame clocks. These clocks are buffered by the host interface card and put on
the backplane. The card also generates the processor clocks, so the processors can also
run in synchronization.

There are two DSP-32s per “processor module”. The “master” (with external
memory) is connected to the serial lines going to and from the crossbar switch. The
“slave” is connected to external I/O devices such as A/D and D/A converters. It is
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responsible for various I/O operations such as pre and post filtering. The 8 bit parallel
data ports of both DSP-32s are indirectly connected to the VME bus. The master DSP-
32 can also select which word (load) clocks to use on the transmit side to the switch via
the memory mapped I/O; this helps limit the transmission bandwidth (Although serial
DMA doesn’t directly involve the arithmetic sections of the DSP-32, it does cause wait
states to be inserted.)

The time slot interchange switch uses a commercially available telephone switch,
the Siemens PEB2040. Besides being able to operate up to 8 megabits per second, it
can be programmed to be either a time division, space division or “mixed” time/space
division switch.

Unfortunately, the output connections must be fixed depending on the interconnec-
tion scheme chosen (time, space or mixed). A “mixed” space/time switch for 16 lines
(processors) at 8 Mbits/second requires 32 integrated circuits.

In the worst case, changing a single connection in the switch can take a full frame
time. This means that changing the entire topology of the switch is not an action to be
taken lightly. However, simple changes can be done relatively rapidly.

Gnusic
The purpose of the Gnusic [Kahrs and Killian, 1992] project was to build a music I/O

device for an experimental workstation capable of “orchestral synthesis”. “Orchestral
synthesis” means the synthesis of large number of voices in real time. The basic
architecture is shown in figure 5.18.

Figure 5.18 Gnusic block diagram

Control and data signals from the 68020 based workstation are bused over to a
control card that buffers the signals and places them on the backplane (not illustrated).
The instrument cards are plugged into the backplane and controlled by the host pro-
cessor. Each instrument card has a digital signal processor (an AT&T DSP-16) for
mixing the digital outputs as follow: This processor must (a) mix the output from
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the card “upstream” with the sample generated locally, and (b) perform any effects
desired with the leftover time. Such effects might include filtering or feedback control
of the on-board oscillators. The basic DSP interface includes a pseudo-dual-ported
static program memory for the DSP-16. Because the DSP-16 has a totally synchronous
memory interface, memory access must be shared between the 8-bit processor bus and
DSP; when the processor sets the DSP to “run”, it also prevents itself from accessing
the memory.

The “final mix” card is last in the chain. It has the basic (“core”) DSP-16 circuitry
found on all instrument cards. A block diagram is found below:

Figure 5.19 Gnusic core block diagram

The host can write into the memory of the DSP-16, but only when the DSP-16
is stopped. The DSP-16 is too fast to allow true dual port access. This is perfectly
acceptable since the core program typically doesn’t change when the synthesizer is
running. The host can also set a control register which contains the run flag and other
useful bits.

The DSP-16 can either be a master (called “active” in DSP-16 terminology) or a
slave (“passive”). All the DSP-16s except the final mix DSP are in passive mode. They
are fed clocks from the final mix DSP. This guarantees that all DSPs are on the same
output clock. The final mix DSP also provides the left/right clock so that the channels
are synchronized as well. The serial data output of the DSP-16 is fed to the serial data
input of the next DSP-16 in line. All of the serial I/O is done via flat ribbon cables on
the end of the cards.

There are two basic kinds of instrument cards: an FM card and an array of DSP-
16s. The DSP-16 array uses the TDM serial bus feature of the DSP-16 and therefore
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is discussed extensively below. The DSP-16 array card has four DSP-16s and a core
DSP-16. The core DSP addresses the 4 satellite DSPs via the 16 bit wide parallel I/O
bus of the DSP-16. The core can address any of the satellites as well as address a
large external memory specifically designed for reverberation. The serial I/O of the
satellites are connected together in a TDM bus using the on chip logic of the DSP-16.
The DSP-16 multiprocessor interface permits up to eight processors to be connected
on a serial bus.

The data, clock, serial address and sync pins are all bused together. Each processor
has its own address; data can be sent from one processor to another in a specific
slot. Slots must be reserved (i.e., statically allocated) beforehand as there is no bus
contention mechanism. Furthermore, each processor must have a unique time slot
“address”.

The host has the same interface to the memory of the satellites as it does to the
memory of the core DSP-16. It also has a 2K × 8 FIFO attached to the parallel I/O
bus of the core for us in parameter passing from the host. Status bits from the FIFO
can be used to interrupt the core DSP should the FIFO become too full and risk data
overrun.

Sony SLIP-1000
The Sony SDP-1000 [Sony, 1989] was an interesting multiprocessor designed

around a serial crossbar interconnect. The controlling machine itself can be divided
into three sections:

1. A host section featuring a host processor with a graphics processor and video
RAM

2. A separate I/O section controlled by a microcontroller including digitizing the
trackball and 8 slide potentiometers

3. DSP processing section.

The DSP processing section is shown in figure 5.20. Basically, the 24 serial inputs
and 24 serial outputs of the DSPs are connected to a custom crossbar chip. Also
included are 8 serial inputs from the outside world and 8 more serial outputs to the
outside world which are the final output of the machine.

The crossbar interconnect is under the control of the microprocessor. The DSPs
are programmed remotely, via the microprocessor by the processor’s serial port (see
section 5.13). The processors all run lock-step and are sample synchronous. Note that
only four processors have external memory (and only 64K). This severely limits the
reverberation time but in fairness, this machine was not designed for effects processing.
Also note that coefficient conversion from real time inputs must take place in the host
processor and then be converted into serial form and placed in the specific DSP.
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Figure 5.20 Sony SDP-1000 DSP block diagram

Parallel Interconnects. Serial interconnects have the distinct advantage of being
easy to connect and easy to multiplex. However, it must be remembered that serial
must be converted back to parallel sometime and therefore parallel interconnects can
be used if the conversion latency is to be avoided.

The DSP3 [Glinski and Roe, 1994][Segelken et al., 1992] uses a custom interconnect
that provides for a four port (NEWS) interconnect. Each board has a 4 × 4 array of
these processors, memories and interconnects. Of the 16 possible outputs at the card
edge, eight go to the backplane and the other eight are connected in a toroidal fashion.
The backplane has a capacity to handle eight of these boards for a grand total of 128
processors.

The IRCAM Signal Processing Workstation (ISPW) [Lindemann et al., 1991] was
designed around a pair of Intel i860s [Intel, 1991]. The i860 was, for its time, an
extremely fast and extremely large and expensive chip. It featured a 128 bit internal
data bus, a 64 bit instruction bus and internal on chip caching. Its pipeline permitted
both scalar and vector operations but the pipeline must be managed explicitly (such as
register forwarding and pipe interlocks). The interconnect is a 64 bit by 64 bit crossbar
under the control of the host (in this case a NeXT cube). Crossbar interconnects are
very flexible (see C.mmp [Wulf et al., 1981]) but can’t be expanded. So this makes the
two processor 64 bit interconnect a unique design for its time.

Snell [Snell, 1989] also used a crossbar (also influenced by C.mmp) to interconnect
56000s. He connected three 56001s and three DRAM banks to an integrated crossbar
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with a 7th port connected to a disk drive interface and the 8th port to an expansion
port for connection to another crossbar switch for further multiprocessor expansion.
Mechanical design limited this expansion technique to several levels, sufficient for
interconnection of over a hundred signal processors in a tightly coupled system. He
separated the static RAM from the dynamic RAM so that other processors can access
the dynamic ram via the crossbar. However, both processors must agree beforehand
otherwise a conflict will result. A subsequent design (J. Snell, personal communication,
1997) fixed this problem by integrating FIFOs, a DMA unit and DRAM controller into
the crossbar switch.

The Reson8 machine [Barrière et al., 1989] is of many multiprocessors built using
Motorola 56000s. Eight Motorola 56000s (see section 5.13) are interconnected on
a single shared bus. One of the 56000s is the master, the remaining seven are slaves.
The master is also responsible for moving data from one processor to another. It’s
worth noting that they avoided the use of DRAM because of the added complexity
(the limitation in algorithm implementation was considered). Dual-port RAM was
used for interprocessor communication, perhaps an influence from their earlier work
at Waveframe.

Eastty, el al. [Eastty et al., 1995] describe a very large digital mixer composed of
custom chips (see section 5.15 for a description of the custom chip). The interconnect
is shown in figure 5.21.

Figure 5.21 Sony’s OXF interconnect block diagram

Each board is composed of a 5 by 5 array of processor chips (shown on the left of
figure 5.21) connected to the backplane via a horizontal and vertical bus (so each card
has 10 buses x 33 bits/bus = 330 signal pins). In turn, the backplane connects the cards
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in a 4 by 4 matrix where the each bus connects to 3 other cards and an input/output
card (shown on the right of figure 5.21).

5.4 CONCLUSION

The processing of audio signals has made great strides since the development of digital
synthesizers and their implementation on commodity DSPs. Further improvement
will result from better tuning architectures to the specific demands in audio processing,
including attention to parameter updates, coefficient calculation and well designed
arithmetic. This also includes A/D and D/A converters with improved “sonic” capa-
bilities; the move to 96 KHz sampling rates and longer samples will again push the
state of the art in converter design.

This work has been partially supported by ARPA grant DAAL01-93-K-3370. John
Snell offered many detailed comments on a draft of this chapter.
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Abstract: This chapter deals with signal processing for hearing aids. The primary
goal of a hearing aid is to improve the understanding of speech by an individual with a
hearing impairment, although the perception of music and environmental sounds is also
a concern. The basic signal-processing system consists of linear filtering followed by
amplification, with more sophisticated techniques used to try to compensate for the nature
of the hearing impairment and to improve speech intelligibility in noise.20

The chapter starts with a review of auditory physiology and the nature of hearing
loss. Linear amplification systems are then discussed along with hearing-aid design ob-
jectives and the limitations of conventional technology. Feedback cancellation, which
can improve hearing-aid system stability, is presented next. Dynamic-range compres-
sion is an important signal-processing approach since the impaired ear has a reduced
dynamic range in comparison with the normal ear, and single-channel and multi-channel
compression algorithms are described. Noise suppression is also a very important area
of research, and several single-microphone approaches are described, including adaptive
analog filters, spectral subtraction, and spectral enhancement. Multi-microphone noise-
suppression techniques, such as adaptive noise cancellation, are discussed next. Noise
can be more effectively suppressed using spatial filtering, and directional microphones
and multi-microphone arrays are described. The chapter concludes with a brief summary
of the work being done in cochlear implants.
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Table 6.1 Hearing thresholds, descriptive terms, and probable handicaps (after Good-
man, 1965)

Descriptive Term Hearing Loss (dB) Probable Handicap

Normal Limits -10 to 26
Mild Loss 27-40

Moderate Loss 40-55

Has difficulty hearing faint or
distant speech
Understands conversational
speech at a distance of 3-5
feet
Conversation must be loud to
be understood and there is
great difficulty in group and
classroom discussion
May hear a loud voice about
1 foot from the ear, may iden-
tify environmental noises,
may distinguish vowels but
not consonants
May hear loud sounds, does
not rely on hearing as pri-
mary channel for communi-
cation

Moderately Severe Loss

Severe Loss

Profound Loss

55-70

70-90

> 90

6.1 INTRODUCTION

Hearing loss is typically measured as the shift in auditory threshold relative to that of
a normal ear for the detection of a pure tone. Hearing loss varies in severity, and the
classification of hearing impairment is presented in Table 6.1[Goodman, 1965].

Approximately 7.5 percent of the population has some degree of hearing loss, and
about 1.0 percent has a loss that is moderately-severe or greater[Plomp, 1978]. There
are approximately 28 million persons in the United States who have some degree
of hearing impairment[National Institutes of Health, 1989]. The majority of the
hearing-impaired population has mild or moderate hearing losses, and would benefit
significantly from improved methods of acoustic amplification. Hearing aids, however,
are not as widely used as they might be. Even within the population of hearing-aid
users, there is widespread discontent with the quality of hearing-aid amplification
[Kochkin, 1992].

One of the most common complaints is that speech is especially difficult to under-
stand in a noisy environment. Pearsons et al. [Pearsons et al., 1976] have shown that
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in noisy environments encountered in everyday situations, most talkers adjust their
voices to maintain a speech-to-noise ratio of 7 to 11 dB. While normal-hearing indi-
viduals usually have little difficulty in understanding speech under these conditions,
users of hearing aids, or other sensory aids such as cochlear implants, often have great
difficulty. In general, the signal-to-noise ratio (SNR) needed by a hearing-impaired
person to give speech intelligibility in noise comparable to that for speech in quiet is
substantially greater than the corresponding SNR required by a normal-hearing person
[Plomp, 1978].

While most commercial hearing aids are still based on analog signal processing
strategies, much research involves digital signal processing. This research is motivated
by the desire for improved algorithms, especially for dealing with the problem of
understanding speech in noise. Cosmetic considerations, however, limit what can be
actually implemented in a practical hearing aid. Most users of hearing aids want a
device that is invisible to bystanders and thus does not advertise their impairment. As
a result, the strongest pressure on manufacturers is to put simple processing into the
smallest possible package, rather than develop sophisticated algorithms that require
a larger package. Thus practical signal processing, as opposed to research systems,
is constrained by the space available for the circuitry and the power available from
a single small battery. In order to be accepted in such a market, digital signal-
processing systems will have to demonstrate enough performance benefits over their
analog counterparts to justify their larger size, shorter battery life, and higher cost.

The emphasis in this chapter is on digital processing algorithms for moderate hearing
losses caused by damage to the auditory periphery. Analog processing is also described
to give a basis for comparison. The chapter begins with a discussion of peripheral
hearing loss, since the behavior of the auditory system motivates hearing-aid algorithm
development. Linear hearing aids are then described, followed by the presentation of
feedback cancellation to improve the linear system performance. Single-channel and
multi-channel compression systems are then presented. Improved speech intelligibility
in noise is the next subject, with both single-microphone and multi-microphone noise
suppression discussed. The chapter concludes with a brief discussion of cochlear
implants and a summary of the hearing-aid material presented.

6.2 HEARING AND HEARING LOSS

The design of a hearing aid should start with a specification of the signal processing
objectives. A useful conceptual objective for a peripheral hearing loss is to process the
incoming signal so as to give a perfect match between the neural outputs of the impaired
ear and those of a reference normal ear. Implementing this ideal system would require
access to the complete set of neural fibers in the impaired ear and to a corresponding set
of outputs from an accurate simulated normal ear. The simulated neural outputs could
then be substituted directly for the neural responses of the impaired ear. In designing
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a hearing aid, however, one can only indirectly affect the neural outputs by modifying
the acoustic input to the ear. Hearing-aid processing is thus a compromise in which the
acoustic input is manipulated to produce improvements in the assumed neural outputs
of the impaired ear.

6.2.1 Outer and Middle Ear

The nature of the signal processing, and its potential effectiveness, depends on the
characteristics of the auditory system. The ear transforms the incoming acoustic signal
into mechanical motion, and this motion ultimately triggers neural pulses that carry
the auditory information to the brain. The essential components of the ear are shown
in Fig 6.1.

Figure 6.1 Major features of the human auditory system

The ear is divided into three sections, these being the outer, middle, and inner ear.
The outer ear consists of the pinna and ear canal. The sound wave enters the pinna
and travels through the ear canal to the ear drum (tympanic membrane). The outer ear
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forms a resonant acoustic system that provides approximately 0-dB gain at the ear drum
below 1 kHz, rising to 15-20 dB of gain in the vicinity of 2.5 kHz, and then falling in a
complex pattern of resonances at higher frequencies[Shaw, 1974]. The sound energy
impinging upon the ear drum is conducted mechanically to the oval window of the
cochlea by the three middle ear bones (ossicles). The mechanical transduction in the
human middle ear can be roughly approximated by a pressure transformer combined
with a second-order high pass filter having a Q of 0.7 and a cutoff frequency of 350
Hz [Lynch et al., 1982][Kates, 1991b].

Problems with the outer or middle ear can lead to a hearing loss even when the inner
ear (cochlea) is functioning properly. Such a hearing loss is termed conductive since
the sound signal conducted to the inner ear is attenuated. One common pathology,
especially in children, is otitis media, in which the middle ear fills with fluid, pus, or
adhesions related to infection. Another pathology is otosclerosis, in which the ossicles
cease to move freely. Conductive losses are not normally treated with hearing aids
since they can usually be corrected medically or surgically.

6.3 INNER EAR

C o c h l e a

Figure 6.2 Features of the cochlea: transverse cross-section of the cochlea
(Reprinted with permission from [Rasmussen, 1943], ©1943, McGraw-Hill)
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A transverse cross section through the cochlea is shown in Fig. 6.2. Two fluid-
filled spaces, the scala vestibuli and the scala tympani, are separated by the cochlear
partition. The cochlear partition is bounded on the top by Reissner’s membrane and
on the bottom by the basilar membrane, which in turn forms part of the organ of Corti.
A more detailed view of the organ of Corti (after Rasmussen[Rasmussen, 1943]) is
presented in Fig. 6.3.

O r g a n of C o r t i

F igu re  6 .3 Features of the cochlea: the organ of Corti
(Reprinted with permission from [Rasmussen, 1943], ©1943, McGraw-Hill)

The tectorial membrane rests at the top of the organ of Corti, and the basilar mem-
brane forms the base. Two types of hair cells are found along the basilar membrane.
There are three rows of outer hair cells and one row of inner hair cells. The outer hair
cells form part of the mechanical system of the cochlear partition, while the inner hair
cells provide transduction from mechanical motion into neural firing patterns. There
are about 30,000 nerve fibers in the human ear. The vast majority are afferent fibers
that conduct the inner hair cell neural pulses towards the brain; approximately 20 fibers
are connected to each of the 1,500 inner hair cells. Approximately 1,800 efferent fibers
conduct neural pulses from the brain to the outer hair cells[Pickles, 1988].

The organ of Corti forms a highly-tuned resonant system. A set of neural tuning
curves for the cat cochlea [Kiang, 1980] is presented in Fig. 6.4.
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Figure 6.4 Sample tuning curves for single units in the auditory nerve of the cat
(Reprinted with permission from [Kiang, 1980]. ©1980 Acoustical Society of Amer-
ica)

A tuning curve is generated by placing an electrode on a single afferent nerve fiber,
finding the frequency to which that fiber responds most readily, and then adjusting
the stimulus level as the test frequency is varied to maintain the neural firing rate at
a level just above threshold. The tip of the tuning curve is the region most sensitive
to the excitation, and the tail of the tuning curve is the plateau region starting about
one octave below the tip and extending lower in frequency. The ratio of the signal
amplitude required to generate a response in the tail region to that required in the region
of the tip of the tuning curve is approximately 60 dB. The slopes of the high-frequency
portion of the tuning curves are approximately 100-300 dB/octave. The sharpness of
the tuning curves, the steepness of the slopes, and the tip-to-tail ratio all decrease at
lower characteristic frequencies of the fibers.

An example of what can happen to the tuning curves in a damaged ear is shown in
Fig. 6.5[Liberman and Dodds, 1984]. The stereocilia (protruding hairs) of outer and
inner hair cells were damaged mechanically in this experiment; the tuning curve for an
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Figure 6.5 Neural tuning curves resulting from damaged hair ceils
(Reprinted from [Liberman and Dodds, 1984], with kind permission from Elsevier
Science – NL, Sara Burgerhartstraat 25, 1055 KV, Amsterdam, The Netherlands)
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undamaged cochlea is shown as the dotted line and the tuning curve for the damaged
condition is the solid line, In 6.5(A) the outer hair cells have been completely destroyed,
resulting in a tuning curve that is much broader and having a response peak shifted to a
lower frequency. In 6.5(B) there is partial damage to the outer hair cells, resulting in a
“w”-shaped tuning curve having a sharply tuned tip at a greatly reduced sensitivity. In
6.5(C) the inner hair cells have been damaged while the outer hair cells remain mostly
intact, resulting in a tuning curve having a nearly-normal shape at all frequencies but
which has a much lower sensitivity.

Acoustic trauma and ototoxic drugs usually cause damage to the outer hair cells
in the cochlea [Pickles, 1988] similar to that illustrated in Fig 4(A), resulting in a
system that is less sharply tuned and which provides much less apparent gain. The
auditory filters, which give a high-Q band-pass response in the normal ear, have become
much more like low-pass filters, with a resultant reduction in both gain and frequency
resolution. The loss of frequency resolution may be related to the excess upward
spread of masking[Egan and Hake, 1950] observed in impaired ears [Gagné, 1988],
in which low-frequency sounds interfere with perception of simultaneously occurring
higher-frequency sounds to a greater than normal degree.

The tuning curves in a healthy ear exhibit compressive gain behavior [Rhode, 1971]
[Sellick et al., 1982][Johnstone et al., 1986]. As the signal level increases, the tuning
curves become broader and the system exhibits reduced gain in the region of the tip
of the tuning curve. The gain in the region of the tail of the tuning curve is essentially
unaffected. The compression ratio ranges from about 1.5:1 at low frequencies to about
4:1 at high frequencies, and is about 2.5:1 in the  central portion of the speech frequency
range [Cooper and Yates, 1994]. In the damaged ear the compression ratio is reduced
along with the gain, so the auditory system becomes more linear with increasing
hearing loss.

The loss of compression in the damaged ear is a possible cause of the phenomenon
of loudness recruitment. Loudness is the perceptual correlate of sound intensity.
Loudness recruitment is defined as the unusually rapid growth of loudness with an
increase in sound intensity [Moore et al., 1985], and often accompanies sensorineural
hearing impairment

An example of recruitment is presented in Fig. 6.6, for which normal-hearing and
hearing-impaired subjects were asked to rate the loudness of narrowband noise on a
50-point scale[Kiessling, 1993]. As the hearing loss increases in severity, the subjects
need increasingly intense stimuli to achieve identical estimated loudness scores for
sounds near auditory threshold. At high stimulus levels, however, the rated loudness
is similar for all degrees of hearing loss. Thus the rate of growth of loudness with
increasing stimulus level increases with increasing hearing loss.

In addition to the loss of gain, reduction in compression, and loss of frequency
resolution, the impaired ear can also demonstrate a loss of temporal resolution. Gap
detection experiments [Fitzgibbons and Wightman, 1982], in which the subjects are
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Figure 6.6 Loudness level functions on a 50-point rating scale for different classes of
hearing loss.
(Reprinted with permission from [Kiessling, 1993]. ©1993, Canadian Association of
Speech-Language Pathologists and Audiologists)
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asked to determine if a short pause is present in an otherwise continuous signal, have
shown that hearing-impaired listeners require longer gaps for detection in a band-pass
filtered noise signal than normal-hearing subjects. However, the difference in perfor-
mance appears to be closely related to the inability of the hearing-impaired listeners
to detect the high-frequency transient portions of the gated test signal [Florentine and
Buus, 1984].

As shown in Fig. 6.6, when the presentation levels are corrected for the hearing
loss the forward masking results for the hearing-impaired and normal-hearing subjects
become nearly identical. In the figure, dB SPL refers to the absolute signal level
while dB SL (sensation level) refers to the level above the subject’s auditory threshold.
Presentation of the stimuli to the normal ear at sensation levels corresponding to those
used in the impaired ear results in masking curves that are nearly identical in shape
and differ only in the offset used to compensate for auditory threshold.

The effects of sensorineural hearing loss in speech perception are illustrated in Fig.
6.8 to Fig. 6.10 for a simulation of a normal and impaired cochlea [Kates, 1991b]
[Kates, 1993a][Kates, 1995]. The time-frequency simulated neural response to the
stimulus /da/ at a level of 65 dB SPL is shown for a) a normal ear, b) an ear with
a simulated hearing loss obtained by turning off the outer hair cell function in the
cochlear model, and c) the stimulus given 30 dB of gain and presented as input to the
simulated hearing loss. The speech stimulus is the syllable /da/ digitally generated
using a speech synthesizer [Klatt, 1980].

The figure shows the first 25 ms of the neural responses for a simulated normal ear
and for an impaired ear in which the outer hair cells have been eliminated. The normal
ear of Fig. 6.8 shows regions of synchronized firing activity corresponding to the initial
frequencies of each of the three formants (500 Hz, 1.6 kHz, and 2.8 kHz) that give the
peaks of the syllable spectrum. In addition, there are high ridges corresponding to the
glottal pulses exciting the vocal tract at a fundamental frequency of 120 Hz. Thus the
neural firing patterns in the normal ear appear to code the speech formant frequencies
both by the region of maximum activity and in the periodic nature of the firing within
each of these regions.

The simulated firing pattern for the impaired ear with the outer hair cell function
eliminated but with the inner hair cells intact is presented in Fig. 6.9. The complete
outer hair cell damage corresponds to a nearly flat hearing loss of about 55-60 dB. The
shift in auditory threshold, combined with the auditory filter shapes changing from
band-pass to low-pass, has resulted in the first formant dominating the simulated firing
behavior. The presence of the second formant can be discerned in a slight broadening
of the ridges in the vicinity of 1.6 kHz, while the third formant can not be seen at all.
Thus a significant amount of both frequency and temporal information has been lost.
Amplifying the input signal for presentation to the impaired ear results in Fig. 6.10.
The neural firing rate is substantially increased, but there is little if any information
visible beyond that for the unamplified stimulus. Thus amplification can increase the
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Figure 6.7 Mean results for five subjects with unilateral cochlear impairments
(Reprinted with permission from [Glasberg et al., 1987]. ©1987 Acoustical Society
of America)
Forward masking, in which a sound can interfere with the perception of sounds that
follow it, can also be greater in hearing-impaired subjects. However, this also appears
to primarily be a level effect [Glasberg et al., 1987]. Mean results for five subjects
with unilateral cochlear impairments showing the threshold for a 10-ms signal as a
function of its temporal position relative to a 210-ms masker. Thresholds are plotted
as a function of masker-onset to signal-onset delay. The three leftmost points are
for simultaneous masking and the three rightmost points are for forward masking.
The curves labeled “Normal” are for the subjects’ normal ears, while those labeled
“Impaired” are for the impaired ears of the same subjects. (after Glasberg et al., 1987)
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Figure 6.8 Simulated neural response for the normal ear

sensation level above the impaired auditory threshold, but it may not be able to restore
the information that has been lost due to the changes in auditory frequency resolution.

6.3.1 Retrocochlear and Central Losses

Hearing loss can also be caused by problems in the auditory pathway carrying the
neural signals to the brain, or by problems within the brain itself. Retrocochlear
lesions due to tumors in the auditory nerve can cause hearing loss [Green and Huerta,
1994], as can brainstem, cortical, or hemispherical lesions [Musiek and Lamb, 1994].
Furthermore, there is some evidence that the elderly can have increased difficulty in
understanding speech even when the auditory periphery exhibits normal or nearly-
normal function [Jerger et al., 1989]. Successful signal-processing strategies have not
been developed for these central auditory processing deficits, and much more study
is needed to characterize the hearing losses and to determine if specialized signal-
processing strategies are warranted.
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Figure 6.9 Simulated neural response for impaired outer cell function

6.3.2 Summary

The analogy of eyeglasses is often used when discussing hearing aids. As can be
seen from the material in this section, however, hearing loss is typically a much more
complicated problem than correctable vision. In vision a lens, that is, a passive linear
system, provides nearly perfect compensation for the inability of the eye to focus
properly at all distances. Hearing loss, on the other hand, involves shifts in auditory
threshold, changes in the system input/output gain behavior, and the loss of frequency
and temporal resolution. The development of signal processing to compensate for
these changes in the impaired ear presents a significant engineering challenge.

6.4 LINEAR AMPLIFICATION

The basic hearing-aid circuit is a linear amplifier, and the simplest hearing aid consists
of a microphone, amplifier, and receiver (output transducer). In addition to being
commonly prescribed on its own, the linear hearing aid also forms the fundamental
building block for more-advanced designs. Thus many of the problems associated with
linear amplification will also affect other processing approaches when implemented
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frequencies), and also provides a more natural frequency response for monitoring the
user’s own voice. Because of potential feedback problems, discussed in the section on
Feedback Cancellation, a vent is not present in all hearing aids.

The microphone is positioned near the top of the hearing-aid faceplate above the
battery compartment, and the volume control and the vent are at the bottom. This

in practical devices. Conversely, improvements in linear instruments will lead to
improvements in all hearing aids.

6.4.1 System Description

A schematic diagram of an in-the-ear (ITE) hearing aid designed to fit within the
confines of the pinna and ear canal is shown in Fig. 6.11. Hearing aids are also
designed to fit behind the ear (BTE), in a body-worn electronics package, or completely
within the ear canal (ITC or CIC). The major external features of the hearing aid are
the microphone opening, battery compartment, volume control, and vent opening. The
vent is used to provide an unamplified acoustic signal at  low frequencies (for individuals
having high-frequency hearing losses and who therefore need amplification only at high

Figure 6.10 Simulated neural response for 30 dB of gain
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Figure 6.11 Cross-section of an in-the-ear hearing aid

placement maximizes the separation between the microphone and vent opening and
helps reduce acoustic feedback problems. Not shown is the circuitry internal to the
hearing aid; it is positioned where there is available space since the shell of the hearing
aid is molded to fit an impression of the individual ear. The receiver is located in the
canal portion of the hearing aid, and the receiver output is conducted into the ear canal
via a short tube. The vent runs from the faceplate to the ear canal.

A block diagram of the hearing aid inserted into the ear is presented in Fig. 6.12. The
input to the microphone is the sound pressure at the side of the head. The positioning of
the hearing aid in the ear canal has destroyed the normal pinna and ear canal resonance
at 2.5 kHz. The resultant insertion loss caused by blocking the natural resonance of
the outer ear in this frequency region is 15-20 dB, and the corresponding gain should
be reintroduced in the frequency response of the electroacoustic system. In addition
to the amplified signal path, there is also an unamplified signal path directly through
the vent, so the sound pressure in the ear canal is the sum of the amplified and direct
signals. Mechanical feedback from the receiver vibrations can excite the microphone
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Figure 6.12 Block diagram of an ITE hearing aid inserted into the ear canal

diaphragm in addition to the input sound pressure. Acoustic feedback is also present
since the sound pressure generated in the ear canal travels out through acoustic leaks
or through the vent, where it is reradiated at the vent opening in the faceplate. The
receiver, connected to the ear canal by a short tube, is loaded acoustically by the tube,
vent, and ear canal, and the ear canal is terminated by the input impedance of the ear
drum. Several simulations have been developed to assist in the design and evaluation
of hearing aid acoustics [Egolf et al., 1978][Egolf et al., 1985][Egolf et al., 1986]
[Kates, 1988][Kates, 1990].

The signal processing in a linear hearing aid consists of frequency-response shaping
and amplification. In general, one-pole or two-pole high-pass or low-pass filters
are used to shape the frequency response to match the desired response for a given
hearing loss. Multi-channel hearing aids are also available that allow the independent
adjustment of the gain in each frequency channel. Acoustic modifications to the tubing
that connect the output of a BTE instrument to the ear canal can also be used to adjust
the hearing-aid frequency response [Killion, 1981][Dillon, 1985].

6.4.2 Dynamic Range

The dynamic range of a hearing aid is bounded by noise at low input signal levels and
by amplifier saturation at high signal levels. A typical hearing-aid microphone has a
noise level of about 20 dB SPL, which is comparable to that of the human ear [Killion,
1976]. The addition of the hearing-aid processing and amplification circuits gives
equivalent noise levels of between 25 and 30 dB SPL. More complicated processing,
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such as a multi-channel filter bank, may generate higher noise levels due to the specific
circuit fabrication technology used and the number of circuit components required.
The equivalent hearing-aid noise level, after amplification, is therefore about 10 dB
higher than that of the normal unaided ear. This noise level tends to limit the maximum
gain that a hearing-aid user will select under quiet conditions since, in the absence of
the masking provided by intense inputs, a user will reduce the gain in order to reduce
the annoyance of the background noise.

At the other extreme, amplifier saturation limits the maximum gain that can be
achieved by the hearing aid. A typical hearing aid amplifier clips the signal when the
peak input level exceeds about 85 dB SPL. A speech-like signal at an input of 70 dB
SPL is therefore amplified cleanly, but a level of 80 dB SPL causes large amounts of
distortion [Preves and Newton, 1989]. Speech input at 65 to 70 dB SPL is typical of
normal conversational levels [Pearsons et al., 1976];[Cornelisse et al., 1991], but the
spectra of individual speech sounds can be as much as 15 dB higher when monitoring
the talker’s own voice at the ear canal [Medwetsky and Boothroyd, 1991]. Thus the
typical hearing aid amplifier does not have enough headroom to guarantee that the
user’s own voice will be amplified without distortion.

The available hearing-aid dynamic range is thus about 55 dB from the noise floor
to the saturation threshold. Selecting an amplifier with more gain, and turning down
the volume control, will raise the saturation threshold, but will also raise the noise
level by a similar amount. Thus a typical hearing aid, due to the compromises made in
battery size and circuit design, can only handle half the dynamic range of a normal ear.
Some progress is being made, however, since the development of class-D hearing-aid
amplifiers [Carlson, 1988] provides 10 to 20 dB more output at saturation than does
a class-A amplifier having comparable gain [Fortune and Preves, 1992]. The small
class-B amplifiers that are becoming available in hearing aids also greatly reduce the
problems associated with amplifier saturation[Cole, 1993].

6.4.3 Distortion

Amplifier saturation most often takes the form of symmetric peak clipping (S. Arm-
strong, personal communication, 1989). If a single sinusoid is input to the hearing
aid, the clipping will generate harmonic distortion, and for two or more simultaneous
sinusoids, intermodulation (IM) distortion will also result. The amount of distortion
influences judgments made about hearing-aid quality. Fortune and Preves [Fortune and
Preves, 1992], for example, found that reduced coherence in the hearing-aid output
signal was related to a lower hearing-aid amplifier saturation level and a lower loudness
discomfort level (LDL). LDL is the maximum level at which an individual is willing
to listen to speech for an extended period of time. This result suggests that hearing-aid
users will select reduced gain in order to reduce the distortion. In another study, a
large majority of hearing-aid users indicated that good sound quality was the most im-
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portant property of hearing aids, with clarity being the most important sound-quality
factor [Hagerman and Gabrielsson, 1984]. Thus reduced distortion would be expected
to lead to greater user comfort and satisfaction, and could lead to improved speech
intelligibility at high sound levels.

6.4.4 Bandwidth

The bandwidth of a hearing aid should be wide enough for good speech intelligibility
and accurate reproduction of other sounds of interest to the user. French and Stein-
berg [French and Steinberg, 1947] determined that a frequency range of 250-7000 Hz
gave full speech intelligibility for normal-hearing subjects, and more recent studies
[Pavlovic, 1987] extend this range to 200-8000 Hz for nonsense syllables or continuous
discourse. For music, a frequency range of 60-8000 Hz reproduced over an experimen-
tal hearing aid was found to compare favorably with a wide-range loudspeaker system,
again using normal-hearing listeners as subjects [Killion, 1988]. Thus a reasonable
objective for a hearing aid is a 60-8000 Hz bandwidth.

Most hearing aids have adequate low-frequency but inadequate high-frequency
response for optimal speech intelligibility, with the high-frequency response typically
decreasing rapidly above 4-6 kHz. Increasing the high-frequency gain and bandwidth
in laboratory systems generally yields improved speech intelligibility [Skinner, 1980].
However, the benefits of increased bandwidth will accrue in hearing aids only if the
amplifier can cope with the increased power demands without undue distortion and
if the system would remain stable in the presence of increased levels of acoustic and
mechanical feedback. Thus increasing the hearing-aid bandwidth, while desirable,
must wait for other problems to first be solved.

6.5 FEEDBACK CANCELLATION

Mechanical and acoustic feedback limits the maximum gain that can be achieved in
most hearing aids and also degrades the system frequency response. System instability
caused by feedback is sometimes audible as a continuous high-frequency tone or
whistle emanating from the hearing aid. One would also expect distortion to be
increased in an instrument close to the onset of instability since the feedback oscillations
will use up most of the available amplifier headroom. Mechanical vibrations from the
receiver in a high-power hearing aid can be reduced by combining the outputs of two
receivers mounted back-to-back so as to cancel the net mechanical moment; as much
as 10 dB additional gain can be achieved before the onset of oscillation when this is
done. But in most instruments, venting the BTE earmold or ITE shell establishes an
acoustic feedback path that limits the maximum possible gain to about 40 dB[Kates,
1988] or even less for large vents. Acoustic feedback problems are most severe at high
frequencies since this is where a typical hearing aid has the highest gain. The design
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criterion for effective feedback suppression would be to usefully increase maximum
gain while preserving speech information and environmental awareness.

The traditional procedure for increasing the stability of the hearing aid is to reduce
the gain at high frequencies[Ammitzboll, 1987]. Controlling feedback by modify-
ing the system frequency response, however, means that the desired high-frequency
response of the instrument must be sacrificed in order to maintain stability. Phase
shifting and notch filters have also been tried[Egolf, 1982], but have not proven to
be very effective. A more effective technique is feedback cancellation, in which the
feedback signal is estimated and subtracted from the microphone input. Simulations
and digital prototypes of feedback cancellation systems [Bustamante et al., 1989][En-
gebretson et al., 1990][Kates, 1991a] [Dyrlund and Bisgaard, 1991][Engebretson and
French-St.George, 1993][French-St.George et al., 1993] indicate that increases in gain
of between 6 and 17 dB can be achieved before the onset of oscillation with no loss of
high-frequency response. In laboratory tests of a wearable digital hearing aid [French-
St-George et al., 1993], a group of hearing-impaired subjects used an additional 4 dB
of gain when the adaptive noise cancellation was engaged and showed significantly
better speech recognition in quiet and in a background of speech babble. Field trials
of a practical adaptive feedback-cancellation system built into a BTE hearing aid have
shown increases of 8-10 dB in the gain used by severely-impaired subjects[Bisgaard,
1993].

An example of a feedback-cancellation system is shown in figure 6.13. This system
is typical of the majority that have been proposed in that a noise signal is injected
to probe the feedback path [Kates, 1991a][Engebretson and French-St.George, 1993]
[Bisgaard, 1993]. The characteristics of the feedback path are determined by cross-
correlating the noise signal p(n) with the error signal e(n); this measurement includes
the amplitude and phase effects of the receiver, the acoustic and mechanical feedback
paths, and the microphone response. The error signal e(n) is minimized by a least-
mean-squares (LMS) adaptive weight update algorithm[Widrow et al., 1975].

In some systems, the noise is continuously injected at a low level [Engebretson and
French-St.George, 1993][Bisgaard, 1993], and the LMS weight update also proceeds
on a continuous basis. This approach results in a reduced SNR for the user due to
the presence of the injected probe noise. In addition, the ability of the system to
cancel the feedback may be limited due to the presence of the speech signal while the
system is adapting[Kates, 1991a][Maxwell and Zurek, 1995]. Better estimation of the
feedback path can occur if the processed hearing-aid signal g(n) is disconnected during
a short time interval (50 ms) while the adaptation occurs[Kates, 1991a]; for stationary
conditions up to 7 dB of additional feedback cancellation is observed as compared
to a continuously adapting system, but this approach can have difficulty in tracking a
changing acoustic environment[Maxwell and Zurek, 1995] since the adaptive weights
are updated only when a decision algorithm ascertains the need. Another approach
is to restrict the adaptation to those time intervals where the speech input is reduced
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Figure 6.13 Block diagram of a hearing aid incorporating signal processing for feed-
back cancellation

in intensity; this technique also yields a feedback cancellation advantage over the
continuously adapting system, although the quality of the speech can be reduced due
to the bursts of injected noise[Maxwell and Zurek, 1995].

6.6 COMPRESSION AMPLIFICATlON

Dynamic-range compression, also termed automatic gain control (AGC, hearing aid)
in hearing aids, is used for two different purposes. The first, and most prevalent use in
hearing aids, is as a limiter to prevent overloading of the amplifier circuits or the user’s
ear when an intense sound occurs. The second use, sometimes termed recruitment
compensation, is to match the dynamic range of speech and environmental sounds to
the restricted dynamic range of the hearing-impaired listener. These two uses imply
different and even contradictory criteria for setting the compression parameters.

The most common form of compression in hearing aids is a single-channel system
used to reduce amplifier overload. For this application, a rapid attack time is desired
so as to give a rapid response to a sudden intense sound, a high compression ratio is
desired to limit the maximum signal level, and a high compression threshold is desired
so as not to limit sounds that could otherwise be amplified without distortion.
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For recruitment compensation, on the other hand, longer release times are desired
to minimize any deleterious effects of the compression on the speech envelope[Plomp,
1988][Boothroyd et al., 1988] or in modulating the background noise[Cole, 1993]
[Neuman et al., 1995]. Low compression ratios are often chosen to match the dynamic
range of the impaired ear to that of a normal ear, and a low compression threshold is
often chosen so that speech sounds at any level of presentation can be perceived above
the impaired auditory threshold [Waldhauer and Villchur, 1988][Killion, 1993].

6.6.1 Single-Channel Compression

Figure 6.14 Input/output relationship for a typical hearing-aid compression amplifier

The steady-state input/output relationship for a hearing-aid compressor is shown in Fig.
6.14. For input signal levels below the compression threshold, the system is linear.
Above the compression threshold, the gain is reduced so that the output increases by
1/CR dB for each dB increase in the input where CR is the compression ratio.

A block diagram of a typical AGC hearing aid is shown in Fig. 6.15 [Cole, 1993];
the system is assumed to be operating as a high-level limiter. The hearing-aid designer
has several options as to where the volume control is to be placed. Each option, as
shown by the results for locations A, B, and C in the figure, gives a different family
of input/output curves as the volume control is adjusted by the user. Control point
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Figure 6.15 Block diagram of a hearing aid having feedback compression
Input/output functions for attenuation at points A, B, and C are shown along the bottom
(after Cole, 1993) (Reprinted with permission from [Cole, 1993]. ©1993, Canadian
Association of Speech-Language Pathologists and Audiologists)

B gives input AGC, in which the gain and maximum output level are simultaneously
adjusted by the volume control but where the input-referred compression threshold is
unaffected. A separate trimmer adjustment is normally provided for the compression
threshold. Control point A for the volume control gives an example of output AGC, in
which the volume control simultaneously adjusts the gain and compression threshold,
and a separate trimmer is used to set the maximum output level. Another option is
feedforward compression, in which the detector is driven directly by the microphone
signal; a delay in the amplified signal relative to the control signal can then be used
to reduce the attack overshoot in the compression circuit[Verschuure and Dreschler,
1993].

The choice of optimum compression parameters to maximize speech intelligibility
or speech quality is still open to contention. Rapid attack time constants (less than 5 ms)
are accepted in the industry and also by researchers to prevent transients from saturating
the output power amplifier. Arguments for fast release times (less than 20 ms), also
termed syllabic compression, are based on considerations of the syllabic variations in
speech and the desire to amplify soft speech sounds on a nearly instantaneous basis
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[Villchur, 1973]. Arguments for long release times are based on the desire to preserve
the envelope structure of speech (Plomp, 1988) and to avoid annoying fluctuations in
the perceived level of background noise (“dropouts”, “breathing”, or “pumping”) that
can be caused by the rapidly changing gain of a compression amplifier[Cole, 1993].

The concept behind syllabic compression, that different speech sounds need dif-
ferent amounts of amplification, has lead to experiments in modifying the consonant-
vowel (CV) ratio in speech[Gordon-Salant, 1986][Gordon-Salant, 1987][Montgomery
and Edge, 1988] [Kennedy et al., 1996]. In the CV-ratio enhancement experiments of
Kennedy et al., for example, the amplitude of consonants relative to that of vowels in
vowel-consonant syllables was adjusted by hand for each syllable, with the modified
syllables then presented to hearing-impaired subjects at a comfortable level. The results
indicated that the recognition of some consonants was substantially improved given a
higher relative level of presentation, but that the recognition of other consonants was
unaffected or even decreased. The degree of consonant amplification that produced
the maximum recognition scores varied significantly as a function of consonant type,
vowel environment, and audiogram shape. Large individual differences among the
subjects were also observed.

Recently, the effect of release time on perceived speech quality was investigated
[Neuman et al., 1995]. Three compression ratios, these being 1.5:1, 2:1, and 3:1, were
used in a digitally simulated hearing aid in combination with release times of 60, 200,
and 1000 ms. The attack time was 5 ms and the input compression threshold was set
to to be 20 dB below the RMS level of the speech. Twenty listeners with sensorineural
hearing loss were asked to give paired-comparison judgments of speech quality for
speech in different background noises. For each judgment, the subjects were allowed
to toggle between speech processed through two different systems until they reached
a decision. The results indicated a statistically significant interaction between the re-
lease time and the noise level. There was a significant preference for the longer release
times as the background noise level was increased. No significant preference among
the release times was observed for the lowest noise level. Significant individual differ-
ences from the mean preferences were observed, however, indicating that individual
adjustment of hearing-aid release times may lead to greater user satisfaction than using
a single pre-set release time.

The effect of compression ratio on speech quality was also investigated under similar
experimental conditions[Neuman et al., 1994]. Compression ratios ranging from 1.5:1
to 10:1 were investigated, along with linear amplification. The release time was held
constant at 200 ms. Analysis of the paired-comparison data revealed that the twenty
hearing-impaired subjects showed a significant preference for the lower compression
ratios, with ratios in excess of 3:1 preferred least often. The majority of listeners
preferred a linear hearing aid when the noise level was high. Quality ratings(A.
Neuman, personal communication, 1995) indicated that the simulated hearing aids
with the lower compression ratios were judged to be more pleasant and to have less
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background noise. Listeners with a reduced dynamic range (less than 30 dB) selected
compression at a significantly greater rate than listeners with a larger (greater than 30
dB) dynamic range.

The experimental results cited above for compression ratio are consistent with
considerations from auditory physiology. In a healthy cochlea, the active mechanism
of the outer hair cells provides about 50-60 dB of gain for a sinusoid at auditory
threshold [Kiang, 1980]. Increasing the signal level results in a reduction of gain and
a broadening of the auditory filters[Johnstone et al., 1986], until at high levels the gain
is reduced to about 0-10 dB. In a cochlea with extensive outer hair-cell damage, the
filter shape and gain is similar at all input levels to that of the healthy cochlea at high
levels[Harrison et al., 1981]. As an approximation for speech frequencies, assume that
in the healthy cochlea an input of 0 dB SPL gets 60 dB of gain, while an input of 100
dB SPL gets 0 dB of gain, giving a compression ratio of 2.5:1 . A severely-impaired
cochlea, on the other hand, has 0 dB of gain at all input levels resulting in a linear
system. One could therefore argue that the highest compression ratio needed for wide
dynamic-range compression in a hearing aid, corresponding to complete outer hair-cell
damage, is 2.5:1, and that lesser amounts of damage would require correspondingly
lower compression ratios.

Total outer hair-cell damage results in a threshold shift of no more than 60 dB since
that is the maximum amount of gain provided by the cochlear mechanics. Hearing
losses greater than 60 dB must therefore be accompanied by damage to the neural
transduction mechanism of the inner hair cells, and the Liberman and Dodds [Liberman
and Dodds, 1984] data presented in Fig 4 indicates that inner hair-cell damage results
in a threshold shift but no apparent change in the mechanical behavior of the cochlea.
Thus outer hair-cell damage, in this model of hearing loss, causes a loss of sensitivity
combined with a reduction in compression ratio, while inner hair-cell damage causes
a linear shift in sensitivity. Thus the family of hearing-aid input/output curves would
be as indicated in Fig. 6.16, where the compression ratio is increased as the hearing
loss increases up to 60 dB of loss, after which the compression ratio remains constant
and the gain is increased.

The choice of compression ratio and attack and release times will also effect the
distortion of the hearing aid, especially for wide-dynamic-range compression where
the signal is nearly always above the compression threshold. The distortion in a
simulated compression hearing aid was investigated by Kates [Kates, 1993b] for a
hearing aid having an idealized flat frequency response from 100 to 6000 Hz. An
input of speech-shaped noise at 70 dB SPL was used, and the distortion metric was
the signal-to-distortion ratio (SDR) at 1000 Hz computed from the unbiased coherence
function [Kates, 1992]. The results for a compression ratio of 2:1 with a compression
threshold of 50 dB SPL show that the distortion decreases as the attack and release
times are increased; the SDR is approximately 30 dB for any combination of ANSI
[ANSI, 1987] attack time greater than 2 ms and release time greater than 50 ms.
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Figure 6.16 Compression amplifier input/output curves derived from a simplified model
of hearing loss.

The ANSI [ANSI, 1987] attack time is defined as the length of time it takes for the
overshoot at an upward jump from 55 to 80 dB SPL in the signal level to decay to
within 2 dB of steady state, and the release time is defined as the length of time it takes
for the signal to recover to a value 2 dB below steady state after the test signal returns
to the 55-dB SPL level. Thus the distortion would not be expected to reduce speech
intelligibility or significantly effect speech quality in quiet for time constants within
this range [Kates and Kozma-Spytek, 1994]. Increasing the compression ratio to 8:1
reduces the SDR by about 5 dB, which again would not be expected to substantially
affect speech intelligibility or quality.

6.6.2 Two-Channel Compression

Several different systems have been proposed for two-channel dynamic-range com-
pression. The most common approach is independent operation of the two channels
[Villchur, 1973]. Commercial products incorporating adjustable gains, compression
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ratios, and an adjustable crossover frequency between the two channels have been
introduced by several manufacturers [Hodgson and Lade, 1988][Johnson and Schnier,
1988] [Pluvinage and Benson, 1988]. Systems offering compression limiting, as
opposed to wide-dynamic-range compression, are also available[Branderbit, 1991].
These systems are programmable to allow tailoring of the response to the individual
hearing loss, and use digital control of an analog signal path.

Variations in the compression system are also available. Compression in the low-
frequency channel, combined with a linear high-frequency channel, has been used in
an attempt to reduce the upward spread of masking that can be caused by intense
low-frequency noise [Ono et al., 1983][Kates, 1986]. Such systems can also be
implemented using a high-pass filter having a filter cutoff frequency controlled by the
estimated low-frequency signal level; their performance is discussed in the section
on single-microphone noise suppression. Alternatively, compression in the high-
frequency channel combined with a linear low-frequency channel has been proposed
to compensate for recruitment in a high-frequency hearing loss and is also commercially
available[Killion, 1993].

There is some evidence that two-channel compression can offer small improvements
in speech intelligibility over a linear or single-channel compression system[Villchur,
1973][Moore, 1987]. A two-channel system investigated by Moore [Lawrence et al.,
1983][Moore, 1987] used a two-stage compression system comprising a front-end
compressor having a 5-ms attack time and a 300-ms release time, followed by two-
channel syllabic compression. The front-end AGC served to keep the speech within
a relatively narrow dynamic range, while the syllabic compressors were designed to
modify the speech spectrum within he confines of the nearly-constant average level.
Results for an experiment involving hearing-impaired listeners in which noise level
was kept at a constant level and the speech level adjusted to maintain constant percent
correct speech recognition indicated that the two-channel compression system allowed
the subjects to listen at a 2-3 dB worse SNR while maintaining performance comparable
to that of a matched linear hearing aid or single-channel compression system.

6.6.3 Multi-Channel Compression

Multi-channel compression systems divide the speech spectrum into several frequency
bands, and provide a compression amplifier for each band. The compression may be
independent in each of the bands, or the compression control signals and/or gains may
be cross-linked. Independent syllabic compression has not been found to offer any
consistent advantage over linear amplification [Braida et al., 1979][Lippmann et al.,
1981][Walker et al., 1984]. One problem in multi-channel compression systems has
been the unwanted phase and amplitude interactions that can occur in the filters used
for frequency analysis/synthesis [Walker et al., 1984] and which can give unwanted
peaks or notches in the system frequency response as the gains change in each channel.
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those for their analog counterparts [Kollmeier et al., 1993].

Linear-phase digital filters can remove the problem of filter interactions, but speech
intelligibility results for multi-channel digital systems are no more encouraging than

order spectral fluctuations does not appear to lead to an improvement in intelligibility
[Haggard et al., 1987][Stone and Moore, 1992].

A multi-channel compression system using longer time constants has also been in-
vestigated[van Dijkhuizen et al., 1991]. This slow-acting compression system gave sig-
nificantly better speech recognition than single-channel compression for noisy speech
when the noise contained an intense narrow-band component. However, adjustments
to the amplified spectrum had very little effect on intelligibility when the spectrum of
the noise matched that of the speech[van Dijkhuizen et al., 1987][van Dijkhuizen et al.,
1989]. One can therefore conclude that the success of this system is based primarily
on the reduction of the spread of masking caused by the intense narrow-band noise.

More-complicated multi-channel compression systems involve linking the com-
pression control signals and/or gains across channels. These systems are intended to
dynamically modify the spectrum so as to maximize the amount of the speech signal
that is placed within the residual hearing region of a hearing-impaired listener. One
proposed system adjusts the relative amplitudes of the principle components of the
short-time spectrum[Bustamante and Braida, 1987], while another varies the coeffi-
cients of a polynomial series fit to the short-time spectrum[Levitt and Neuman, 1991].
These systems improve the intelligibility of low-level speech, but most of the benefit
comes from increasing the magnitude of the low-order coefficients, an effect that is
equivalent to single-channel compression. In general, magnification of the higher-

Compression systems have also been developed on the principal of matching the
estimated loudness in the impaired ear to that of a normal ear [Yund et al., 1987]
[Dillier et al., 1993][Kollmeier et al., 1993]. In the Dillier et al. system[Dillier et al.,
1993], the loudness of the smoothed short-time spectrum is determined in each of
eight frequency bands, and gains in each band are selected to give the same band
loudness in the impaired ear as would occur in a normal ear. The overall loudness of
the summation of the eight bands is then estimated, and a correction factor is generated
to prevent the composite signal from becoming overly loud. Results in comparison
with conventional hearing aids for hearing-impaired subjects show that the greatest
improvement in intelligibility occurs for low-level consonants, and that the benefit of
the processing is substantially reduced in noise.

Kollmeier et al.[Kollmeier et al., 1993] use a similar approach in computing the
gain in each frequency band to create in the impaired ear the loudness level that would
occur in a normal ear. The overall loudness of the modified signal is not computed, but
spread of masking is incorporated into the procedure. The level that is used to compute
the gain in a given band is the maximum of the signal level in that band or the masking
patterns from the adjacent bands. This system produced a significant increase in the
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rated quality of the processed speech in comparison with a linear frequency-shaping
system, but the speech intelligibility was not significantly improved.

In general, the design goal for a hearing aid intended for peripheral hearing loss
is to process the incoming sound so as to give the best possible match between the
neural firing patterns in the impaired ear to those in a reference normal ear. Kates
[Kates, 1993d] has proposed a system based on a minimal mean-squared error match
between models of normal and impaired hearing. The incoming signal is divided into
a set of frequency bands. The compression ratio in each band is computed from the
hearing loss using the procedure outlined in Fig 13. This system differs from the
loudness-based systems described above in that the compression control signal is the
maximum spectral level measured over a region extending one octave below to one-half
octave above each band center frequency. This form of compression control mimics
aspects of two-tone suppression[Sachs and Kiang, 1968] as observed psychophysically
in human subjects [Duifhuis, 1980], in which the total neural firing rate at the place
most sensitive to a given frequency can be reduced by the addition of a second tone at a
different frequency. The practical result of the compression rule is that intense sounds,
such as the formants in vowels, control the gain in the surrounding frequency region.
As the signal spectrum changes, the control signals and regions shift in frequency;
in most cases, there are two or three frequency regions, with the gain in each region
governed by the most-intense spectral peak within the region. This system has not
been tested with hearing-impaired subjects.

6.7 SINGLE-MICROPHONE NOISE SUPPRESSION

Improving speech intelligibility in noise has long been an important objective in
hearing-aid design. In cases where the interference is concentrated in time (e.g.
clicks) or frequency (e.g. pure tones) intelligibility can in fact be improved; clipping
the signal in the former or using a notch filter in the latter case will reduce the noise
level by a much greater amount than the speech[Weiss and Aschkenasy, 1975]. A much
more difficult problem is to improve speech intelligibility in the presence of broadband
noise. The single-microphone techniques that have been developed are based on the
assumption that an improvement in SNR will yield a corresponding improvement in
intelligibility, but this has not been found to be true in practice.

6.7.1 Adaptive Analog Filters

Adaptive filters for reducing the low-frequency output of a hearing aid in the presence
of noise have been available for several years [Ono et al., 1983][Kates, 1986]. While
some instruments have been based on a two-channel approach having compression in
the low-frequency channel in order to limit the amplification of intense low-frequency
noise, it is more common to find a system using a high-pass (low-cut) filter having a
slope of 6 or 12 dB/octave and having an automatically adjustable cutoff frequency.
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The adjustable high-pass filter reduces the low-frequency bandwidth of the hearing
aid as the estimated low-frequency noise level increases. Tests of such systems have
demonstrated that there is no net improvement in intelligibility when the volume
control is kept in a fixed position [Kuk et al., 1989][Fabry and Tasell, 1990], but
some improvement has been reported when the subjects are free to adjust the volume
[Sigelman and Preves, 1987]. This dependence on volume setting suggests that the
major effect on intelligibility is actually a result of a reduction in distortion; the reduced
gain at low frequencies allows for increased amplification at high frequencies before
the amplifier saturates[Fabry, 1991].

is adequate to remove the frequency-domain masking for most everyday noises [Kates,
1993b].

An alternative to using SNR as the criterion for noise-suppression effectiveness is
to maximize the Articulation Index (AI) computed for the system. The AI is based
on a weighted sum of the steady-state SNR values in frequency bands from 200 to
6000 Hz [French and Steinberg, 1947][Kryter, 1962] and includes spread of masking
in the frequency domain. Reducing the gain in any one critical band will not affect
the signal-to-noise ratio (SNR) in that band, but may still increase the AI if the noise
in that band, at the original level, was intense enough to mask speech in a nearby
band. Masking effects extend primarily upward in frequency [Egan and Hake, 1950].
Thus, if the masking effects of the noise in a given band on sounds in a higher-
frequency band exceed the noise level in the higher-frequency band, the gain in that
band should be reduced, and the gain reduction should only be enough to make the
out-of-band masking and in-band noise approximately equal in the high-frequency
band[Kates, 1989]. Filtering in excess of the amount needed to maximize the AI will
not improve speech intelligibility [Fabry and Tasell, 1990]. This argument is consistent
with the results of Dillon and Lovegrove [Dillon and Lovegrove, 1993], who found
some benefit for analog noise-suppression filters when the noise was concentrated at
low frequencies, but no net benefit for speech babble. It is also consistent with the
findings of Kuk et al.[Kuk et al., 1989] that subjects preferred an adaptive filter with a
6-dB/oct slope to one with a 12-dB/oct slope in daily use since the 6-dB/octave slope

6.7.2 Spectral Subtraction

In spectral subtraction, an estimate of the average noise magnitude spectrum is sub-
tracted from the short-time speech-plus-noise spectrum to give an improved estimate
of the speech signal[Boll, 1979]. Since the magnitude spectrum of the noise can not
be estimated accurately when the speech is present, it is approximated as the average
noise magnitude spectrum observed during non-speech intervals. Spectral subtraction
is illustrated in Fig. 6.17.

The magnitude and phase of the incoming signal are computed on a block-by-block
basis using the FFT. The noise magnitude spectrum is calculated as a running average
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Figure 6.17 Block diagram of a spectral-subtraction noise-reduction system.

signal magnitude spectrum is then recombined with the unaltered phase spectrum, and
the output signal generated via an inverse FFT.

of those signal blocks determined to be primarily noise alone. The average noise
magnitude spectrum, or a modified estimate, is then subtracted from the magnitude
spectrum of the incoming signal; negative differences are set to zero. The modified

A variant on spectral subtraction is the INTEL technique [Weiss et al., 1975], in
which the square root of the magnitude spectrum is computed and the rooted spectrum
is then further transformed via a second FFT. Processing similar to that described
above is then performed in this pseudo-cepstral domain. The estimate of the speech
amplitude function in this domain is transformed back to the magnitude spectral domain
and squared to remove the effect of rooting the spectrum.

Speech intelligibility and quality have been tested for the INTEL method. For the
intelligibility tests, isolated speech syllables were presented in a background of white
noise, speech-shaped noise, or cafeteria babble, and the noise level was adjusted to give
an average score of 50-percent correct. Although the INTEL processing resulted in an
8-dB improvement in the measured stimulus SNR, speech recognition performance for
the processed and unprocessed stimuli did not differ significantly. Despite the fact that
overall speech intelligibility did not improve with the processing, subjects expressed a
preference for the sound of the processed speech[Neuman et al., 1985].

A perceptual analog of spectrum subtraction is the REDMASK processing technique
[Neuman and Schwander, 1987]. In this technique, the gain of the hearing aid is
adjusted so that the background noise is just inaudible at all frequencies. This gain
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adjustment is accomplished by measuring the threshold of detection of noise in one-
third octave bands, and then adjusting the frequency-gain characteristic so that the noise
spectrum lies just below the auditory threshold. The experimental evaluation showed an
improvement in sound quality for approximately half of the hearing-impaired subjects
tested, but this improvement in quality was accompanied by a reduction in speech
intelligibility. It was also found that intelligibility could be improved by raising the
noise spectrum to a suprathreshold level, thereby providing more gain to the speech
signal; however, this was accompanied by a reduction in sound quality.

6.7.3 Spectral Enhancement

Several techniques have been proposed for modifying the shape of the short-time spec-
trum so as to emphasize those portions deemed to be important for speech perception
or to reduce the amplitude of those portions assumed to be noise. One approach is
adaptive comb filtering[Lim et al., 1978]. In this method, the fundamental frequency
of voiced speech sounds is estimated, and a comb filter is then constructed to pass
signal power in the regions of the pitch harmonics and to suppress power in the valleys
in between. Experimental results with normal-hearing subjects, however, have shown
no significant improvement in intelligibility with this type of system [Perlmutter et al.,
1977][Lim et al., 1978].

Another approach is to construct an optimal filter for improving the speech SNR.
A multi-channel filter bank or equivalent FFT system is used to provide the frequency
analysis, and the signal and noise powers are estimated in each frequency band. The
gain in each band is then adjusted based on the signal and noise power estimates; the
system is adaptive since the power estimates fluctuate with changes in the signal or
noise characteristics. Various rules have been used for implementing the filter gains,
including Wiener filter, power subtraction, magnitude subtraction, and maximum-
likelihood envelope estimation [McAulay and Malpass, 1980][Doblinger, 1982] [Vary,
1983][Ephraim and Malah, 1984] While improvements in measured SNR of up to 20
dB have been reported [Vary, 1983], no improvement in speech intelligibility has been
observed[Sandy and Parker, 1982].

Instead of trying to remove the noise, one can try instead to enhance the speech.
The general approach that has been used is to increase the spectral contrast of the
signal short-time spectrum by preserving or increasing the amplitude of frequency
regions containing spectral peaks while reducing the amplitude of regions containing
valleys. Techniques include squaring and then normalizing the spectral magnitude
[Boers, 1980], increasing the spectral magnitude in pre-selected spectral regions while
reducing it in others[Bunnell, 1990], filtering the spectral envelope to increase the
higher rates of fluctuation [Simpson et al., 1990][Stone and Moore, 1992][Baer et al.,
1993], and using sinusoidal modeling of the speech to remove the less-intense spectral
components while preserving the peaks[Kates, 1994].
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In general, spectral enhancement has not yielded any substantial improvement in
speech intelligibility. The systems that filter the spectral envelope [Simpson et al.,
1990][Stone and Moore, 1992] have demonstrated intelligibility improvements corre-
sponding to changes in SNR of less than 1 dB, but these results are confounded by
the fact that for some speech sounds the processing can increase the amplitude of the
second or third formant relative to that of the first formant, so the improvement in
performance may be due to the small change in spectral tilt rather than to the change
in spectral contrast. To test this hypothesis, Baer et al. [Baer et al., 1993] repeated
the experiment correcting for the spectral tilt, and still found a small performance
advantage for the processed speech. The Bunnell [Bunnell, 1990] system, which also
increased the relative amplitude of the second-formant peaks relative to those of the
first formant, also showed a small improvement in stop-consonant recognition for the
increased spectral contrast condition. In a system that reduced the gain in the spectral
valleys without amplifying the level of the peaks [Kates, 1994], there was no improve-
ment in intelligibility. In fact, Kates [Kates, 1994] found that reducing the number of
sinusoids used to represent the speech reduced speech intelligibility in a manner similar
to increasing the background noise level, suggesting that the valleys and sidelobes in
the speech spectrum convey useful speech information.

6.8 MULTI-MICROPHONE NOISE SUPPRESSION

In many situations, the desired signal comes from a single well-defined source, such
as a person seated across a table, while the noise is generated by a large number of
sources located throughout the area, such as other diners in a restaurant. Under these
conditions the speech and the noise tend to have the same spectral distribution, but
the spatial distributions differ. The spatial separation of the speech and the noise can
be exploited to reduce the noise level without any deleterious effects on the speech.
Furthermore, unlike the situation for single-microphone noise-suppression techniques,
the improvements in SNR measured with directional microphones and microphone
arrays give corresponding improvements in speech intelligibility.

6.8.1 Directional Microphone Elements

A directional microphone will improve the SNR by maintaining high gain in the direc-
tion of the desired source and reduced gain for sources coming from other directions.
An ideal cardioid response will improve the SNR by 4.8 dB when compared with an
omnidirectional microphone for an on-axis sound source and an isotropic (diffuse)
noise field [Olson, 1957]. Measurements of an actual directional microphone mounted
on the head, however, indicate that the advantage is only about 2.5 dB in comparison
with an omnidirectional hearing-aid microphone in a diffuse noise field [Soede et al.,
1993a]. Larger benefits can be obtained under more constrained conditions; a rela-
tive improvement of 3-4 dB for the directional microphone was found when a sound
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source was positioned in front and a noise source behind the head in a reverberant
room [Hawkins and Yacullo, 1984]. Even though these improvements are relatively
small, directional microphones are the only practical hearing-aid technique that has
consistently demonstrated benefit in enhancing speech intelligibility in noise.

6.8.2 Two-Microphone Adaptive Noise Cancellation

Figure 6.18 Block diagram of an adaptive noise-cancellation system.

Adaptive noise cancellation [Widrow et al., 1975] is illustrated in the block diagram
of Fig. 6.18. The system uses one microphone to acquire the noisy speech signal and
a second microphone to acquire a signal that is predominantly noise. This latter signal
is termed the noise reference. The noise reference is processed by an adaptive filter
to match the noise corrupting the speech as closely as possible; the least mean square
(LMS) error criterion is often used. The filtered noise sequence is then subtracted
from the noisy speech to cancel its noise component and thus improve the SNR. The
maximum improvement that can be realized is limited by the noise-to-speech ratio at
the reference microphone. Under favorable conditions, adaptive noise cancellation can
give improvements in SNR in excess of 30 dB [Chabries et al., 1987][Weiss, 1987],
and improvements in speech intelligibility of 35 to 38 percent have been reported [Brey
et al., 1987]. Thus there is a high correlation between the improvements in SNR and
improvements in speech intelligibility.

The performance of a head-mounted two-microphone adaptive noise-cancellation
system was investigated by Weiss [Weiss, 1987] and Schwander and Levitt [Schwander
and Levitt, 1987]. In this system, an omnidirectional microphone was used for the
speech signal and a rear-facing hypercardioid microphone mounted directly above the
speech microphone was used for the noise reference. In a room having a reverberation
time of 0.4 sec, this system improved the speech recognition score to 74 percent from
34 percent correct for the unprocessed condition for normal-hearing listeners given



SIGNAL PROCESSING FOR HEARING AIDS 269

a single interfering noise source. Moderate amounts of head movement reduced the
recognition score to 62 percent correct, and increasing the number of active noise
sources to more than one also reduced the effectiveness of the processing.

6.8.3 Arrays with Time-Invariant Weights

Greater improvements in the SNR and speech intelligibility require arrays that com-
bine the outputs of several microphones. The simplest multi-microphone processing
approach is delay-and-sum beamforming. The benefit of delay-and-sum microphone
arrays of the sort that can be built into an eyeglass frame, for example, is an improve-
ment of S-10 dB in SNR, with the greatest improvement at higher frequencies [Soede
et al., 1993a][Soede et al., 1993b]. The improvement in the speech reception threshold
(SRT), the SNR at which half the words in a list are correctly identified, was found to
be 7 dB. These arrays used five cardioid microphone elements uniformly spaced over
10 cm. Furthermore, the performance of both broadside arrays (across the front of the
eyeglasses) and endfire arrays (along the temple) did not appear to be affected by the
head to any great extent.

The performance of delay-and-sum beamforming can be bettered by using superdi-
rective array processing [Cox et al., 1986] to give the optimum improvement in SNR
for a stationary noise field. Simulation studies for a spherically isotropic noise field
[Stadler and Rabinowitz, 1993][Kates, 1993c], using endfire array configurations sim-
ilar to that used by Soede et al. [Soede et al., 1993a][Soede et al., 1993b], show
that a superdirective array will give a SNR about 5 dB better than that obtained for
delay-and-sum beamforming using the same set of microphones. For the broadside
array orientation, the superdirective weights average less than 1-dB better SNR than
delay-and-sum beamforming. When using omnidirectional microphones, a null at 180
deg can be imposed on the endfire array beam pattern with only a 0.3 dB penalty in
SNR [Kates, 1993c], and increasing the number of microphones in the array from five
to seven without increasing the overall length improves the SNR by only about 0.3 dB
[Stadler and Rabinowitz, 1993].

6.8.4 Two-Microphone Adaptive Arrays

Optimal performance in a wide variety of listening environments may require more
flexibility than can be obtained with an array using a data-independent set of weights.
Optimal, or nearly optimal, performance in a noise field that is not known a priori
or one which is nonstationary can be achieved with adaptive array processing. The
simplest adaptive array geometry uses two microphones. An example of a two-
microphone Griffiths-Jim adaptive array [Griffiths and Jim, 1982] is shown in figure
6.19 [Greenberg and Zurek, 1992]. A version of this array using directional microphone
elements has also been implemented [Kompis and Dillier, 1994].
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Figure 6.19 Block diagram of an adaptive two-microphone array.

The operation of the two-microphone Griffiths-Jim beamformer [Greenberg and
Zurek, 1992] is related to adaptive noise cancellation, described in a previous section,
with a pre-processor that forms the sum and difference of the microphone signals.
The sum signal forms the noisy speech signal input, and the difference signal forms
the noise reference. The performance of this array is governed by the amount of
reverberation, the ratio of the amplitude of the desired speech signal to that of the
noise source (target-to-jammer ratio, or TJR), the accuracy with which the assumed
direction of the speech signal matches the actual alignment of the array, and the length
of the adaptive filter.

This system was tested mounted on the KEMAR anthropometric manikin [Burkhard
and Sachs, 1975] with the target straight ahead and the jammer at 45 deg. The adaptive
filter had 169 taps, and the delay D was set to half the filter length. The system showed
improvements in SNR of approximately 30 dB in anechoic conditions when the array
was correctly aligned and the TJR approached negative infinity (i.e. no speech signal).
Increasing the TJR to 20 dB reduced the improvement in SNR to about 24 dB for a
broadside array and about 3 dB for an endfire array configuration. In a moderately
reverberant room, the improvement in SNR was about 10 dB at all TJR values for the
target 0.8 m from the array, and was reduced to about 2 dB when the target was 2.6
m away. Simulation results show that the array performance degrades as the relative
amount of reverberation increases, asymptotically approaching the performance of
a two-microphone delay-and-sum beamforming array. Furthermore, at high TJR’s,
increasing the filter length from 100 to 1000 taps leads to signal cancellation in
the simulated reverberant environment. Misalignment of the array gave small but
consistent reductions in performance under all test and simulation conditions.

These results indicate that array performance in reverberation is an important con-
cern for hearing-aid applications. Modifications to the Griffiths-Jim array can improve
the performance in the presence of reflections. Removing or reducing the delay of D
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samples shown in the signal path of Fig. 6.19 can greatly reduce the deleterious effects
of reflections (Hoffman, 1994). Adding a processing constraint to inhibit adaptation at
a positive TJR (in dB) also improves performance[Greenberg, 1994]. Measurements
of a system having both modifications[Greenberg, 1994] show that improvements in
SNR of 20-30 dB occur at a direct-to-reverberant ratio of 20 dB, independent of the
TJR. However, when the reverberant power exceeds that of the direct signal, the system
performance degrades to about a 3 dB improvement in SNR, which is what would be
obtained from delay-and-sum beamforming.

6.8.5 Multi-Microphone Adaptive Arrays

Figure 6.20 Block diagram of a time-domain five-microphone adaptive array.

The signal processing for a general time-domain five-microphone adaptive array is
shown in the block diagram of Fig. 6.20. Each microphone is attached to a tapped delay
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line, and the complete set of weights is adapted to optimize the selected design criterion.
Such algorithms commonly use a minimum mean-squared error criterion [Monzingo
and Miller, 1980], with the consequence that the correlation matrix used in computing
the sensor weights includes the signal as well as the noise. For this type of processing,
a perturbed signal wavefront, as occurs when a strong highly-correlated reflection is
present or when there are random displacements in the microphone locations, can
lead to the suppression of the desired signal [Seligson, 1970][McDonough, 1972]
[Cox, 1973]. Signal suppression has been observed in arrays designed for hearing-aid
applications, with the suppression caused by strong reflections [Greenberg and Zurek,
1992] or by a missteered array [Hoffman et al., 1994].

Prevention of signal suppression can be achieved by applying a constraint to the
adaptive algorithm. It can be shown that suppression of the desired signal is accompa-
nied by an increase in the magnitude of the adaptive weight vector [Cox, 1973]. Thus
constraining the magnitude of the weight vector to be less than or equal to a pre-set
limit guarantees that the desired signal will never be eliminated by the processing;
this approach gives rise to the scaled projection algorithm[Cox et al., 1987]. The
scaled projection algorithm has been found to be effective in hearing-aid applications
[Hoffman et al., 1994].

Hoffman et al.[Hoffman et al., 1994] simulated head-mounted microphone arrays
having from three to seven microphones, with eight- or sixteen-tap filters at each
microphone used to implement a Griffiths-Jim beamformer incorporating the scaled
projection algorithm. The speech source was in front of the head, and a single noise
source was at a 45-deg angle. Reverberant environments were simulated giving direct-
to-reverberant power ratios of infinity, 6.9, 1.3, and -4.0 dB. The results show that,
for the single noise source, increasing the number of microphones in the array has
no significant effect on the array performance, while the sixteen-tap filters performed
slightly better than the eight-tap filters. The improvement in SNR produced by the
array, however, was strongly affected by the direct-to-reverberant ratio, with the array
benefit going from about 17 dB at the ratio of infinity to about 3 dB at the ratio of
-4.0 dB. The scaled projection algorithm was adjusted so that under conditions of
misalignment the adaptive array performance was reduced to that of delay-and-sum
beamforming.

The Hoffman et al. [Hoffman et al., 1994] results show that even though the
scaled projection algorithm prevents suppression of the desired signal, it does not give
optimal array performance in the presence of the correlated interference that often
occurs in reverberant environments. An approach that has been taken to deal with
correlated interference is to modify the signal-plus-noise correlation matrix. One
technique is to form a correlation matrix of reduced rank by averaging the correlation
matrices obtained from subsets of the sensor array [Evans et al., 1981][Shan et al.,
1985][Takao et al., 1986]. However, for the short array having a small number of
microphones that would be appropriate for hearing-aid applications, the reduced-rank
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correlation matrix would greatly limit the number of nulls that could be generated in
the array response pattern. An alternative technique is to average the values along
each diagonal of the full-rank signal-plus-noise correlation matrix [Godara and Gray,
1989][Godara, 1990][Godara, 1991][Godara, 1992] thus forcing it to have a Toeplitz
structure. This structured correlation matrix has been shown to have performance
for correlated interference that is nearly identical to that for uncorrelated interference
given an array many wavelengths long [Godara, 1990][Godara, 1991].

A further consideration in the selection of the adaptive processing algorithm is the
rate of convergence and the computational burden. A frequency-domain implementa-
tion of the adaptive processing generally offers faster convergence than a time-domain
version due to reduced eigenvalue spread in the correlation matrices [Narayan et al.,
1983][Chen and Fang, 1992]. However, given M microphones in the array and a
sampling rate of T samples per second, the frequency-domain processing requires
approximately MT transforms per second independent of the transform block size.
In order to reduce the computational burden, a block frequency-domain implemen-
tation incorporating a causality constraint on the adaptive weights can be chosen for
the processing [Ferrara, 1980][Clark et al., 1981b][Clark et al., 1983]. The block
frequency-domain processing preserves the advantageous properties of the reduced
correlation matrix eigenvalue spread [Mansour and Gray, 1982] while reducing the
required number of transforms; only T transforms per second are needed when there
are five microphones in the array and a 32-point FFT is used.

An example of a five-microphone array using block frequency-domain processing
is shown in Fig. 6.21. The incoming signals at each microphone are read into a buffer,
and an FFT is used to transform the signal at each microphone into the frequency
domain. The set of weights for each FFT bin is adaptively updated, and the weighted
sum at each frequency is then formed. An inverse transform then returns the signal to
the time domain.

6.8.6 Performance Comparison in a Real Room

Most of the microphone array results have been obtained from computer simulations.
However, the acoustic field in a real room is far more complex than anything that
is produced by a simple simulation. A recent experiment[Kates and Weiss, 1996]
compared several time-invariant and adaptive array-processing algorithms for an array
placed in a large office containing bookshelves, filing cabinets, several desks, chairs,
and tables. An end-fire array, consisting of five microphones at a uniform 2.5-cm
spacing to give a 10-cm array, was built using Knowles EK-3033 omnidirectional
hearing-aid microphones. The microphone signals were acquired at a 10-kHz sampling
rate in each channel using an A/D converter having simultaneous sample-and-hold
circuits. The desired signal was a sentence from a loudspeaker in front of the array,
and the interference was multi-talker speech babble from a loudspeaker positioned to
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Figure 6.21 Block diagram of a frequency-domain five-microphone adaptive array.

one side or behind the array. Three array positions in the room were investigated: the
array mounted on a stand near the middle of the room, the array on a short desk stand
with the speech loudspeaker at the other end of the desk, and the array mounted above
one ear of the KEMAR manikin with the manikin near the middle of the room.

Five signal-processing algorithms were investigated in frequency-domain imple-
mentations. The equivalent time-domain filter length was 16 taps at the 10-kHz
sampling rate. The three algorithms using time-invariant coefficients were delay-and-
sum beamforming, an oversteered superdirective array [Cox et al., 1986] in which the
time delays used in delay-and-sum beamforming are greater than those corresponding
to the inter-element sound propagation times, and superdirective processing optimized
at each frequency[Kates, 1993c] with a causality constraint imposed on the weights
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[Clark et al., 1981b][Clark et al., 1983]. The two adaptive algorithms were a frequency-
domain version of the scaled projection algorithm [Cox et al., 1987], and the same
algorithm but using the composite structured correlation matrix in which the structured
correlation matrix [Godara, 1990] was used at low SNR values, gradually shifting to
the superdirective system at high SNR values.

The results for a single source of interference in the room were an average SNR
improvement of 5.6 dB for the delay-and-sum beamforming, 7.1 dB for the oversteered
array, and 9.8 dB for the optimum superdirective array. The SNR improvement of the
scaled projection algorithm was 11.3 dB at a TJR of - 10 dB, reducing to 8.9 dB at a
TJR of + 10 dB. The composite structured correlation matrix yielded an improvement
in SNR of 10.0 dB at all TJR values. The greatest improvement in SNR was observed
for the desk-top array position, giving an average of 10.1 dB, and the least for the
array mounted on KEMAR, where an average of 8.4 dB was obtained. An analysis
of variance (ANOVA) showed that there was no significant difference between the
optimum superdirective array and either adaptive algorithm at a 0-dB TJR.

These results indicate that a short microphone array can be very effective in a real
room, yielding an improvement in SNR of approximately 10 dB. Good performance
was obtained for all of the array positions, including being positioned on a desk top
and above the ear of KEMAR. The optimum superdirective array worked as well
as the adaptive arrays under almost all test conditions, while the delay-and-sum and
oversteered arrays were noticeably inferior. The results for the optimum superdirective
array suggest that the complexity of an adaptive system may not be needed for a short
hearing-aid microphone array, but that simple analog systems, such as the oversteered
array, will not perform as well as an optimum digital system.

6.9 COCHLEAR IMPLANTS

Cochlear implants have become a viable option for individuals with profound sen-
sorineural hearing loss who obtain negligible benefit from hearing aids. A summary of
the principles and auditory performance for cochlear implants already exists (Working
Group on Communication Aids for the Hearing-Impaired, 1991), and readers are re-
ferred to that paper[Working Group on Communication Aids for the Hearing-Impaired,
1991] for background. One cochlear implant system, the Nucleus 22-channel device,
has received premarket approval from the FDA. Two additional systems, the Inneraid
and the Clarion, are currently undergoing clinical trials. As of June 1993, there were
about 3340 implant users in the United States (A. Boothroyd, personal communication,
1994).

Two areas of signal processing research in cochlear implants are coding strategies
for multi-electrode excitation and the development of noise-suppression systems. One
of the problems in cochlear implants is that there is a large spread of the electrical
stimulation within the cochlea. Because of this, simultaneous electrical pulses at
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spatially separated electrodes interact strongly, and the general strategy has therefore
been to excite the cochlea with sequential pulse trains where only one electrode is
stimulated at a time. As an example, the Nucleus cochlear implant, which is the most
widely used of the devices, originally used an electrode excitation scheme in which
the estimated speech second formant was used to select the electrode that was excited
and the estimated pitch controlled the rate of excitation[Tong et al., 1979][Patrick and
Clark, 1991].

Recent research has indicated that a system in which the overall structure of the
speech spectrum is encoded, rather than a small set of features, leads to improved speech
intelligibility [McDermott et al., 1992][Wilson et al., 1993][Dillier et al., 1993]. The
Wilson et al.[Wilson et al., 1993] continuously interleaved sampling (CIS) scheme,
for example, uses five or six channels, with the amplitude of the biphasic pulses
encoding the magnitude of the envelope within each channel. The channels are strobed
sequentially at the maximum rate possible within the processing system, thereby
avoiding any overlap between pulses, and giving about 800 pulses/sec in each channel.
The newer Nucleus system[McDermott et al., 1992] uses 16 channels, with electrodes
corresponding to the six highest peaks after equalization being excited. Again, an
asynchronous sequential set of pulses is generated at the maximum rate allowed by the
system. Other strategies, in which speech feature extraction is used for voiced speech
and the CIS approach used for unvoiced speech, or in which the lowest-frequency
electrode is excited with pitch information and the remainder using the CIS approach,
are also being investigated[Dillier et al., 1993].

Noise suppression has also been explored for cochlear implants. A common com-
plaint of users of cochlear implants is that performance deteriorates rapidly with
increasing levels of background noise. However, the performance of the original
feature-extraction form of the Nucleus processing can be improved in broadband noise
by pre-processing the signal with the INTEL method of spectral subtraction [Weiss
et al,, 1975]. While the estimates for the speech formants and pitch are reasonably
accurate in quiet, they become increasingly inaccurate in the presence of background
noise[Weiss and Neuman, 1993]. The addition of the INTEL processing resulted in a
reduction of 4-5 dB in the SNR needed for the accurate identification of phonemes by
implant users[Hochberg et al., 1992].

6.10 CONCLUSIONS

The human auditory system is marvelously complicated. The healthy cochlea has
extremely sharp frequency analysis and high gain at low signal levels. The system is
nonlinear, with reduced gain and broader filter bandwidths as the signal level increases,
and the presence of more than a single tone leads to gain interactions and suppression
effects in the system behavior. Hearing impairment involves a loss of gain that causes
a shift in auditory threshold, a linearization of the system input/output behavior that
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results in loudness recruitment, and a loss of frequency and temporal resolution that
leads to larger than normal amounts of masking in the frequency and time domains.

Most signal-processing strategies concentrate on a single characteristic of the
cochlear damage. Linear amplification is intended to overcome the loss in auditory
sensitivity for normal conversational speech levels. Wide dynamic-range compres-
sion amplification is intended to compensate for loudness recruitment and the reduced
dynamic range in the impaired ear. Noise suppression algorithms are intended to
compensate for the loss of frequency and temporal resolution in the impaired ear.
Improved performance may result from something as simple as reducing the distortion
in an analog amplifier or the sensitivity to feedback in a linear hearing aid, or may
require complex models of the nonlinear interactions that occur in the cochlea.

Engineering solutions depend on having a well-defined problem. When the prob-
lem and the criteria to be met for its solution can be clearly stated, a solution is often
found. Examples of such well-defined problems include reduced amplifier distortion,
feedback cancellation, and directional microphone arrays for noise suppression. But
where the problem definition is nebulous and success is based on perceptual criteria,
a solution may be difficult to find. Examples of these difficult problems include re-
cruitment compensation for complex signals and single-microphone noise suppression.
As a further consideration, the loss of frequency resolution in the impaired ear may
well mean that total compensation for hearing loss is not possible in a conventional
hearing aid. Improved signal processing for hearing aids is thus a deceptively difficult
engineering problem.
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Abstract: The independent control over the time evolution and the pitch contour of
audio signals has always stood very high on the wish-list of the audio community because it
breaks the traditional tie between pitch and rate of playback. Rudimentary solutions to that
problem date back to the analog days, but the recent advent of fast digital audio processors
has made it possible for better methods to make their way into consumer products,
with applications in karaoke, phone answering-systems, post-production audio/video
synchronization, language learning, to name only a few. This chapter describes several
popular methods for the time-scale, pitch-scale and formant-scale modification of audio
signals, and summarizes their respective strengths and weaknesses as well as their relative
costs in terms of computation power.

7.1 INTRODUCTION

In many situations, one needs to be able to control in an independent way both the
time-evolution and the pitch of audio signals.

� Controlling and modifying the time-evolution of a signal is referred to as time-
scale modification: the aim is to slow down or speed up a given signal, possibly
in a time-varying manner, without altering the signal’s spectral content (and in
particular its pitch when the signal is periodic).
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� Controlling and modifying the pitch of a signal is referred to as pitch-scale
modification: the aim is to modify the pitch of the signal, possibly in a time-
varying manner, without altering the signal’s time-evolution (and in particular,
its duration).

Situations where independent control on time and pitch is required include the follow-
ing:

Synthesis by Sampling: Synthesizers based on the sampling technique typically hold
a dictionary of pre-recorded sound units (e.g., musical sounds or speech seg-
ments) and generate a continuous output sound by splicing together the segments
with a pitch and duration corresponding to the desired melody. Because there
can only be a limited number of sound segments stored in the dictionary, one
cannot afford sampling all possible pitches and durations, hence the need for
independent time-scale and pitch-scale control. Such systems include sampling
machines (see Massie’s chapter) and text-to-speech synthesizers based on the
concatenation of acoustical units [Allen, 1991], which scan a written text as an
input, typically a computer ascii file, and ‘read’ it aloud.

Post-synchronization: Synchronizing sound and image is required when a soundtrack
has been prepared independently from the image it is suppose to accompany. By
modifying the time evolution of the sound track, one is able to re-synchronize
sound and image. A typical example is dialogue post-synchronization in the
movie industry.

Data compression: Time-scale modification has also been studied for the purpose
of data compression for communications or storage [Makhoul and El-Jaroudi,
1986]. The basic idea consisted of shrinking the signal, transmitting it, and
expanding it after reception. It was found however, that only a limited amount
of data reduction could be obtained using this method.

Reading for the blind: For visually impaired people, listening to speech recordings
can be the only practical alternative to reading. However, one can read at a must
faster rate than one can speak, so ‘reading by listening’ is a much slower process
than sight reading. Time-scale modification makes it possible to increase this
listening rate, and to scan an audio recording as one can do for a written text.

Foreign language learning: Learning a foreign language can be significantly facili-
tated by listening to foreign speakers with an artificially slow rate of elocution
which can be made faster as the student’s comprehension improves. This, again,
is a task for time-scaling systems.

Computer interface: Speech-based computer interfaces suffer from the same limi-
tations as encountered in ‘reading by listening’. The pace of the interaction
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is controlled by the machine and not by the user. Techniques for time-scale
modifications can be used to overcome the ‘time bottleneck’ often associated
with voice interfaces.

Post-production Sound Editing: In the context of sound recording, the ability to
correct the pitch of an off-key musical note can help salvage a take that would
otherwise be unusable. Multi-track hard-disk recording machines often offer
such capabilities.

Musical Composition: Finally, music composers working with pre-recorded material
find it interesting to be given an independent control over time and pitch. In
this context, time and pitch-scale modification systems are used as composition
tools and the ‘quality’ of the modified signal is an important issue.

Solutions for time or pitch scaling of audio signals can be tracked back to the
1950’s with Fairbanks, Everitt and Jaeger’s modified tape recorder [Fairbanks et al.,
1954]. The machine, described in more detail in section 7.4, achieved time compres-
sion/expansion by constantly discarding/repeating portions of signal, a mechanism
which was to be called the ‘sampling or splicing technique’. This method inspired a
number of time-domain techniques (i.e., techniques based on the time-domain repre-
sentation of the signal) whose algorithmic simplicity made them suitable to real-time
implementation. The rotating head method was transposed in the digital domain by
Lee [Lee, 1972], with the magnetic tape replaced by a ‘circular’ memory buffer, and the
record and playback heads replaced by read/write memory pointers. The method was
further improved by Scott and Gerber [Scott and Gerber, 1972], Malah [Malah, 1979]
and others [Roucos and Wilgus, 1985, Moulines and Charpentier, 1990] for speech but
also for music [Dattorro, 1987, Roehrig, 1990, Laroche, 1993, Truax, 1994].

An alternative solution to the problem of time or pitch scaling appeared in the 1960’s
with the use of the short-time Fourier transform [Schroeder et al., 1967]. A frequency-
domain representation of the signal was used, obtained by either the short-time Fourier
transform or by a filter bank. Later on, improved frequency-domain techniques for
time or frequency modification of speech were proposed by Portnoff [Portnoff, 198l]
and [Seneff, 1982] and applied to music by Moorer [Moorer, 1978]. Since then,
several frequency-domain time or pitch scaling techniques have been studied, most
being slight variations of the original short-time Fourier transform scheme [Dolson,
1986, Dembo and Malah, 1988].

Finally a third class of time or pitch scaling methods appeared in the 1980’s with
the use of ‘signal models’. The signal to be modified is first modeled, then the model
parameters are modified to achieve the desired time or frequency transformation.
Such parametric models include linear prediction models [Makhoul, 1975, Griffin
and Lim, 1988], in which the signal is the output of a time-varying filter fed with
an excitation signal, sinusoidal models where the signal is represented by a sum of
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sinusoids with time-varying parameters [Marques and Almeida, 1989, Quatieri and
McAulay, 1986, George and Smith, 1992] possibly embedded in additive noise [Serra
and Smith, 1990, Laroche et al., 1993a], or ‘granular models’ in which the signal is
modeled as the succession of ‘grains’ of sound [Poirot et al., 1988, Depalle, 1991, Arfib,
1991, Arfib and Delprat, 1993, Jones and Parks, 1988]. See Massie’s chapter for more
detail on signal models.

This chapter is organized as follows: By reference to a signal model, time-scale
and pitch-scale modifications are defined in the first part. The second part presents
frequency-domain techniques while the third part describes time-domain techniques.
In the fourth part, the limitations of time-domain and frequency-domain methods are
discussed along with improvements proposed in the last few years.

7.2 NOTATIONS AND DEFINITIONS

7.2.1 An underlying sinusoidal model for signals

Coming up with a rigorous definition of time-scaling or pitch-scaling is not easy
because time and frequency characteristics of a signal, being related by the Fourier
transform, are not independent. However, the task is greatly facilitated by referring
to a parametric model of audio signals, even when this model is not used explicitly
for analysis/synthesis purposes. Perhaps the simplest and most efficient model in our
context is the quasi-stationary sinusoidal model, introduced practically simultaneously
by Almeida, Silva and Marques [Almeida and Silva, 1984a, Marques and Almeida,
1987] and McAulay and Quatieri [McAulay and Quatieri, 1986b] (see the chapter by
Quatieri and McAulay for more detail). In this model, the signal is represented as
a sum of sinusoids whose instantaneous frequency ωi (t ) and amplitude Ai (t) vary
slowly with time. This can be written as:

in which ø ( t) and ωi (t) are called the instantaneous phase and frequency of the ith

pitch-scale operations can be given.

7.2.2 A definition of time-scale and pitch-scale modification

Time-scale modification:. The object of time-scale modification is to alter the sig-
nal’s apparent time-evolution without affecting its spectral content. Defining an ar-
bitrary time-scale modification amounts to specifying a mapping between the time in
the original signal and the time in the modified signal. This mapping t → t´ = T (t )
is referred to as the the time warping function; in the following, t refers to the time in

(7.1)

i

sinusoid. By reference to this underlying model, a proper definition of time-scale and
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(7.2)

the original signal, t' to the time in the modified signal. It is often convenient to use
an integral definition of T:

in which β(τ ) > 0 is the time-varying time-modification rate¹. For a constant time-
modification rate β (τ ) = β, the time warping function is linear t' = T ( t ) = β t. The
case β > 1 corresponds to slowing down the signal by means of time-scale expansion,
while β < 1 corresponds to speeding it up by means of time-scale compression. For
time-varying time-modification rates, the function t' = T ( t) is non-linear. Note that
β ( t ) is implicitly assumed to be a regular and ‘slowly’ varying function of time, i.e.,
its bandwidth is several orders of magnitude smaller than the effective bandwidth of
the signal to be modified.

In the sinusoidal model above, an ideal time-scaled signal corresponding to the
signal described by Eq.(7.1) would be

with

(7.4)

Equation 7.3 states that the instantaneous amplitude of the ith sinusoid at time t' in the
time-scaled signal corresponds to the instantaneous amplitude in the original signal at
time t = T – 1 ( t ' ) . Similarly, by differentiatingφ'i (t') with respect to t' one can verify
that the instantaneous frequency of the ith sinusoid at time t' in the time-scaled signal
corresponds to the instantaneous frequency in the original signal at time t = T –1 (t ').
As a result, the time-evolution of the signal is modified, but its frequency content
remains unchanged.

Pitch-scale modification:. The object of pitch-scale modifications is to alter the
frequency content of a signal without affecting its time evolution. Defining an arbi-
trary pitch-scale modification amounts to specifying a (possibly time-varying) pitch-
modification factor α (t) > 0. As above, α (t) is implicitly assumed to be a regular and
‘slowly’ varying function of time.

By reference to our sinusoidal model, the ideal pitch-scaled signal corresponding
to the signal described by Eq.(7.1) would be:

(7.3)

with (7.5)
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The above equation indicates that the sinusoids in the modified signal at time t' have
the same amplitude as in the original signal at time t = t', but their instantaneous
frequency are multiplied by a factor α( t´ ), as can be seen by differentiating φ' ( t' ) with
respect to t'. As a result, the time-evolution of the original signal is not modified but
its frequency content is scaled by the pitch-modification factor. When the signal is
periodic (as can be the case in speech and music), the fundamental frequency of the
modified signal is that of the original signal multiplied by the factor α(t).

Combined modification:. It is possible to combine time-scale and pitch-scale modifi-
cations. Given a time warping function T( t) and a pitch-modification factor t → α( t ),
the ideal modified signal corresponding to the signal described in Eq. (7.1) is given by

with

Duality:. As might be expected, there is a duality between time-scale and pitch-scale
modifications: Starting for example from the ideal time-scale modification of Eq. (7.3),

The modified signal x' (t' ) can be time warped arbitrarily by a time warping function
T(t) in order to obtain a signal y(t)

and a change of variable τ → τ ' = T –1 (τ ) in the integral yields:

This corresponds to the ideal pitch-scaling operation described by Eq. (7.5) with

This result means that a pitch-scale modification specified by α (t) can be achieved
by first performing a time-scale modification whose factor is given by α ( t ) = dT/dt
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Figure 7.1 Duality between Time-scaling and Pitch-scaling operations. The pitch-
scaled signal y can be obtained by a time-scale modification followed by a simple time
warping. Conversely, the time-scaled signal x' can be obtained from the pitch-scale
modified signal y by a simple time warping.

then time warping the result by the function T –1 ( t), as summarized in the following
figure. Note that the time warping operation above is a mere scaling of the time-axis
defined by the equation y (t ) = x' (T ( t)) which in effect modifies both the duration
and the pitch of x'. This time warping gives the signal y (t) the original duration of
x ( t ). For discrete signals (i.e., when times t are integer multiples of a sampling period
∆T ) time warping is a process known as resampling (see section 8.4). Similarly, any
time-scaling modification can be achieved by a pitch-scaling modification followed by
a time warping operation. In Fig. 7.1, the signal x' can be obtained from y by a time
warping operation x' (t' ) = y ( T –1 (t')).

7.3 FREQUENCY-DOMAIN TECHNIQUES

Frequency-domain time or pitch scaling techniques make use of a frequency-domain
description of the signal, usually (but non necessarily) obtained by the Fourier trans-
form. Because time-scale and pitch-scale modifications have been defined with refer-
ence to a signal model (the sinusoidal decomposition of Eq. (7.1)), any time or pitch
scaling technique is by essence parametric. However, frequency-domain time or pitch
scaling techniques can be classified according to whether they make explicit or implicit
use of the signal parameters. Methods making explicit use of the signal parameters
require a preliminary signal analysis stage during which the parameters are estimated.
Such methods can be based on purely sinusoidal models, mixed sinusoid/noise mod-
els, or granular models. Methods making implicit use of the signal parameters do not
require this analysis stage (or require a much simplified analysis stage). Such methods
are usually base on the short-time Fourier transform.

7.3.1 Methods based on the short-time Fourier transform

The reader can refer to chapter 9.2.2 for an alternative presentation of the short-time
Fourier transform, in the context of sinusoidal modeling.
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Definitions and assumptions. In the following, all signals will be supposed to be
discrete signals.

The short-time Fourier transform. The short-time Fourier transform method has
been used for signal analysis, synthesis and modifications for many years and its
applications are numerous. In this section, we give a brief overview of the technique
and of the main results. Interested readers can refer to [Crochiere, 1980, Crochiere and
Rabiner, 1983, Allen, 1982, Nawab and Quatieri, 1988b] for mode detailed analyses of
its theory and implementation. The short-time Fourier transform can be viewed as an
alternate way of representing a signal in a joint time and frequency domain. The basic
idea consists of performing a Fourier transform on a limited portion of the signal, then
shifting to another portion of the signal and repeating the operation. The signal is then
described by the values of the Fourier transforms obtained at the different locations.
When the values of the Fourier transforms are expressed in polar coordinates, the
short-time Fourier transform is alternately called the “phase vocoder”.

Analysis: In standard applications, the short-time Fourier transform analysis is per-
formed at a constant rate: the analysis time-instants t u

a are regularly spaced,
i.e. t u

a = uR where R is a fixed integer increment which controls the analysis
rate. However, in pitch-scale and time-scale modifications, it is usually easier
to use regularly spaced synthesis time-instants, and possibly non-uniform anal-
ysis time-instants. In the so-called band-pass convention, the short-time Fourier
transform X (t u

a , Ω k ) is defined by:

(7.6)

in which h (n ) is the analysis window and Ω 2πk
k = . Note that the FourierN

transform used here is the discrete Fourier transform, since both time and
frequencies are discrete. The Fourier transform is calculated on N points, N
being usually longer than the length T of the analysis window h(n ).

Synthesis: Given an arbitrary sequence of synthesis short-time Fourier transforms
Y ( t u

s , Ω k ), there is in general no time-domain signal y(n ) of which Y (t u
s , Ω k ) is

the short-time Fourier transform: the stream of short-time Fourier transforms of
a given signal must satisfy strong consistency conditions since the Fourier trans-
forms usually correspond to overlapping short-time signals (these conditions
are given for example in [Portnoff, 1980]). Consequently, many methods exist
to obtain approximate y (n ) from Y (t u

s , Ω k ). The most general reconstruction
formula is:

(7.7)
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in which w ( n ) is called the synthesis window.

Perfect reconstruction: One can show that the short-time Fourier transform yields
perfect reconstruction in the absence of modification (i.e. a synthesis signal y( n )
exactly similar to the original x(n ) when t u ))s = t u and Y ( t u

a s , Ω k ) = X ( t u
a , Ω k

if

Short-time Fourier transform of a sinusoidal signal. When the signal corresponds
to the model of Eq. (7.1), the short-time Fourier transform can be expressed in terms
of the model parameters. Substituting Eq. (7.1) into Eq. (7.6) yields

(7.9)
Now we will assume that the analysis window h(n ) is sufficiently short so that the
instantaneous frequencies and amplitudes of the sinusoids can be assumed constant
over the duration of h. As a result, we have

and the short-time Fourier transform becomes, after straightforward manipulations

(7.10)

where H (ω) is the Fourier transform of the analysis window h(n ). Equation (7.10)
shows that the short-time Fourier transform of the sinusoidal signal is the sum of I(t u )a
images of H (ω), translated by ωi(t u

a ) and weighted by Ai (t u
a ) exp( jφi ( t u

a )). We
will further assume that h (n ) is real, symmetric around n = 0, so that H (ω) is real
symmetric, and that the cutoff frequency ωh of the analysis window h (n ) is less than
the spacing between two successive sinusoids. This means that the shifted versions of
H (ω) do not overlap, and Eq. (7.10) simplifies to

(7.11)
Eq. (7.11) shows that the short-time Fourier transform gives access to the instantaneous
amplitude A i (t u

a ), and the instantaneous phase φi (t u
a ) of the sinusoid i which falls into

(7.8)
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Fourier channel k. The phase is known up to a multiple of 2π (since only exp( jφi (t u
a))

is known). Time-scale modifications also require the knowledge of the instantaneous
frequency ωi( t u

a ). ω i(t u
a ) can also be estimated from successive short-time Fourier

transforms: for a given value of k, computing the backward difference of the short-time
Fourier transform phase yields

(7.12)

in which we have assumed that the instantaneous frequency ωi ( tu
a ) remained constant

over the duration tu π which comes from the fact that onlya
+ 1 – t u

a. The term 2m
the principal determination of the phase is known (e.g., as given by an four-quadrant
inverse tangent) is estimated the following way. Denoting R(u) = t u

a
+1 – t u

a , we have
(since the ith sinusoid falls within the kth channel)

in which ωh is the bandwidth of the analysis window. If R( u ) is such that ωh R(u ) < π
we have

(7.13)

and there is only one integer m that satisfies the latter inequality. Once m is
determined (by adding or subtracting multiples of 2π until the preceding inequality is
satisfied - a process known as phase unwrapping), the instantaneous frequency can be
obtained by Eq. (7.12), yielding

(7.14)

Time scaling. Because the phase-vocoder (the short-time Fourier transform) gives
access to the implicit sinusoidal model parameters, the ideal time-scale operation
described by Eq. (7.3) can be implemented in the same framework. Synthesis time-
instants t u

s are usually set at a regular interval tu +1 – t u
s s = R. From the series of

synthesis time-instants t u
s, analysis time-instants tu

a are calculated according to the
desired time warping function tu

a = T – 1 (t u
s). The short-time Fourier transform of the

time-scaled signal is then:

with (7.15)

in which λ k (T – 1 (t u
s )) is the instantaneous frequency calculated in channel k, as given

by Eq. (7.14). As previously, λ k (tu ) is supposed to be constant over the durationa
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t u – t u –1 It is easy to verify that this short-time Fourier transform corresponds toa a

the ideal time-scaled signal. According to the preceding equation, the modulus of the
modified short-time Fourier transform in a given channel at time tu

s is the same as that
of the original short-time Fourier transform at time tu

a = T –1
(t u

s ), and its phase is
calculated so that the instantaneous frequency of any sinusoid in the modified signal at
time tu

s is the same as in the original signal at time T–1 (tus ). In other words, the phase
runs freely and only its derivative with respect to time is controlled. The modified
short-time Fourier transform Y( tu

s , Ωk ) can then be used in Eq. (7.7) to obtain the
time-scaled signal. The complete algorithm can be summarized as follows:

1. Set the initial instantaneous phases  (0, Ω k ) = arg(X (0, Ωk )).

2. Set the next synthesis instant tu+1
s = t u

s + R and calculate the next analysis
instant t u +1

a = T –1 (t s
u+1)

3. Compute the short-time Fourier transform at next analysis time-instant ta
u +1 and

calculate the instantaneous frequency in each channel according to Eq. (7.14).

4. Calculate the instantaneous phase k (t s
u + 1 ) according to Eq. (7.15).

5. Reconstruct the time-scaled short-time Fourier transform at time tu+1 accordings

to Eq. (7.15).

6. Calculate the (u + 1)-th short-time modified signal by use of the synthesis
formula Eq. (7.7) and return to step 2.

Note that if an analysis time-instant tu
a is not an integer, it can be rounded to the

nearest integer prior to the calculation of the instantaneous frequency, provided that
the corrected value of R(u – 1) = tu

a – ta
u–1 is used in Eq. (7.14). It is easy to show that

for a constant-amplitude, constant-frequency sinusoid, the procedure above outputs a
perfect time-modified sinusoid² provided

(7.16)

which is similar to the standard condition of perfect reconstruction, Eq. (7.8). For
an output overlap factor of 75%, a possible choice for w(n ) and h (n) is Hanning
windows.

Pitch-scaling. There are several ways of using the phase-vocoder for pitch-scaling
operations.



290 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

Using a bank of sinusoidal oscillators. The Fourier analysis described above gives
access to the sinusoidal parameters of the signal: time-varying sinusoidal amplitudes
Ai( t ua ) (Eq. (7.11)) and instantaneous frequencies ωi ( t u

a ) Eq. (7.14). A simple means
of performing pitch-scaling consists of resynthesizing the signal after multiplying the
instantaneous frequencies by the factor α (t):

with (7.17)

This solution has the advantage of being very simple, but the drawback of being
expensive in terms of calculations, even when tabulated sinusoids are used in Eq. (7.17).
In fact, additive synthesis (of which Eq. (7.17) is an example) can be implemented at a
much lower cost by use of the Fourier transform [Rodet and Depalle, 1992]. This last
remark is a strong motivation for using the following alternative:

Using time-scaling and resampling. Pitch-scaling can be performed by using the
duality between time and pitch-scaling operations, as discussed in section 7.2.2. Pitch-
scaling is implemented in two steps:

1. The original signal x(t) is first time-scaled by a factor T(t) such that  α (t ) = dT
dt

by use of the technique described above.

2. The resulting signal x'(t ' ) is then resampled, yielding

As was previously shown, y(t) is then the pitch-scaled version of the original
signal x(t).

Resampling can be achieved in several ways, either in the time or in the frequency
domain. Because X'(t') is only known at integer values of t', resampling amounts to
interpolating (since in general, T(t) is not an integer). As is well known [Oppenheim
and Schafer, 1989], for constant modification rates (α(t) = α or T (t) = α t), the
ideal interpolation is the so-called band-limited interpolation in which y is obtained by
convolving x' with a sinc function:

in which µ = min (α, 1/α ). This convolution can be very expensive in terms of
calculation, especially for non-rational values of α . For rational α , multirate imple-
mentations can be used [Crochiere and Rabiner, 1983], with a significant reduction of
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the computational cost. However, for time-varying pitch-scaling factorsα(t), multirate
resampling can no longer be used. See section 8.4 for alternative ways of performing
sampling-rate conversion in the context of sampling synthesizers.

The short-time Fourier transform provides another way of performing resampling
with possibly non rational, time-varying factors. The major advantage of this technique
is that it can be combined with the time-scaling in a single step to minimize the amount
of calculations required. Frequency domain resampling is achieved the following way:

1 . A short-time Fourier transform analysis is first carried out on the signal to be
resampled, at regularly spaced analysis time-instants t u

a  = R u.

2. The short-time spectra are scaled to account for the modification of the sampling
frequency.

(7.18)

Note that when α(tu
a ) > 1, the upper part of the original spectrum is discarded,

and when α(tu
a ) < 1, the upper part of the modified spectrum is null.

3. The resampled time-domain signal is obtained by use of the synthesis for-
mula Eq. (7.7), noticing that because the signal is resampled, the synthesis
time-instants tu

s differ from the analysis time-instants, and are now given by

For a constant modification rate α(t) = α, it can be shown that the above procedure
leads to perfect resampling provided the analysis window and the synthesis window
verify

As with time-domain resampling, the scaling in step 2 above is in fact an interpolation
since the short-time spectra are known only at discrete frequencies Ωk = 2πk

N
. Ideally,

band limited interpolation should be used here. In practice however, a mere linear
interpolation is used:

with (7.19)

(7.20)and

in which [x] is the integer immediately below x. Using linear interpolation in place of
band limited interpolation generates time-aliasing, an artifact that can be minimized
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by using an FFT size N much larger than max (T, T/α), T being the length of the
analysis window.

Frequency domain resampling is attractive in the present context because the time-
scaling and the resampling operations can be performed in a single phase-vocoder
analysis, thus reducing the computational cost. The interested reader may con-
sult [Moulines and Laroche, 1995] for a complete description of the algorithm.

Choice of the analysis parameters. We can now summarize the various constraints
introduced so far on the length T of the analysis window, its cutoff frequency ωh , and
the analysis rate R:

� For the short-time Fourier analysis to resolve the sinusoids, the cutoff frequency
of the analysis window must satisfy ωh < mini ∆ ωi , i.e. be less than the spacing
between two successive sinusoids.

� The duration T of the analysis window must be small enough so the amplitudes
and instantaneous frequencies of the sinusoids can be considered constant within
the analysis window.

� To make phase unwrapping possible, the cutoff frequency and the analysis rate
must satisfy ωh R < π (see Eq. (7.13).

For standard analysis windows (e.g. Hanning, Hamming,) the cutoff frequency is
inversely proportional to the window length, ωh  ≈ 4 π/T. The first condition implies
that T > 4∆ ωmin : The window must be longer than 4 times the period corresponding
to the interval between the closest frequencies. The last constraint above implies
R < T /4, i.e. successive analysis windows must have a minimum overlap of 75%.
The larger the cutoff frequency, the larger the minimum overlap between successive
analysis windows.

Puckette in [Puckette, 1995] proposes an alternate way of computing the phases and
the amplitudes of the short-time Fourier transform at the synthesis instants, replacing
the calculation of the arc tangent and the phase-unwrapping stage by another Fourier
transform. Essentially, in Eq. 7.15 the phase increment can also be estimated if the
phase φk (

u
a ) of the input signal at time

u
a  = tu

a + t u
s – t s

u–1 is known:

(7.21)

φk ( u
a ) can be obtained by calculating an additional Fourier transform at the analysis

time-instant u
a . Moreover, since phases are only added or subtracted, all the operations

above can be done by mere complex multiplications and divisions, which are far less
costly than trigonometric functions. Since the parameter λk  is no longer needed, phase
unwrapping is no longer required. In many cases, the additional Fourier transform
ends up being less costly than the computationally expensive arc tangent and the
phase-unwrapping.
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7.3.2 Methods based on a signal model

Chapter 9 presents several models that can be used to parametrize audio signals,
and possibly modify them. In that context, time or pitch scale modifications are
implemented by adequately modifying the model parameters before the resynthesis
stage.

7.4 TIME-DOMAIN TECHNIQUES

Historically, the first techniques designed to achieve independet control over pitch
or duration were carried out in the time domain: Fairbanks, Everitt and Jaeger’s
modified tape recorder [Fairbanks et al., 1954] probably is the first known automatic
time-domain system for speech transposition. By contrast with frequency-domain
methods, time-domain techniques for time or pitch scale modification manipulate
short-duration time-segments extracted from the original signal, a mechanism usually
called ‘sampling’ or ‘splicing’; As a result, they tend to require much fewer calculations
and lend themselves quite well to real-time implementations.

7.4.1 Principle

The basic idea consists of decomposing the signal into successive segments of relatively
short duration (of the order of 10 to 40 ms). Time-scale compression (respectively,
expansion) is achieved by discarding (respectively, repeating) some of the segments,
while leaving the others unchanged, and by copying them back in the output signal
as shown in Fig. 7.2. As was the case for frequency-domain techniques, pitch-scale

Figure 7.2 Time stretching in the time-domain. Segments excised from the original
signal are copied back into the modified signal, with possible repetition (e.g., the third
segment in this example).

modifications can be obtained by combining time-scaling and resampling. For this
scheme to work properly, one must make sure that no discontinuity appears at time-
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instants where segments are joined together. This is the reason why the segments are
usually overlapped and multiplied by weighting windows.

Most time-domain methods are based on this simple idea, and differ only in the
choice of the segment durations, splicing times and weighting windows. They can be
classified according to whether they make use of pitch information or not.

7.4.2 Pitch independent methods

Fairbanks, Everitt and Jaeger’s modified tape recorder [Fairbanks et al., 1954] is the
simplest and oldest example of a pitch-independent time-domain time or pitch scaling
system. Although Pitch independent methods are no longer used in practice, they
offer a simple illustration of the basic principles underlying most of the more recent
algorithms.

The analog origin. Fairbanks, Everitt and Jaeger used a tape recorder equipped
with four playback heads attached to a rotating cylinder. The signal is recorded via
a fixed head on the moving magnetic tape, then read by the moving playback heads.
Depending on the direction and speed of rotation of the cylinder, the signal is read
faster or slower than it has been recorded, hence the pitch modification. To simplify
the discussion, assume that only 2 playback heads are used, and that the tape is in
contact with half the cylinder’s perimeter as shown in Fig. 7.3. When the cylinder

Figure 7.3 A modified tape recorder for analog time-scale or pitch-scale modification.
The rotating cylinder is fitted with two playback heads (triangles on the figure), while
the record head is fixed (triangle on the left)

is rotating contrary to the tape motion, the speed of the tape relative to the playback
head is higher than the recording speed, and therefore the pitch is raised (this is the
resampling stage mentioned above). When the first playback head leaves the tape
(point A), the second one comes into contact with it at point B, and therefore the signal
recorded on the tape between points A and B is repeated (this is the time-scaling stage).
The duration of the repeated segment is constant (depending only on the tape transport
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speed and on the cylinder diameter), and the splicing points are regularly spaced (for
a constant pitch-transposition factor) as shown schematically in Fig. 7.4. Because the
heads gradually leave (or come into contact with) the tape at points A and B, their
output signals gradually fade in or out: adding the outputs of the two playback heads
guarantees continuity. The pitch can be lowered by making the cylinder rotate in the
same direction as the tape motion. In that case, when the first playback head leaves
the tape (point B), the signal recorded on the tape between points A and B will not be
read by any playback head (i.e., it is discarded). Time-scaling is achieved by first

Figure 7.4 Pitch modification with the sampling technique. The segments are resam-
pled (here to a lower sampling rate) and possibly repeated (as segment 2), giving the
output signal the same duration as the input signal.

recording the signal on the tape, then playing back the tape with a slower speed (for
time expansion) or a higher speed (for time-compression), using the rotative playback
heads to compensate for the resulting modification of pitch.

Digital counterpart. The modified tape recorder suffered from problems associated
with the use of high-speed rotating mechanical components (in particular, the low-
level playback signals had to pass through sliprings, a potential source of problems).
These mechanical limitations were easily overcome by the digital implementation
of this technique which appeared in the beginning of the 1970s [Lee, 1972]. The
idea is to replace the tape by a circular memory register (a memory region addressed
modulo its length), to replace the record head by an input address pointer and the
two playback heads by two output address pointers pointing to different locations in
the memory. The original signal is written into the memory via the input address
pointer which is incremented by 1 every sampling period. The output address pointers
are incremented by α every sampling period, so the samples are read at a different
rate than they were recorded. When the current output pointer meets with the input
pointer, the corresponding output samples are faded out while the samples read by
the other output pointer fade in, avoiding any discontinuity. Note that for non-integer
modification rate α, the output address pointers are incremented by non-integer values,
and the output must be obtained by interpolation. The ‘digital modified tape recorder’
functions exactly as its analog counterpart, without suffering from the usual limitations
of analog/mechanical systems.
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Input-time/Output-time characteristic. It is interesting to study more closely the
relation between the time in the input signal and the time in the output signal. Suppose
a time-scale modification of constant-ratio β > 1 is performed by use of the sampling
method. As shown above, the output signal is obtained by periodically repeating
segments of the input signal, while leaving the other segments unchanged. The
relation between the elapsed time in the original signal t and the elapsed time in the
modified signal ' is shown in Fig. 7.5. Ideally, one would have t' = β t, however

Figure 7.5 Output elapsed time versus input elapsed time in the sampling method for
Time-stretching (β > 1). Dashed line: ideal curve, solisd line: approximate curve.

as seen in the figure, ' ≠ βt. For segments that are not repeated (and therefore are
just copied back into the output signal), the output time increases at the same rate
as in the input signal (straight lines with a slope 1 in Fig. 7.5). When a segment is
repeated however, the output time increases while the input time remains the same
(vertical lines in Fig. 7.5). Thus the ideal curve t' = βt (the dashed line of slope β) is
approximated by successive segments of slope unity, separated by vertical jumps. The
height of the vertical jumps is equal to the fixed length tb of the repeated segments (half
the duration of the circular buffer, or in the analog case, the duration corresponding to
half the perimeter of the cylinder). As a result, the number of repeated segments per
input second is approximately

(7.22)
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The problem of tempo. Consider again a time-scale modification of constant factor
β. Because the ideal straight line of slope β in Fig. 7.5 is approximated by successive
segments of unity slope, the regularity of ‘tempo’ in the processed signal is altered:
consider regularly spaced instants in the original signal (e.g., the ticking of a metronome
of period P). The corresponding ticks in the output signal are no longer regularly
distributed, although in average they are separated by a duration βP: the time-scaled
metronome limps! The maximum discrepancy between the ideal output-time and the
actual output-time is precisely the height of the vertical segment tb . For speech signals,
fairly large irregularities of tempo (up to ±60 ms) can be accepted without any impact
on the naturalness of the modified speech. For music however, the regularity of tempo
is an extremely important issue and large time-discrepancies cannot be accepted. As
a consequence, tb  should not be allowed to excess a maximum value tmax

b  which,
depending on the kind of music to be processed, can be as small as 10 ms.

Splicing artifacts. The time-scale/pitch-scale modification system described above
requires very few calculations, and lends itself very well to real-time implementation.
Unfortunately, it is prone to artifacts because no precaution is taken at the splicing
points, other than to guarantee continuity. Assume a sinusoidal input signal, if the
length of the segments repeated or discarded is not equal to the period of the sinusoid,
then an artifact will be generated, as shown in Fig. 7.6. Although the waveform is

Figure 7.6 Time-scale modification of a sinusoid.

‘continuous’, the local aperiodicity generates a soft “plop” in the output signal. Such
plops appear periodically in the output signal at a frequency which increases with the
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modification rate as shown by Eq. (7.22). The result is a quite audible degradation of
the signal, discrete enough for speech signals but unacceptable for musical signals. A
standard way of reducing this degradation consists of using longer cross-fades (50 ms
and above) at the splicing points. Although this does make the splicing artifacts much
less conspicuous, it does not eliminate them, and has the side-effect of introducing
phasing or chorusing (resulting from cross-fading delayed signals). Clearly, one way
to improve this system consists of making use of the pitch information, when available.

7.4.3 Periodicity-driven methods

For strictly periodic signals, the splicing method functions perfectly provided the
duration of the repeated or discarded segments is equal to a multiple of the period.
This is still true to a large extend for nearly periodic signals such as voiced speech and
many musical sounds. A number of methods have been proposed, similar in principle
to the splicing method, but in which an actual estimate of the pitch or some measure
of ‘waveform similarity’ are used to optimize the splicing points and durations. The
method proposed by Scott and Gerber in 1972 [Scott and Gerber, 1972] for speech
used an estimate of the pitch obtained by a laryngograph (a device placed on both sides
of the thyroid cartilage, which detects the closure of vocal folds via an impedance
measurement). The pitch however can be extracted from the signal itself, thus avoiding
the use of a specific device, as was proposed by Malah [Malah, 1979] and others [Cox
et al., 1983]. Other methods presented below have also been proposed, in which the
pitch is not explicitly determined, but the waveform is inspected for self similarity so
the length of the segments can be adjusted accordingly.

Methods based on waveform similarity. The SOLA (Synchronized OverLap Add)
method originally proposed by Roucos and Wilgus [Roucos and Wilgus, l985] and its
many variations [Verhelst and Roelands, 1993, Wayman and Wilson, 1988, Suzuki and
Misaki, 1992, Laroche, 1993, Hardam, 1990] are all based on the following principle.
The idea consists of adjusting the length of the repeated/discarded segment so the
overlapped parts (e.g., the beginning and the end of the second segment in Fig. 7.4)
are ‘maximally similar’, so the kind of artifact shown in Fig. 7.6 is avoided. When the
signal is quasi-periodic, the optimal duration is a multiple of the quasi-period since in
that case, the overlapping parts are nearly similar (separated by an integer number of
periods). Note that the idea is very similar to what is done in sampling machines to
adapt the loop length to the signal (see section 8.2.4). Many methods can be used to
measure the similarity between the overlapping parts, of which the normalized cross-
correlation cc (t u , ka , k ) and the average magnitude difference function (AMDF) ca (t u

a )
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are the most standard.

and (7.23)

(7.24)

in which Nc controls the duration over which ‘similarity’ is estimated. At time tu

) is maximal or at which
, thea

optimal segment duration is the value of k at which cc(t u
a , k

ca ( t u
a , k ) is minimal. The calculation of the normalized cross-correlation is somewhat

costly, but can be simplified for example by down-sampling the signal or by making
use of a fast Fourier Transform [Laroche, 1993]³. By contrast, the average magnitude
difference function requires fewer calculations, an its minimum can be found without
calculating the sum over all values of i in Eq. (7.24) for all values of k. However, the
average magnitude difference function is more sensitive to noise.

Because the duration of the repeated segments no longer is a fixed parameter,
the optimized algorithm now requires an upper bound tm a x for acceptable time-b
discrepancies tb . In most of the methods based on waveform similarity, the measure
of similarity (cc ( t u

a , k ) or ca ( t u
a , k )) is evaluated at regularly spaced time-instants

t u
a = R u . Only those values of k are tested such that repeating or discarding a

segment of length k keeps the time-discrepancy below its limit t m a x . In other words,b
in Fig. 7.5 vertical jump are tested every R samples of input signal with heights k
such that the time discrepancy lies within acceptable limits:  | ' + k – β t| < t m a x

b .
When | ' – βt | < t m a x

b , the value of k that maximizes the measure of similarity is
trivially k = 0 and no splicing is performed. When | ' – βt | > t m a x then k = 0b 
is not an acceptable value (because the time-discrepancy is already too large) and a
splicing operation must be performed. The method in [Laroche, 1993] suggests a
simplification in that the measure of similarity is calculated only when necessary (i.e.,
when | ' – βt | = t m a x

b ). Fig. 7.7 shows the relation between the input elapsed time and
the output elapsed time. The vertical lines no longer have a fixed duration and splicing
occurs whenever the time-discrepancy between the ideal curve and the approximated
curve reaches the limit t m a x

b (i.e., splicing no longer occurs at a regular rate). Standard
values for the maximum splice length range from 10 ms to 60 ms depending on the
source material. The duration of the cross-fade can be short (less than 5 ms) or longer
(over 60 ms) depending on how periodic the signal is.

The PSOLA method. The PSOLA (Pitch Synchronous OverLap-Add) method
[Moulines and Charpentier, 1990] was designed mainly for the modification of speech
signals. For time-scale modifications, the method is a slight variation of the technique
described above, in which the length of the repeated/discarded segments is adjusted
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Figure 7.7 Output elapsed time versus input elapsed time in the optimized sampling
method for Time-stretching (β > 1). Dashed line: ideal curve, solid line: approximate
curve.

according to the local value of the pitch given by a preliminary pitch estimation. For
pitch-scale modifications however, the method has the advantage of not modifying
the location and bandwidth of the formants, by contrast with techniques based on the
combination of time-scale modification and resampling which merely perform a local
scaling of the frequency axis, therefore shifting the location of the formants as well
as the fundamental frequency. As is well known, even a small change in the formant
location or bandwidth can considerably alter the naturalness of the modified speech, a
result that makes the PSOLA method very attractive for pitch-scale modifications of
speech. Pitch-scale modifications that do not affect the bandwidth and location of the
formants are usually called formant-preserving pitch-modifications.

The PSOLA method is based on the assumption that the local value of the pitch is
known (for segments exhibiting periodicity) as well as the locations of glottal pulses.
A standard, simple speech production model assumes that the speech signal is obtained
by filtering a periodic series of glottal pulses by a time-varying resonant filter [Markel
and Gray, 1976]. The resonant filter models the acoustic propagation in the vocal tract,
while the glottal pulses model the peaks of pressure resulting from the rapid closure of
the vocal folds. Based on these assumptions, the basic idea behind PSOLA pitch-scale
modifications consists of extracting short-time segments of signal centered around the
successive glottal pulses and adding them together at a different rate, as shown in
Fig. 7.8. The short-time signals are extracted at a pitch-synchronous rate (denoted
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P(t) on the figure), by use of a weighting window. By contrast with the preceding

Figure 7.8 Pitch-scale modification with the PSOLA method. The short-time segments
extracted from the original signal (top) are overlap/added at a different rate in the
modified signal. Here, the pitch is raised (P'(t) < P (t)), and segment 2 is repeated
to compensate for the modification of the duration.

method (see Fig. 7.4) the short-time signals are not resampled, but are overlap/added
at a modified rate P'(t) = P (t)/α(t), and repeated (or discarded) to compensate for
the corresponding modification of duration. It is possible to describe theoretically
the modifications performed by the PSOLA method, and therefore to assess to what
extend speech formants are unaltered by the pitch-modification. The interested reader
can refer to [Moulines and Laroche, 1995] or [Bristow-Johnson, 1995] for a thorough
analysis of the algorithm. It is interesting, however, to understand intuitively what
is going on: Each short-time signal can be thought of as the convolution of a glottal
pulse by the impulse response of the resonant filter. Because the short-time signals are
not resampled but merely copied back, the locations and bandwidths of the formants
are not altered: the impulse response of the resonant filter is unchanged. However,
the periodicity of the glottal pulses is modified, which corresponds to an alteration of
the pitch. By contrast, in the standard splicing method the short-time signal would be
resampled (see Fig. 7.4) before being copied back thereby causing a modification of
the impulse response of the resonant filter. One of the main limitation of the PSOLA
method comes from the assumption that the pitch contour of the signal is known:
obtaining the pitch contour usually requires a preliminary analysis stage, which makes
the real-time implementation of the PSOLA method difficult. Also, estimating the
location of the glottal pulses can be difficult. In order to alleviate this difficulty, the
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analysis time-instants can be set at a pitch synchronous rate, regardless of the true
location of the glottal pulses, at the cost of a slight decrease in the otherwise excellent
quality of the modified signal.

7.5 FORMANT MODIFICATION

Some of the methods described above for pitch-scale modifications can also be used
to control the location of the formants independently from the pitch. This can be used
to make a voice more feminine or masculine (by altering the location of the formants),
or to “munchkinize” a voice, an effect made popular by the movie “Wizard of Oz”.

7.5.1 Time-domain techniques

A nice byproduct of the PSOLA pitch-scale modification technique (see section 7.7) is
that formant-scaling can be done at a fairly low cost. The idea consists of recognizing
that the information about the location of the formants lies in the short-term signal
segments. As explained above, because the original PSOLA technique merely copies
back the short-term segments without modifying them, the original signal formants
are preserved. But if the short-term segments are resampled prior to overlap-adding,
the formants will be modified accordingly. For example, to raise the formants by a
constant factor γ > 1, without otherwise modifying the pitch or the duration of the
signal, one would resample each short-term segments at a sampling rate lower than
the original by a factor γ, thereby making them of shorter duration, before overlap-
adding them together at a rate identical to the original rate P'(t) = P (t). Because
the overlap rate has not been modified, the pitch and the time evolution of the signal
remain the same, but the formants have been shifted by the resampling operation.
The resampling operation should ideally be band-limited, and care must be taken to
preserve the position of the middle of each short-term signal during resampling, prior
to overlap-adding. The PSOLA formant-modification technique has the advantage of
a low computational cost, but relies on the assumption that the signal is periodic, and
that its pitch is known. The technique breaks-down when any of these assumptions is
violated. Also, the technique only allows for linear scaling of the formants.

7.5.2 Frequency-domain techniques

Because they give access to the spectral representation of the signal, frequency-domain
techniques are well suited for formant modification. The first step in frequency-domain
formant modification techniques consists of obtaining a estimation of the spectral
envelope. Based of the short-time representation of the signal, it. is possible to derive
a spectral envelope function using a variety of different techniques. If the pitch of the
signal is available, the short-time Fourier spectrum is searched for local maxima located
around harmonic frequencies, then an envelope can be obtained by joining the local
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maxima with linear segments, or using more elaborate cepstrum techniques [Cappé
et al., 1995]. If the pitch is not available, the problem of reliably determining the
spectral envelope is more difficult because harmonic spectral peaks have to be sorted
from non pitch-related peaks, a task very similar to pitch-estimation, Once the spectral
envelope at a given analysis time tua has been estimated (we’ll denote it E( tu

a
, Ω k )),

formant modification is obtained by modifying the modulus of the short-time Fourier
transform prior to resynthesis Eq. (7.7). For example, raising the formants by a constant
factor γ > 1 is done the following way:

(7.25)

where X(t u , Ωk ) is the short-time Fourier transform of the original signal, anda
Y ( t u , Ωs k ) is the short-time Fourier transform of the formant-modified signal. Because
Ωk / γ does not necessarily correspond to a discrete frequency, the spectral envelope
needs to be interpolated, which can be done linearly in a dB scale. Of course, Eq. (7.25)
can be integrated with time-scale or pitch-scale modifications for combined effects.
The advantage of frequency-domain techniques for formant-modification becomes ob-
vious when the original signal is not periodic (mixture of voices, polyphonic musical
signal), in which case time-domain techniques break down entirely. In addition, un-
like PSOLA, frequency-domain techniques allow for non-linear formant modifications
(the factor γ in Eq. (7.25) can be made a function of the frequency Ω k ). At the time
this book went to press, a few commercial implementations of formant-modification
techniques were available, in sound editing software, stand-alone effect boxes and
hard-disk recorders.

7.6 DISCUSSION

The preceding sections introduced various time or pitch scaling methods performing in
the time-domain or in the frequency-domain. In this section, we will summarize their
performance, and point out limitations and problems often encountered when using
them.

7.6.1 Generic problems associated with time or pitch scaling

The time-scale/pitch-scale modification methods presented so far have been used suc-
cessfully in the domains of speech or music processing. However, a number of
problems are almost systematically encountered in practice.

Reverberation and shape invariance. One problem often associated with the use
of time-scale or pitch-scale modifications, pointed out in [Portnoff, 1981] is com-
monly called the reverberation, chorusing or phasiness effect (chorusing refers to the
subjective sensation that several persons are speaking/playing at the same time, as in
a chorus). For moderate to large modification factors (say, above 1.5 or under 0.7),
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and especially for time expansion, the modified signal tends to be reverberated or
chorused. This artifact is encountered mainly with frequency-domain techniques, but
is also present in time-domain techniques, to a much lesser degree.

In the case of non-sinusoidal signals (signals that are better represented by noise)
the problem is a simple consequence of the inadequacy of the underlying model.
Time-expanded noise generally tends to acquire a definite ‘buzzy’, sinusoidal quality
due to the inadequate sinusoidal representation used in the phase-vocoder, or in time-
domain techniques to the fact that segments are repeated, thus introducing undesirable
long-term correlation. In frequency-domain techniques, this phenomenon can be
significantly reduced by increasing the size of the Fourier transform. More generally,
the problem can be solved by use of methods based on a mixed sinusoidal/noise
representation of the signal [Griffin and Lim, 1988, Serra and Smith, 1990, Poirot
et al., 1988, Laroche et al., 1993b]. See chapter 9.5 for a description of a sinusoid/noise
model.

In the case of quasi-periodic sinusoidal signals, the ‘buzziness’ can often be linked
to the fact that the phase coherence between sinusoidal components is not preserved.
Shape invariant modification techniques for quasi-periodic signals are an attempt to
tackle this problem. As explained in 9.4.2, quasi-periodic signals such as speech
voiced segments or sounds of musical instruments can be thought of as sinusoidal
signals whose frequencies are multiples of a common fundamental ω0 (τ ), but with
additional, slowly varying phases θi (t ):

(7.26)

where

(7.27)

Although common knowledge has it that fixed phase relations do not influence the
perception of timbre [Zwicker and Fastl, 1990, Zwicker, 1982], this is not true for
time-varying phases: disturbing phase relations is known to introduce buzziness or
reverberation in the modified signal [McAulay and Quatieri, 1986b]. In Eq. (7.26),
phase relations are controlled through the terms θi (t). Therefore, an ideal shape-
invariant time-scale modification would be

(7.28)

where

(7.29)
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in which the slowly varying phase θi at time t´ in the modified signal corresponds
to that in the original signal at time t = T –1 ( t´). This guarantees that the phase
relations in the modified signal at time t´ correspond to that in the original signal at
time t = T – 1 ( t´ ).

Pitch-driven time-domain modification systems by construction are immune to such
problems since no sinusoidal decomposition is performed (i.e., no phase is extracted).
This is the reason why time-domain techniques are known to produce high-quality
modifications for quasi-periodic signals. By contrast, frequency domain techniques
and, more specifically, methods based on the phase vocoder very often exhibit problems
connected to shape-invariance because the sinusoidal phases in the modified signal are
allowed to run free (i.e. only their derivatives are controlled as in in Eq. (7.15)): specific
phase-relations that existed in the original signal are destroyed in the modified signal.
Fig. 7.9 shows the time-domain evolution of an original speech signal (top) and its time-
scaled version (bottom). The time-scale modification was carried out by use of a time-
domain pitch-driven technique, and the modification factor was 1.5. As is clear in the
picture, the phase relations between the harmonics in the original signal are preserved
in the modified signal (the shapes of the two signals in the time-domain are similar).

Figure 7.9 Time-domain representation of an original speech signal (top), and of its
time-stretched version (bottom), showing shape invariance. Time-domain modification
technique.

By contrast, Fig. 7.10 shows the modified signal obtained by use of the standard phase-
vocoder time-scaling technique. Clearly, the shapes of the signals are quite different,
illustrating the lack of shape invariance. The standard phase-vocoder technique
described in section 7.3 cannot ensure shape invariance because the signal is not
assumed to be quasi-periodic and the time-scale modification is at best that described by
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Figure 7.10 Time-domain representation of an original speech signal (top), and of its
time-stretched version (bottom), showing the loss of shape-invariance. Phase-vocoder
modification technique.

phases in the modified signal are still obtained by a discrete integration (a cumulative
sum as in Eq. (7.15)) and phase errors inevitably accumulate, thereby altering the
phase relations in the original signal. A modification of Portnoff’s technique has
been proposed in [Sylvestre and Kabal, 1992] to solve this problem: contrary to the
standard phase-vocoder technique (Eq. (7. 15)), the phase in each channel at synthesis
instant tu

s is not obtained through a cumulated sum. Rather, phases are reset at
each synthesis time-instant t u

s to theirs values in the original signal at time tu
a . As

a result, the phase continuity between two successive short-time synthesis signals is
no longer guaranteed. To recover phase continuity, a fixed phase offset is added to
each channel, and the remaining phase discontinuity is exactly cancelled by slightly
modifying the instantaneous frequency in each short-time Fourier transform channel.
The modified signal is then obtained by concatenating the short-time signals, rather
than overlap-adding them. This algorithm guarantees some degree of shape invariance
because the phase relations between the pitch-harmonics in the vicinity of a given
synthesis time-instant are the same as in the original signal in the vicinity of the
corresponding analysis time-instant, up to a linear phase-shift. Some parametric
modification methods have also been modified to ensure shape invariance in the case of
quasi-periodic signal [Quatieri and McAulay, 1989, Quatieri and McAulay, 1992]. See

Eq. (7.3), which differs from Eq. (7.28). Without the assumption of quasi-periodicity,
shape invariance cannot be obtained. The original method proposed by Portnoff
in [Portnoff, 1981] makes use of pitch information to evaluate the slowly varying
phase component θ (t) in Eq. (7.26) and modify it according to Eq. (7.28). However, the
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section 9.4.2 for the description of a shape-invariant parametric modification technique.
For non quasi-periodic as well as quasi-periodic signals, the reverberation has also been
linked to the lack of phase-synchronization between the short-time Fourier transform
channels around each sinusoidal component. As indicated by Eq. (7.11), the phases
in the short-time Fourier transform channels around a given sinusoidal component
are not independent. For example, for a Hanning window without zero-padding,
the term H (Ωk – ωi(tua )) for successive values of k around the maximum exhibits
π phase shifts. In the standard implementation of the phase vocoder, this phase
coherence is not guaranteed at the synthesis stage, and phase misalignment between
adjacent channels generates beatings perceived as chorusing or reverberation. Puckette
in [Puckette, 1995] suggests an inexpensive solution for ensuring phase-coherence of
adjacent short-time Fourier transform channels. The phase of any given channel is
obtained from the sum of the short-time Fourier transform values at the channel and
its two neighbors with alternating signs (reflecting the sign alternation of the Fourier
transform of the Hanning window). This “phase locking” solution does not require
any explicit phase calculation and is therefore inexpensive, but provides in some cases
a significant decrease in the perceived reverberation.

Transient smearing. Another important issue in techniques involving the phase
vocoder is the reconstruction process. As explained above, the modified short-time
Fourier transform does not necessarily correspond to any existing time-domain signal.
The phase modification inherent to time or pitch-scaling does not necessarily preserve
the phase coherence that originally existed in successive original short-time spectra4 .
This problem inherent to the use of the phase-vocoder has been connected to undesir-
able reverberation and smearing effects in other contexts (e.g., coding [Johnston and
Branderburg, 1992]). The phenomenon becomes more and more conspicuous as the
size of the Fourier transform increases. To avoid this, it was proposed [Hayes et al.,
1980, Nawab et al., 1983, Griffin and Lim, 1984a] that the phase information in the
short-time spectra be discarded, and that the modified short-time Fourier transform
be reconstructed from the knowledge of its magnitude only, using the large data re-
dundancy in the short-time Fourier transform to make up for the loss of information.
This idea, originally proposed in the field of image-processing, leads to iterative algo-
rithms whose convergence has been proved in some cases [Griffin and Lim, 1984a).
However, it has been remarked that the global minimum is not always reached. These
iterative reconstruction methods have been applied to the problem of time-scale mod-
ification [Nawab et al., 1983, Griffin and Lim, 1984a, Roucos and Wilgus, 1985] and
have been shown to improve significantly the quality of the modified speech signal.
In particular, the reverberation/chorusing effect is significantly diminished. However,
the convergence is usually quite slow [Roucos and Wilgus, 1985], and the algorithms
extremely time-consuming. Transient smearing has also been observed in parametric



308 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

methods. See section 9.4.3 for the description of techniques used to overcome this
problem.

7.6.2 Time-domain vs frequency-domain techniques

The pitch-driven time-domain techniques presented in section 7.4 are relatively im-
mune to reverberation/chorusing problems, at least for moderate modification fac-
tors and for quasi-periodic signals. Because of the underlying assumption of quasi-
periodicity, these methods perform poorly with non-periodic signals, except for small
modification factors. Standard difficult cases include noisy signals (breathy voice,
wind instruments) which tend to acquire a buzzy quality upon modification, or com-
plex multi-pitch signals (as in music) where splicing operations are more difficult to
conceal. Also, a commonly encountered problem is that of transient doubling in which,
due to a splicing operation taking place in the vicinity of a transient, that transient ends
up being repeated or discarded in the modified signal. Advanced time-domain tech-
niques attempt to detect and gracefully handle transients, but this can be done only
when the modification factor is small (say less than 20%). Time-domain methods still
prove extremely useful for their simplicity and their fairly good performance for small
modification factors [Laroche, 1993]. Non-parametric frequency-domain techniques
that do not rely on the hypothesis of periodicity but rather on the assumption that the
signal is sinusoidal tend to perform much better in all situations when time-domain
methods fail. In particular, time or pitch-scale modifications by large factors cannot be
carried out by time-domain methods and usually require the use of the more elaborate
frequency-domain techniques. However, as was mentioned above they are prone to
artifacts (reverberation, buzziness, transient smearing) and a compromise has to be
found for the size of the Fourier transform: large sizes improve the results in the case
of noisy signals, but make transient smearing worse. On the other hand, the Fourier
transform size cannot be made smaller than a limit, as explained in section 7.3.1.
Finally, the solutions proposed to eliminate these artifacts are either excessively costly
and complex or only marginally efficient. Parametric techniques tend to outperform
non-parametric methods when the adequation between the signal to be modified and
the underlying model is good. When this is not the case however, the methods break
down and the results are unreliable. Parametric techniques usually are more costly in
terms of computations, because they require an explicit preliminary analysis stage for
the estimation of the model parameters.

Conclusion. The development of low-complexity time-domain methods for time-
scale or pitch-scale modifications has already made it possible to incorporate such
systems in consumer products such as telephone answering systems, effect boxes and
semi-professional CD players. They could easily be implemented in record or play-
back devices such as DAT or CD players, offering the user additional control over
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the play-back. Time-scale or pitch-scale modification techniques have also become
standard tools in editing softwares for professional or home-studio post-production
or broadcast studios, but are also quite common in sound-editing softwares. As of
today, time-domain techniques seem to predominate over frequency-domain methods,
due to the heavier computational cost of the latter. This tendency might be reversed
soon, following the steady increase of the computation power available in standard
microprocessors.

Notes

1. β(τ ) > 0 guarantees that T(t) is never decreasing and therefare that T – 1 (t' ) exists.

2. i.e., a sinusoid with the same amplitude, the same initial phase and the same frequency as the original
sinusoid.

3. Note that the division in Eq. (7.23) needs not be calculated since only the value k that maximizes
cc ( t u

a , k ), not the actual value, of  cc (t u
a , k ) is needed.

4. Notice that while the preceding paragraph mentioned phase relations between harmonics in connec-
tion with shape invariance, this paragraph addresses the problem of phase coherence between successive
analysis windows.
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Abstract: Sampling Wavetable Synthesis (“sampling”) is possibly the most com-
mercially popular music synthesis technique in use today (1997). The techniques used
in sampling include the traditional playback of digitized audio waveforms from RAM
wavetables, combined with sample rate conversion to provide pitch shifting. Sam-
pling evolved from traditional computer music wavetable synthesis techniques, where
the wavetable size simply grew to include an entire musical note. Extensions to simple
wavetable playback include looping of waveforms, enveloping of waveforms, and filter-
ing of waveforms to provide for improved expressivity, i.e., spectral and time structure
variation of the perfomed notes. A simple comparison is given between band limited
sample rate conversion for pitch shifting, linear interpolation, and traditional computer
music phase increment oscillator design.

8.1 BACKGROUND AND INTRODUCTION

Electronic methods for creating musical sounds have been used at least since the late
1890’s, with Thaddius Cahill’s Telharmonium, which used multi-ton alternators to
generate organ like sounds intended to be sold to listeners over telephone lines. But
digital generation of musical sounds only dates from the late 1950’s. Max Mathews of
Bell Labs led a group of researchers who pioneered the use of the digital computer to
generate musical sounds. At that time, all of the sounds generated were created out of
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real-time. Work on non real-time synthesis of musical sounds with digital computers
continued through the 1960’s and the 1970’s, mostly at university research labs. During
this period, the analog electronic music synthesizer was developed and flourished.
Don Buchla and Robert Moog, from opposite sides of the USA are generally credited
with independently inventing the analog voltage controlled patchable analog music
synthesizer in the early 1960’s.

The analog electronic music synthesizer used modular elements such as oscillators,
filters (including low pass, high pass, band pass, and notch), multipliers (both 2-
quadrant, and 4-quadrant), and adders (known as “mixers”), all interconnected with
telephone style patch cords. Programming analog music synthesizers consisted of
establishing an interconnection, and then laboriously adjusting the module parameters
by trial and error to produce a musically useful sound. Since the modules drifted
with temperature changes, and parameters were hard to store, sounds were rarely
reproducible from one day to the next. Still, these machines opened up the musical
world to a new class of timbres, which permanently changed music production.

The analog synthesizer flourished at about the same time that analog computing
matured. There were many interesting parallels between analog computing techniques
and analog music synthesizer principles. While analog computing developed a bit
earlier than analog electronic music, probably there were few direct influences from
analog computer design on analog electronic music synthesizer designers, Instead,
the parallels probably represented parallel evolution of two technologies with similar
constraints.

Analog computing used modular computing elements such as adders, multipliers,
integrators, piecewise non-linear function generators, and input/output devices such
as precision potentiometers, oscilloscopes, and paper strip chart recorders. While the
precision of analog computers rarely exceeded 1.0performance could exceed that of
digital computers up until the 1980’s, for many applications.

Hybrid analog computers with digital computers as control elements largely re-
placed pure analog computers in the 1970’s. Digital controlled analog music synthe-
sizers replaced pure analog synthesizers by the early 1980’s. At that time, pure digital
music synthesis in real-time still required very exotic technology, so using digital
elements for control allowed rapid recall of parameters and voices.

8.1.1 Transition to Digital

Digital computing methods have of course nearly replaced analog computing in one
field after another. The advantages of reliability and programmability combined with
the economics of Very Large Scale Integration of digital computing technologies have
almost completely displaced analog technologies.
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8.1.2 Flourishing of Digital Synthesis Methods

Dozens of digital synthesis techniques have been developed and used in the past 40
years. A very short list of techniques include:

� Additive (Sums of amplitude modulated sinusoids)

� FM – Frequency Modulation [Chowning, 1973]

� Waveshaping [LeBrun, 1979]

� Granular Synthesis (Chant, Vosim) [Rodet et al., 1989][Kaegi et al., 1978]

� Switched Wavetables (PPG, Korg Wavestation, Ensoniq VFX, MicroWave, oth-
ers)

� Spectral Modelling Synthesis [Serra and Smith, 1990]

� Source-filter Synthesis (Subtractive synthesis, Karplus-Strong Plucked string
algorithm [Karplus and Strong, 1983])

� Physical Modeling families

� LASynthesis (Linear Arithmetic) (Roland D-50)

These methods (and many others) are described quite well in the exhaustive work
by Roads [Roads, 1996].

Each of these synthesis methods has been explored to varying degrees by numerous
researchers, university composers, and commercial implementors, but today, sampling
synthesis has come to largely dominate the entire commercial synthesis industry. The
largest number of music synthesis instruments sold today (1997) are based on sampling
synthesis technology. In multi-media markets, personal computer sound cards based
on using FM synthesis still dominate in numbers of units installed, but the fastest
growth rates in sales for personal computer sound card technologies are for wavetable
synthesis cards, which is just the name used in the multi-media industry for sampling
synthesis.

With so many other synthesis techniques available, why has sampling become so
dominant? An analogy in the visual arts is the comparison between photography and
painting. In the visual arts, photography has become dominant in the sense that many
more photographs are taken than pictures painted. But in music, one could argue
that sampling synthesis has become more dominant in music than photography has in
graphic arts. Drawing and painting and other means for synthetic image generation
are very widespread, where pure synthesis for music is rapidly becoming unusual.

Simplicity is probably the primary factor in the dominance of both sampling and
photography. Sampling is simple to implement, but it is not simpler than all other
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synthesis methods. However, it appears to be simpler and more efficient to produce
sound libraries for samplers than for any other synthesis method. With sampling,
producing libraries of sounds can be quickly accomplished with minimal training,
where with most synthesis techniques, the time needed to produce a sound library is
often an order of magnitude greater, and such a task usually takes considerably more
training. Here again, the analogy with the visual arts is strong. A painter typically
needs much more training than a photographer. True, a professional photographer
may have a great deal of training, but amateurs can create photographs with much less
training that it would take to produce a painting of similar detail.

8.1.3 Metrics: The Sampling - Synthesis Continuum

Metrics for music synthesis techniques in the past have been dominated by simple
tabulations of CPU costs or brief subjective evaluations of sound quality. Recently,
efforts have been made to apply metrics to many aspects of synthesis techniques [Jaffe,
1995]. While it may be difficult to exactly define metrics for some of the subjective
elements of synthesis techniques, it is still very helpful to try to apply metrics for
evaluating different methods of synthesis. Two of the most important metrics could be
accuracy and expressivity.

Expressivity. Here we define expressivity as the variation of the spectrum and time
evolution of a signal for musical purposes. That variation is usually considered to
have two components, a deterministic component and a random component. The
deterministic element of expressivity is the change in spectrum and time evolution
controlled by the user during performance. For example, hitting a piano key harder
makes the note louder and brighter (more high frequency content). The random
component is the change from note to note that is not possible to control by the
musician. Two piano notes played in succession, for example, are never identical no
matter how hard the musician attempts to create duplicate notes. While the successive
waveforms will always be identified as a piano note, careful examination shows that
the waveform details are different from note to note, and that the differences are
perceivable.

Accuracy. We can describe accuracy in one sense as the fidelity of reproduction of
a given musical instrument sound. This fidelity can even be given objective measure-
ments, such as percentage distortion. Some musicians have argued that accuracy of
reproduction of existing musical instruments should not be the only goal of music
synthesis, so we might expand our definition to include measures appropriate for novel
musical instrument sounds for which there is no reference point for objective measures
of accuracy. In this case, perhaps some measure of the acoustical or perceptual so-
phistication of a sonic event can be devised, but for this discussion, we only consider
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imitative synthesis. Many advocates of imitative synthesis suggest that the imitative
process can be simply a benchmark for the quality possible in synthesis method, and
that if acoustical instruments can be synthesized with acceptable quality, then novel
instruments should then be possible by extrapolation.

8.1.4 Sampling vs. Synthesis

Synthesis can have arbitrarily high expressivity, since the sound is generated from
fully parametric descriptions of a synthesis process. However, synthesis typically has
very poor accuracy. FM, a powerful and popular synthesis method, is notoriously
unsuccessful in synthesizing the sound of an acoustic piano. But FM has very simple
methods for varying the brightness, harmonicity, and other parameters of a signal
under musical control.

The goal of many researchers and engineers in synthesis is to move synthesis
technology towards greater accuracy. The goal of many in sampling technology is
to move sampling towards greater expressivity. Physical modeling is an example of
a synthesis method that is specifically oriented towards more accurate yet extremely
expressive synthesis of natural musical instruments. The goal of adding more and more
post-processing technology to sampling instruments is to add the ability to mold and
shape the spectrum and time structure of sampled musical events, in order to produce
a more expressive yet still accurate re-creation of natural musical instruments.

Also, sampling and synthesis both can produce novel instrument sounds that have
not been heard before, breaking away from traditional acoustical models.

Another analogy can be drawn between music and speech. In speech technol-
ogy, expressivity is analogous to fluency, or the naturalness of the pitch contours
(“prosody”) and articulation as a function of time for speech. Accuracy is another
term for quality in speech reproduction or synthesis. In speech, synthesis by rule is
capable of very good fluency, but still is plagued by poor quality. In contrast, waveform
encoding is capable of arbitrarily high quality, but is very weak at constructing arbi-
trary sentences with good fluency, since the ability to modify the encoded waveform
is weak.

Improving the expressivity of sampling or the accuracy of synthesis inevitably
increases implementation costs. In figure 8.1, costs are shown as a single axis, but it
is worthwhile to consider costs as having two sets of components; hardware costs and
labor costs. Often, hardware cost analyses are restricted to the costs for the sound
engine calculations only, and ignore the costs for the control stream. In sampling,
memory costs often outweigh the costs for the sound engine. In additive synthesis,
memory costs are reduced at the expense of greater sound engine cost, and a much
greater control engine cost. This is shown in figure 8.2. The most overlooked cost
metrics are labor costs (See figure 8.3). One of the hardest lessons many algorithm
designers learn is how difficult it can be to program a sound using a given synthesis
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Figure 8.1 Expressivity vs. Accuracy - Sampling has high accuracy but weak expres-
sivity, where Synthesis has high expressivity and weak accuracy. Both technologies
are evolving towards an ideal with both high accuracy and expressivity, but at a higher
cost for implementation.

Figure 8.2 Tradeoffs between sound engine costs, memory costs, and control engine
costs are often ignored in synthesis algorithms, where researchers tend to focus only
on simple measures of multiply-add rates within the sound engine. Typically, increased
sound engine complexity can decrease memory cost, but at an increase in control
engine complexity. Conversely, sampling uses trades off increased memory costs at a
reduction of sound engine cost.
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Figure 8.3 The labor costs for synthesis techniques are also often overlooked. The
complexity and expense of developing sounds for various synthesis techniques varies
widely. User learning difficulty can thwart acceptance of a promising new synthesis
technique, and development costs and risks can stiffle a company’s desire to commer-
cialize a new technique. These hidden costs often dominate the success or failure
of a synthesis technique in the market place, rather than the expressive power of the
technique.

technique. FM synthesis, while extremely popular due to its low hardware costs and
rich expressivity, is famous for its difficulty of programming. Sampling on the other
hand is extremely efficient for sound designers to produce instrument data sets for.
While still requiring a fair amount of technical skill, it is very straight forward to
produce a data set for a sampler once a representative set of the desired instrument
sounds is recorded.

Physical modeling is another significant example of a promising new synthesis tech-
nology that has had a slow introduction partly due to the large amount of technical skill
needed to develop instrument sounds. Future synthesis techniques may well be limited
more by the expense of sound development rather than the costs for implementation.

Learning how to perform a synthesis technique is also a major hidden cost. Physical
modeling offers greater expressivity, but this in turn requires greater skill and learning
investment on the part of the composer. In some cases, this is a burden that working
musicians are hesitant to take on, especially with the rapid evolution of technology
making users unsure how long before their equipment purchases will become obsolete.

Finally, development efforts and risks have a big impact on whether a company
will undertake a commercial project of a given synthesis technique. While there are
dozens of promising synthesis techniques waiting in the research community for new
hardware to host, companies are usually only willing to invest in techniques that show
the least risk for development.



318 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

8.2 WAVETABLE SAMPLING SYNTHESIS

In a typical full featured sampling synthesizer, several capabilities are combined:

�

�

�

�

�

�

�

�

�

�

Playback of digitized musical instrument events

Entire note recorded, not just a single period

Pitch shifting technologies

Looping (usually) of more than one period of sustain

Multi-sampling

Enveloping

Filtering

Amplitude variations as a function of velocity

Mixing or summation of channels

Multiplexed wavetables

8.2.1 Playback of digitized musical instrument events.

The basic operation of a sampling synthesizer is to playback digitized recordings of
entire musical instrument notes under musical control. Playback of a note can be
triggered by depressing a key on a musical keyboard, or from some other controller,
or from a computer. The simplest samplers are only capable of reproducing one note
at a time, while more sophisticated samplers can produce polyphonic (multi-note),
multi-timbral (multi-instrument) performances.

Of course, digitized recordings of musical performances had been used long before
sampling synthesis was invented. With sampling, each recording is of a musical
instrument playing a single note. A performance is constructed by triggering the
playback of sequences of notes which can be overlapped and added (“mixed”, in audio
engineering terms). Digitized recordings of musical performances involve making a
recording of performers playing complete musical compositions, not individual notes.

8.2.2 Entire note - not single period

Sampling playback oscillators are similar to earlier table lookup oscillators in that
waveform data are stored in a waveform memory and then output at some rate de-
termined by the desired frequency. An important distinction between a simple table
lookup oscillator and a sampling oscillator is that a simple oscillator has only one
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period of a static waveform stored in it, while a sampling playback oscillator typically
has an entire note stored.

The Allen Organ Company built an organ using a digital oscillator that stored a
single period of a pipe organ sound. At the time, this was a major technical feat, which
required a considerable investment in computer technology. RMI built an electronic
organ that allowed the user to enter in waveform sample values into a short wavetable.

A major qualitative change occurs when more than a single period is stored. It is not
clear exactly how many periods are needed before this qualitative change occurs, but
when a complete musical note is digitized, including the entire onset of the acoustical
event, the result is perceptually much different from creating a perfectly periodic
waveform. Many instruments have highly distinctive transients at the start of a note:
the hammer striking the strings of a piano, the chiff of wind noise at the start of a flute
note, or the pick snapping off of a guitar string. So, it is essential to store the attack
(or onset) of the musical note to make the instrument reliably recognizable. Also, it
is often essential to retain enough of the body or sustain of the note to prevent rigid
periodicity. A piano, for example, has multiple strings that vibrate at slightly different
frequencies to create motion in the sound.

Effect of storing attacks. Storing the attack of a musical instrument is needed
because musical instruments are identified to a large extent by their onset characteris-
tics [Winckel, 1967]. To illustrate, when the onset of one musical instrument is grafted
onto the sustain or steady-state portion of a second instrument, listeners usually iden-
tify the instrument based on the attack, not the sustain. Synthesizing the attack of an
instrument accurately with other music synthesis methods is very difficult.

Loops. As described below in more detail, the sustain portion of a sampled sound
is generated by looping or repeating a small segment. By making this segment long
enough, the sound produced can seem non-stationary or “animated”. This synthesis
of animation is another important element in avoiding the objectionable qualities of a
single period loop.

8.2.3 Pitch Shifting Technologies

Simple sampling playback synthesizers only use a sample address counter which
increments by one each sample period and reads out each sample of the waveform
successively to reproduce the original sound at the playback sample rate, as shown in
figure 8.4. While playback of sampled waveforms at their original pitch is widely
used in toys, telephone answering machines, telephone information services, etc.; the
ability to change the oscillator playback frequency greatly widens the usefulness of
sampling synthesis. There are several methods used for pitch shifting wave forms in
samplers which we can divide into synchronous and non-synchronous categories.
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Figure 8.4 The most rudimentary form of sampling replays a waveform at its original
pitch from samples stored in memory. The sample address simply increments by one
sample per output cycle, and each word in memory is read out to feed a digital to analog
converter, reproducing the original waveform.

Asynchronous Pitch Shifting. Asynchronous pitch shifting, the simplest pitch
shifting method, simply changes the clock rate of each output digital to analog converter
(DAC) to vary the pitch. Each channel requires a separate DAC. Each DAC has its own
clock whose rate is determined by the requested frequency for that channel. When a
DAC clock occurs, the DAC issues a request to a memory controller that supplies a
waveform sample to the DAC. The earliest samplers had a separate memory for each
DAC.

This method is considered asynchronous because each output DAC runs at a different
clock rate in order to generate different pitches.

Disadvantages of asynchronous pitch shifting include the need for a single DAC per
channel, system cost which increases with channel count, and the inability to digitally
mix multiple channels for further digital post processing such as reverberation. Also,
each channel requires an analog re-construction filter that tracks the playback sample
rate of that channel. Output re-construction filters have a constant cut-off frequency
in traditional digital signal reconstruction where sample rates are constant. When
the sample rate varies, which typically happens every note in music synthesis, the
re-construction filter should also change its cutoff frequency. High order analog low
pass filters with a variable cut-off frequency are expensive and difficult to design.
Switched-capacitor IC tracking filters have been popular in this role, but typically have
limited signal to noise ratio.

Advantages of asynchronous pitch shifting include easy circuit design and no pitch
shifting artifacts, as long as the analog tracking filter is of high quality.

Numerous commercial instruments were built in the early 1980’s that used asyn-
chronous pitch shifting, including the Fairlight Computer Music Instrument [Roads,
1996], Kurzweil 250 [Byrd and Yavelow, 1986], the E-mu Emulator and Emulator
2 [Massie, 1985], and the New England Digital Synclavier.
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Synchronous Pitch Shifting. Synchronous pitch shifting techniques are methods to
change the pitch of wavetable playback data through sample rate conversion algorithms.
This makes it easier to read wavetable memory in regular time slots and also allows the
digital summation or mixing of multiple output channels into a single digital stream
for further post-processing.

It is difficult to integrate multiple DACs into a single chip, but integrating the pitch
shifting circuitry onto a single chip has been economical since the middle 1980’s. Only
a single DAC is then required for output, since the data can be mixed in the digital
domain.

Reverberation and other digital signal processing effects are very popular, and are
not practical in sampling synthesizers without digital mixing of the multiple sample
channels.

These factors motivated a complete shift in sampler design from asynchronous to
synchronous pitch shifting techniques in the middle 1980’s.

Sample rate conversion. All of the synchronous pitch shifting techniques essentially
involve sample rate conversion techniques. The theory and practice of sample rate
conversion has received extensive coverage in many excellent texts and articles, but it
is illuminating to compare the computer music perspective with the traditional sample
rate conversion literature. Insights from the sample rate conversion literature provide
insights to the computer music perspective, and vice versa.

Frequency Scaling. Pitch shifting can be defined as a simple frequency scaling
operation. For example, if we have a sine wave at 440 Hz, and we need to transpose
or shift the pitch of the sine wave to 220 Hz, we can view this as simply scaling the
frequency of the signal by 1/2. We define the Fourier transform of the continuous
time signal x(t) as x(ω). The frequency scaled signal would simply be, 2x (2ω)
and the corresponding time domain signal is just x (t /2). For a discrete time signal
x [n], we cannot use this simple relation, because we cannot define x [an] with a being
non-integer. Instead, we need to define an interpolation or sample rate conversion
process.

Note that frequency scaling also scales the time domain features of a signal as
well. This simply means that the signal is stretched in time when it is compressed in
frequency. This operation is the same as playing back a tape recording at a different
speed. If a tape recording is played back at half of its original speed, frequencies are
scaled down by one octave, and the recording also takes twice as long to playback.

Some authors prefer to reserve the term “pitch shifting” for scaling frequency
without scaling the time domain features of a signal (see Laroche’s chapter) Signal
processing methods exist that allow independent scaling of time and frequency domain
features, but these techniques are far costlier than simple sample rate conversion.
Also, time and pitch scaling methods are themselves imperfect, and introduce artifacts.
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Finally, the term pitch shifting is well entrenched to mean simple sample rate conversion
within the sampler engineering community.

The perceptual consequence of time-domain scaling is that attacks (onsets) or other
time domain features of a musical event are either compressed (if the event is pitch
shifted up) so that they occur faster, or they are elongated (if the event is pitch shifted
down). This is noticeable in some cases, depending on the instrument and how far
the note is pitch shifted. In recordings of signals that have a significant time domain
features, as in certain percussion sounds such as shakers, the time domain re-scaling
can be quite objectionable. For small amounts of pitch shifting, the elongation or
compression is not objectionable, so the simple method of sample rate conversion is
quite successful and is widely used.

To surmount the difficulties of the time domain re-scaling that pitch shifting intro-
duces, techniques such as multi-sampling are used as described below.

Formant Re-scaling. For signals with discernible formant structure, such as speech,
an unnatural side effect of frequency scaling is that the formants themselves will be re-
scaled. A singer or speaker changes the pitch of their voice by changing the frequency
of the glottal pulse, but the overall size of the vocal tract does not change. The vocal
tract changes shape with different vowels, of course, but the vocal tract size is an
important cue in speaker identification.

When the formant is re-scaled, the new formant is equivalent to a formant from
a person with a different vocal tract size. Scaling frequencies down is equivalent
to increasing the size of the speaker’s vocal tract and vice-versa. This scaling of
the formant spectrum is clearly noticeable with only a few semitones of pitch shift.
Workers in sampling playback technology have called this artifact “munchkin-ization”
or “chipmunk effect” after movie and television sound effects where voices were
played back at a different speed from their original recording speed to produce an
altered formant spectrum intentionally.

Formant re-scaling artifacts can also be somewhat circumvented by using multi-
sampling as described below.

Sample Rate Conversion Techniques. The simplest form of sample rate conversion
is called either drop sample tuning or zero order hold interpolator. This technique
is the basis for the table lookup phase increment oscillator, well known in computer
music [Moore, 1990a].

The basic element of a table lookup oscillator is a table or wavetable, that is, an array
of memory locations that store the sampled values of the waveform to be generated.

Once the table is generated, the waveform is read out using a simple algorithm. The
pre-computed values of the waveform are stored in a table denoted WaveTable, where
WaveTable [ n] refers to the value stored at location n of the table.
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We define a variable called Phase which represents the current offset into the
waveform, which has both an integer and a fractional part. The integer part of the
Phase variable is denoted IntegerPart(Phase).

The oscillator output samples x [n] are generated for each output sample index n;

x[n] = WaveTable[IntegerPart(Phase)]; (8.1)
Phase = Phase + PhaseIncrement; (8.2)

With PhaseIncrement = 1.0, each sample for the wavetable is read out in turn, so the
waveform is played back at its original sampling rate. With PhaseIncrement = 0.5,
the waveform is reproduced one octave lower in pitch. Each sample is repeated once.
With PhaseIncrement = 2.0, the waveform is pitch shifted up by one octave, and
every other sample is skipped, effectively decimating the waveform by 2.

We can look at an equivalent hardware block diagram. Here we have a wavetable
being addressed by what is essentially a counter whose rate is changed to vary the
pitch. The term “drop sample tuning” refers to the fact that samples are either dropped
(skipped) or repeated to change the frequency of the oscillator. The phase increment
is added to the current value of the phase register every sample, and the integer part of
the phase is used as an address to lookup a sample in waveform memory to output to
a DAC.

Figure 8.5 “Drop Sample Tuning” table lookup sampling playback oscillator. The phase
Increment Register adds an increment to the current phase, which has a fractional part
and an integer part. The integer part is used to address a wavetable memory, and the
fractional part is used to maintain tuning accuracy.

The frequency of the waveform produced is simply the frequency of the original
waveform scaled by the phase increment. For example, assuming that the waveform
stored in WaveTable is a sine wave at 440 Hz, and PhaseIncrement is 0.5, then the
frequency of the reproduced waveform is simply 440 * 0.5 = 220 Hz.

Drop sample tuning can introduce significant artifacts from changing the pitch of a
waveform. This method originated in the design of early computer music oscillators
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where the waveform stored has many samples per period, from 256 to 2048 or more.
With a large number of samples per period, the signal is essentially highly over-
sampled, and artifacts are minimized [Moore, 1977b].

Linear Interpolation Table Lookup Oscillators. Significant improvements in the
signal to noise are obtained by using linear interpolation to change sample rate. Adding
linear interpolation changes the calculation of the table lookup as follows:

x [n] = (WaveTable[IntegerPart(Phase)] * (1–FractionalPart(Phase))+

(WaveTable[IntegerPart(Phase)+1] * FractionalPart(Phase))

(8.3)

Most sampling synthesizers today are implemented using this basic two point inter-
polation table lookup oscillator design. The difference between the use of the table
lookup oscillator in computer music and in sampling is the degree of over-sampling of
the waveforms. An over-sampled signal is one whose highest frequency component
is much less than 1/2 of the sample rate, or Nyquist frequency. A signal that is not
over-sampled, or alternatively, which is “critically sampled”, has its highest frequency
component very near the Nyquist frequency.

With recorded instrument waveforms, it is not practical to store as many as 256
samples per period for most waveforms, as done in sine wave table lookup oscillators.
This would correspond to a very high sampling rate. At 44100 Hz sampling rate,
waveforms two octaves above “A-440” have about 50 samples per period. To maintain
256 samples per period would require a sampling rate of over 200 kHz, which is
impractical due to the expense of the memory required.

A brief review of sample rate conversion is helpful, even though this topic has been
covered in detail elsewhere. The reader is referred to numerous references [Crochiere
and Rabiner, 1983, Vaidyanathan, 1993, Smith and Gossett, 1984] for more detailed
reviews of sample rate conversion.

assume that the sample rate conversion factor is or can be approximated by a rational
number . Then the sample rate conversion can be viewed as a three stage process,

To summarize, the classical method for analyzing sample rate conversion is to

up-sample by an integer factor L, filter by h[n], and down-sample by M. Up-sampling
by L inserts L – 1 zero valued samples in between the existing samples of x[n ] and
decimating by M retains only each M-th sample. This approach is an analytical tool
rather than an actual implementation strategy, and it allows the comparison of different
sample rate conversion methods in a similar framework.

The filter h[n] would be an ideal low pass filter with a cutoff frequency ω ≤
min . In other words, if the desired conversion ratio is greater than one,
i.e., we are increasing the sample rate (or decreasing the pitch) of the sound, then the
cutoff frequency of the filter h[n] is simply . If the desired conversion ratio is less
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Figure 8.6 Classical sample rate conversion chain; up-sampling by L, filtering, and
down-sampling by  M

than one, then we are decreasing the sample rate or increasing the pitch of the sound,
and the cutoff frequency of the filter h[n] is simply . Informally, we tend to call
increasing the pitch of a sound “decimation” since the sample rate is being reduced,
and decreasing the pitch “interpolation” since the sample rate is increased. When a
signal is decimated, the cutoff of the filter must be below the original Nyquist rate ,
while with interpolation, the cutoff can be at the original Nyquist rate . Example:

implies a pitch decrease of one octave, so: cutoff = min . The
drop sample tuning approach can be viewed in this framework by choosing a zero order
hold for h[n]. The zero order hold is defined in this case for discrete time sequences as
h [n+m ] = x[n], m = 0 to L – 1. This just means that the sample x[n] is repeated L – 1
times, rather than having L – 1 zeros inserted in between samples. L is determined by
the number of fractional bits in the phase accumulator. The frequency response of the
zero-order hold is just the “digital Sinc” function [Oppenheim and Willsky, 1983]

(8.4)

For L = 4, i.e., 2 fractional bits in the phase accumulator, we have the following
frequency response: There is 3.9 dB of attenuation at the original passband edge
frequency (0.25π) and the peak sidelobe attenuation is only about - 12 dB, allowing a
considerable amount of energy to alias into the passband. There are zeros at multiples
of the original sampling rate (in this case, at 0.5π), which means that images of signals
very near 0 Hz frequency will be well suppressed.

Linear interpolation has been studied with this framework as well (see [Crochiere
and Rabiner, 1983]). The equivalent filter h[n] for linear interpolation is called a
first order hold, and is simply a triangular window. The frequency response for the
triangular linear interpolation filter is the “digital” Sinc2

(8.5)
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Figure 8.7 Digital Sinc function – the frequency response for a zero order hold inter-
polator sample rate converter with L = 4, which puts the original Nyquist frequency
at 0.25 π. We can see rolloff in the passband of about -3.9 dB and very poor rejection
of images outside of the passband, which result in artifacts perceived as pitch shifting
distortion.

shown in figure 8.8. Again, we see roll-off in the passband. A linear interpolator has
almost 8 dB of attenuation at the edge of the passband (0.25 π in this case), but its peak
stopband attenuation is now down to -24 dB. There are still zeros near multiples of
the sampling rate, which means that for signals that are highly over-sampled, a linear
interpolator performs very well since images of low frequency signals will fall near
multiples of the sampling rate.

Today (in 1997), most commercial sampling playback implementations use only
two point linear interpolation. This is described as “two point” because only two
input samples are involved in the interpolation calculation. While this method works
reasonably well, implementors have to be careful not to use waveforms with significant
high frequency content (energy above ), or aliasing distortion will be noticeable.

By using more than two points, higher quality sample rate conversion filters can
be implemented. The traditional sample rate conversion literature usually describes
techniques, such as polyphase filters, that are appropriate for sample rate conversion
by a fixed ratio. In sampling synthesis applications, of course, the conversion ratio is
usually time varying, so the polyphase techniques are not the most suitable. Smith and
Gosset[Smith and Gossett, 1984] showed a method for sample rate conversion that is
more appropriate for arbitrary sample rate conversion ratios.
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Figure 8.8 Frequency response of at linear interpolation sample rate converter with
L = 4 showing better stopband rejection around 0.5 π (or at the original Nyquist rate)
but increased rolloff in the passband below 0.25π of almost -7 dB.

In the Smith and Gosset interpolator design, each output sample is formed from an
inner product of the stored signal x[n] and a set of coefficients from the interpolating
filter.

The implementation is different from the standard polyphase filters of Crochiere
and Rabiner et al. In the polyphase filter approach, each sub-filter is composed of
coefficients which are reordered from a prototype filter. In the Smith and Gosset
approach, the coefficients of the prototype filter are stored non- reordered, and each
output sample is formed from an inner product of input samples and coefficients which
are selected from the filter table at run time. The indexing equation is very similar
to the equation that Crochiere and Rabiner give for re-ordering the prototype filter to
generate their polyphase filter designs.

The set of coefficients which are chosen is determined at run time, rather than
being fixed as in traditional polyphase filter design. Also, Smith and Gosset describe a
method for interpolating between coefficients to reduce the size of the table holding the
filter coefficients. Performing this interpolation between coefficients adds additional
incentive to keep the coefficients in their original non-reordered form to simplify the
coefficient interpolation calculation.

If a large filter coefficient table is practical, then the interpolation of coefficients
that Smith and Gosset describe is not needed, and an approach closer to Crochiere and
Rabiner becomes more preferable. Basically, that approach is to create a prototype
filter table for a large value of L and stored the coefficients in a re-ordered form as
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is done with standard polyphase filters. Then at run time, the subphase of the filter
needed is chosen based on the fractional part of the phase accumulator. This differs
from standard polyphase filters only in that a standard polyphase filter sample rate
converter will use all of its subphases, since the design assumes that the conversion
ratio is fixed. Here, the subphases are selected every output sample, by the fractional
part of the phase register, from a large set of possible sub phases available.

The Crochiere and Rabiner equation for interpolation/decimation by a fixed factor
of L / M is summarized here. The output sample sequence y[m] is formed by the
convolution:

(8.6)

where the filter table gm (n) = h ( nL + (mM mod L )), for all m and all n , and L / M
is the sample rate conversion ratio. Note that M/ L is the phase increment in the
computer music oscillator. m refers to output time. n refers to input time. The
symbol [x] means greatest integer smaller than x .  thus refers to the integer
part of is exactly equivalent to the phase register of the computer music
phase accumulator oscillator at output time m. gm (n) are the filter coefficients of the
prototype filter h[n] reordered into L separate subfilters. In sampling implementations,
M is set to one for the purposes of re-ordering the filter coefficient table. The selection
of filter subphases at run time, indexed by the fractional phase register. In block
diagram form, the algorithm has some of the same elements as the traditional linear
interpolation table lookup oscillator. The fractional part of the phase register is now
used to select one of the filter sub phases (one of gm ). W values of the WaveTable
are read out (indexed by the Filter Counter), and the output sample is simply the inner
product of the filter coefficient set (the polyphase sub filter) and the W samples from
the wavetable. L sets of filter coefficient vectors are stored in memory.

Instead of reading out two samples from the wavetable memory in the case of linear
interpolation, W samples are read out. A “Filter Counter” is shown which performs
this indexing. The base address in the wavetable where the signal vector is read out is
provided by the integer part of the phase register, as in the case with linear interpolation.

When the phase increment M / L is greater than one, and the original signal is
being reduced in sample rate, classical sample rate techniques require that the cutoff
frequency of the prototype filter change to . One approach is to time- scale the
polyphase subfilters, but this increases the computation rate, which is undesirable
in a typical VLSI implementation. Another approach is to switch filter tables. In
practice, may sampler implementations only have one filter table, and pitch shifting
up is restricted to be less than one octave. With this restriction, it is usually OK to
use only one filter table with its cutoff equal to . The artifacts resulting from this
compromise are usually acceptable.
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Figure 8.9 A sampling playback oscillator using high order interpolation. Every output
sample is a vector dot product of W input samples and one of the filter coefficient vec-
tors, stored re-ordered from the original prototype filter. The fractional phase address
selects the filter coefficient vector used.
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Re-ordering the filter coefficients into the polyphase components reduces the cost
of indexing the filter coefficients. Memory costs have declined to the point where
storing a large number of filter coefficients is very practical on many signal processors,
and also on general purpose host processors as well. For many implementations, the
memory is less precious than CPU cycles, further motivating the use of polyphase filter
strategies.

How Many Fractional Phase Register Bits are Needed. The choice of how many
bits to make the phase register is an important issue in computer music design. While
other authors have covered this issue in relation to traditional sine wave oscillators,
there are some subtle differences in the design of sample playback oscillators. Here, the
fractional part of the phase register essentially determines how much pitch resolution
is available, while the integer part determines how many octaves up the waveform can
be transposed (pitch shifted).

Denoting α > 0 the pitch shift ratio, and assuming that the loop buffer contains one
period, the frequency Fout of the output sine wave is simply Fout  = α Floop where
Floop denotes the frequency at which the loop samples are output. From this, we derive
that relative variations of α and Fout are equal:

(8.7)

The smallest available variation of the pitch shift ratio α is given by the number Nf of
bits used to represent its fractional part. More specifically,

(8.8)

It is usually assumed that people can hear pitch tuning errors of about one cent, which
is 1% of a semi-tone. A semitone is a ratio of 2 1/12 , so a ratio of one cent would be
2 1/1200 . For the variation ∆Fo u t to be smaller than 1 cent, one must have

(8.9)

and combining the three equations above leads to

(8.10)

Clearly, the constraint on N f is more stringent as α becomes small: tuning errors will
be more audible in downward pitch shifting than in upward pitch shifting. Unless
a limit is imposed on the required amount of downward pitch shifting, an arbitrary
large number of bits must be used to represent α . Denoting Noct the maximum
number of octaves one wishes to pitch-shift down, we always have α > 2– Noct and
equation (8.10) now reads

(8.11)
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or
(8.12)

This tells us that in order to maintain one cent of accuracy, we need eleven bits more than
the maximum number of octaves of downward pitch shift. Typically, implementors do
not pitch shift by a large amount. 12 to 16 fractional bits is fairly typical in practice.

8.2.4 Looping of sustain

Another practical limitation of sampling involves long notes. A violinist can play a
note for as long as necessary to meet a musical requirement, but a sampler needs to
have a recording of the entire note event in order to play for a required duration.

To solve this problem, the concept of looping was developed. Looping is the
process where after the onset of a musical note has transpired, a section of the steady
state portion of the note is simply repeated over and over. This technique is called
looping, after a similar technique used with analog tape recordings where a segment of
tape was cut and spliced literally in a loop, allowing playback of a segment to repeat
over and over. This allows a short segment of a waveform to be used to substitute
for an arbitrary length of the steady state portion of a musical instrument signal. A

Figure 8.10 The traditional ADSR amplitude envelope used in electronic and computer
music, with the looping region shown.

number of empirical methods have been employed to  make the process of identifying
start and end points for a loop that do not produce clicks or other artifacts [Massie,
1986].

A simple City Block or L1 metric has been found to be fairly successful in comparing
candidate splice points. One simply computes

(8.13)
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where n is the start point for a loop, m is the end point, and W is the window length.
This function satisfies the definitions of a metric, and a score of zero indicates an
identical waveform segment [Ross et al., 1974]. As scores increase, the closeness of
match decreases.

Since the L1 metric only involves differences, absolute values, and addition, it is
inexpensive to compute with fixed point arithmetic, but searching by varying both the
loop start and end (n and m ) means that the test would be applied at n * m points,
which drives the cost up for this test. Many people further constrain the candidate loop
points to zero crossings, and then apply this test only to those zero crossings. This
tends to work very well and dramatically reduces the cost of the test. While having a
zero crossing is neither necessary nor sufficient to ensure a good loop, it seems to be a
good starting point for searches.

The search region can further be constrained if a the candidate loop start point is
moved far enough away from the start of the note to find a relatively stable segment of
the signal.

Window sizes have been picked empirically, but the window size seems to determine
the frequency spectrum of the loop splice “click”. If the window size is made small,
then sub-optimal loops tend to have a large low frequency thump. If the window size
is made large, remaining artifacts will be high frequency clicks.

Good choices for window sizes tend to be about one period of a 500 Hz to 100 0Hz
waveform, which seems to be a good compromise between low and high frequency
artifacts.

Another perspective of looping is to consider the waveform as a sum of sinusoids.
Each sinusoid at the loop start must have the same amplitude and phase as the sinusoid
at the loop end in order to avoid splice artifact. If any component sinusoid does not line
up in amplitude and phase, then there will be a click at the frequency of the sinusoid.
The click should have the spectrum of a Sinc function translated to the frequency of
the sinusoid that does not line up.

Backwards-Forwards loops. A clever trick for looping has been used a few com-
mercial samplers, and is known as back-forwards looping. Few samplers use this
technology now, but it still is a useful and interesting method. The technique simply
is to advance through the waveform loop segment forwards in time, and when the end
point of the segment is reached, reverse the read pointer and move backwards through
the loop segment. When the beginning of the segment is reached, then the read pointer
direction is reversed again, and the loop body is read out again forwards.

This technique immediately ensures first order continuity, since the read pointer
does not jump to an arbitrary sample point at the loop boundary, but immediately
continues reading at an adjacent sample. However, this does not guarantee a perfect
loop.
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Interestingly, the requirement for an non-clicking backwards-forwards loop is even
symmetry around the loop points. A signal x[n] is referred to as “even” if x[n] = x [–n].
A signal is odd if x[–n] = –x [n]. A cosine wave is even around the origin and a sine
wave has odd symmetry around the origin.

Figure 8.11 Backwards forwards loop at a loop point with even symmetry.

Figure 8.12 Backwards forwards loop at a loop point with odd symmetry.
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Loop body. Although loop splice points can be found with reasonable ease, the
resulting loop usually is still unsatisfactory unless the body of the loop is stationary
enough. A single cycle loop will produce a perfectly stationary spectrum, with no
amplitude variations, but it will also sound quite static. In most cases, sampling
instruments use many cycles for a loop which then produce the impression of movement
or animation. Strict definitions for animation or strict criteria for determining if a
sequence of waveforms will seem animated have not been developed. Instead, sound
designers use trial and error to find waveform segments that are long enough to sound
animated but as short as possible to save memory.

Research into the acoustics of musical instruments has revealed considerable ev-
idence that aperiodicity and noise play an important role in the sound quality of a
musical instrument. This research reinforces the justifications for using more than one
period for looping in sampling. Since the loop is actually a periodic waveform, the
number of samples in that loop of course determines the number of spectral components
that can be present in the spectrum, and their frequency spacing. N samples are com-
pletely specified by N/2 complex Fourier components. At 44100 Hz sample rate, for
a 256 sample loop, the spacing between frequencies would be 44100/256 = 172 Hz..
Noise or other aperiodic components would be forced to fall on one of these bins.
The longer the loop, the closer that spectral components can become, and the more
aperiodic they can become. A truly aperiodic waveform would need an infinite loop,
but our perception mechanism can be fooled into perceiving aperiodicity with a much
shorter loop.

Crossfade looping. In many cases, a perfect loop is difficult or impossible to find.
It can be helpful to perform what is called a crossfade loop. Here the loop data are
modified to produce an acceptable loop with a signal processing rather than a signal
analysis operation.

The basic principle of a crossfade loop is to average data from the beginning and
the end of a loop. If the waveform data at the each end of a loop are replaced with
the average of the data from the both the beginning and the end of the loop, the splice
point will be inaudible. This is a simple operation; denote the loop start as x[s] and
the loop end as x[e], where s denotes the loop start offset and e denotes the loop end
offset, then we have the modified waveform data

(8.14)

where W is the window size for the average.
While the sampler is playing data back from within the loop itself, there will be

no click at the loop splice point. Of course, as the sampler read pointer crosses the
transition between unmodified waveform data into the modified (averaged) data, there
potentially will be a discontinuity. So the second element of crossfade looping is the
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“crossfade”. The crossfade is simply a weighting function to fade in the averaged
waveform data and to fade out the original data.

We take the simplistic crossfade equation and window it:

(8.15)
A[n] can be any number of window shapes, but the two most commonly used are
a triangular window, and a cos² window. In both cases, the window should sum to
one when overlapped with itself by W/2 samples, and should be unity at the center
when the waveform segments that are overlapped correlate highly. If the overlapped
waveform segments have a very low correlation, then it is preferable to use an equal
power crossfade, where the sum of the windows is 1.414. This strategy tends to keep
the RMS energy close to constant across the cross fade.

We do essentially the same with the data at the end of the loop

(8.16)
Since the window A[n] is equal to unity at its center, the waveform data at the start and
end of the loop are identical, but the transition from the original data into the averaged
data is smooth, preventing any discontinuities.

Appropriate sizes for the window length have been typically found empirically;
usually they are on the order of tens of milliseconds or longer.

Backwards Forwards Crossfade Looping. A backwards forwards loop at any ar-
bitrary point can also be created (or improved) by modifying the loop data. Here the
crossfade is performed not between the data at the beginning and end of the loop, but
from before and after the loop points.

All sequences can be decomposed into even and odd components. The even part of
a sequence (about n = 0) is simply even (x[n]) = x[n] + x [–n]. The odd part of the
sequence will cancel out when we perform this addition. The odd part of a sequence
(about n = 0) is odd (x [n]) = x [n]  –  x[–n].

The objective of a backwards forward crossfade is to modify the data at the loop
so that it is a purely even function around the loop point. Thus we simply replace the
data at the loop point with the even part of the function, and fade back into the original
data going away from the loop point itself.

(8.17)

(8.18)

where –W < n < W and A [n] is a triangular window function as described above
for crossfade looping, where
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A[0] = 1.0

A[W] = A [–W] = 0

e = loop point

The process of a backwards forwards crossfade loop does produce artifacts if the
signal has significant anti-symmetric (odd) components around the loop point, so it is
best performed on a loop point that has already been screened for a close fit to being
symmetric.

In general, backwards forwards looping has fallen out of favor in the sampler design
community, probably because it does not offer enough advantages to be worth the small
extra effort to implement.

Relation of Crossfade Looping to Time and Pitch Scaling. The operation of cross-
fade looping is essentially the same operation that is performed in pitch or time scaling
schemes as described in the chapter by Laroche except that in sampling the operation
is typically performed once, off line, and with pitch or time scaling, the operation is
performed in real time continuously, in order to scale pitch independently from time.

Crossfade looping is not only helpful in producing an acceptable loop splice point,
but it can also help to smooth out variations within the loop body. Jupiter Systems
has introduced commercial implementations of even more elaborate crossfade looping
schemes to help smooth out the loop body of signals for which simple crossfade
looping is not satisfactory [Collins, 1993]. In one of the approaches followed by Jupiter
Systems, many copies of the loop are time-shifted, faded in and out and summed to the
loop body. This has been effective at looping such signals as non-stationary orchestral
string sections.

Perception of periodicity in loops. While a loop is clearly a periodic signal, listeners
will not perceive a loop as being periodic under certain conditions, for example, if the
loop is long enough. A single cycle loop will immediately be noticed as periodic.
This perception is extremely striking, in fact. The contrast is so strong between a
recorded musical transient and a single cycle loop of the same instrument sound, that
it is somewhat surprising how tolerant musicians have been of electronic instruments
(including electronic organs) that relied on purely periodic waveforms such as sawtooth
waves, square waves, and even waveforms with complex harmonic content but with a
static spectrum.

An example of musician’s coping strategies was the Leslie Rotating Speaker
system used on Hammond organs to literally add motion to an otherwise static timbre
by rotating speakers.

Schemes to introduce instabilities and irregularities into purely periodic waveforms
have tended to be less successful than simply using a loop with enough periods of a
natural waveform to seem non-stationary. For many instruments, a loop of a less than
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250 milliseconds can produce the perception of a non-stationary or animated sound.
For a sound with a pitch of 440 Hz, at 44100 Hz sampling rate, this corresponds to
more than 100 periods of the waveform.

Even with a very long loop of perhaps several seconds, when the loop repeats
enough times, listeners will in time become aware of the periodicity. It seems that
our perception mechanism evolved to sense change, and any purely repetitive event
quickly becomes filtered out or uninteresting. In typical musical applications, loops of
sampling instruments are not repeated very many times. Instead, the note is ended and
another note is started before the loop becomes noticeable. It is rare for musical notes
to last more than a second or two. The Mellotron was an keyboard analog musical
instrument popular in the 1970’s which had a segment of tape for each key with a
recording of a musical instrument note on each tape segment. The Mellotron did not
have the capability for looping. Instead, its tape segments lasted for 9 seconds, and
users rarely would ever get to the end of a tape in normal musical uses. (Since there
was a separate tape for each note, there was no problem with time compression.)

8.2.5 Multi-sampling

A single recording of a musical instrument can sometimes be pitch shifted over the
entire range of a musical instrument and still be useful, but often the artifacts of the
pitch shifting process become too noticeable to allow pitch shifting over such a large
range. Thus, the process of “multi-sampling” was invented to allow mapping of more
than one recording of an instrument to the controlling keyboard. For example, it seems

Figure 8.13 Multi-sampling is the practice of mapping or assigning individual sounds
to play only over a small region of the musical keyboard controller.

to be satisfactory to record one note per octave for a piano to be able to reproduce a
piano without drastic artifacts. Horn sounds or human voice sounds, on the other hand,
require several recordings per octave to avoid sounding unnatural.

With the ability to map arbitrary sounds to arbitrary regions of the keyboard,
sound designers went on to create unusual mappings, where individual keys controlled
individual sound effects for film and television sound effects production. Samplers
have become a common tool for sound effects production the film and video industry.
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8.2.6 Enveloping

One of the easiest ways to modify recorded musical signals is to change the amplitude
envelope of the signal. This is accomplished easily by multiplying the signal by a time-
varying envelope function. The onset or attack of a musical event is probably the most
important element in the identification of the instrument, and the actual attack contours
of many acoustical instruments are quite complex. Producing a synthetic version of a
complex envelope is usually quite difficult, but the complex envelope is preserved in a
simple recording. This means that samplers do not usually attempt to produce complex
envelope functions. Instead, simple modifications of the pre-recorded envelope can be
accomplished using a traditional electronic music envelope generator.

Some applications for modifying the envelope of a musical sound include producing
a slower attack onset for a piano. This produces the effect of a “bowed piano”. This
can be a very musically useful sound. Other examples include ramping the decay of
a sound to zero faster than the sound normally does. This can be used to increase the
effective damping of a drum sound, for example.

Without much more sophisticated schemes, enveloping of musical instruments can-
not make the attack of a sound faster, however. If a violin attack takes 50 milliseconds,
it is not easy to decrease this to 25 milliseconds, for example. But simple schemes
have been introduced to get around this limitation. Changing the sample start point
is an effective method to shorten the attack time. While it may seem to be a invalid
operation, simply advancing the start pointer of the attack time to start playback of the
musical event to some few milliseconds into the musical note, works well for varying
the attack time of an instrument. The scheme can produce clicks in some instrument
sounds, but usually the instrument has a great deal of noise in its initial transient which
will mask the clicks produced by advancing the start pointer. Also, it is easy to gener-
ate a short taper in the onset by using an amplitude envelope generator. The envelope
generator can eliminate the click caused by changing the start point of a sound.

8.2.7 Filtering

Time domain filtering is a popular and effective technique for further modifying the
timbre of a wavetable played back in a sampler. Many commercial samplers today
have one to four pole filters per channel to filter the signal being reproduced. Typically
the filter is a low pass filter with adjustable Q or resonance, in the case where the
filter has more than one pole. Applications for using the filters include altering the
effective brightness as a function of keyboard velocity. Also, sweeping the filter cutoff
frequency using an envelope generator creates a popular synthesizer type sound that is
similar to early electronic music synthesizers.

There are instruments that have used higher order filtering schemes to allow more
complex spectral modifications. The E-mu Morpheus sound module uses 14th order
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ARMA filters to modify waveforms. The filters allow interpolation of stored filter
coefficient sets under user control to modify the spectrum of the recorded signals.

8.2.8 Amplitude variations as a function of velocity

Musicians are today used to having control over the loudness of the sounds produced
by their instruments. The piano is actually short for piano-forte which means soft-
loud. The piano was an improvement over the harpsichord, which did not have any
significant control over loudness.

It is rather easy today to provide control over the amplitude of a signal produced by
a sampler, simply by scaling the signal as a function of the initial key velocity of the
played note. This simple dimension is one of the most important forms of expressivity.

8.2.9 Mixing or summation of channels

Today musicians take for granted that their instruments are polyphonic. Early analog
instruments were monophonic, that is, they only could produce one note a time like a
clarinet, which can only produce one note at a time. Musicians used to pianos expected
to have arbitrary polyphony available since with a piano, a player could conceivably
press up to all 88 keys simultaneously.

Today, (1997) samplers and other keyboard musical instruments typically can pro-
duce from 32 to 64 notes or channels simultaneously, although instruments are available
that can generate 128 independent channels. Many of these instruments have more
than one output D-A converter, but having more than 8 output D-A converters is rare.

All of these channels need to be added together (mixed, in audio engineering terms)
before being routed to the D-A converter. Summation is of course a simple process
with digital circuits, but a subtle point about this output summation is the choice of
scaling rule. When several channels of digital audio signals are summed together,
word growth occurs.

When two signals are added together, the worst case word growth in two’s comple-
ment number representation would be one bit. To prevent the possibility of overflow,
N channels added together would be scaled by 1/N, which corresponds to using an
L1 Norm scaling rule [Oppenheim and Schafer, 1989].

This scaling rule is considered too conservative in most cases. An L2 scaling rule
—

is usually more successful, where N channels would be scaled by 1/√ N . Typically,
when channels are summed together (mixed) the signals are uncorrelated. Summing
two uncorrelated signals will only increase the RMS value of the signal by 3 dB, while
the peak value can increase by 6 dB.

In most cases, the loudness of the result of mixing two signals corresponds to the
RMS value of the sum, and not the peak value, so scaling by the L2 norm is appropriate.
Leaving headroom for the resulting signal’s crest factor (the ratio of the peak to the
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RMS value of the signal) and scaling by the square root of the number of channels is
usually a very effective rule.

Musical signals in a sampling playback synthesizer rarely are closely correlated.
When many notes are all started at exactly the same time, clipping can sometimes
occur, but this is a very rare event. When clipping does occur, it usually only happens
for a few samples or at most a few periods of the waveform. Quite often, this small
amount of clipping cannot be perceived, or if it is perceived, it is often preferred to
having no clipping! The clipping distortion can increase the harmonic content of
the signal and the apparent loudness of the signal, and so some musicians often will
deliberately introduce some small amount of this distortion, even though it is “digital
distortion” which is considered a “harsh” non-linearity.

Interestingly, most implementors of samplers have not explicitly formulated any
headroom rule; instead, they have set the amount of headroom needed empirically, and
often the empirical choices correspond closely to a L2 rule, although they are usually
a bit less conservative.

8.2.10 Multiplexed wavetables

Samplers can use waveform memories that are either multiplexed or non- multiplexed.
A multiplexed wavetable is simply a waveform memory that is accessed more than once
per sampling period to allow many notes to share the same waveform memory, while
non-multiplexed waveform memory dedicates a separate memory for each playback
channel. A simplistic analysis of memory access times suggests that a non-multiplexed
wavetable is wasteful because sampling period is about 20 microseconds while the
time for a single access for random access memory (even in the late 1970’s, when
samplers first appeared) is around 100 nanoseconds, many times faster. But there
are many difficulties in multiplexed wavetable sampler design, especially related to
pitch shifting issues, so the earliest samplers used a single wavetable per playback
channel. Non- multiplexed wavetables allowed a very simple digital circuit for both
pitch shifting and for connection to D-A converters. The Fairlight Computer Music
Instrument, released about 1979, was probably the most prominent instrument that
used non-multiplexed wavetables, but many instruments were designed and sold for
many years after this using non-multiplexed memories.

John Snell’s article on digital oscillator design is an excellent reference on digital
oscillators that describes multiplexing quite well [Snell, 1977].

In 1981, the E-mu Emulator sampler was introduced which used a waveform
memory multiplexed to allow 8 channels or voices to be produced in real time from
one 128 Kbytes RAM bank.

A single large wavetable memory offered a number of advantages. Notably, more
flexibility is available to allocate memory buffers for waveforms. A large memory
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array of 128 Kbytes allowed much more flexibility than eight separate 16 Kbytes
memories.

Today, synchronous outputs have become the standard in sampler design.

8.3 CONCLUSION

Today, in 1997, sampling wavetable synthesis dominates commercial musical in-
strument synthesis, in spite of concerted effort on the part of many researchers and
companies to replace it with some form of parametric synthesis.

The future of sampling synthesis is probably as hard to predict as it has ever been,
but some probable trends are:

� Cost will decrease.

� Data compression may become more common.

� More methods for signal modification yielding more expressivity will become
common, but only at the expense of more computation cost.

� More overlap between hard disk recording, editing, and synthesis will occur.

� Generalized sampling schemes will become more common, in the guise of
Analysis/Resynthesis schemes.

The author appreciates the generous contributions and support from Dr. Jean
Laroche, Scott Wedge, Byron Sheppard, Dave Rossum, Julius O. Smith, Michelle
Massie, and the patience of the editor, Mark Kahrs.
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Abstract: Based on a sinusoidal model, an analysis/synthesis technique is developed
that characterizes audio signals, such as speech and music, in terms of the amplitudes,
frequencies, and phases of the component sine waves. These parameters are estimated
by applying a peak-picking algorithm to the short-time Fourier transform of the input
waveform. Rapid changes in the highly resolved spectral components are tracked by
using a frequency-matching algorithm and the concept of “birth” and “death” of the
underlying sine waves. For a given frequency track, a cubic phase function is applied
to the sine-wave generator, whose output is amplitude-modulated and added to sines for
other frequency tracks. The resulting synthesized signal preserves the general wave form
shape and is nearly perceptually indistinguishable from the original, thus providing the
basis for a variety of applications including signal modification, sound splicing, morphing
and extrapolation, and estimation of sound characteristics such as vibrato. Although this
sine-wave analysis/synthesis is applicable to arbitrary signals, tailoring the system to a
specific sound class can improve performance. A source/filter phase model is introduced
within the sine-wave representation to improve signal modification, as in time-scale and
pitch change and dynamic range compression, by attaining phase coherence where sine-
wave phase relations are preserved or controlled. A similar method of achieving phase
coherence is also applied in revisiting the classical phase vocoder to improve modification
of certain signal classes. A second refinement of the sine-wave analysis/synthesis invokes



344 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

an additive deterministic/stochastic representation of sounds consisting of simultaneous
harmonic and aharmonic contributions. A method of frequency tracking is given for
the separation of these components, and is used in a number of applications. The sine-
wave model is also extended to two additively combined signals for the separation of
simultaneous talkers or music duets. Finally, the use of sine-wave analysis/synthesis
in providing insight for FM synthesis is described, and remaining challenges, such as
an improved sine-wave representation of rapid attacks and other transient events, are
presented.

9.1 INTRODUCTION

The representation of signals by a sum of amplitude-frequency modulated sine waves
and analysis/synthesis techniques based on this representation have become essential
tools in music and speech sound processing. Common objectives include duplication
of natural sounds, creation of new and enhanced sounds through modification and
splicing, and separation of components of a complex sound. The physical generation
of music signals is in part similar to the generation of speech signals, and thus it is not
surprising that sinusoidal-based processing useful in one area is useful to the other.

In certain wind instruments, for example, a vibrating reed excites the instrument’s
cavity; while in speech the vibrating vocal cords excite the vocal tract. Moreover, this
“source/filter” representation is made up of common signal classes in the two domains,
all of which can be represented approximately by a sum of amplitude- and frequency-
modulated sine waves. Quasi-periodic signals, as from steady speech vowels and
sustained musical notes, consist of a finite sum of harmonic sine waves with slowly-
time-varying amplitudes and frequencies; while noise-like signals, as from speech
fricatives and musical turbulence, have no clear harmonic structure. Transients, as
from speech plosives and musical attacks and decays, may be neither harmonic nor
noise-like, consisting of short acoustic events that occur prior, during, or after steady
regions. Noise-like and transient sounds although aharmonic, nevertheless, can be
represented approximately by a sum of sine waves, but generally without coherent
phase structure. A typical sound is often a mixture of these components whose relative
weights, timing, and duration can be key to accurate modeling.

The example given in Figure (9.1), the waveform and spectrogram of an acoustic
signal from a trumpet, illustrates these sound classes. Quasi-periodic sounds occur
during sustained note segments, while transients occur at note attacks and decays,
the latter seen to be harmonic-dependent. There is also an often-present noise-like
component, due in part to turbulent air jet flow at the mouth piece, contributing a
“breathiness” to the sound. In addition, the example shows sine-wave amplitude
and frequency modulation which, in the music context, are referred to, respectively,
as tremolo and vibrato. This modulation of the quasi-periodic portion of notes, the
harmonic-dependent note attack and decay, and noise-like components, all contribute
to the distinguishing character of the sound.
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Figure 9.1 Signal (upper) and spectrogram (lower) from a trumpet.

The purpose of this chapter is to describe the principles of signal analysis/synthesis
based on a sine-wave representation and to describe its many speech and music ap-
plications. As stated, an important feature of the sinusoidal representation is that
the aforementioned sound components can be expressed approximately by a sum of
amplitude- and frequency-modulated sine waves. Moreover these sound components,
as well as the “source” and “filter” contribution to their sine-wave representation, are
separable by means of a sine-wave-based decomposition. This separability property
is essential in applying sinusoidal analysis/synthesis in a number of areas.

Section 5.2 of this chapter gives a brief description of an early filter bank-based
approach to sine-wave analysis/synthesis referred to as the phase vocoder [Flanagan
and Golden, 1966], and shows how the phase vocoder motivates the more general
approach to sine-wave analysis/synthesis [McAulay and Quatieri, 1986b] which is
the primary focus of the chapter. The phase vocoder is also described in chapter
7 in the context of other filter bank-based approaches to estimating parameters of
a sine-wave model. In section 5.3, a baseline sine-wave analysis/synthesis system,
based on frequency tracking through the short-time Fourier transform and interpola-
tion of resulting sine-wave amplitude and phase samples, is described. In this section,
refinements and some applications of this system, including signal modification, splic-
ing, and estimation of vibrato, are presented. This section ends with an overview of
time-frequency resolution considerations for sine-wave analysis. Although this basic
sine-wave analysis/synthesis is applicable to arbitrary signals, tailoring the system to a
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specific class can improve performance. In section 5.4, a source/filter phase model for
quasi-periodic signals is introduced within the sine-wave representation. This model
is particularly important for signal modifications such as time-scale and pitch modifi-
cation and dynamic range compression where phase coherence, i.e., preserving certain
phase relations among sine-waves, is essential. A similar phase representation is then
used in revisiting the phase vocoder to show how phase coherence can be introduced
to improve modification of various signal classes. In section 5.5, an additive model of
deterministic and stochastic components is introduced within the sine-wave represen-
tation. This two-component model is particularly important for representing sounds
from speech and musical instruments with simultaneous harmonic and aharmonic con-
tributions. Section 6 then describes a sine-wave-based approach to separating two
signal “voices” that are additively combined; the technique is applied to separation of
two simultaneous talkers, as well as musical duets. Section 7 reviews an approach for
generating a sum of sine waves by modulating the frequency of a single sine wave.
This technique, referred to as FM Synthesis [Chowning, 1973], gives the potential
of a compact representation of a harmonic complex and has been the basis of many
electronic music synthesizers. The sine-wave analysis/synthesis of this chapter may
provide insight for further refinements of the FM synthesis approach. Finally in section
8, the chapter is summarized, applications not covered within the chapter are briefly
discussed, and some of the many fascinating unsolved problems are highlighted.

9.2 FILTER BANK ANALYSIS/SYNTHESIS

Early approaches to music analysis relied on a running Fourier transform to measure
sine-wave amplitude and frequency trajectories. This technique evolved into a filter-
bank-based processor and ultimately to signal analysis/synthesis referred to as the phase
vocoder [Flanagan and Golden, 1966]. This section describes the history of the phase
vocoder, its principles, and limitations that motivate sinusoidal analysis/synthesis.
Other formulations and refinements of the phase vocoder are given in chapter 7.

9.2.1 Additive Synthesis

An early approach to music processing, referred to as additive synthesis [Moorer,
1977], used the sinusoidal model of a quasi-periodic music note

(9.1)

where Al and φk represent the amplitude and phase of each sine-wave component
associated with the kth harmonic kωo , and L is the number of sine waves. In this model
the amplitude Ak , fundamental frequency ωo , and phase offset φk  are slowly varying.
The changing ωo accounts for pitch movement, while the change in φk accounts for
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time-varying deviations in frequency from each harmonic¹. The derivative of the phase
function θk (n) = k ωo n + φk  approximates the slowly-changing frequency of each
harmonic, and is given by ωk (n) = kωo + φk . Equation (9.1) serves not only as a
model, but also as a means for sound synthesis. In synthesis, the control functions
Ak (n) and ωk (n), initially were set manually based on knowledge of the musical note;
the absolute phase offset φk  in θk ( n) was not used.

One of the first attempts to estimate the control functions relies on a running discrete-
Fourier transform (DFT (Discrete Fourier Transform)) [Moorer, 1977]. Assuming the
presence of one periodic note in a measurement x(n), the DFT length is set equal to
the waveform’s pitch period N. The real and imaginary components are then given by

(9.2)

where ωo = 2π/N and from which one obtains the estimates of the slowly time-varying
amplitude and phase of each harmonic

(9.3)

ane where the frequency of each harmonic is given approximately by the derivative of
the unwrapped version of θk (n )².

^

A limitation of this method is that the pitch period must be known exactly to obtain
reliable estimates. The running DFT can be viewed as a filter bank where each filter
is a cosine modulated version of a prototype filter given by a rectangular window of
length N over the interval 0 ≤ n < N. Based on this interpretation, an improvement
in sine-wave parameter estimation can be made by generalizing the window shape as
described in the following section.

9.2.2 Phase Vocoder

An analysis/synthesis system based on a filter bank representation of the signal can
be derived from the time-dependent short-time Fourier transform (STFT) [Nawab and
Quatieri, 1988a]

(9.4)

By changing the variable n – m to m, Equation (9.4) becomes
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(9.5)

Equation (9.5) can be viewed as first a modulation of the window to frequency ω,
thus producing a bandpass filter w(n )e jωn followed by a filtering of x (n) through
this bandpass filter. The output is then demodulated back down to baseband. The
temporal output of the filter bank can be interpreted as discrete sine waves that are
both amplitude- and phase-modulated by the time-dependent Fourier transform.

In expanding on this latter interpretation, consider a sequence x(n) passed through
a discrete bank of filters hk (n) where each filter is given by a modulated version of a
baseband prototype filter h(n) = w (n), i.e.,

(9.6)

where h(n) is assumed causal and lies over a duration 0 ≤ n < S, and 2π/ R is the
frequency spacing between bandpass filters, R being the number of filters. The output
of each filter can be written as

(9.7)

which is Equation (9.5) without the final demodulation, evaluated at discrete frequency
samples ωk = (2π/ R )k that can be thought of as center frequencies for each of the R
“channels”.

Since each filter response hk ( n) in Equation (9.7) is complex, each filter output
yk (n) is complex so that the temporal envelope ak (n) and phase φk ( n) of the output
of the kth channel is given by

(9.8)

Thus the output of each filter can be viewed as an amplitude- and phase-modulated
complex sine wave

(9.9)

and reconstruction of the signal³ can be viewed as a sum of complex exponentials

(9.10)

where the amplitude and phase components are given by Equation (9.8) (see Figure
(9.2)). The resulting analysis/synthesis structure is referred to as the phase vocoder
[Flanagan and Golden, 1966].
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Figure 9.2 Phase vocoder based on filter bank analysis/synthesis.

The amplitudes and phases in Equation (9.10) can correspond to physically mean-
ingful parameters for quasi-periodic signals typical of speech and music [Flanagan
and Golden, 1966, Rabiner and Schafer, 1978a]. In order to see this, the STFT is first
written as

(9.11)

where ωk is the center frequency of the kth channel, Then, from Equations (9.7) and
(9.11), the output of the kth channel is expressed as

(9.12)

Consider now two filters that are symmetric about π so that ωR – k = 2π – ωk where
ωk =  2πk /R and assume for simplicity that R is even. Then it is straightforward to
show that

(9.13)

From Equations (9.12) and (9.13), the sum of two symmetric channels k and R – k
can be written as

(9.14)

which can be interpreted as a real sine wave which is amplitude- and phase-modulated
by the STFT, the “carrier” of the later being the kth filter’s center frequency.

Consider now a sine-wave input of frequency ωo, x(n ) = Ao cos(ωo n, + θo ), that
passes through the kth channel filter without distortion, as illustrated in Figure (9.3).
Then it can be shown that for the kth channel

(9.15)
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Figure 9.3 Passage of single sine wave through one bandpass filter.

and thus the output of the kth (real) channel is given by

(9.16)

A similar analysis can be made for quasi-periodic signals which consist of a sum of
sine waves with slowly-varying amplitude and instantaneous frequency each of which
is assumed to pass through a single filter.

The phase vocoder has been useful in a number of applications4 . In time-scale
modification, for example, the goal is to maintain the perceptual quality of the original
signal while changing its apparent rate of “articulation”. In performing time-scale
modification with the phase vocoder, the instantaneous frequency and amplitude of
each channel are interpolated or decimated to a new time scale5 . In one scenario,
the phase of each filter output in Equation (9.9) is first unwrapped, and the channel
amplitude and unwrapped phase are then time scaled. With time-scale modification
by a factor ρ, the modified filter output is given by

(9.17)

where ã k ( n ) and k (n ) are the interpolated/decimated amplitude and phase functions,
respectively. The modified phase is scaled by ρ to maintain the original frequency
trajectory, i.e., phase derivative, of each filter output.

9.2.3 Motivation for a Sine-Wave Analysis/Synthesis

In spite of the many successes of the phase vocoder, numerous problems have limited
its use. In the applications of time-scale modification and compression, for example,
it is assumed that only one sine wave enters each bandpass filter within the filter bank.
When more than one sine wave enters a bandpass filter, the meaning of the input
sine-wave amplitude and phase envelope is lost. A particular sine wave also may not
be adequately estimated when it falls between two adjacent filters of the filter bank. In
addition, sine waves with rapidly-varying frequency due to large vibrato or fast pitch
change are difficult to track. A result of using a fixed filter bank is that the frequency of
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an input sine wave cannot be measured outside the bandwidth of each bandpass filter.
Although these measurement problems may be resolved by appropriate combining of
adjacent filter bank outputs, such solutions are likely to be quite cumbersome [Serra,
1989]. Yet another problem is that of phase dispersion, In time-scale modification,
for example, the integration of the phase derivative and scaling of the unwrapped
phase results in a loss of the original phase relation among sine waves, thus giving an
objectionable “reverberant” quality characteristic of this method. Finally, the phase
vocoder was formulated in the context of discrete sine waves and hence was not
designed for the representation of noise components of a sound.

A number of refinements of the phase vocoder have addressed these problems
[Dolson, 1986, Portnoff, 1981, Malah and Flanagan, 1981, Malah, 1979]. For example,
the assumption that only one sine wave passes through each filter motivates a filter bank
with filter spacing equal to the fundamental frequency, thus allowing one harmonic to
pass through each filter [Malah, 1979]. An alternative is to oversample in frequency
with the hope that only one harmonic passes through each filter. One approach to
prevent phase dispersion is to use an overlap-add rendition of the synthesis with
windows of length such that the overlap is always in phase [Malah and Flanagan,
1981]. Another refinement of the phase vocoder was developed by Portnoff who
represented each sine-wave component by a source and filter contribution [Portnoff,
1981]. Portnoff also provided a rigorous analysis of the stochastic properties of the
phase vocoder to a noise-like input. An extension of the Portnoff phase vocoder that
attempts to avoid phase dispersion is reviewed in chapter 7.

The analysis stage of the original phase vocoder and its refinements views sine-wave
components as outputs of a bank of uniformly-spaced bandpass filters. Rather than
relying on a filter bank to extract the underlying sine-wave parameters, an alternate
approach is to explicitly model and estimate time-varying parameters of sine-wave
components by way of spectral peaks in the short-time Fourier transform [McAulay
and Quatieri, 1986b]. It will be shown that this new approach lends itself to sine-
wave tracking through frequency matching, phase coherence through a source/filter
phase model, and estimation of a stochastic component by use of an additive model
of deterministic and stochastic signal components. As a consequence, the resulting
sine-wave analysis/synthesis scheme resolves many of the problems encountered by
the phase vocoder, and provides a useful framework for a large range of speech and
music signal processing applications.

9.3 SINUSOIDAL-BASED ANALYSIS/SYNTHESIS

In this section it is shown that a large class of acoustical waveforms including speech,
music, biological, and mechanical impact sounds can be represented in terms of esti-
mated amplitudes, frequencies and phases of a sum of time-varying sine waves. There
are many signal processing problems for which such a representation is useful, includ-
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ing time-scale and pitch modification, sound splicing, interpolation, and extrapolation.
A number of refinements to the baseline analysis, accounting for closely spaced fre-
quencies and rapid frequency modulation, are also described. The approach of this
section explicitly estimates the amplitudes, frequencies, and phases of a sine-wave
model, using peaks in the STFT magnitude, in contrast to the phase vocoder and the
methods described in chapter 7 that rely on filterbank outputs for parameter estimation.

9.3.1 Model

The motivation for the sine-wave representation is that the waveform, when perfectly
periodic, can be represented by a Fourier series decomposition in which each harmonic
component of this decomposition corresponds to a single sine wave. More generally,
the sine waves in the model will be aharmonic as when periodicity is not exact or
turbulence and transients are present, and is given by

where Al (n) is a time-varying envelope for each component and with phase

(9.18)

where ωl (n) is the instantaneous frequency which will also be referred to as the
frequency track of the the kth sine wave.

In this section, the model in Equation (9.18) is used to develop an analysis/synthesis
system which will serve to test the accuracy of the sine-wave representation for audio
signals. In the analysis stage, the amplitudes, frequencies, and phases of the model are
estimated, while in the synthesis stage these parameter estimates are first matched and
then interpolated to allow for continuous evolution of the parameters on successive
frames. This sine-wave analysis/synthesis system forms the basis for the remainder of
the chapter.

9.3.2 Estimation of Model Parameters

The problem in analysis/synthesis is to take a waveform, extract parameters that
represent a quasi-stationary portion of that waveform, and use those parameters or
modified versions of them to reconstruct an approximation that is “as close as possible”
to a desired signal. Furthermore, it is desirable to have a robust parameter extraction
algorithm since the signal in many cases is contaminated by additive acoustic noise.
The general identification problem in which the signal is to be represented by multiple
sine waves is a difficult one to solve analytically. In an early approach to estimation
by Hedelin [Hedelin, 1981], the sine-wave amplitudes and frequencies were tracked
using Kalman filtering techniques, and each sine-wave phase is defined as the integral
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of the associated instantaneous frequency. The approach taken here is heuristic and is
based on the observation that when the waveform is perfectly periodic, the sine-wave
parameters correspond to the harmonic samples of the short-time Fourier transform
(STFT). In this case, the model in Equation (9.18) reduces to

(9.19)

in which the sine-wave frequencies are multiples of the fundamental frequencyω0 and
the corresponding amplitudes and phases are given by the harmonic samples of the
STFT. If the STFT of s (n) is given by

(9.20)

then Fourier analysis gives the amplitude estimates as Al = |Y (lω0) | and the phase
estimates as φl = ∠ Y (lω0).  Moreover, the magnitude of the STFT (i.e., the peri-
odogram) will have peaks at multiples of ω0. When the speech is not perfectly voiced,
the periodogram will still have a multiplicity of peaks but at frequencies that are not
necessarily harmonic and these can be used to identify an underlying sine-wave struc-
ture. In this case the sine-wave frequencies are simply taken to be the frequencies
at which the slope of the periodogram changes from positive to negative and the am-
plitudes and phases are obtained by evaluating the STFT at the chosen frequencies
[McAulay and Quatieri, 1986b].

The above analysis implicitly assumes that the STFT is computed using a rectangular
window. Since its poor sidelobe structure will compromise the performance of the
estimator, the Hamming window was used in all experiments. While this resulted in a
very good sidelobe structure, it did so at the expense of broadening the mainlobes of the
periodogram estimator. Therefore, in order to maintain the resolution properties that
were needed to justify using the peaks of the periodogram, the window width is made
at least two and one-half times the average pitch period. During aharmonic frames,
the window is held fixed at the value obtained on the preceding harmonic frame6.

Once the width of the analysis window for a particular frame has been specified,
the pitch-adaptive Hamming window w (n) is computed and normalized according to

(9.21)

so that the periodogram peak will yield the amplitude of an underlying sine wave.
Then the STFT of the Hamming-windowed input is taken using the DFT. Peaks in
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the periodogram are obtained by finding all values which are greater than their two
nearest neighbors, and peaks below a specified threshold from the maximum peak
(about 80 dB) are eliminated. The location of the selected peaks give the sine-wave
frequencies and the peak values give the sine-wave amplitudes, The sine-wave phases
φl are computed from the real and imaginary components of the STFT evaluated at ωl .

It should be noted that the placement of the analysis window w (n ) relative to
the time origin is important for computing the phases. Typically in frame-sequential
processing the window w (n ) lies in the interval 0 ≤ n ≤ N and is symmetric about
N /2, a placement which gives the measured phase a linear term equal to –ωN /2.
Since N is on the order of 100–400 discrete time samples, any error in the estimated
frequencies results in a large random phase error and consequent hoarseness in the
reconstruction. An error of one DFT sample, for example, results in a 2π N

M 2 phase
error (where M is the DFT length) which could be on the order of π. To improve the
robustness of the phase estimate the Hamming window is placed symmetric relative to
the origin defined as the center of the current analysis frame; hence the window takes
on values over the interval – N /2 ≤ n ≤ N / 2 .

The approximations leading to the above periodogram estimator were based on the
quasi-harmonic waveform assumption; the estimator can also be used with sustained
sine waves that are not necessarily quasi-harmonic. Nowhere however have the prop-
erties of aharmonic noise-like signals been taken into account. To do this in a way
that results in uncorrelated amplitude samples requires use of the Karhunen-Loève
expansion for noise-like signals [Van Trees, 1968]. Such an analysis shows that a
sinusoidal representation is valid provided the frequencies are “close enough” such
that the ensemble power spectral density changes slowly over consecutive frequencies.
If the window width is constrained to be at least 20 ms wide then, “on the average,”
there will be a set of periodogram peaks that will be approximately 100 Hz apart, and
this should provide a sufficiently dense sampling to satisfy the necessary constraints7.
The properties of aharmonic transient sounds have also not been addressed. Here
the justification for the use of the periodogram estimator is more empirical, based on
the observation that peak-picking the STFT magnitude captures most of the spectral
energy so that, together with the corresponding STFT phase, the short-time waveform
character is approximately preserved. This interpretation will become more clear when
one sees in the following sections that sine-wave synthesis is roughly equivalent to
an overlap-and-adding of triangularly weighted short-time segments derived from the
STFT peaks.

The above analysis provides a heuristic justification for the representation of the
waveform in terms of the amplitudes, frequencies, and phases of a set of sine waves
that applies to one analysis frame. As the signal evolves from frame to frame, different
sets of these parameters will be obtained. The next problem to address then is the
association of amplitudes, frequencies, and phases measured on one frame with those
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that are obtained on a successive frame in order to define sets of sine waves that will
be continuously evolving in time.

9.3.3 Frame-to-Frame Peak Matching

If the number of peaks were constant from frame to frame, the problem of matching
the parameters estimated on one frame with those on a successive frame would simply
require a frequency-ordered assignment of peaks. In practice, however, the locations of
the peaks will change as the pitch changes, and there will be rapid changes in both the
location and the number of peaks corresponding to rapidly varying signal regions, such
as at harmonic to noise-like transitions. In order to account for such rapid movements
in the spectral peaks, the concept of “birth” and “death” of sinusoidal components is
introduced. The problem of matching spectral peaks in some “optimal” sense while
allowing for this birth-death process, is generally a difficult problem. One method,
which has proved to be successful is to define sine-wave tracks for frequencies that
are successively “nearest-neighbors”. The matching procedure is made dynamic by
allowing for tracks to begin at any frame (a “birth”) and to terminate at any frame (a
“death”), events which are determined when successive frequencies do not fall within
some “matching interval”. The algorithm, although straightforward, is a rather tedious
exercise in rule-based programming [McAulay and Quatieri, 1986b].

An illustration of the matching algorithm showing how the birth-death procedure ac-
counts for rapidly varying peak locations is shown in Figure 9.4 for a speech waveform.
The figure demonstrates the ability of the tracker to adapt quickly through transitory
speech behavior such as voiced/unvoiced transitions and mixed voiced/unvoiced re-
gions.

9.3.4 Synthesis

As a result of the frequency-matching algorithm described in the previous section, all
of the parameters measured for an arbitrary frame k have been associated with a corre-
sponding set of parameters for frame k +1. Letting (Ak θ ) and , ωl  ), ωk

l , k
l ( Al

k +1
l
k +1 , θl

k +1

denote the successive sets of parameters for the lth frequency track, then an obvious
solution to the amplitude interpolation problem is to take

(9.22)

where = 0, 1, · · · , T – 1 is the time sample into the  kth frame. (The track subscriptn
“l ” has been omitted for convenience.)

Unfortunately, such a simple approach cannot be used to interpolate the frequency
and phase because the measured phases θk and θk +1 are obtained modulo 2π. Hence,
phase unwrapping must be performed to ensure that the frequency tracks are “maxi-
mally smooth” across frame boundaries. The first step in solving this problem is to
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Figure 9.4 Sine-wave tracking based on frequency-matching algorithm. An un-
voiced/voiced transition is illustrated. (Reprinted with permission from [McAulay and
Quatieri, 1986b], ©1986, IEEE)
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postulate a phase interpolation function that is a cubic polynomial8, namely,

(9.23)

where the term 2πM , M an integer, is used to account for the phase unwrapping. It is
convenient to treat the phase function as though it were a function of a continuous time
variable t, with t = 0 corresponding to the center of frame k  and t = T corresponding
to the center of frame k + 1. Since the derivative of the phase is the frequency, it is
necessary that the cubic phase function and its derivative equal the measured phase
and frequency measured at the frame k . Therefore, Equation (9.23) reduces to

(9.24)

Since only the principal value of the phase can be measured, provision must also
be made for unwrapping the phase subject to the constraint that the cubic phase
function and its derivative equal the measured frequency and phase at frame k + 1. An
explicit solution can be obtained for interpolation and phase unwrapping by invoking an
additional constraint requiring that the unwrapped cubic phase function be “maximally
smooth”. The problem then reduces to finding that multiple of 2π that leads to
the “smoothest” phase interpolation function while meeting the constraints on the
frequency and phase at frame k + 1. It can be shown that these constraints are met for
values of α and β that satisfy the relations [McAulay and Quatieri, 1986b]

(9.25)

The phase unwrapping parameter M is then chosen to make the unwrapped phase
“maximally smooth” [McAulay and Quatieri, 1986b].

Letting l (t ) denote the unwrapped phase function for the lth track, then the final
synthetic waveform for the k th frame will be given by

(9.26)

where Âl (n) is given by Eq. (9.22), l(n ) is the sampled data version of Eq. (9.24),
and L is the number of sine waves .9.

This completes the theoretical basis for the new sinusoidal analysis/synthesis sys-
tem. Although extremely simple in concept, the detailed analysis led to the introduction
of the birth-death frequency tracker and the cubic interpolation phase unwrapping pro-
cedure chosen to ensure smooth transitions from frame-to-frame. The degree to which
these new procedures result in signal synthesis of high-quality will be discussed in the
next section.
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Figure 9.5 Block diagram of baseline sinusoidal analysis/synthesis. (Reprinted with
permission from [McAulay and Quatieri, 1986b], ©1986, IEEE)

9.3.5 Experimental Results

A block diagram description of the analysis/synthesis system is given in Figure 9.5.
A non-real-time floating-point simulation was developed in order to determine the
effectiveness of the proposed approach. The signals processed in the simulations were
low-pass-filtered at 5 kHz, digitized at 10 kHz, and analyzed at 2-10 ms frame intervals
with a 1024-point FFT. In order to attain the time and frequency resolution required
to reconstruct a large variety of signals, the duration of the analysis window w (n ), the
number of sine-wave peaks N and the frame interval Q are adapted to the signal type.
For quasi-periodic signals such as voiced speech and steady-state waveforms from
wind instrumentals, using a pitch-adaptive Hamming window, having a width which
was two and one-half times the average pitch, was found to be sufficient for accurate
peak estimation. In reconstructing sharp attacks, on the other hand, short (and fixed)
window durations and frames are used. The maximum number of peaks that are used
in synthesis was set to a fixed number (≈ 80) and, if excessive peaks were obtained,
only the largest peaks were used.

Although the sinusoidal model was originally designed in the speech context, it
can represent almost any waveform. Furthermore, it was found that the reconstruction
does not break down in the presence of interfering background. Successful reconstruc-
tion was obtained of multi-speaker waveforms, complex musical pieces, and biologic
signals such as bird and whale sounds. Other signals tested include complex acoustic
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Figure 9.6 Reconstruction (lower) of speech waveform (upper) using sinusoidal anal-
ysis/synthesis.

signals from mechanical impacts as, for example, from a bouncing can, a slamming
book, and a closing stapler. These signals were selected to have a variety of time
envelopes, spectral resonances, and attack and decay dynamics. In addition, numerous
background signals, both synthetic and real comprising random signals (e.g., synthetic
colored noise or an ocean squall) and AM-FM tonal interference (e.g., a blaring siren)
were tested. The synthesized waveforms were essentially perceptually indistinguish-
able from the originals with little modification of background.

An example of sine-wave analysis/synthesis of a speech waveform is shown in
Figure 9.6, which compares the waveform for the original speech and the reconstructed
speech during a number of unvoiced/voiced speech transitions. The fidelity of the
reconstruction suggests that the quasi-stationarity conditions seem to be satisfactorily
met and that the use of the parametric model based on the amplitudes, frequencies,
and phases of a set of sine-wave components appears to be justifiable for both voiced
and unvoiced speech. To illustrate the generality of the approach, an example of the
reconstruction of a waveform from a trumpet is shown in Figure 9.7; while Figure 9.8
shows the reconstruction of a complex sound from a closing stapler. In each case,
the analysis parameters were tailored to the signal, and the reconstruction was both
visually and aurally nearly imperceptible from the original; small discrepancies are
found primarily at transitions and nonstationary regions where temporal resolution is
limited due to the analysis window extent. Illustrations depicting the performance of
the system in the face of the interfering backgrounds are provided in [McAulay and
Quatieri, 1985, Quatieri et al., 1994a].

Although high-quality analysis/synthesis of speech has been demonstrated using
amplitudes, frequencies, and phases at the spectral peaks of the high-resolution STFT,
it is often argued that the ear is insensitive to phase, a proposition that forms much
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Figure 9.7 Reconstruction (lower) of trumpet waveform (upper) using sinusoidal anal-
ysis/synthesis.

Figure 9.8 Reconstruction (lower) of waveform from a closing stapler (upper) using
sinusoidal analysis/synthesis.
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Figure 9.9 Magnitude-only reconstruction of speech (middle) is compared against
original (upper) and reconstruction with the true phase estimate (bottom).

of the work in narrowband speech coders. The question arises whether or not the
phase measurements are essential to sine-wave synthesis. An attempt to explore this
question was made by performing “magnitude-only” reconstruction by replacing the
cubic phase tracks in Equation (9.23) by a phase that was simply the integral of the
instantaneous frequency. One way to do this is to make the instantaneous frequency
be the linear interpolation of the frequencies measured at the frame boundaries and
then perform the integration. Alternately one can simply use the quadratic frequency
derived from the cubic phase via initiating the cubic phase offset at zero upon the birth
of a track. While the resulting speech was very intelligible and free of artifacts, in both
cases it was perceived as being different in quality from the original speech and the
differences were more pronounced for low-pitched speakers (i.e. pitch <~ 125Hz) .
An example of a waveform synthesized by the magnitude-only system (case two above)
is given in Figure 9.9b. Compared to the original speech shown in Figure 9.9a and the
reconstruction with the true phase estimate shown in Figure 9.9c, the synthetic speech
is quite different because of the failure to maintain the true sine-wave phases. In these
cases the synthetic speech was “hollow”, “reverberant” and “mechanical”. When the
magnitude-only system was used to synthesize noisy speech, the synthetic noise took
on a tonal quality that was unnatural and annoying.
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For a large class of signals, therefore, the sine-wave analysis/synthesis is nearly a
perceptual identity system; and the signals are expressed in terms of a functional model
describing the behavior of each of its sine-wave components. The sine-wave represen-
tation therefore provides an appropriate framework for developing signal modification
and enhancement techniques based on transforming each of the functional descriptors.

9.3.6 Applications of the Baseline System

Time-Scale Modification. In time-scale modification, the magnitude, frequency, and
phase of the sine-wave components are modified to expand the time scale of a signal
without changing its frequency characteristic. Consider a time-scale modification by
a factor β. By time-warping the sine-wave frequency tracks, i.e., ωl (βt) = θl (βt ), the
instantaneous frequency locations are preserved while modifying their rate of change in
time [Quatieri and McAulay, 1986]. Since d /dt [θl(tβ ) /β] = ωl (βt), this modification
can be represented by

(9.27)

where the amplitude functions are also time-warped. In the baseline analysis/synthesis
system illustrated in Figure 9.5, the analysis and synthesis frame intervals are Q sam-
ples. In contrast, in the implementation of an analysis/synthesis system based on the
model in Equation (9.27), the synthesis interval is mapped to Q' = ρQ samples. Q'
is constrained to an integer value since the synthesis frame requires an integer num-
ber of discrete samples. The modified cubic phase and linear amplitude functions,
derived for each sine-wave component, are then sampled over this longer frame in-
terval. This modification technique has been successful in time-scaling a large class
of speech, music, biologic, and mechanical impact signals [Quatieri and McAulay,
1986, Quatieri and McAulay, 1992, Quatieri et al., 1994b]. Nevertheless, a problem
arises in the inability of the system to maintain the original sine-wave phase rela-
tions through θl (βt)/β, and thus some signals suffers from the reverberance typical of
other modification systems, as well as the “magnitude-only” reconstruction described
in section 3.5. An approach to preserve phase coherence, and thus improve quality,
imparts a source/filter phase model on the sine-wave components and is described in
section 4. In spite of this drawback, the technique of Equation (9.27) remains the most
general. Similar approaches, using the baseline sine-wave analysis/synthesis, have
been used for frequency transformations, including frequency compression and pitch
modification [Quatieri and McAulay, 1986].

Sound Splicing, Interpolation, and Extrapolation. Other applications of the base-
line system are sound splicing, interpolation, and extrapolation. Sound splicing is
sometimes used in music signal synthesis. Many instrumental sounds, for example,
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have a noisy attack and periodic steady-state and decay portions. Therefore, except for
the attack, synthesis of quasi-periodic signals captures most of the sound characteristic.
A realistic attack can be obtained by splicing the original attack into the synthesized
sound which can be performed with an extension of the sinusoidal analysis/synthesis
[Serra, 1989, Serra and Smith, 1989]. This is not possible with most synthesis tech-
niques because the synthesized waveform does not adequately blend short-time phase
at the transition. In sine-wave analysis, however, the amplitude, frequency and phase
of every frequency is tracked; the amplitudes and phases of the original waveform at
the attack and during steady-state can be matched and interpolated using the linear and
cubic phase interpolators of section 3.4. It may also be desired to create hybrid sounds
or to transform one sound to another. Splicing the attack of a flute with the sustained
portion of a clarinet, for example, tests the relative importance of the temporal com-
ponents in characterizing the sound. This is performed by matching the phases of the
two synthesized sounds at a splice point.

In sound interpolation, in contrast to splicing temporal segments of a sound, entire
frequency tracks are blended together. In music synthesis, the functional form for
amplitude, frequency, and phase gives a natural means for moving from one instrument
into another. For example, a cello note can be slowly (or rapidly) interpolated into
the note of a French horn. A new frequency track is created as the interpolation
of tracks ω1 (n ) and ω2(n ) from the two instruments, represented by ω(n) = ( N —
n )ω1 (n ) / N + nω2 (n ) / N , over a time interval [0, N ]. A similar operation is performed
on the corresponding amplitude functions. Extensions of this basic idea have been
used to interpolate passaages of very different features, including pitch, vibrato and
tremolo [McMillen, 1994, Tellman et al., 195]. Such time-varying blend of different
signals can also be performed in the framework of the phase vocoder [Moorer, 1977].

Finally sine-wave analysis/synthesis is also suitable for extrapolation of missing
data [Maher, 1994]. Situations occur, for example, where a data segment is missing
from a digital data stream. Sine-wave analysis/synthesis can be used to extrapolate
the data across the gap. In particular, the measured sine-wave amplitude and phase
are interpolated using the linear amplitude and cubic phase polynomial interpolators,
respectively. In this way, the slow variation of the amplitude and phase function are
exploited, in contrast with rapid waveform oscillations.

Tracking Vibrato. For quasi-periodic waveforms with time-varying pitch, each har-
monic frequency varies synchronously 10 . The sinusoidal analysis has also been useful
in tracking such harmonic frequency and amplitude modulation in speech and music
and can have a clear advantage over the phase vocoder that requires the modulated
frequency to reside in a single channel. The presence of vibrato in the analyzed tone
may cause unwanted “cross-talk” between the bandpass filters of the phase vocoder;
i.e., a partial may appear in the passband of two or more analysis filters during one
vibrato cycle11 . Sine-wave analysis, on the other hand, was found by Maher and
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Beachamp [Maher and Beauchamp, 1990] to be an improvement over fixed filter hank
methods for the analysis of vibrato since it is possible to track changing frequencies
thereby avoiding the inter-band cross-talk problem.

An interesting application is the analysis of the singing voice where vibrato is crucial
for the richness and naturalness of the sound. Here in the case of vibrato, it appears
that the resonant character of the vocal tract remains approximately fixed while the
excitation from the vocal folds changes frequency in some quasi-sinusoidal manner.
The output spectrum of the singing voice will show frequency modulation due to the
activity of the vocal folds and amplitude modulation, i.e., tremolo, due to the source
partials being swept back and forth through the vocal tract resonances [Mchdams,
1984].

Maher and Beauchamp have used sine-wave analysis/synthesis to trace out sine-
wave amplitudes and frequencies and investigate their importance in maintaining nat-
ural vibrato, Inclusion of vibrato in sine-wave synthesis induces spectral modulation
resulting in a substantial improvement over examples having constant spectra. The
importance of spectral modulation due to vibrato was investigated by resynthesizing
tones with measured amplitude fluctuations for each partial, but with constant partial
frequencies replacing the measured frequency oscillations; and also with measured
frequency oscillations, but with constant partial amplitudes. It was also observed
that the phase relationship between the time-varying fundamental frequency and the
amplitude fluctuation of an individual partial can be used to identify the position of
that partial relative to a vocal tract resonance through tracing the resonance shape by
frequency modulation12 [Maher and Beauchamp, 1990].

9.3.7 Time-Frequency Resolution

For some audio signal processing applications, it is important that the sine-wave anal-
ysis parameters represent the actual signal components. Although a wide variety of
sounds have been successfully analyzed and synthesized based on the sinusoidal rep-
resentation, constraints on the analysis window and assumptions of signal stationarity
do not allow accurate estimation of the underlying components for some signal classes.
For example, with sine-wave analysis of signals with closely-spaced frequencies (e.g.,
a waveform from a piano or bell) it is difficult to achieve adequate temporal resolution
with a window selected for adequate frequency resolution; while for signals with very
rapid modulation or sharp attacks (e.g., a waveform from a violin or symbol), it is
difficult to attain adequate frequency resolution with a window selected for adequate
temporal resolution. In Figures 9.6 and 9.7, for example, the window duration was
set to obtain adequate spectral resolution; a 25ms analysis window and a 10ms frame
were used. In some cases these parameter setting can result in temporal smearing of
signal components of very short duration or with sharp attacks, and may be perceived
as a mild dulling of the sound. In Figure 9.8, on the other hand, the parameters
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were selected for good temporal resolution; a 7ms analysis window and a 2 ms frame
were used. Such a short-duration window may prevent accurate representation of low
frequencies and closely-spaced sine waves.

Prony’s method has had some success in improving frequency resolution of closely-
spaced sines in complex music signals over short analysis windows [McClellan, 1988,
Laroche, 1989]. In one form of Prony’s method, the signal is modeled over the analysis
window as a sum of damped sine waves

(9.28)

whose frequencies ƒl, amplitudes al , phases φl , and damping factors α l are estimated by
various formulations of least-squared error minimization with respect to the original
signal. In one two-step approach [Laroche, 1989], the frequencies and damping
factors are first estimated, followed by the calculation of amplitudes and phases,
These parameters are estimated over each analysis frame, frequency-matched over
successive frames using the algorithm of section 3.3, and then allowed to evolve in time
by polynomial interpolation. To improve estimation of a large number of sinusoids,
the signal is filtered into subbands and damped sine-wave parameters are estimated
separately within each band. This analysis/synthesis method has been applied to
a variety of musical sounds (e.g., glockenspiel, marimba, bell, gong, piano, bass,
vibraphone, tam-tam) over a 16kWz bandwidth [Laroche, 1989]. For signals with
very closely-spaced frequencies, the Prony method can provide improved parameter
estimation over peak-picking the STFT magnitude under a constrained window. The
full analysis/synthesis however generally performs worse on long-duration complex
signals [Laroche, 1989, Laroche, 1994]. One reason for the lower performance is that
the “noise” and attack portion of such signals are not accurately represented because
the signal does not fit the damped sine-wave model. This occurs particularly when the
signal is noisy (e.g., for flute or violin signals). To account for this signal type, Laroche
[Laroche, 1989] suggests generalizing the deterministic model in Equation (9.28) with
a colored noise component obtained as the output of an autoregressive (all-pole) filter
with a white-noise input. In section 5 of this chapter, a similar approach is described
in the sine-wave context. Refinements of sine-wave parameter estimation using other
variations of Prony”s method have also been investigated [Laroche, 1994, Therrien
et al., 1994, Victory, 1993].

One approach to address the nonstationary nature of sine-wave parameters over a
constrained analysis window relies on a time-varying amplitude and frequency model.
A specific model assumes a linear evolution of frequency over the analysis window13 .
With a Gaussian analysis window (this selection includes constant and exponential as
special cases), Marques and Almeida [Marques and Almeida, 1989] has shown that
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the windowed signal can be written in complex form as

with
(9.29)

where the center frequency for each basis is ωl , the frequency slope is 2∆ l , and the
Gaussian envelope is characterized by µl and λ l . The Fourier transform of s(t ) in
Equation (9.29) is given by

(9.30)

where for a Gaussian window O(ω) can be evaluated analytically and also takes on a
Gaussian function. This convenient form allows for estimation of the unknown param-
eters by iterative least-squared error minimization using a log spectral error. To relieve
the multiple sine estimation problem, estimation is performed one sinusoid at a time,
successively subtracting each estimate from the signal’s spectrum14. Improvement in
segmental signal-to-noise ratio was observed in speech signals whose pitch varies very
rapidly.

The problem of tracking frequency variation is particularly severe for high-frequency
sine waves. Since for periodic waveforms each harmonic frequency is an integer
multiple of the fundamental frequency, higher frequencies will experience greater
variation than low frequencies. Thus to obtain equivalent time resolution along each
frequency trajectory, one would need to decrease the window duration with increasing
frequency15 . This high-frequency variation can be so great that the signal spectrum
can appear noise-like in high-frequency regions, thus reducing the efficacy of spectral
peak peaking. A preprocessing approach to address this problem was introduced by
Ramalho [Ramalho, 1994]. In this approach, the waveform is temporally warped
according to an evolving pitch estimate, resulting in a nearly monotone synthesis. A
fixed analysis window is selected for a desired frequency resolution; dewarping the
frequency estimate yields the desired sine-wave frequency trajectory.

9.4 SOURCE/FILTER PHASE MODEL

For signals represented approximately by the output of a linear system driven by
periodic pulse or noise excitations (e.g., human speech or woodwind instruments), the
sine-wave model of the previous section can be refined by imposing a source/filter
representation on the sine waves components. Within this framework, the notion of
phase coherence [Quatieri and McAulay, 1989] is introduced, becoming the basis
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for a number of applications, including time-scale modification and dynamic range
compression. The section ends with revisiting the phase vocoder in which phase
coherence is used for time-scale expansion of a class of short-duration aharmonic
signals.

9.4.1 Model

In speech and certain music production models [Rabiner and Schafer, 1978a], the
waveform s(t) is assumed to be the output of passing a vibratory excitation waveform
e(t) through a linear system h(t) representing the characteristics of the vocal tract or
music chamber. With periodic excitation, it is assumed for simplicity that the excitation
pulse shape as well as the system impulse response is part of the response h(t ). Usually
the excitation function is represented as a periodic pulse train during harmonic sounds,
where the spacing between consecutive pulses corresponds to the “pitch” of the sound,
and is represented as a noise-like signal during aharmonic sounds. Alternately, the
binary harmonic/aharmonic excitation model is replaced by a sum of sine waves of
the form [McAulay and Quatieri, 1986b, Quatieri and McAulay, 1986, Quatieri and
McAulay, 1992]

where for the kth sine wave, the excitation phase Ω k (t) is the integral of the time-
varying frequency ωk ( t )

(9.31)

where φk is a fixed phase offset to account for the fact that the sine waves will generally
not be in phase. L represents the number of sine waves at time t and ak (t ) is the time-
varying amplitude associated with each sine wave. Since the system impulse response
is also time-varying, the system transfer function (i.e., the Fourier transform of h( t ))
can be written in terms of its time-varying amplitude M (ω; t ) and phase ψ (ω; t ) as

(9.32)

The system amplitude and phase along each frequency trajectory ωk ( t ) are then given
by

(9.33)
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Passing the excitation Equation (9.31) through the linear time-varying system Equa-
tion (9.32) results in the sinusoidal representation for the waveform

where

and
(9.34)

represent the amplitude and phase of each sine-wave component along the frequency
trajectory ωk (t ). The accuracy of this representation is subject to the caveat that the
parameters are slowly-varying relative to the duration of the system impulse response.

In developing a source/filter phase model, the excitation phase representation in
Equation (9.31) is simplified by introducing a parameter representing the pitch pulse
onset time. In the context of the sine-wave model, a pitch pulse occurs when all of the
sine waves add coherently (i.e., are in phase). The excitation waveform is modeled as

(9.35)

where to is the onset time of the pitch pulse and where the excitation frequency ωk is
assumed constant over the duration of the analysis window. Comparison of Equation
(9.31) with Equation (9.35) shows that the excitation phase Ωk (t) is linear with respect
to frequency. With this representation of the excitation, the excitation phase can be
written in terms of the onset time to as

(9.36)

According to Equation (9.34), the system phase for each sine-wave frequency is
given by the phase residual obtained when the linear excitation phase (t – to)ωk is
subtracted from the composite phase θk (t) which consists of both excitation and system
components.

(9.37)

Similarly, an amplitude decomposition can be made through the amplitude function in
Equation (9.34) when the system function M (ω) is know or estimated.

9.4.2 Phase Coherence in Signal Modification

Time-Scale Modification. A simplified linear model of the generation of speech
and certain music signal predicts that a time-scaled modified waveform takes on the
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appearance of the original except for a change in time scale. This section develops a
time-scale modification system that preserves this shape invariance property for quasi-
periodic signals, sometimes referred to as phase coherence [Quatieri and McAulay,
1989, Quatieri and McAulay, 1992]. A similar approach can be applied to pitch
modification [Quatieri and McAulay, 1992].

Excitation/System Model: For a uniform change in the time scale, the time t0
corresponding to the original articulation rate is mapped to the transformed time t'0
through the mapping

(9.38)

The case ρ < 1 corresponds to slowing down the rate of articulation by means of a
time-scale expansion, while the case ρ > 1 corresponds to speeding up the rate of
articulation by means of a time-scale compression. Events which take place at a time
t'0 according to the new time scale will have occurred at ρ– 1 t '0 in the original time
scale.

In an idealized sine-wave model for time-scale modification, the “events” which are
modified are the amplitudes and phases of the system and excitation components of
each underlying sine wave. The rate of change of these events are functions of how fast
the system moves and how fast the excitation characteristics change. In this simplified
model, a change in the rate at which the system moves corresponds to a time scaling
of the amplitude M (ω; t) and the phase ψ(ω; t). The excitation parameters must be
modified so that frequency trajectories are stretched and compressed while maintain-
ing pitch. While the excitation amplitudes ak (t) can be time scaled, a simple time
scaling of the excitation phase Ω k ( t ) will alter pitch. Alternatively, the transformation
given by Ωk (βt ) /β maintains the pitch but results in waveform dispersion, as in the
baseline sine-wave modification system of Equation (9.27), because the phase relation
between sine waves is continuously being altered. A different approach to modeling
the modification of the excitation phase function, which provides phase coherence , re-
lies on the representation of the excitation in terms of pitch pulse locations, i.e., onset
times, introduced in the previous section. In time-scale modification, the excitation
onset times extend over longer or shorter time durations relative to the original time
scale. This representation of the time-scaled modified excitation function is a primary
difference from time-scale modification using the baseline system of Equation (9.26),
described in section 3. The model for time-scale modification is illustrated in Figure
9.10.

Equations (9.31)-(9.38) form the basis for a mathematical model for time-scale
modification, To develop the model for the modified excitation function, suppose that
the pitch period P ( t ) is time-scaled according to the parameter ρ. Then the time-scaled
pitch period is given by

(9.39)
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Figure 9. 10 Onset-time model for time-scale modification. (Reprinted with permission
from [Quatieri and McAulay, 1992], ©1992, IEEE)

from which a set of new onset times can be determined. The model of the modified
excitation function is then given by

(9.40a)

where
(9.40b)

and where t'o is the modified onset time. The excitation amplitude in the new time
scale is the time-scaled version of the original excitation amplitude function ak ( t) and
is given by

(9.40c)

The system function in the new time scale is a time-scaled version of the original
system function so that the magnitude and phase are given by

(9.41)

where Mk ( t ) and ψk ( t) are given in Equations (9.33), (9.33). The model of the
time-scaled waveform is then completed as

where

(9.42)
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which represent the amplitude and phase of each sine-wave component.
The time-scale modification model was developed for the harmonic case where

approximate periodicity is assumed. There exist many transient aharmonic sounds
such as voiced stops /b/, /d/, and /t/ and unvoiced stops /p/, /t/, and /k/ in speech, and
attacks and decays in music which violate this assumption. In these cases a change
in the rate of articulation may not be desired and so an adaptive rate change might be
invoked [Quatieri and McAulay, 1992]. A change in the rate of articulation may be
desired, however, in noise-like aharmonic sounds such as unvoiced fricatives (/s/) and
voiced fricatives (/z/) in speech and turbulence in musical instruments (flute). In these
cases the spectral and phase characteristics of the original waveform, and therefore
the “noise-like” character of the sound, are roughly preserved in an analysis/synthesis
system based on the rate-change model in Equation (9.42), as long as the synthesis
interval is 10 ms or less to guarantee sufficient decorrelation of sine waves from
frame-to-frame, and as long as the analysis window is 20 ms or more to guarantee
approximate decorrelation in frequency of adjacent sine waves [McAulay and Quatieri,
1986b, Quatieri and McAulay, 1992].

For time-scale expansion this noise-like property however is only approximate
since some slight tonality is sometimes perceived due to the determinism introduced
by temporal stretching of the sine-wave amplitude and phase. In this case and when
the 10ms synthesis frame condition is not feasible due to a very slow time scale ( ρ
greater than 2 with an analysis frame no less than 5 ms ), then frequency and phase
dithering models can be used to satisfy the decorrelation requirements [Quatieri and
McAulay, 1992, Macon and Clements, ]. One approach for reducing tonality is to add
a random phase to the system phase in Equation (9.42) in only those spectral regions
considered “noise-like” (more generally aharmonic)16. For the kth frequency track,
the phase model is expressed as

(9.43a)

where bk (ωc) is a binary weighting function which takes on a value of unity for a
frequency track declared “aharmonic” and a value of zero for a “harmonic” track

(9.43b)

where ωk are sine-wave frequencies estimated on each frame and ϕ (t) is a phase
trajectory derived from interpolating over each frame, and differently for each sine
wave, random phase values selected from a uniformly distributed random variable on
[– π, π]. The cutoff frequency ωc is the harmonic/aharmonic cutoff for each frame and
varies with a “degree of harmonicity” measure Vh ; i.e.,

ωc = Vh B (9.44)
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Figure 9.11 Transitional properties of frequency tracks with adaptive cutoff. Solid
lines denote voiced tracks, while dashed lines denote unvoiced tracks. (Reprinted with
permission from [Quatieri and McAulay, 1991], ©1991, IEEE)

over a bandwidth B and where the harmonicity measure Vh is obtained from a sine-
wave-based pitch estimator [McAulay and Quatieri, 1990]. Figure 9.11 illustrates
an example of track designations in a speech voiced/unvoiced transition. Alternate
modification schemes for dealing with these two sound classes are discussed in section
5.5 and in chapter 7.

Analysis/Synthesis: With estimates of excitation and system sine-wave amplitudes
and phases at the center of the new time-scaled synthesis frame, the synthesis procedure
becomes identical to that of the baseline system of section 3.6. The goal then is to obtain
estimates of the amplitudes, Ãk ( t), and phases, k (t ), in Equation (9.42) at the center
of the synthesis frame of duration Q' = ρQ where Q is the analysis frame interval
as defined in section 3.5. Since in the time-scale modification model, the system and
excitation amplitudes are simply time scaled, from Equations (9.40a) and (9.42) the
composite amplitude need not be separated and therefore the required amplitude can
be obtained from the sine-wave amplitudes measured on each frame m, by spectral
peak-picking.

(9.45)

where for convenient reference will be made to the mth analysis frame. The system
and excitation phases, however, must be separated from the measured phases since
the components of the composite phase k (t ) in Equation (9.42) are manipulated in
different ways.

To estimate the required system phase, the excitation phase, which is estimated
relative to the analysis frame, is subtracted from the measured phase samples. The
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first step in estimating the excitation phase is to obtain the onset time with respect

to the center of the mth frame, denoted in discrete time by n ( m  ). At this point
the phase model is dependent on the measured onset time which can introduce phase
jitter, rendering the synthetic modified speech “rough” unless it is estimated with
considerable accuracy 17 . Since the function of the onset time is to bring the sine waves
into phase at times corresponding to the sequence of pitch pulses, it is possible to

achieve the same effect simply by keeping track of successive onset times generated
by a succession of pitch periods. If n 0 ( m – 1) is the onset time for frame m – 1 and if
P(m) is the pitch period estimated for frame m , then a succession of onset times can

be specified by

(9.46)

If q0 ( m; J ) is the onset time closest to the center of the frame m , then the onset time

for frame m, is defined by

(9.47)

An example of a typical sequence of onset times is shown in Figure 9.12a. Implied in

the figure is that in general there can be more than one onset time per analysis frame.
Although any one of the onset times can be used, in the face of computational errors due
to discrete Fourier transform (DFT) quantization effects, it is best to choose the onset
time which is nearest the center of the frame, since then the resulting phase errors will

be minimized. This procedure determines a relative onset time, which is in contrast
to finding the absolute onset time which is the actual time at which the excitation
pulses occur [McAulay and Quatieri, 1986a]. Since the onset time is obtained from the
pitch period, which is derived from a fractional pitch estimate [McAulay and Quatieri,
1990], very accurate relative onset times are obtained.

The excitation phase is then given by

(9.48)

Finally, an estimate of the system phase at the measured frequencies, is computed by
subtracting the estimate of the excitation phase Ωk ( m ) from the measured phase at the
sine-wave frequencies.

(9.49)

When the excitation phase, derived from the relative onset time, is subtracted, some
residual linear phase will be present in the system phase estimate. This linear phase
residual is consistent over successive frames and therefore does not pose a problem to

the reconstruction since the ear is not sensitive to a linear phase shift.

The remaining step is to compute the excitation phase relative to the new synthesis
interval of Q' samples. As illustrated in Figure  9.12b, the pitch periods are accumulated

AUDIO SIGNAL PROCESSING BASED ON SINUSOIDAL ANALYSIS/SYNTHESIS
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Figure 9.12 Estimation of onset times for time-scale modification: (a) Onset times for
system phase; (b) Onset times for excitation phase. (Reprinted with permission from
[Quatieri and McAulay, 1992], © 1992, IEEE)

until a pulse closest to the center of the mth synthesis frame is achieved. The location
of this pulse is the onset time with respect to the new synthesis frame and can be written
as

(9.50)

where J´ corresponds to the first pulse closest to the center of the synthesis frame
of duration Q´. The phase of the modified excitation (n´), at the center of the mth
synthesis frame, is then given by

(9.51)

Finally, in the synthesizer the sine-wave amplitudes over two consecutive frames,

k(m – 1) and k (m), are linearly interpolated over the frame interval Q´. The phase
components are summed and the resulting sine-wave phases, 

k
(m – 1) and k (m)

are interpolated across the duration Q´ using the cubic polynomial interpolator 18 .
A block diagram of the complete analysis/synthesis system is given in Figure 9.13.
An important feature of the sine-wave-based modification system is its straightfor-
ward extension to time-varying rate change, details of which are beyond the scope
of this chapter [Quatieri and McAulay, 1992]. As a consequence, the correspond-
ing analysis/synthesis system can be made to adapt to the events in the waveform
(e.g., harmonic/aharmonic), which may better emulate signal generation mechanisms
as discussed in the previous section. One way to achieve this adaptivity is through
the measure of “harmonicity” Vh [Quatieri and McAulay, 1992]. In addition, the rate
change can be controlled in a time-varying fashion independent of this adaptivity or
superimposed upon it.
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Figure 9.13 Analysis/synthesis for time-scale modification. (Reprinted with permission
from [Quatieri and McAulay, 1992], © 1992, IEEE)

An example of time-scale expansion of a waveform from a trumpet is shown in
Figures 9.14 where the time scale has been expanded by a factor of two and has been
made to adapt according to the harmonicity measure; i.e., the rate change is given by
ρ = 1 for Vh ≤ 0.5 and by ρ = [1 – Vh ] + 2Vh  for Vh  > 0.5. The analysis frame
interval was set at 5ms in these experiments so that the synthesis frame interval will be
no greater than 10 ms. In this example, it is interesting to observe that, although the
waveform shape is preserved, the harmonic bandwidth has decreased, as seen in the
superimposed spectra.  This narrowing of the bandwidth results from reduction in the
vibrato rate (see Figure 9.1) by the time-scale expansion. An example of time-scale
modification of speech is shown in Figure 9.15 where in this case the rate change
is controlled to oscillate between a compression and expansion of about a factor of
two. The results show that details of the temporal structure of the original waveforms
have been maintained in the reconstructions; phase dispersion, characteristic of the
original baseline sine-wave analysis/synthesis and phase vocoder, does not occur. The
reconstructions are generally of high quality, maintain the naturalness of the original,
and are free of artifacts. Interfering backgrounds, including typewriter and engine
sounds, were also reproduced at faster and slower speeds. Although the phase model
is pitch-driven, this remarkable property of robustness is likely due to the use of the
original sine-wave amplitudes, frequencies, and phases in the synthesis rather, than
forcing a harmonic structure onto the waveform.
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Figure 9.14 Example of time-scale modification of trumpet waveform: Original (upper
left); Expansion of ρ = 1.25 (lower); Superimposed spectra (upper right). Top spectrum
is original and lower spectrum is modified.

Figure 9.15 Example of time-varying time-scale modification of speech waveform.
(Reprinted with permission from [Quatieri and McAulay, 1992], © 1992, IEEE)
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Dynamic Range Compression. In the next application, dynamic range compression,
phase coherence is again required to control sine-wave phase relations. Here however
the original phase relation is not preserved, but rather intentionally modified to yield
a response with a minimum peak-to-rms value relying on a phase design technique
derived in a radar signal context.

Key-Fowle-Haggarty Phase Design: In the radar signal design problem, the signal
is given as the output of a transmit filter whose input consists of impulses. The spectral
magnitude of the filter’s transfer function is specified and its phase is chosen so that the
response over its duration is flat. The resulting response is an FM pulse-compressed
chirp signal. This design allows the waveform to have maximum average power given
a peak-power limit on the radar transmitter.

The basic unit of the radar waveform is the impulse response h(n ) of the transmit
filter. It is expedient to view this response in the time domain as an FM chirp signal
with envelope a(n) and phase φ(n)

which has a Fourier transform H(ω) with magnitude M(ω) and phase ψ(ω)

(9.52a)

(9.52b)

By exploiting the analytic signal representation of h (n), Key, Fowle, and Haggarty
[Key et al., 1959] have shown that, under a large time-bandwidth product constraint,
specifying the two amplitude components, a(n ) and M (ω), in Equation (4.22) is
sufficient to determine approximately the remaining two phase components. How large
the time-bandwidth product must be for these relations to hold accurately depends on
the shape of the functions a(n) and M (ω) [Cook and Bernfeld, 1967, Fowle, 1967].

Ideally, for minimum peak-to-rms ratio in the radar signal, the time envelope a(n)
should be flat over the duration L of the impulse response. With this and the additional
constraint that the spectral magnitude is specified (a flat magnitude is usually used in
the radar signal design problem), Key, Fowle, and Hagarty’s (KFH) general relation
among the envelope and phase components of h(n) and its Fourier transform H (ω)
reduces to an expression for the unknown phaseψ(ω) as

(9.52a)

where “hat” indicates that the magnitude has been normalized by it’s energy, i.e.,

(9.52b)

and where π represents the signal bandwidth in the discrete-time signal representation
[Oppenheim and Schafer, 1975]. The accuracy of the approximation in Equation (9.52)
increases with increasing time-bandwidth product [Quatieri and McAulay, 1991).
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Equations (9.52) shows that the resulting phase (ω) depends only on the normal-
ized spectral magnitude M(ω) the impulse response duration L. It can be shown
that the envelope level of the resulting waveform can be determined, with the applica-
tion of appropriate energy constraints, from the unnormalized spectrum and duration
[Quatieri and McAulay, 1991]. Specifically, if the envelope of h( n ) is constant over
its duration L and zero elsewhere, the envelope constant has the value

(9.53)

The amplitude and phase relation in Equations (9.52) and (9.53) will be used to develop
the sine-wave-based approach to peak-to-rms reduction.

Waveform Dispersion: In the above discussion, in the radar signal design context,
the spectral magnitude was assumed known and a phase characteristic was estimated
from the magnitude. Alternately, a filter impulse response with some arbitrary mag-
nitude or phase might be given and the objective is to disperse the impulse response
to be maximally flat over some desired duration L. This requires first removing the
phase of the filter and then replacing it with a phase characteristic from the KFH
calculation. This problem is similar to that required to optimally disperse a speech
or music waveform. The goal is to transform the system impulse response which has
some arbitrary spectral magnitude and phase into an FM chirp response which is flat
over the duration of a pitch period.

A “zero-phase” version of the sine-wave system has been developed for removing
the natural dispersion in the waveform during harmonic segments. Use of the system
phase during aharmonic (noise-like) regions does not change the preprocessor’s effec-
tiveness in reducing the peak-to-rms ratio since these regions contributes negligibly
to this measure. Moreover, the preservation of as much of the original waveform as
possible helps to preserve the original quality. The sine-wave system first separates
the excitation and system phase components, from the composite phase of the sine
waves that make up the waveform, as was done in for time-scale modification. The
system component is then removed and a zero-phase synthesis system is produced.
The new KFH phase then replaces the natural phase dispersion to produce the dispersed
waveform.

Applying the KFH phase to dispersion requires the estimation of the spectral mag-
nitude M(ω; m ) of the system impulse response and the pitch period of the excitation
P(m). The duration of the synthetic impulse response is set close to the pitch period
P(m) so that the resulting waveform is as “dense” as possible. The sine-wave analysis
produces estimates of the spectral and pitch characteristics. The synthetic system
phase derived using the KFH solution, denoted by k f h (ω; m), is given by

(9.54)
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where “kfh” denotes the KFH  phase, where “hat” denotes that the estimated magnitude
has been normalized by it’s energy, and where µ, which falls in the interval [0,1], is a
scale factor to account for a possible desired reduction in the chirp duration less than
a pitch period (e.g., to avoid response overlap).

Applying the KFH phase dispersion solution in the synthesis requires that the
synthetic system phase in Equation (9.54), k f h  (ω; m) which is a continuous function
of frequency, be sampled along the sine-wave frequency tracks ωk (m)

(9.55)

where the subscript “k, k f h” denotes the KFH phase along the kth track. The solution
in Equation (9.55) is used only where the approximate periodicity assumption holds,
whereas in aharmonic regions the original system phase is maintained. Therefore, the
KFH phase is assigned only to those tracks designated “harmonic”19 . The original
system phase is assigned to those tracks designated “aharmonic”, i.e., noise-like. Thus
the phase assignment for the kth sine wave is given by

(9.56)

where bk  (m), defined in Equation (9.43), takes on a value of zero for a harmonic track
and unity for an aharmonic track, where Ωk (m) is the excitation phase, k  (m) is the
original phase, and k,k f h (m) is the synthetic phase.

An example of dispersing a synthetic periodic waveform, with fixed pitch and
fixed system spectral envelope is illustrated in Figure 9.16. Estimation of the spectral
envelope of the processed and original waveforms in Figure 9.16d used the straight-line
spectral smoothing technique (SEEVOC) in [Paul, 1981]. For the same peak level as
the original waveform, the processed waveform has a larger rms value and so has a
lower peak-to-rms ratio. The vocal tract phase is modified significantly, as illustrated
in Figures 9.16b and 9.16c. In Figure 9.16d the magnitude of the dispersed waveform
is compared with the original magnitude and the agreement is very close, a property
that is important to maintaining intelligibility and minimizing perceived distortion.

Dynamic Range Compression of Real Signals: As illustrated in Figure 9.16, the
KFH phase traverses a very large range (e.g., from 0 to 300 radians) over a bandwidth
of 5000 Hz. This phase calculation can then be sensitive to small measurement errors
in pitch or spectrum. It is straightforward to show that for unity spectral magnitude
and a one-sample error in the pitch period, the resulting change in the phase at ω = π is
π/2, a very large change in the phase over an analysis frame interval. Such changes in
phase can introduce undesirable changes in the sine-wave frequency trajectory which
is manifested as a “roughness” to the synthetic signal.

To reduce large frame-to-frame fluctuations in the KFH phase, both the pitch and
the spectral envelope, used by the KFH solution, are smoothed in time over successive
analysis frames. The strategy for adapting the degree of smoothing to signal char-
acteristics is important for maintaining dispersion through rapidly changing speech
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Figure 9.16 KFH phase dispersion using the sine-wave preprocessor: (a) Waveforms;
(b) Original Phase; (c) Dispersed phase; (d) Spectral magnitudes. (Reprinted with
permission from [Quatieri and McAulay, 1991], © 1991, IEEE)

events. In order that transitions from aharmonic to harmonic regions (and vice versa)
do not severely bias the averaging process, the degree of smoothing is controlled by
the harmonicity measure Vh ( m ) and by spectral and pitch “derivatives” which reflect
the rate at which these parameters are changing in time. Under the assumption that
signal quality degrades when “unnatural” changes in phase occur during steady-state
sounds, the degree of smoothing increases when the spectrum and pitch are varying
slowly. Such a design results in little smoothing during signal state transitions or other
rapidly-varying events. The importance of adaptive phase smoothing along sine-wave
tracks for preserving speech quality warrants a more thorough description which is
given in [Quatieri and McAulay, 1991].

A second important element in processing real signals is that of amplitude com-
pression whose goal is to reduce envelope fluctuations in the waveform. Conventional
amplitude compression methods require an estimate of the waveform envelope [Blesser,
1969]. It has been shown that in the context of sine-wave analysis/synthesis, the KFH
phase relations can be used to compute the envelope of the dispersed waveform in
the frequency domain and allow for a simple frequency-domain-based automatic gain
control (AGC) and dynamic range compression (DRC), corresponding to “slow” and
“fast” compression dynamics, respectively [Quatieri et al., 1991]. Figure 9.17 illus-
trates an example of processing a speech waveform in which two important changes
have taken place. The peakiness with respect to a pitch period duration has been
reduced via adaptive dispersion and the long-time envelope fluctuations have been
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Figure 9.17 Comparison of original waveform and processed speech with combined
dispersion and DRC: (a) Original; (b) Processed. (Reprinted with permission from
[Quatieri and McAulay, 1991], © 1991, IEEE)

reduced by amplitude compression. The two waveforms have been peak normalized
so that, since the processed waveform has a lower peak-to-rms ratio, it sounds louder
than the original. In this case, after some mild clipping, about an 8 dB reduction in
the peak-to-rms ratio was achieved. Although there is of course some loss in quality
which is typical of this kind of processing, the resulting quality is generally acceptable
in applications such as HF transmission [Quatieri et al., 1991].

9.4.3 Revisiting the Filter Bank-Based Approach

Section 2 of this chapter described the problem of phase dispersion encountered by
the phase vocoder in time-scale modification. The phase vocoder therefore should be
able to exploit the notion of phase coherence introduced in the previous section; in
particular, the class of quasi-periodic signals may benefit from such an approach. In
this section, however, a different class of short-duration aharmonic signals consisting
of brief transient components that are closely spaced in time, such as from the closing
of a stapler, will be investigated. The components of such signals are difficult to
perceive aurally and any two such similar acoustic signals are difficult to discriminate.
Thus signals of this kind may be enhanced by time-scale expansion, and in particular
with the help of phase coherence imposed through the use of event onset times. It
is shown that with appropriate subband phase coherence, the shape of their temporal
envelope, which may play important role in auditory discrimination, can be preserved
[Quatieri et al., 1994b, Quatieri et al., 1995, Quatieri et al., 1993].

Temporal Envelope. Temporal envelope is sometimes defined, typically in the con-
text of bandpass signals, as the magnitude of the analytic signal representation[Oppen-
heim and Schafer, 1975]. Other definitions of temporal envelope have been proposed
based on estimates of attack and release dynamics [Blesser, 1969]. One approach to
time-scale modification, given the spectral envelope of a signal, is to select a Fourier-
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transform phase that results in a sequence with a time-scaled version of the original
temporal envelope [Quatieri et al., 1993]. A close match to both the spectral envelope
and modified temporal envelope, however, may not be consistent with the relationship
between a sequence and its Fourier transform. Alternately, within the framework of
the phase vocoder (Equations (9.9) and (9.17)), rather than attempting to maintain the
temporal envelope over all time, a different approach is to maintain the subband phase
relations at time instants that are associated with distinctive features of the envelope
[Quatieri et al., 1994b, Quatieri et al., 1995, Quatieri et al., 1993]. As a stepping stone
to the approach, the notion of instantaneous invariance is introduced.

Instantaneous Invariance. It is assumed that the temporal envelope of a waveform
near a particular time instant n = no is determined by the amplitude and phase of its
subband components at that time [i.e., ak (no ) and θ k (n o)], and by the time rate of
change of these amplitude and phase functions20 . To preserve the temporal envelope in
the new time scale near n = ρno , these amplitude and phase relations are maintained
at that time. Modification of amplitude and phase as in (9.15) does not maintain the
phase relations; however, it does maintain the amplitudes (and relative amplitude and
phase derivatives). The phase relations can be maintained by adding to each channel
phase an offset, guaranteeing that the resulting phase trajectory takes on the desired
phase at the specified time n = ρno . Introduced in each channel is a phase correction
that sets the phase of the modified filter output k  (n) at n = ρno to the phase at n = no

in the original time scale. Denoting the phase correction by φk , the modified channel
signal becomes

(9.57)

where φk  = θk  (no ) – ρ k ( ρno ) and where ãk (n) and k(n) are the interpolated
versions of the original amplitude and phase functions. An inconsistency arises,
however, when preservation of the temporal envelope is desired at more than one time
instant. One approach to resolving this inconsistency is to allow specific groups of
subband components to contribute to different instants of time at which invariance is
desired [Quatieri et al., 1994b, Quatieri et al., 1995, Quatieri et al., 1993].

The approach to invariance can be described by using the signal (in Figure 9.18a)
that has a high- and low-frequency component, each with a different onset time. If
all channels are “phase-aligned,” as above, near the low-frequency event, the phase
relations at the high-frequency event are changed and vice versa. For this signal,
with two events of different frequency content, it is preferable to distribute the phase
alignment over the two events; the high-frequency channels being phase-aligned at the
first event and the low-frequency channels being phase-aligned at the second event.
Equation (9.57) can then be applied to each channel group using the time instant for
the respective event, thus aligning or locking the channel phases that most contribute
to each event2 1 .
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Figure 9.18 Time-scale expansion (x 2) using subband phase correction; (a) Original;
(b) Expansion with phase correction at 5ms; (c) with phase correction in clustered
subbands; (d) without phase correction. (Reprinted with permission from [Quatieri
et al., 1995], © 1995, IEEE)

Channels are assigned to time instants using the envelope of the filter bank outputs.
Accordingly, the filter bank is designed such that each filter output reflects distinctive
events that characterize the temporal envelope of the input signal. A perfect recon-
struction filter bank with 21 uniformly spaced filters hk (n) was designed using a 2
ms prototype Gabor filter. Using the channel envelopes derived from the filter bank,
channels are clustered according to their similarity in envelope across frequency. The
onset time of an event is defined within each channel as the location of the maximum
of the subband envelope ak (n ) and is denoted by no ( k ). It is assumed that the signal is
of short duration with no more than two events and that only one onset time is assigned
to each channel; more generally, multiple onset times would be required. A histogram
of onset times is formed, and the average values of each of the two highest bins are
selected as the event locations. These times are denoted by n1

o and n 2
o , and each of the

k channels is assigned to n 1
o or n 2

o based on the minimum distance between no (k) and
the two possible event time instants. The distance is given by D(p ; k ) =  no ( k )  — n p

o
where p = 1, 2. The resulting two clusters of channels are denoted by  { y p

kp
( n)} with

p = 1, 2 and where for each p, kp  runs over a subset of the total number of bands. (For
simplicity the subscript p will henceforth be dropped.)

Finally, based on the channel assignment a phase correction is introduced in each
channel, making the phase of the modified filter output p

k (n) at time n = p np
o equal

to the phase at the time instant n = n p
o in the original time scale. Denoting the phase

correction for each cluster by φp
k , the modified channel signal becomes

(9.58)

where and where p refers to the first or second cluster.
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Short-Time Processing. To process a waveform over successive frames, the filter
bank modification is first applied to the windowed segment zl(n )  = ω (n – lL) x(n)
where the frame length L is set to half the window length. The window ω(n) is chosen
such that ∑ l w(n – lL) = 1, i.e., the overlapping windows form an identity. The two
event time instants are saved and time-normalized with respect to the next frame. The
procedure is repeated for frame l + 1. However, if the most recent event from frame l
falls at least L/4 samples inside the current frame l + 1, then this event is designated
the first event of frame l + 122. With this condition, the second event time is found
via the maximum of the histogram of the channel event occurrence times on frame
l + 1 (excluding the previously chosen event time). Each channel is then assigned
to a time instant based on the two event times and the measured occurrence times
no (k). In addition, a frame is also allowed to have no events by setting a histogram bin
threshold below which a no-event condition is declared. In this case, channel phase
offsets are selected to make the channel phases continuous across frame boundaries,
i.e., the phase is allowed to “coast” from the previous frame.

Time-scale expansion can result in improved audibility of closely spaced compo-
nents for a variety of such synthetic signals, as well as for sequences of actual complex
acoustic signals of this kind (e.g., sums of rapidly damped sine waves) such as the
sounds from mechanical impacts (e.g. a closing stapler), from percussion transients
(e.g., tapping of a drum stick), and from biologics (e.g., dolphin clicks). An example
of time-scale expansion of a sequence of transients from a closing stapler is shown
in Figure 9.19, demonstrating the temporal and spectral fidelity in the time-scaled
reconstruction.

In performing time-scale modification, a goal is to preserve the spectral envelope as
well as the temporal envelope of the signal. Although for the signals demonstrated the
original spectrum was approximately preserved in the time-scaled signal, an observed
difference is the narrowing of resonant bandwidth, a change which is consistent with
stretching the temporal envelope. This form of spectral preservation, however, does not
always occur. In the case of a piano trill, for example, the closely-spaced events in time
are also characterized by closely spaced frequency components. Our subband approach
will approximately preserve the time-scaled temporal envelope of this complex signal,
but harmonic smearing, due to the short (2 ms) response of the filter bank, becomes
audible. A challenge remains in addressing this time-frequency resolution limitation.
Further description of this approach, it’s limitations, and ongoing work can be found
in [Quatieri et al., 1994b] which also describes a means of using the subband approach
in modifying a stochastic background component.

9.5 ADDITIVE DETERMINISTIC/STOCHASTIC MODEL

Sustained sounds such as speech vowels and steady musical tones from bowed strings
and winds, though nearly periodic, have an aharmonic component that is a subtle
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Figure 9.19 Time-scale expansion (x2) of a closing stapler using filter bank/overlap-
add; (a) original and time-expanded waveform; (b) spectrograms of part (a). (Reprinted
with permission from [Quatieri et al., 1995], © 1995, IEEE)

but essential part of the sound. This additive aharmonic component during sustained
portions is distinct from the “pure” aharmonic sounds from certain speech fricatives
and plosives, and musical attacks and percussive sounds. Sound analysis and synthesis
is often deficient with regard to the accurate representation of these additive aharmonic
components. Although the sine-wave model is applicable to speech and music signal
representation, the harmonic and aharmonic components are sometimes difficult to
distinguish and separate. One approach to separate these components, as in the previous
section, assumes that they fall in separate time-varying bands. Although the adaptive
harmonicity measure is effective in specifying this split-band cutoff frequency, it is
however overly simple when the harmonic and aharmonic components are additively
combined over the full band23. An alternative additive representation was developed
by Serra and Smith [Serra, 1989, Serra and Smith, 1989]. This approach referred to as
the “deterministic plus stochastic” sine-wave representation is the focus of this section.

9.5.1 Model

The deterministic component of the model consists of sinusoids with slowly-varying
amplitude and frequency, or in musical terms the “partials” of the sound24 . The
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stochastic component, sometimes referred to as the “residual,” is then defined as the
difference between the original and the deterministic part. In musical instruments this
residual generally comprises the energy produced by the excitation mechanism (e.g.,
the bow in a string instrument) that is not transformed by the resonating body into
stationary vibrations, plus any other energy component that is not sinusoidal in nature.
In speech the residual corresponds to the turbulence generated at the glottis or some
vocal tract constriction as well as plosive sounds. The sum of the two components
results in the sound.

The deterministic/stochastic model therefore can be expressed as

s( t ) = d ( t ) + e( t ) (9.59)

where d(t) and e(t) are the deterministic and stochastic components, respectively. The
deterministic component d(t) is of the form

where the phase is given by the integral of the instantaneous frequency ωl (t )

(9.60)

and where ω l ( t ) are not necessarily harmonic and correspond to sustained sinusoidal
components with slowly-varying amplitude and frequency trajectories. The determin-
istic component is therefore defined in the same way as in the baseline sinusoidal
model except that now the sine waves are restricted to be “stable” thus modeling only
the partials of the sound. In the baseline sinusoidal model, the spectral peaks need not
correspond to such stable long-term trajectories. A mechanism for determining these
stable sine components is described in the following section25 .

The stochastic component e(t) = s (t) – d (t) can be thought of as anything not
deterministic and is modeled as the output of a linear time-varying system h(t , ) with
a white-noise input u(t)

(9.61)

where when time invariant the filter h(t, ) reduces to h(t). This is a different approach
to modeling a stochastic component than taken in the baseline sine-wave model where
noise is represented as a sum of sine waves with random phase. In the frequency
domain, however, the noise being the output of a white-noise driven linear filter, can
be approximated by a Fourier transform with random phases and a smooth spectrum
of the underlying linear filter [Serra, 1989]. A possible problem with this stochastic
representation, as further discussed below, is that it is generated independently of the
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deterministic component and thus the two components may not “fuse” perceptually
[Hermes, 1991]. Furthermore, not all aharmonic signals are accurately modeled by
a stochastic signal; for example, sharp attacks in musical signals and plosives in
speech may be better represented by a sum of coherent sine waves or the output of
an impulse-driven linear system26 . Nevertheless, this simplification leads to a useful
representation for a variety of applications.

9.5.2 Analysis/Synthesis

The analysis/synthesis system which corresponds to the deterministic/stochastic model
is similar to the baseline sine-wave analysis/synthesis system. The primary differences
lie in the frequency matching stage for extraction of the deterministic component, in
the subtraction operation to obtain the residual (stochastic component), and in the
synthesis of the stochastic component.

Extraction of the deterministic component requires that frequency tracking take
place based on the peaks of the STFT magnitude. Although the matching algorithm
of section 3.3 can be used, this algorithm does not necessarily extract the “stable” sine
components. In order to obtain the partials of the sound, Serra and Smith [Serra, 1989]
developed a tracking algorithm based on prediction of tracks into the future, as well
as based on past tracks, over multiple frames. In this algorithm, “frequency guides”
(which is a generalization of the frequency matching window of section 3.3), advance
in time through spectral peaks looking for slowly-varying frequencies according to
constraint rules. When the signal is known to be harmonic, the tracker is assisted by
constraining each frequency guide to search for a specific harmonic number. A unique
feature of the algorithm is the generalization of the birth and death process by allowing
each track to enter a “sleep” state and then reappear as part of a single track. This
“peak continuation” algorithm is described in detail in [Serra, 1989]. The algorithm
helps prevent the artificial breaking up of tracks, to eliminate spurious peaks, and to
generate sustained sine-wave trajectories which is important in representing the time
evolution of true “partials”27 .

With matched frequencies from the peak continuation algorithm, the deterministic
component can be constructed using the linear amplitude and cubic phase interpolation
of section 3.4. The interpolators use the peak amplitudes from the peak continuation
algorithm and the measured phases at the matched frequencies. The residual compo-
nent can then be obtained by subtraction of the synthesized deterministic signal from
the measured signal. The method can be made flexible in defining the deterministic
component; that is, the analysis parameters can be set so that the deterministic com-
ponent comprises a desired number of partials. The resulting residual relies on how
strict a condition is imposed on selecting partials. In addition, the attack portion of
a signal is better preserved in the residual using the following subtraction algorithm
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[Serra, 1989]

(9.62)

which prevents the residual from having a larger amplitude than the original. The attack
in the residual is also improved by decreasing the frame interval since the sharpest
possible attack in the deterministic component is determined by these components
[Serra, 1989]; shortening of the window may also help but at the expense of frequency
resolution.

The residual is obtained then by subtracting the resulting deterministic component
from the measured signal. This subtraction yields an accurate residual only when the
original phase is preserved. Alternately it is possible to obtain a residual when the
phase of the original signal is not preserved. In this suboptimal approach, Serra derives
the deterministic component by ignoring the measured phase and integrating linear
frequency trajectories from matched frequencies derived from the peak continuation
algorithm. The reconstruction is similar to the “magnitude-only” synthesis of section
3.4. Disregarding phase 28 , however, implies that waveform subtraction of the two
signals is meaningless and therefore must be performed in the frequency domain using
the spectral magnitude.

The first step in obtaining the stochastic component is to compute the STFT mag-
nitude of the original, as well as of the deterministic component. The STFT’s are
computed with the same analysis window, FFT size, and frame interval. The STFT
magnitude of the residual is then given by

(9.63)

where X (n , ω) and D (n, ω) are the STFT of the original signal and deterministic
component, respectively. Attaching the measured phase 29 X (n, ω) to | E(n, ω) | and
applying an inverse STFT yields a short-time stochastic component for each frame.
The complete “magnitude-only” analysis/synthesis system is illustrated in Figure 9.20.

In either approach to computing the residual, i.e., with or without the measured
phase of the deterministic component, the residual is simplified by assuming it to be
stochastic, represented by the output of a time-varying linear system as in Equation
9.61. In order to obtain a functional form for this stochastic process, a smooth function,
| Ê (n , ω)|, is fit to the spectral magnitude of the residual, |E(n, ω)|, as for example with
linear predictive (all-pole) modeling or a line-segment approximation (SEEVOC [Paul,
1981]). A synthetic version of the process is then obtained by passing a white-noise
sequence into a time-varying linear filter with the smooth residual spectral envelope 30.

One frame-based implementation of this time-varying linear filtering is to filter
windowed blocks of white noise and overlap and add the outputs over consecutive
frames. A time-varying impulse response of a linear system can be associated with
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Figure 9.20 Block diagram of the deterministic plus stochastic system.

Ê (ω, m P) and is given by the inverse Fourier transform of Ê(ω; m P )1/2

(9.64)

which is a zero-phase response31 . The synthetic stochastic signal over the mth frame
is then given by

(9.65)

where u (n ), a white-noise input, is multiplied by the sliding analysis window with
a frame interval of P samples. Because the window w ( n )  and frame interval P are
designed so that ∑ m w(n – m P ) = 1. the overlapping sequences ê( n ; mP ) can be
summed to form the synthesized background

(9.66)
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9.5.3 Applications

When the residual is stationary, the underlying impulse response is fixed so that as m
becomes large, h (n ; m P) is approximately a time-invariant response h(n ). For large
n, therefore,

(9.67)

and thus the stochastic signal is approximately the output of a time-invariant linear
filter.

Separation of Sound Components. The decomposition system can be applied to a
wide range of sounds [Serra, 1989]. In the analysis of a guitar string, for example,
the deterministic portion includes all the stable modes of vibration of the string.
The residual includes the finger-noise, the attack portion of the sound, nonlinear
components of the string vibration, plus other “unstable” components of the sound
such as reverberation and tape hiss. In analyzing a flute sound, the residual is very
prominent. Its main component is the air produced by the performer that is not
transformed into periodic vibrations of the flute. Analysis of a piano tone illustrates
how much noise is (surprisingly) present in a normal piano sound. The residual is a
very important component of the sound and includes the noise that the fingers make
when playing and the transient attack produced by the piano action. An example
of the decomposition of the attack portion of a piano tone is illustrated in Figure
9.21. The deterministic/stochastic analysis/synthesis system was also applied to a very
rasphy voice. In this case, only a few stable harmonics were present. High-frequency
harmonics are nearly completely masked by the breath noise; the deterministic analysis
is unable to find them and thus are transferred to the residual. In this case, some form
of harmonic continuation of the deterministic component from high frequencies to
low frequencies might aid in extracting the high-frequency deterministic component

window w' ( n ) and frame interval P' are selected such that Σ m w' ( n – m P '
and the factor P'/

(per frame) that vary slower or faster in time.

[Cheng et al., 1994].

Signal Modification. The decomposition approach has been applied successfully
to speech and music modification [Serra, 1989] where modification is performed
differently on the two deterministic/stochastic components. Consider, for example,
time-scale modification. With the deterministic component, the modification is per-
formed as with the baseline system; using Equation (9.27), sustained (i.e., “steady”)
sine waves are compressed or stretched. For the aharmonic component, the white noise
input lingers over longer or shorter time intervals and is matched to impulse responses

In one approach to implement synthesis of the modified stochastic component, the
window length and frame interval are modified according to the rate change. A new

) = 1,
P equals the desired rate change factor ρ, which is assumed rational.
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Figure 9.21 Decomposition example: (a) Attack of a piano tone; (b) Deterministic
component; (c) Residual (Reprinted from [Serra, 1989], ©1989, with permission of the
author)

The resulting time-scaled waveform is

(9.68)

where e' (n ) is the white-noise input generated on the new time scale. As in the
baseline system, when the response is stationary, for large n the synthesized residual
approaches the output of a fixed linear filter ( n) ≈ h ( n) * e '(n) where h(n) is the
time-invariant impulse response.

The advantage of separating out the additive stochastic component is that the char-
acter of noise-like sounds is not modified with the time scale; in particular, the noise
may be stretched without the “tonality” that occurs in very large stretching of sine
waves. On the other hand, the timbre of transient aharmonic sounds may be altered. In
addition, component separation may suffer from a lack of “fusion,” unlike sine-wave
modification which models all components similarly. One approach to improve fusion
of the two components is to exploit the property that for many sounds the stochastic
component is in “synchrony” with the deterministic component. In speech, for exam-
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ple, the amplitude of the noise component is known to be modulated by the glottal
air flow. Improved fusion can thus be obtained by temporal shaping of the stochastic
component with the temporal envelope of the glottal air flow [Laroche et al., 1993a].
This is further discussed in chapter 7.

9.6 SIGNAL SEPARATION USING A TWO-VOICE MODEL

This section describes a sinusoidal-based approach to extracting two combined voices32,
as occurs with two simultaneous speakers or a musical duet. The goal is to separate and
resynthesize the signal components while retaining as much of the original material as
possible. In music analysis it may be desired, for example, to extract the violin part
from a monaural recording of a violin and cello duet; while in speech enhancement, a
low-level speaker may be sought in the presence of a loud interfering talker.

9.6.1 Formulation of the Separation Problem

The sinusoidal speech model for the single-voice case is easily generalized to the two-
voice case. A waveform generated by two simultaneous voices can be represented by
a sum of two sets of sine waves each with time-varying amplitudes, frequencies, and
phases

where

(9.69)

where the sequences, xa (n) and xb(n ) denote voice A and voice B, respectively. The
amplitudes and phases associated with voice A are denoted by al ( n ) and θ a,l ( n ) and the
frequencies are given by ωa,l (n) = θa,l (n ). A similar parameter set is associated with
voice B. If the excitation is periodic, a two-voice harmonic model can be used where
the frequencies associated with voice A and voice B are multiples of two underlying
fundamental frequencies, ω a( n ) and ωb (n ), respectively. In the steady-state case
where the excitation and system characteristics are assumed fixed over the analysis
time interval, the model of Equation (9.69) is expressed as

where
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Figure 9.22 Two-voice,separation using sine-wave analysis/synthesis and peak-pick-
ing. (Reprinted with permission from [Quatieri and Danisewicz, 1990], © 1990, IEEE)

(9.70)

which is a useful model on which to base sine-wave analysis.
Using the model Equations (9.69) and (9.70), it is possible, as in the single voice

case, to reconstruct the two-voice waveform with the baseline analysis-synthesis system
illustrated in Figure 9.5. In order to obtain an accurate representation of the waveform,
the number of sine waves in the underlying model is chosen to account for the presence
of two voices. The presence of two voices also requires that the analysis window length
be chosen to resolve frequencies more closely spaced than in the single-voice case. Due
to the requirement of time resolution, however, the analysis window length is chosen
to give adequate frequency resolution for the lower-pitch voice. The reconstruction,
nevertheless, yields synthetic speech that is again nearly indistinguishable from the
original two-voice waveform [McAulay and Quatieri, 1986b].

The capability to recover the summed waveform via the analysis-synthesis system
of Figure 9.5 suggests the scheme in Figure 9.22 for recovering a desired waveform
xb (n ) which is of lower intensity than an interfering voice xa (n ). The largest peaks of
the summed spectra (the number of peaks is equal to or less than the number required
to represent a single waveform) are chosen and are used to reconstruct the larger of
the two waveforms. This waveform estimate is then subtracted from the combined
waveform to form an estimate of the lower passage. The largest peaks of the summed
spectra, however, do not necessarily represent the peaks of the spectra of the larger
waveform; i.e., they will in general contain information about both passages. The
parameters which form the basis for the reconstruction of the summed waveforms do
not necessarily form the basis for reconstructing the individual speech waveforms.
A problem with this technique, described below, is that closely spaced frequencies
associated with different voices may be seen as one peak by the peak-picking process.

Alternatively, the frequency sets might be obtained by estimating a fundamental
frequency for each voice and then sampling at these locations. This method is akin to
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comb filtering which extracts a waveform by processing the sum with a filter derived by
placing its resonances about multiples of an assumed fundamental frequency [Shields,
1970]. Although these methods use more accurate frequency estimates than from
peak-picking the summed STFTM, the accuracy of the corresponding amplitudes and
phases is limited, as before, by the tendency of frequencies of the two waveforms to
often be closely spaced.

Therefore, although the summed waveform x ( n ) = x a (n ) + x b ( n) is well rep-
resented by peaks in the STFT of x(n), the sine-wave amplitudes and phases of the
individual waveforms are not easily extracted from these values. To look at this prob-
lem more closely, let s p(n ) represent a windowed speech segment extracted from a
time-shifted version of the sum of two sequences

(9.71)

where the analysis window w(n) is non zero over he interval – (N – 1)/2 < n <
(N – 1)/2. With the model Equation (9.70), the Fourier transform of sp( n ), denoted
by S p( w), for ω > 0, is given by the of scaled and shifted versions of the transform of
the analysis window W(ω)

(9.72)

where W (ω) denotes the Fourier transform of the time-domain window w (n) and
where for simplicity the time shift of the analysis frame in Equation (9.72) is assumed
zero.

The success of extracting sine-wave parameters by peak-picking depends on the
properties of the Fourier transform of the analysis window W( ω). The effective band-
width of W (ω is inversely proportional to N, the duration of the analysis window.)
Longer window lengths give rise to narrower spectral main lobes. If the spacing be-
tween the shifted versions of W(ω) in Equation (9.72) is such that the main lobes do
not overlap, a reasonable strategy for extracting the model frequencies and performing
the separation is the method of peak-picking. For the case of summed speech wave-
forms, however, this constraint is not often met since the analysis window cannot be
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made arbitrarily large. Even when the frequencies are known a priori when the fre-
quencies are closely spaced, accurate estimates of the sine-wave amplitude and phases
are generally not obtained.

Figure 9.23 illustrates an example where the frequencies are spaced closely enough
to prevent accurate separation by the above methods. Figures 9.23a and 9.23b depict the
STFTM of two steady state vowels over a 25 msec interval. The vowels have roughly
equal intensity and belong to two voices with dissimilar fundamental frequencies. The
STFT magnitude and phase of the summed waveforms appears in Figure 9.23c. A
subset of the main lobes of the Fourier transform of the analysis windows overlap
and add such that they merge to form a single composite lobe (Since the addition is
complex, lobes may destructively interfere as well.). When the peak-picking strategy
is applied to the STFTM of the summed speech waveform, the process may allot a
single frequency to represent these composite structures. For this reason, the harmonic
frequency sampling strategy will also have difficulty in recovering the individual sine-
wave amplitude and phase parameters.

One approach to extracting the underlying amplitude and phase of the STFT of
x a( n) and x b (n ) is to detect the presence of overlap and then use the structure of
the analysis window in the frequency domain to help in the separation [Parsons and
Weiss, 1975]. Figure 9.23 shows that “features” in the STFTM of x(n ) are not,
however, reliable in detecting the presence of a a single composite lobe formed by
two overlapping lobes. Unique characteristics in the phase of the STFT (depicted by
dotted lines in the Figure 9.23) of overlapping lobes are also difficult to determine. For
example, lobe 2 in the summed spectra is characterized by both magnitude symmetry
and a flat phase characteristic which characterizes either voice A or voice B. Thus any
technique for separation relying on such features will be prone to error.

The discussion of the previous section suggests that the linear combination of the
shifted and scaled Fourier transforms of the analysis window in Equation (9.72) must
be explicitly accounted for in achieving separation. The (complex) scale factor applied
to each such transform corresponds to the desired sine-wave amplitude and phase, and
the location of each transform is the desired sine-wave frequency. Parameter estimation
is difficult, however, due to the nonlinear dependence of the sine-wave representation
on phase and frequency.

An alternate approach to separation first assumes a priori frequency knowledge,
and performs a least squares fit to the summed waveform with respect to the unknown
sine-wave parameters which can be written as

minimize (9.73)

where the minimization takes place with respect to the unknown sine-wave amplitudes,
frequencies, and phases of Equation (9.70) and where w(n ) is the analysis window. In
the next section, the solution to Equation (9.73) is shown to be equivalent to solving for
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Figure 9.23 Properties of the STFT of x( n ) = x a ( n )  + x b( n ): (a) STFT magnitude
and phase of xa ( n ); (b) STFT magnitude and phase of xb (n); (c) STFT magnitude and
phase of  x a (n )  + x b( n ).

the sine-wave amplitudes and phases via the linear relationships suggested by Equation
(9.72). In section 6.4, this estimation problem will be simplified by constraining the
frequencies to be harmonically related.

9.6.2 Analysis and Separation

In this section, the nonlinear problem of forming a least squares solution for the
sine-wave amplitudes, phases, and frequencies is transformed into a linear problem.
This is accomplished by assuming the sine-wave frequencies are known apriori, and
by solving for the real and imaginary components of the quadrature representation
of the sine waves, rather than solving for the sine-wave amplitudes and phases. The
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Figure 9.24 Least-squared error solution for two sine waves. (Reprinted with permis-
sion from [Quatieri and Danisewicz, 1990], © 1990, IEEE)

previous section suggests that these parameters can be obtained by exploiting the linear
dependence of the STFT on scaled and shifted versions of the Fourier transform of
the analysis window. This section begins with a solution based on this observation,
and then show that the parameters derived by this approach represent the sine-wave
parameters chosen by forming a least squares fit to the summed speech waveforms.

Figure 9.24 illustrates how the main lobes of two shifted versions of the Fourier
transform of the analysis window, W( ω), typically overlap when they are centered
at two closely spaced frequencies ω1 and ω2, corresponding to voice A and voice B,
respectively, each consisting of a single frequency33 . Fig. 9.24 suggests a strategy for
separation by solving the following linear equations

(9.74)

where S a(ω1) and S b(ω2 ) denote the samples of the STFTs at known frequencies
ω1 and ω and ω is the distance in frequency between them. The amplitudes and∆2

phases of Sa (ω1 ) and S b(ω 2) represent the unknown parameters of the two underlying
sine waves. The STFT of the sum is denoted by S(ω). The Fourier transform of the
analysis window is denoted by W(ω) with normalization W (0) = 1. Since the window
transform is real, the matrix in the left side of Equation (9.74) is real; however, the
STFT of the waveform is complex, so that the complex solution to Equation (9.74) can
be obtained by solving separately the real and imaginary parts of the matrix equation.
Equation (9.72) is not exact since the contribution from the Fourier transforms of the
analysis window centered at –ω1 and –ω2 has not been included (In practice, the signal
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to be transformed is real and so both positive and negative frequency contributions will
exist.). For simplicity, this contribution is assumed negligible.

Since from Equation (9.72), the STFT of a sum of sinusoids is a sum of shifted and
scaled versions of W (ω), the two-lobe case of Figure 9.24 can be simply extended to the
case where there are L overlapping lobes. Specifically, a relation can be written which
reflects the linear dependence of the STFT on all L lobes [Quatieri and Danisewicz,
1990].

where,

and where the sinusoidal frequency vector ω is given by

(9.75)

(9.76)

consisting of frequencies from both voice A and voice B.
The vectors α and β consist of estimates of the unknown parameters of Equation

(9.75) but in quadrature form [Danisewicz, 1987]

(9.77)

with α φ^l = âl cos( l ) and β l = – â l  sin (φl ) with L = L a  + Lb. Equation (9.77) can
also be expressed in terms of polar coordinates

^

For voice separation, Equation (9.77) can be partitioned since the partitioning of the
frequency vector ω is assumed known a priori

(9.78)
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and thus solution to the matrix Equation (9.75) yields the sine-wave amplitudes and
phases of the two underlying speech components.

The preceding analysis views the problem of solving for the sine-wave amplitudes
and phases in the frequency domain. Alternatively, the problem can be viewed in the
time domain. It has been shown that [Quatieri and Danisewicz, 1990], for suitable
window lengths, the vectors α and β that satisfy Equation (9.75) also approximate the
vectors that minimize the weighted mean square distance between the speech frame
and the steady state sinusoidal model for summed vocalic speech with the sinusoidal
frequency vector ω. Specifically, the following minimization is performed with respect
to α and β

minimize (9.79)

where the form of (n ) is given in Equation (9.78). The error weighting in the LSE
problem Equation (9.78) is the analysis window that is used to obtain the STFT.
Thus the solution in Equation (9.77) can be arrived at by two apparently different
approaches; in the frequency domain, by investigating the linear dependence of the
STFT on scaled and shifted versions of the Fourier transform of the analysis window,
or, in the time domain, by the waveform minimization given in Equation (9.78).
These two interpretations have analogies in the one-voice case where least-squares
minimization in the time domain leads to the solution, developed in section 3, which
chooses sine-wave amplitudes and phases at peaks in the STFT.

Figure 9.25 gives an example of the STFTM of two summed frames of vocalic
speech and Figure 9.26 shows the corresponding H matrix. Although the H matrix
has values that occur off of the main diagonal, these values fall off rapidly as the
distance from the main diagonal increases. This property reflects the condition that
overlap among the main lobes of scaled and shifted versions of the Fourier transform
of the window occurs primarily between neighboring lobes of different voices (The
analysis window is assumed long enough so that main lobes of a single voice do not
overlap.). Occasionally, however, the H matrix will have a broader diagonal arising
when the voices are low in pitch and the window lengths are short in duration.

9.6.3 The Ambiguity Problem

As frequencies of voice A come arbitrarily close to those of voice B, the condition-
ing of the H matrix deteriorates to where the matrix becomes singular [Quatieri and
Danisewicz, 1990]. For these cases, solving the LSE problem does not permit sep-
aration. In detecting these cases, the spacing between neighboring frequencies is
monitored. A single sinusoid is used to represent two sinusoids whose frequencies
are closely spaced, e.g., less than 25 Hz apart. Close frequencies which satisfy this
criterion are then combined as single entries in the LSE Equations (9.75) to (9.77).
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INDEX 1 2 3 4 5 6 7 8 9 10

FREQUENCY 130 170 260 340 390 510 520 650 680 850 Hz

(d)

Figure 9.25 Demonstration of two-lobe overlap: (a) STFT magnitude of xa (n ); (b)
STFT magnitude xb (n ); (c) STFT magnitude xa(n ) + x b( n ); (d) Sine-wave frequencies.
(Reprinted with permission from [Quatieri and Danisewicz, 1990], © 1990, IEEE)

Figure 9.27 illustrates such an example where a speaker B is 20 db below a second
speaker A 34.  One lobe is missing in the reconstructed STFTM of each speaker. The
monitoring procedure detected the presence of two frequencies which are close enough
to cause ill-conditioning of the H matrix. These frequencies, merged as one in the
LSE solution, were not used in the reconstruction, One strategy for resolving these
ambiguities is to interpolate over the ill-conditioned regions from reliable parameter
estimates in surrounding frames35 [Quatieri and Danisewicz, 1990]. This interpolation
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Figure 9.26 H matrix for the example in Figure 9.25 (with values quantized to two
significant digits). (Reprinted with permission from [Quatieri and Danisewicz, 1990],

© 1990, IEEE)

used with the solution of Equation (9.75), and together with an estimate of the pitch
of the two voices (see below), has resulted in good separation of numerous all-voiced
summed voices of about the same level [Quatieri and Danisewicz, 1990]; with different
levels, either measured frequencies or apriori pitch is required.

Working in the music context, Maher proposed an alternate “multistrategy” ap-
proach to resolving the ambiguity problem [Maher, 1989, Maher, 1990]. The two
fundamental frequencies of a duet are first estimated and used to generate the har-
monic series of the two voices. The minimum spacing between adjacent partials is
calculated. When a partial is at least 50 Hz away from every other partial, the com-
ponent is considered “clean” and no “collision repair” occurs. A Kaiser window with
a 6 dB bandwidth of 40 Hz is used. The criterion is changed appropriately if the
window size is changed. If two partials are separated by less than 50 Hz but more
than 25 Hz, the above least-squared error solution Equation (9.75) is applied. The
25 Hz condition assures a nonsingular solution. If two partials are separated by less
than 25 Hz, Maher has proposed a number of possibilities for doing the separation.
The first is to analyze the two closely-spaced frequencies in terms of a beating pattern,
the amplitude modulation frequency being the frequency difference. However, if the
collision is less than two or three beat periods, ( < 3/|ω1 – ω 2 |  ), estimates of the
beating parameters are not reliable. In this case, Maher interpolates in frequency,
rather than in time, over the ill-conditioned region using reliable parameter estimates
from neighboring harmonics. This approach, together with pitch estimation, has been
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Figure 9.27 Demonstration of ill conditioning of the H matrix: (a) Speaker A (upper)
compared to estimate of speaker A (lower); (b) Speaker B (upper) compared to estimate
of speaker B (lower). (Reprinted with permission from [Quatieri and Danisewicz, 1990],

© 1990, IEEE)

applied to separation of a number of musical duets including clarinet with bassoon,
and tuba with trumpet [Maher, 1989, Maher, 1990].

9.6.4 Pitch and Voicing Estimation

It was noted above that reliable pitch estimation is necessary for two-voice separation
using the solution of Equation (9.75). Under a harmonic assumption, since the function
in Equation (9.73) is nonlinear in the fundamental frequencies, a simple closed-form
solution for pitch based on a least squares approach does not exist. Under certain
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conditions, however, by exploiting pitch continuity the two fundamental frequencies
can be tracked in time by using estimates on each analysis frame as initial estimates
in a refinement procedure for the next frame [Quatieri and Danisewicz, 1990]. In
particular, if the analysis frames are closely spaced, then pitch changes slowly across
two consecutive frames k and k + 1. The pitch estimate obtained on frame k can then
be used as the initial guess for estimating the pitch on frame k + 1. A grid search
can be used as a means by which the tracking procedure be initialized. The iterative
method of steepest descent [Widrow and Stearns, 1985] is then used for updating the

updates an initial pitch pair estimate by adding to the estimate a scaled error gradient
with respect to the unknown pitch pair. The error signal for the update is the weighted
least mean squared difference between the reconstructed waveform and the summed
speech waveform. For a given pitch pair, the reconstructed waveform is obtained by
using the amplitudes and phases that result from the solution to the LSE problem, and
thus the error surface over which minimization occurs is itself a minimum for each
pitch pair.

Although this pitch extraction algorithm has been applied successfully on a variety
of two-voiced speech passages, the method suffers from a number of limitations
including susceptibility to matrix conditioning problems and lapses from stationarity
where the periodic model breaks down. Other sine-wave based approaches to the
two-voice pitch estimation have been explored [Maher, 1989, Naylor and Boll, 1987].
Naylor and Porter [Naylor and Boll, 1987], for example, adapted an autoregressive
spectral estimation algorithm by exploiting narrow spectral peaks in the estimate. A
clustering algorithm was developed to group spectral peaks which are harmonically
related to candidate pitch values. In spite of the many attempts, however, the two-pitch
estimation problem is still largely unsolved with closely-spaced harmonics or large
intensity differences in the two voices. Finally there is the problem of separation when
the voices take on the many forms of aharmonicity described in the previous sections.
In these cases, there is no known adequate solution to the two-voice separation problem.

9.7 FM SYNTHESIS

FM synthesis, first introduced by Chowning [Chowning, 1973] in a music synthesis
context, is a simple and elegant approach to efficiently represent a complex sound.
Although a diversion from the remainder of this chapter, FM synthesis is essential
in any treatment of sine-wave representations of audio signals. With this technique
it is possible to generate a sum of sine waves by FM modulating a single sine wave.
Although not necessarily a physical model of sound production, it provides a perceptual
model for a large class. Indeed, the perceptual accuracy of FM synthesis was sufficient
to provide the basis of many electronic music synthesizers for almost two decades.

pitch estimate on each frame. On each analysis frame, the method of steepest descent
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9.7.1 Principles

Basic Model. Chowning’s FM model [Chowning, 1973] is given by

(9.80)

where ωc  and ωm  are the carrier and modulation frequencies, respectively, A is the
amplitude, and I is the index of modulation. The instantaneous frequency is given by
the phase derivative

(9.81)

The maximum instantaneous frequency deviation ∆ωm a x  is therefore given by ∆ ωm a x =
I ωm . When the modulation index I is nonzero, side frequencies occur above and below
the carrier ωc , and the number of side frequencies increases with increasing I.

These relations are expressed through the following trigonometric identity

sin( θ + a sin( b)) = J0 (a) sin(θ)

(9.82)

where Jk (a ) is the kth Bessel function and where θ = ωcn , b = ωm n, and a = I .
Equation (9.82) shows that the side frequencies occur a distance kωm  to the right
and left of the carrier and that the amplitudes of the carrier and side frequencies are
determined by the Bessel functions whose argument is the modulation index I. As
the index of the side frequency increases, the modulation index must also increase
for it to have significant amplitude, leading to a total bandwidth approximately equal
to twice the sum of the maximum frequency deviation and the modulating frequency
[Chowning, 1973]

(9.83)

One way to achieve a harmonic series is to set θ = b. Then the trigonometric
identity becomes

(9.84)

so that with θ = ωc n = ωm n , a harmonic series results where the amplitudes are sums
of Bessel functions. More generally, when the ratio of carrier-to-modulation frequency
is rational then FM synthesis results in harmonic spectra.



AUDIO SIGNAL PROCESSING BASED ON SINUSOIDAL ANALYSIS/SYNTHESIS 405

Figure 9.28 FM Synthesis with different carrier and modulation frequencies:
(a)  ωc = 1000, ωm = 200, and I = 1.0; (b) ωc  = 2000, ωm  = 200, and I = 1.0; (c)
ωc = 2000,  ωm = 100, and I = 1.0; (d) ωc = 2000, ωm = 200, and I = 1.5; (e)
ωc = 100, ωm = 200, and I = 1.5; (f) ωc = 200, ωm = 500/ , and I = 1.5.

Examples of rational carrier/modulation ratios are shown in Figures 9.28 (a-d) for a
variety of carrier and modulation frequencies, and modulation indices. The figure also
illustrates how the position of the carrier, the bandwidth, and “fundamental frequency”
(i.e., the difference between the carrier and modulation frequency) of the harmonic
series can be manipulated. An interesting effect seen in Equation (9.82) is that when the
carrier frequency is low, e.g.,100Hz, some side frequencies to the left of the carrier are
negative in value, but become reflected back as positive frequencies with a phase shift
of π (i.e., sin (– a ) = sin(a + π)). For harmonic spectra, these reflected frequencies
add to the positive frequencies with the result of potential greater complexity, but still
preserving the harmonic nature of the spectrum. This effect is shown in Figure 9.28e.

The previous examples illustrate the special case of harmonic spectra. Aharmonic
spectra result when the ratio of the carrier to modulation is irrational; e.g., ωc /ωm =

. There is no “fundamental frequency” for the spectra, with aharmonic character
arising from reflected side frequencies that do not fall at positive frequency locations
(see Figure 9.28f).

Generalizations. An important generalization of the basic FM model is the intro-
duction of dynamics. From Equation (9.83) an interesting property of FM synthesis
is that the bandwidth of the spectrum increases with increasing modulation index I.
Therefore, making the modulation index a function of time will allow spectra with
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Figure 9.29 Spectral dynamics of FM synthesis with linearly changing modulation
index I (n ). (Reprinted with permission from [Moorer, 1977], © 1977, IEEE)

dynamically changing bandwidth. As I increases, more energy goes to the sidelobes
and the tone becomes less “tonal” and more “tinny” [Moorer, 1977]. By controlling I
dynamically, a time-varying spectra and a resulting richness is introduced to the sound
(see Figure 9.29). The resulting generalization is expressed as

(9.85)

where a time-varying amplitude envelope has also been introduced. Since the ampli-
tude of a particular spectral component depends on Bessel functions, the amplitude
change of components will depend on the specific rate of change of these functions.
Further complexity is introduced by reflected side components that complicate the
time-varying spectral shape.

Even more interesting sounds can be made by more complex usage of the FM
formulas. With frequency modulation one might select more than one modulating
waveform, or perhaps different waveforms than sinusoids. In addition, a complex
amplitude modulation can be imposed. For example, one possibility is revealed in the
trigonometric relation

(9.86)

where the sine-wave amplitudes are monotonic and a function the modulation index
a = I. With appropriate selection of parameters this relation can yield spectra that
are more “full” in comparison to Equation (9.82) which may yield a more “sparse”
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Figure 9.30 Comparison of Equation (9.82) and (9.86) for parameter settings ωc =
2000, ωm = 200, and I = 5.0: (a) Equation (9.86); (b) Equation (9.82). (Both
waveforms and spectra are illustrated.)

spectrum (i.e., some partials may be low in amplitude). Figure 9.30 illustrates this
difference for the same parameter settings in Equation (9.82) and (9.86).

A generalization of Equation (9.86) is given by

(9.87)

which has a quite complicated trigonometric expression. In dynamic form this expres-
sion allows movement from sparse to full spectra, as well as harmonic and aharmonic
spectra with possible mixtures of these two spectral classes [Moorer, 1977]. The phase
angle allows another degree of freedom by influencing the manner in which reflected
sidebands are combined.

9.7.2 Representation of Musical Sound

In Chowning’s original work [Chowning, 1973], he explored three different classes of
musical signals: brass tones, woodwind tones, and percussive-like sounds. An impor-
tant characteristic of these musical sounds, in addition to their spectral composition, is
the amplitude envelope of the sound and its relation to its instantaneous bandwidth.

In brass tones, all harmonics are generally present, the higher harmonics tend to
increase with increasing intensity, and the rise and fall times for a typical attack and
release is rapid with possible overshoot of the steady state. In creating this sound,
therefore, the index of modulation I (n) (hence, indirectly the bandwidth) changes in
direct proportion to the amplitude envelope. To create a harmonic series ωc is set equal
to ωm as in Equation (9.84). Figure 9.31 illustrates an example of a fast attack and
decay envelope A(n ) (and hence rapidly-varying I (n )) for a trumpet-like sound which
begins as nearly a pure sine wave, quickly evolves into a more complex spectrum, and
ends with a narrow bandwidth [Moorer, 1977].



408 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

Figure 9.31 Spectral dynamics of trumpet-like sound using FM synthesis. (Reprinted
with permission from [Moorer, 1977], © 1977, IEEE)

In woodwinds, on the other hand, odd harmonics can be present and the bandwidth
may decrease as the attack increases, higher frequencies first becoming prominent.
Odd harmonics can be created by making the modulation frequency exceed the carrier.
For example, the frequency modulation ωm = 2ωc gives only odd harmonics

(9.88)

This signal representation with only odd harmonics is an approximate model for a
clarinet; as with a uniform tube closed at one end and open at the other. In order to
capture the time-varying envelope and bandwidth, one applies a A(n ) with a fast attack
and slow release, and also makes the modulation index I(n) inversely proportional to
this envelope, thus emulating the decreasing bandwidth as a function of time.

In percussive sounds, such as a bell, gong, drum and other nonperiodic sounds,
spectral components are typically aharmonic and can be simulated by forming an
irrational relation between ωc  and ωm (e.g., ωm = ωc). In addition, the envelope
is characterized by a sharp (almost instantaneous) attack and rapid decay, and the
bandwidth moves from wide to narrow. Bell-like sounds, for example, can be made
by making the modulation index proportional to an amplitude envelope which has
exponential decay. For a drum-like sound, the envelope decay is even more rapid than
the bell, and also has a quick overshoot giving a reduced initial bandwidth, followed
by a widening and then narrowing of the bandwidth.
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9.7.3 Parameter Estimation

It has been assumed that AM and FM control functions can be selected, based on
experience and musical knowledge, to create a variety of instrumental-like sounds
with a specific timbre. Nevertheless, a more formal approach is desired in the AM-
FM analysis and synthesis. Justice [Justice, 1979] addressed the problem of finding
an analysis technique which can yield the parameters of a given FM signal; he also
investigated the use of the FM synthesis model in representing a signal which consists
of a sum of sine waves.

In exploring the approach of Justice, consider first Chowning’s basic FM model

(9.89)

where for convenience the cosine has replaced the sine in Equation (9.80), and suppose
that the signal s(n) is generated by this FM process. The first step is to write s(n) in
analytic form as

(9.90)

where (n ) is the Hilbert transform of s(n). In polar form Equation (9.90) is written
as

(9.91a)

with φ( n) given as
(9.91b)

The goal is to determine the three model parameters ωc , I, and ωm.
Justice proposed to first extract the linear phase term ωcn by fitting a least-squares

straight line through φ(n ). The estimate c n can then be subtracted from φ(n ) to
obtain an estimate of the modulating function

(9.92)

This technique can be thought of as the time-domain dual of sine-wave-based onset
estimation of section 7 since the estimated slope is the carrier frequency which rep-
resents the frequency around which the spectrum of s(n) is situated. In onset-time
estimation, a straight line whose slope corresponds to the onset time of the system
response is fit to the measured sine-wave phases in frequency [McAulay and Quatieri,
1986a].

The analytic signal representation of sm (n) is next constructed to obtain a signal
of the form m (n ) = a1 (n) exp[ jφ1 (n)] from which an estimate of I and also ωm n
by fitting a straight line to φ1 (n ) is obtained. If the original signal does not follow
the assumed FM model then a phase residual will result from the least-squared error
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process. In that case the modulator is itself modeled as modulated and the “nested”
least-squared error approach is repeated.

This method when activated beyond the first nested modulator assumes a more
general class of nested modulators. For example, a simple modulated modulator is
given by

(9.93a)

and from the trigonometric identity in Equation (9.82)

(9.93b)

Further analysis of this representation is quite complex, but it can be shown to encom-
pass a large class of signals36.

In addition to FM signals with nested modulators, Justice also considered a class
of signals modeled by a harmonic sum of sine waves with a slowly varying amplitude,
typical of many speech and music sounds

(9.94)

This signal can be put in analytic form which can be expressed approximately as37

(9.95a)

with

(9.95b)

and
(9.95c)

The envelope e(n ) of the resulting signal in general is not equal to the original envelope
a( n ) but will “follow” a(n ) due to the periodicity of the second term of e(n ) in Equation
(9.95). Now at this point we could assume a model for the phase φ(n ) in the form of a
nested modulator with a resulting phase residual. An alternative, as argued by Justice
[Justice, 1979], is to note that φ(n)  is a periodic function and express it as a Fourier
series expansion; i.e.,

(9.96)

where the parameters of the modulator are given by  ƒk , thus providing a representation
for FM synthesis.
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9.7.4 Extensions

Although not corresponding necessarily to physical reality, the sound perception of
FM synthesis can be quite realistic. There are, however, limitations of the approach.
In brass and woodwind instruments, often a beating (AM) on a particular harmonic
is observed. In attempting to capture this effect in the trumpet, for example, a small
constant is added to the modulating frequency [Chowning, 1973]. If for example .5Hz
is added, then reflected lower side frequencies do not fall on positive harmonics and so
the resulting frequencies, which are closely spaced to the positive harmonics, produce
beating. Although beating can be emulated through this method, there is little control
over the precise beating patterns.

More generally, FM synthesis is said to not completely capture musical sound.
Some of the unnatural character of FM synthesis may be attributed to the lack of
vibrato 38. Although this may capture tremolo to some extent, harmonic vibrato is not
necessarily captured, a problem that remains unsolved in the context of FM synthesis.
Maher and Beauchamp [Maher and Beauchamp, 1990] has suggested that since sine-
wave analysis/synthesis [McAulay and Quatieri, 1986b] allows control over AM/FM
on each harmonic (it can be taken in and out), the sine-wave representation may give a
handle on where the FM synthesis is failing. For example, one can modify sine-wave
synthesis to emulate the signal constructed from FM synthesis, particularly during
sustained sounds where FM synthesis gives an unnaturally constant behavior of the
synthesized tones. The importance of vibrato in musical sound construction by FM
synthesis might then be determined. Another approach to improve FM synthesis may
lie in the FM synthesis models proposed by Justice that offer more complexity than
Chowning’s original FM model.

9.8 CONCLUSIONS

A sine-wave model for an arbitrary signal class resulted in sine-wave analysis/synthesis
applicable to a variety of problems in speech and music sound processing, including
signal modification, separation, and interpolation. Tailoring the sine-wave represen-
tation, however, to specific signal classes can improve performance. A source/filter
phase model for quasi-periodic signals led to a means to preserve sine-wave phase
coherence through a pitch onset model. As a consequence, it was shown that phase
coherence could also be introduced into the phase vocoder, an early form of sine-wave
analysis/synthesis, to maintain the temporal envelope of certain transformed signals.
The sine-wave analysis/synthesis was also tailored to signals with additive harmonic
and aharmonic components by introducing a deterministic/stochastic model. Finally, a
particular compact representation of a sum of sine waves, FM synthesis, was reviewed
in the context of music analysis/synthesis. Although describing the many successes as
well as limitations of sine-wave analysis/synthesis, this chapter, being of finite length,
was not able to cover all extensions, refinements, and applications of the approach; nor
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was it able to adequately address a variety of unsolved problems. A natural extension
of the models of section 4 and 5, for example, is to introduce phase coherence in
the framework of the deterministic/stochastic model, thus preserving waveform shape
during quasi-periodic segments, while keeping the noise-like quality of the stochastic
component; an approach to this integration will be given in chapter 7.

One of the more challenging unsolved problems is the representation of transient
events, such as attacks in musical percussive sounds and plosives in speech, which
are neither quasi-periodic nor random. The residual which results from the deter-
ministic/stochastic model generally contains everything which is not “deterministic,”
i.e., everything that is not sine-wave-like. Treating this residual as stochastic when it
contains transient events, however, can alter the timbre of the sound, as for example in
time-scale expansion. A possible approach to improve the quality of such transformed
sounds is to introduce a second layer of decomposition where transient events are
separated and transformed with appropriate phase coherence as developed in section
4.4. One recent method performs a wavelet analysis on the residual to estimate and
remove transients in the signal [Hamdy et al., 1996]; the remainder is a broadband
noise-like component.

Yet another unsolved problem is the separation of two voices that contain closely
spaced harmonics or overlapping harmonic and aharmonic components. The time-
varying nature of sine-wave parameters, as well as the synchrony of movement of
these parameters within a voice [Bregman, 1990], may provide the key to solving this
more complex separation problem. Section 6.3 revealed, for example, the limitation of
assuming constant sine-wave amplitude and frequency in analysis and as a consequence
proposed a generalization of Equation (9.75) based on linear sine-wave amplitude and
frequency trajectories as a means to aid separation of sine waves with closely-spaced
frequencies.

These and other unsolved problems often reflect the inherent tradeoff of time-
frequency resolution in sine-wave analysis. Sine-wave analysis is therefore likely to
benefit from multiresolution analysis/synthesis. For example, phase manipulations
used in stretching low-frequency sine waves should perhaps use longer (in time)
subband filters, as well as longer analysis windows and frame intervals, than used for
high frequency events, since the rate of change of low-frequency phase is far smaller
than for high-frequency phase. An added benefit of this frequency adaptivity is that
narrow (in frequency) filters give more sine-like outputs for closely-spaced frequencies;
while wide filters give better temporal resolution for closely-spaced temporal events.
Ellis [Ellis, 1992], for example, has used a multi-resolution front-end in a sine-wave
context in attempting to track synchronous events in two-voice signal separation.
Ghitza [Ghitza, 1986] and more recently Anderson [Anderson, 1996] have exploited
auditory spectral masking with constant-Q filters in attempting to reduce the number
of sine waves required in sine-wave synthesis.
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Finally, there remain a variety of application areas not addressed within this chapter.
Use of a sum of sine-wave representation in low-rate speech coding, for example, is a
vast area which warrants its own exposition [McAulay and Quatieri, 1992, McAulay
and Quatieri, 1987]. Sine-wave analysis/synthesis has also been applied to signal
enhancement including interference suppression and signal modification to improve
signal audibility in underwater sound [Quatieri et al., 1994a, Quatieri et al., 1992].
Sine-wave-based enhancement is also being explored through signal manipulation for
the hearing impaired, as for example in signal compensation for recruitment of loudness
[Rutledge, 1989] and for enhancing speech in noise [Kates, 1994]. Other applications
exploit the capability of sine-wave analysis/synthesis to blend signal operations, such as
joint time-scale and pitch modification [Quatieri and McAulay, 1992], signal splicing
[Serra and Smith, 1989, McMillen, 1994], and coding [McAulay and Quatieri, 1992,
McAulay and Quatieri, 1987]; these applications include prosody manipulation in
speech synthesis [Banga and Garcia-Mateo, 1995, Macon and Clements, 1996] and
joint time-scale modification and speech coding for playback of stored speech in voice
mail. Clearly, the generality of the sine-wave model and the flexibility of the resulting
analysis/synthesis structures make sine-wave-based processing an important tool to be
used in an ever-expanding set of signal processing problems.
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Notes

1. The term “harmonic” is used to refer to sinusoidal components that are nearly integral multiples of
the fundamental frequency and are not necessarily exactly harmonic. The term “partials” refers to slowly-
varying sinusoidal components that have frequencies with arbitrary value. This terminology is widely used
in the speech and music literature [Moorer, 1977].

2. An approximate derivative can be obtained by first differencing the discrete-time unwrapped phase.

3. The filters h k (n) can be desingned to satisfy a perfect reconstruction constraint
where δ(n) is the unit sample sequence. One sufficient condition for perfect reconstruction is that the
length of h(n) be less than the frequency sampling factor, i.e., S < R [Nawab and Quatieri, 1988a]. With
this perfect reconstruction constraint, the signal x(n) can be recovered as

4. In applications, it is often advantageous to express each analysis output in terms of the channel phase
derivative θ(n, ω k ), and initial phase offset which for a single sine wave are given by θ (n, ω k )  =  (ωo – ωk)
and θ(0, ωk ) = θo , respectively [Flanagan and Golden, 1966]. The unwrapped phase can be obtained by
integration of the phase derivative which is added to the carrier phase ωk n. Since for a single sine-like input
θ( n , ωk) is slowly-varying, this representation is particularly useful in speech compression.

5. Noninteger rate change can be performed by combined interpolation and decimation.
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6. Pitch estimation is performed using a sine-wave based approach [McAulay and Quatieri, 1990]. A
fundamental frequency is obtained such that a harmonic set of sine waves is a “best fit” to the measured set
of sine waves. The accuracy of the harmonic fit becomes a measure of the degree to which the analyzed
waveform segment is periodic; i.e., a measure of “harmonicity”.

7. An alternate approach, developed in a speech coding context [McAulay and Quatieri, 1986a,
McAulay and Quatieri, 1992], uses a harmonically-dependent set of sine waves with a random phase
modulation. Yet another related technique [Marques and Almeida, 1988], represents the signal by a sum
of adjacent narrowband sines of uniformly-spaced center frequency, with random amplitude and frequency
modulation.

8. The idea of applying a cubic polynomial to interpolate the phase between frame boundaries was
independently proposed by [Almeida and Silva, 1984b] for use in their harmonic sine-wave synthesizer.

9. An alternative synthesis method is motivated by setting the matching window of the frequency tracker
to zero. In this case, the synthesis of Equation (9.26) can be shown to be equivalent to first generating
constant-amplitude and frequency sine waves, weighting the sum of these sine waves with a triangular
window of length twice the frame width, and then overlapping and adding the windowed segments from
successive frames [McAulay and Quatieri, 1986b]. Consequently, an FFT-based overlap-and-add synthesis
can be formulated by filling FFT buffers with complex sine-waves, Fourier transform inverting the FFT
buffers, and adding triangularly windowed short-time segments. This implementation can be particularly
important in applications where computational efficiency is important [McAulay and Quatieri, 1988].

10. Since each harmonic is a multiple of the time-varying fundamental, higher harmonics vibrato have
a larger bandwidth than lower harmonics. With rapid pitch vibrato, the temporal resolution required for
frequency estimation increases with harmonic number. One approach to improve resolution time-warps
the waveform inversely to pitch to remove vibrato [Ramalho, 1994]. This approach may also be useful in
reducing channel cross-talk within the phase vocoder.

11. The time-bandwidth product, constraining the minimum analysis filter bandwidth to be inversely
proportional to the observation time interval, must also be confronted.

12. Mcadams [McAdams, 1984] hypothesizes that the tracing of resonant amplitude by frequency

13. This linear evolution model may be even more important in the context of the signal separation
problem described in section 6.

14. An iterative approach was also developed by George [George, 1991] for improving the estimation
of low-level sine waves in spectra of wide dynamic range. A least-squared error minimization of sine-wave
parameters was formulated as an analysis-by-synthesis procedure, successively subtracting each sine wave
estimate from the original signal in order of its magnitude.

15. Multi-resolution analysis can be provided by the constant-Q property of the wavelet transform
[Mallat and Hwang, 1992]. Although a short window for temporal tracking reduces frequency resolution,
the human ear may not require as high a frequency resolution in perceiving high frequencies as for low
frequencies. Ellis [Ellis, 1992, Ellis et al., 1991] exploited this property of auditory perception in developing
a constant-Q analysis within the sine-wave framework for tracking signal fine structure for signal separation.

16. In adding synthetic harmonic and aharmonic components, it is important that the two components
“fuse” perceptually [Hermes, 1991]; i.e., that the two components are perceived as emanating from the
same sound source. Through informal listening, sine-wave phase randomization appears to yield a noise
component that “fuses” with the harmonic component of the signal.

17. Estimation of the absolute onset times can be performed using a least-squared error approach to
finding the unknown no (m) [McAulay and Quatieri, 1986a]. Although this method can yield onset times
to within a few samples, this slight inaccuracy is enough to generate a “rough” quality to the synthesis. It is
interesting to note that this approach to onset estimation will be seen in section 7 as the frequency-domain
dual to the time-domain estimation of the carrier frequency required in FM synthesis.

18. A computationally efficient FFT overlap-add implementation of the synthesis has been formulated
by George [George, 1991].

modulation contributes to the distinctness of the sound in the presence of competing sound sources.
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19. Schroeder also derived an approach to “optimally” flatten a harmonic series [Schroeder, 1986,
Schroeder, 1970a]. This method however requires exact harmonicity and can be shown to be a special case
of the KFH phase dispersion formula.

20. A more formal approach requires a strict definition of temporal envelope

21. A recently proposed alternate approach to reducing dispersion in the phase vocoder introduces phase
locking by replacing a channel phase with the phase of the weighted average of itself and its two adjacent
neighbors [Puckette, 1995]. Thus the strongest of the three channels dominates the channel phase. This and
other methods of phase locking are described in chapter 7.

22. The notion of synchronizing pulses over adjacent frames in overlap-add for time-scale modification
was first introduced by Roucos and Wilgus in the speech context [Roucos and Wilgus, 1985]. This method
relies on cross-correlation of adjacent frames to align pulses and not on phase synchronization of a subband
decomposition.

23. Griffin and Lim [Griffin, 1987] generalized this split-band approach to multibands; multibands,
however, do not adequately model additively combined harmonic and aharmonic components.

24. Recall that a partial refers to a sinusoidal component of a sound that usually corresponds to a mode
of vibration of the producing sound system and is not necessarily harmonic.

25. As an alternative deterministic/stochastic separation scheme, Therrien [Therrien et al., 1994] has
introduced an adaptive ARMA model for sample-by-sample tracking of sine-wave amplitude and frequencies
of the deterministic signal. This component is subtracted from the original signal and parameters of the
resulting residual are also adaptively estimated using a ARMA representation, This technique is being
applied to signal modification to synthetically expand limited training data for signal classification [Therrien
et al., 1994].

26. Alternatively, a more realistic music attack or speech plosive may be obtained by splicing into the
synthesized deterministic component using the method described in section 3.6. Splicing of the actual attack
has been shown to significantly improve the sound quality for a number of musical sounds including the
piano and marimba [Serra, 1989]. Hybrid sounds can also be created by matching the sine-wave phases of
the attack of one sound with the phases of the deterministic component of a second sound at a splice point.

27. A sine-wave frequency tracker has also been developed using hidden Markov modeling of the time
evolution of sine-wave frequencies over multiple frames. This approach is particularly useful is tracking
crossing frequency trajectories which can occur in complex sounds[Depalle et al., 1993].

28. Disregarding the measured phase also implies that the deterministic component, as well as its
transformations, will suffer from waveform dispersion.

29. The residual, being assumed stochastic, is characterized by second-order statistics; i.e., the specific
phase of the residual is of no importance. Nevertheless, this selection must be made carefully since spectral
phase significantly influences the temporal properties of the signal.

30. An alternate approach to stochastic synthesis introduced by Serra [Serra, 1989] appends a random
phase to the envelope Ê(n, ω) and applys a time-domain window to the inverse STFT since the random
phase may cause a splattering of the signal outside of the a desired short-time interval. An overlap and
add procedure as in Equation (9.66) is then performed. Although this method is similar in spirit to the

convolutional approach, the phase correlation of the resulting signals differ because the operations of
windowing and convolution do not commute. The perceptual differences in the two approachs requires
further study. Another alternative is to find a sequence whose STFT approximates in a least-squared error
sense the STFT constructed with the spectral magnitude of the residual and with random phase [Griffin and
Lim, 1984a]. This approach results in a STFT phase which may be close to the random phase, but which
also meets the desired short-time constraint.

31. A minimun-phase version of the filter can also be constructed.

32. The term voice refers to a single speaker or single musical instrument.
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33. Note that the stationarity assumption results in a spectrum consisting of identically shaped (window)
pulses placed at the sine-wave frequencies. Most signals of interest however are generally nonstationary
(e.g., the frequencies may change over the window extent due to amplitude and frequency modulation), and
so the window transform may deviate from this fixed shape. Naylor and Porter [Naylor and Boll, 1986] have
developed an extension of the approach of this section that accounts for the deviation from the ideal case.

34. The frequency estimates used in the solution Equation (9.75) were obtained by peak-picking the
STFTM of each separate waveform. A 4096 FFT was found to give sufficient frequency resolution for
adequate separation. The Gauss Siedel iterative method [Strang, 1980] was then used in solving Equation
(9.75). Convergence of this algorithm is guaranteed for positive definite matrices, a property of the matrices
in the least squares problem. The vector obtained by sampling the STFT at the sine-wave frequencies was
used as an initial guess in the iterative algorithm.

35. An alternate approach is to impose continuity constraints prior to estimation, thus utilizing the sine
waves that would be eliminated aposteriori due to ill-conditioning. For example, a linear model for each
frequency trajectory can be shown to lead to a generalization of Equation (9.77). Such an approach may
lead to more robust separation with the presence of closely spaced frequencies.

36. Consider signals of the form Then the

expansion of x(n) takes the form

 which yields very complex spectra [Justice, 1979].

37. We assume for convenience that the analytic form of the signal equals its quadrature representation.

38. Capturing vibrato through adjusting the carrier/modulation frequency ratio requires very precise
control which is difficult to achieve.
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Abstract: Basic principles of digital waveguide modeling of musical instruments are
presented in a tutorial introduction intended for graduate students in electrical engineering
with a solid background in signal processing and acoustics. The vibrating string is taken
as the principal illustrative example, but the formulation is unified with that for acoustic
tubes. Modeling lossy stiff strings using delay lines and relatively low-order digital filters
is described. Various choices of wave variables are discussed, including velocity waves,
force waves, and root-power waves. Signal scattering at an impedance discontinuity
is derived for an arbitrary number of waveguides intersecting at a junction. Various
computational forms are discussed, including the Kelly-Lochbaum, one-multiply, and
normalized scattering junctions. A relatively new three-multiply normalized scattering
junction is derived using a two-multiply transformer to normalize a one-multiply scattering
junction. Conditions for strict passivity of the model are discussed. Use of commutativity
of linear, time-invariant elements to greatly reduce computational cost is described.
Applications are summarized, and models of the clarinet and bowed-string are described
in some detail. The reed-bore and bow-string interactions are modeled as nonlinear
scattering junctions attached to the bore/string acoustic waveguide.
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10.1 INTRODUCTION

Music synthesizers are beginning to utilize physical models of musical instruments
in their sound-generating algorithms. The thrust of this trend is to obtain maximum
expressivity and sound quality by providing all of the responsiveness of natural mu-
sical instruments. This is happening at a time when most synthesizers are based
on “sampling” of the acoustic waveform. While sample-playback instruments sound
great on the notes that were recorded, they tend to lack the expressive range of natural
instruments.

Another potential application for physical models of sound production is in audio
compression. Compression ratios can be enormous when coding parameters of a
physical model of the sound source. High quality audio compression techniques such
as used in MPEG are presently based on psychoacoustically motivated spectral models
which yield up to an order of magnitude of “transparent” compression (see the chapter
by Brandenburg or [Bosi et al., 1996a]). Physical models, on the other hand, can
achieve much higher compression ratios for specific sounds. By combining model-
based and spectral-based compression techniques, large average compression ratios
can be achieved at very high quality levels.

The Musical Instrument Digital Interface (MIDI) format provides an example of
the profound compression ratios possible for certain sounds by encoding only synthe-
sizer control parameters. For example, two or three bytes of MIDI data can specify
an entire musical note. In future audio compression standards, a compressed audio
stream will be able to switch among a variety of compression formats. When arbi-
trary decompression algorithms can be included in the compressed-audio data stream,
model-based compression will be fully enabled. In terms of existing standards, for
example, one could extend MIDI to provide for MPEG-2 audio segments and “instru-
ment definitions” (synthesis algorithms) written in Java (performance issues aside for
the moment). In this context, instrument definitions serve a role analogous to “outline
fonts” in a page description language such as PostScript, while sampled audio seg-
ments are more like “bit-map fonts.” General, self-defining, instrument-based, audio
synthesis scripts have been in use since the 1960s when the Music V program for
computer music was developed [Mathews, 1969].

10.1.1 Antecedents in Speech Modeling

The original Kelly-Lochbaum (KL) speech model employed a ladder-filter with delay
elements in physically meaningful locations, allowing it to be interpreted as a discrete-
time, traveling-wave model of the vocal tract [Kelly and Lochbaum, 1962]. Assuming
a reflecting termination at the lips, the KL model can be transformed via elementary
manipulations to modern ladder/lattice filters [Smith, 1986b]. The early work of Kelly
and Lochbaum appears to have been followed by two related lines of development:
articulatory speech synthesis and linear-predictive coding (LPC) of speech.



PRINCIPLES OF DIGITAL WAVEGUIDE MODELS OF MUSICAL INSTRUMENTS 419

The most elaborate physical models for speech production are developed in the
field of articulatory speech synthesis [Keller, 1994, Deller Jr. et al., 1993]. While they
represent the forefront of our understanding of speech production, they are generally
too complex computationally to yield practical speech coding algorithms at present.
However, there have been ongoing efforts to develop low bit-rate speech coders based
on simplified articulatory models [Schroeter and Sondhi, 1994, Flanagan et al., 1980].
The main barrier to obtaining practical speech coding methods has been the difficulty
of estimating vocal-tract shape given only the speech waveform.

LPC is speech coding technique which has enjoyed widespread usage and intensive
study [Atal and Hanauer, 1971, Markel and Gray, 1976, Campbell Jr. et al., 1990, Deller
Jr. et al., 1993]. The allpole filter used in LPC synthesis is often implemented as a
ladder or lattice digital filter [Markel and Gray, 1976] which is not far from having
a physical interpretation. However, as normally implemented, the delay in samples
from the filter input to its output equals the filter order, while the delay from the
output back to the input is zero. This non-physical, asymmetric distribution of delay
precludes building upon the ladder/lattice filter as a physical modeling element; for
example, branching the filter to add a nasal tract is not immediately possible in the
LPC synthesis model [Lim and Lee, 1996] while it is straightforward in the Kelly-
Lochbaum model [Cook, 1990]. The benefits of moving all of the reverse delays to the
forward path are that (1) the sampling rate can be reduced by a factor of two, and (2)
the reflection coefficients can be uniquely computed from the autocorrelation function
of the speech waveform by means of orthogonal polynomial expansions. While these
advantages make sense for practical coding of speech, they come at the price of giving
up the physical model.

Instead of a physical model, the LPC signal model is better regarded as a source-
filter signal representation. The source is typically taken to be either a periodic impulse
train, corresponding to voiced speech, or white noise, for unvoiced speech. The filter
implements vocal tract resonances, or formants of speech, and part of this filter can
be interpreted as arising from a physical model for the vocal tract consisting of a
piecewise cylindrical acoustic tube [Markel and Gray, 1976, Rabiner and Schafer,
1978b]. However, the same filter must also represent the glottal pulse shape, since it is
driven by impulses in place of physically accurate glottal pulses. Since an LPC filter
encodes both vocal-tract and glottal-pulse characteristics, it is not an explicit physical
model of either. However, it remains closely related structurally to the Kelly-Lochbaum
model which does have a physical interpretation.

Another way to characterize the LPC filter is as an autoregressive (AR) spectral
envelope model [Kay, 1988]. The error minimized by LPC (time-waveform prediction
error) forces the filter to model parametrically the upper spectral envelope of the
speech waveform [Makhoul, 1975]. Since the physical excitation of the vocal tract is
not spectrally flat, the filter obtained by whitening the prediction error is not a physical
model of the vocal tract. (It would be only if the glottal excitation were an impulse
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or white noise.) However, by factoring out a rational approximation to the spectral
envelope of the glottal excitation, and accounting for the lip radiation transfer function,
a vocal tract model can be pursued via post-processing of the LPC spectral model.

There have been some developments toward higher quality speech models retaining
most of the simplicity of a source-filter model such as LPC while building on a true
physical interpretation: A frequency-domain model of the vocal tract in terms of chain
scattering matrices supports variable tube-section length and frequency-dependent
losses in each section [Sondhi and Schroeter, 1987]. A two-mass model of the vocal
cords has been widely used [Ishizaka and Flanagan, 1972]. An extended derivative of
the Kelly-Lochbaum model, adding a nasal tract, neck radiation, and internal damping,
has been used to synthesize high-quality female singing voice [Cook, 1990]. Sparse
acoustic tubes, in which many reflection coefficients are constrained to be zero, have
been proposed [Frank and Lacroix, 1986]. Also, conical (rather than the usual cylin-
drical) tube segments and sparsely distributed interpolating scattering junctions have
been proposed as further refinements [Välimäki and Karjalainen, 1994b].

While coding algorithms for physical speech models are typically much more expen-
sive computationally than LPC, the voice quality obtainable can increase significantly,
as demonstrated by Cook. Also, when true physical modeling components are devel-
oped, they tend to be more modular and amenable to rule-based transformations. As
an example, a true vocal-tract model can be easily scaled to change its length, pointing
the way to simple, rule-based transformations as a function of gender, age, or singing
technique. Similarly, vocal excitations can be parametrized in richer detail in ways
which are understood physically; these should make it possible to directly parametrize
a broader range of vocal textures such as “breathiness,” “hardness” of glottal closure,
and other important attributes of voice quality.

Since computational power has increased enormously in personal computers, and
since there is a strong need for maximal compression of multimedia, especially over the
internet, it seems reasonable to expect future growth in the development of model-based
sound synthesis. Model-based image generation and algorithmic sound synthesis are
already under consideration for the MPEG-4 compression standard.

10.1.2  Physical Models in Music Synthesis

At the time of this writing, use of physical models in music synthesizers is only just
beginning.1  Historically, physical models of musical instruments led to prohibitively
expensive synthesis algorithms, analogous to articulatory speech models [Ruiz, 1969,
Chaigne and Askenfelt, 1994]. More recently, “digital waveguide” models of musical
instruments have been developed which are more analogous to acoustic tube models.
For an overview of recent research in this area, see [Smith, 1996].

Physical models of musical instruments promise the highest quality in imitating
natural instruments. Because the “virtual” instrument can have the same control



PRINCIPLES OF DIGITAL WAVEGUIDE MODELS OF MUSICAL INSTRUMENTS 421

parameters as the real instrument, expressivity of control is unbounded. Also, as in
the case of speech, audio compression algorithms based on generative models promise
huge compression ratios.

Digital waveguide models are essentially discrete-time models of distributed media
such as vibrating strings, bores, horns, plates, and the like. They are often combined
with models of lumped elements such as masses and springs. Lumped modeling is the
main focus of wave digital filters as developed principally by Fettweis [1986], and they
are also based on a a scattering theoretic formulation [Belevitch, 1968] which simplifies
interfacing to waveguide models. For realizability of lumped models with feedback,
wave digital filters also incorporate short, unit-sample, waveguide sections called “unit
elements,” but these are ancillary to the main development. Digital waveguide models
are more closely related to “unit element filters” which were developed much earlier
in microwave engineering [Rhodes et al., 1973]. As a result of the availability of unit
elements in wave digital filters, some authors describe digital waveguide filters as a
special case of wave digital filters. This has led to some confusion in the literature such
as, for example, incorrectly assuming the existence of frequency warping in the Kelly-
Lochbaum model. It can be said that a digital waveguide model may be obtained
via simple sampling of the traveling waves in a unit-element filter, while a wave
digital filter, on the other hand, is typically derived via the bilinear transformation of
the scattering-theoretic formulation of an RLC (or mass-spring-dashpot) circuit, with
some additional special techniques for avoiding delay-free loops.

It turns out that digital waveguide models of many musical instruments (such as
winds, strings, and brasses) enjoy much greater efficiency than acoustic-tube speech
models as a result of their relative simplicity as acoustic waveguides. This is because
the vocal tract is a highly variable acoustic tube while strings, woodwind bores, and
horns are highly uniform. As a result, there is very little scattering in digital waveguides
used to model these simple one-dimensional acoustic waveguides. In fact, we normally
approximate them as little more than delay lines; scattering junctions are rarely used
except, e.g., in a high quality tone-hole model or string excitation.

Since a delay line can be implemented in software by a single fetch, store, and
pointer update for each sample of output, a lossless waveguide simulation requires
O (1) computations per sample of output in contrast with O( N) computations using
conventional physical modeling methods, where N is the number of samples along the
waveguide. If the delay line used in a CD-quality string or bore model is, say, N = 500
samples long, (corresponding to a pitch of 44100/500 = 88 Hz), computational
requirements relative to numerical integration of the wave equation on a grid are
reduced by three orders of magnitude. As a result, for very simple physical models,
several CD-quality voices can be sustained in real time on a single DSP chip costing
only a few dollars. ²



422 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

10.1.3 Summary

The remainder of this chapter is divided into two parts, addressing theory and applica-
tions, respectively. Part I reviews the underlying theory of digital waveguide modeling,
starting with the wave equation for vibrating strings. Transverse waves on a string are
taken as the primary example due to the relative clarity of the underlying physics, but
the formulation for strings is unified with that of acoustic tubes. In particular, the use
of transverse force and velocity waves for strings exactly parallels the use of pressure
and longitudinal volume-velocity waves in acoustic tubes.

Longitudinal stress waves in strings are taken as an example leading to signal
scattering formulas identical to those encountered in acoustic tubes. The well known
Kelly-Lochbaum, one-multiply, and normalized scattering junctions are derived, as
well as a lesser known transformer-normalized one-multiply junction. General ways
of ensuring passivity of junction computations in the presence of round-off error are
discussed. Scattering relations are also derived for the case of N lossless waveguides
meeting at a lumped load impedance, illustrating in part how the digital waveguide
formulation interfaces naturally to other kinds of physical simulation methodologies.

In addition to ideal strings, lossy and dispersive (stiff) strings are considered. Most
generally, the approach holds for all wave equations which admit solutions in the form
of non-scattering traveling waves having arbitrary frequency-dependent attenuation
and dispersion. The important principle of lumping losses and dispersion, via com-
mutativity, at discrete points in the waveguide, replacing more expensive distributed
losses, is discussed. Finally, Part II describes digital waveguide models of single-reed
woodwinds and bowed strings.
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Figure 10.1 The ideal vibrating string.

Part I — Theory
10.2 THE IDEAL VIBRATING STRING

The wave equation for the ideal (lossless, linear, flexible) vibrating string, depicted in
Fig. 10.1, is given by

Ky" = ∈ ÿ (10.1)

where
K string tension
∈ linear mass density
y string displacement

(10.2)

where “    ” means “is defined as.” The wave equation is fully derived in [Morse, 1981]
and in most elementary textbooks on acoustics. It can be interpreted as a statement of
Newton’s second law, “force = mass × acceleration ,” on a microscopic scale. Since
we are concerned with transverse vibrations on the string, the relevant restoring force
(per unit length) is given by the string tension times the curvature of the string (Ky" ) ;
the restoring force is balanced at all times by the inertial force per unit length of the
string which is equal to mass density times transverse acceleration (∈ ÿ).

The same wave equation applies to any perfectly elastic medium which is displaced
along one dimension. For example, the air column of a clarinet or organ pipe can
be modeled using the one-dimensional wave equation by substituting air-pressure
deviation for string displacement, and longitudinal volume velocity for transverse string
velocity. We refer to the general class of such media as one-dimensional waveguides.
Extensions to two and three dimensions (and more, for the mathematically curious³),
are also possible [Van Duyne and Smith, 1995].

For a physical string model, at least three coupled waveguide models should be
considered, corresponding to the horizontal and vertical transverse wave polarizations,
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as well as longitudinal waves. For bowed strings, torsional waves should also be
considered, since they affect the bow-string friction force and provide an important
loss mechanism for transverse waves [McIntyre et al., 1983]. In the piano, for key
ranges in which the hammer strikes three strings simultaneously, nine coupled wave-
guides are required per key for a complete simulation (not including torsional waves);
however, in a practical, high-quality, virtual piano, one waveguide per coupled string
(modeling only the vertical, transverse plane) suffices quite well. It is difficult to
get by with less than the correct number of strings, however, because their detuning
determines the entire amplitude envelope as well as beating and aftersound effects
[Weinreich, 1977].

10.2.1 The Finite Difference Approximation

In the musical acoustics literature, the normal method for creating a computational
model from a differential equation is to apply the so-called finite diference approxi-
mation (FDA) in which differentiation is replaced by a finite difference [Strikwerda,
1989, Chaigne, 1992]. For example

(10.3)

and

(10.4)

where T is the time sampling interval to be used in the simulation, and X is a spatial
sampling interval. These approximations can be seen as arising directly from the
definitions of the partial derivatives with respect to t and x . The approximations
become exact in the limit as T and X approach zero. To avoid a delay error, the
second-order finite-differences are defined with a compensating time shift:

(10.5)

(10.6)

The odd-order derivative approximations suffer a half-sample delay error while all
even order cases can be compensated as above.

General Properties of the FDA. To understand the properties of the finite difference
approximation in the frequency domain, we may look at the properties of its s-plane
to z-plane mapping

(10.7)
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The FDA does not alias, since the mapping s = 1 – z– 1  is one-to-one. Setting T to 1
for simplicity and solving the FDA mapping for z gives

(10.8)

We see that “analog dc” (s = 0) maps to “digital dc” (z = 1) as desired, but higher
frequencies unfortunately map inside the unit circle rather than onto the unit circle in
the z plane. Solving for the image in the z plane of the jω axis in the s plane gives

(10.9)

From this it can be checked that the FDA maps the jω axis in the s plane to the
circle of radius 1/2 centered at the point z = 1/2 in the z plane. Under the FDA,
analog and digital frequency axes coincide well enough at very low frequencies (high
sampling rates), but at high frequencies relative to the sampling rate, artificial damping
is introduced as the image of the jω axis diverges away from the unit circle. Consider,
for example, an undamped mass-spring system. There will be a complex conjugate
pair of poles on the jω axis in the s plane. After the FDA, those poles will be inside the
unit circle, and therefore damped in the digital counterpart. The higher the resonance
frequency, the larger the damping. It is even possible for unstable s-plane poles to be
mapped to stable z-plane poles.

FDA of the Ideal String. Substituting the FDA into the wave equation gives

which can be solved to yield the following recursion for the string displacement:

In a practical software implementation, it is common to set T = 1, X = ( ) T,
and evaluate on the integers t = nT = n and x = mX = m to obtain the difference
equation

(10.10)

Thus, to update the sampled string displacement, past values are needed for each point
along the string at time instants n and n – 1. Then the above recursion can be carried
out for time n + 1 by iterating over all m along the string.
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Perhaps surprisingly, it will be shown in a later section that the above recursion is
exact at the sample points in spite of the apparent crudeness of the finite difference
approximation.

When more terms are added to the wave equation, corresponding to complex losses
and dispersion characteristics, more terms of the form y(n – l , m – k ) appear in
(10.10). This approach to numerical simulation was used in early computer simulation
of musical vibrating strings [Ruiz, 1969], and it is still in use today [Chaigne, 1992,
Chaigne and Askenfelt, 1994].

10.2.2 Traveling-Wave Solution

It can be readily checked that the lossless 1D wave equation Ky" = ∈ ÿ is solved by
any fixed string shape which travels to the left or right with speed If we
denote right-going traveling waves in general by yr ( t – x /c) and left-going traveling
waves by yl (t + x /c), where yr and yl are arbitrary twice-differentiable functions,
then the general class of solutions to the lossless, one-dimensional, second-order wave
equation can be expressed as

(10.11)

An example of the appearance of the traveling wave components shortly after
plucking an infinitely long string at three points is shown in Fig. 10.2.

Note that we have, by definition, ÿr = c² y r and ÿl = c² y l" , showing that the wave
equation is satisfied for all traveling wave shapes yr and yl . However, the derivation
of the wave equation itself assumes the string slope is much less than 1 at all times and
positions [Morse, 1981]. The traveling-wave solution of the wave equation was first
published by d’ Alembert in 1747 [Lindsay, 1973].

10.3 SAMPLING THE TRAVELING WAVES

To carry the traveling-wave solution into the “digital domain,” it is necessary to sample
the traveling-wave amplitudes at intervals of T seconds, corresponding to a sampling
rate ƒs 1/T samples per second. For CD-quality audio, we have ƒs  = 44.1 kHz.

one temporal sampling interval T, or X cT meters.
Formally, sampling is carried out by the change of variables

Substituting into the traveling-wave solution of the wave equation gives

(10.12)

The natural choice of spatial sampling interval X is the distance sound propagates in

"
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Figure 10.2 An infinitely long string, “plucked” simultaneously at three points, labeled
“p” in the figure, so as to produce an initial triangular displacement. The initial displace-
ment is modeled as the sum of two identical triangular pulses which are exactly on top
of each other at time 0. At time t0 shortly after time 0, the traveling waves centers are
separated by 2ct0 meters, and their sum gives the trapezoidal physical string displace-
ment at time t 0 which is also shown. Note that only three short string segments are
in motion at that time: the flat top segment which is heading to zero where it will halt
forever, and two short pieces on the left and right which are the leading edges of the
left- and right-going traveling waves. The string is not moving where the traveling waves
overlap at the same slope. When the traveling waves fully separate, the string will be
at rest everywhere but for two half-amplitude triangular pulses heading off to plus and
minus infinity at speed c.
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Since T multiplies all arguments, let’s suppress it by defining

(10.13)

This new notation also introduces a “+” superscript to denote a traveling-wave com-
ponent propagating to the right, and a “–” superscript to denote propagation to the
left. This notation is similar to that used for acoustic tubes [Markel and Gray, 1976].

The term yr [ (n – m )T] = y+ ( n – m) can be thought of as the output of an
m-sample delay line whose input is y + (n). Similarly, the term yl [(n + m ) T]
y –(n + m ) can be thought of as the input to an m-sample delay line whose output is
y – (n ). This can be seen as the lower “rail” in Fig. 10.3. Note that the position along
the string, x m  = m X = mcT meters, is laid out from left to right in the diagram,
giving a physical interpretation to the horizontal direction in the diagram. Finally, the
left- and right-going traveling waves must be summed to produce a physical output
according to the formula

(10.14)

We may compute the physical string displacement at any spatial sampling point x m

by simply adding the upper and lower rails together at position m along the delay-
line pair. In Fig. 10.3, “transverse displacement outputs” have been arbitrarily placed
at x = 0 and x = 3X. The diagram is similar to that of well known ladder and
lattice digital filter structures, except for the delays along the upper rail, the absence
of scattering junctions, and the direct physical interpretation. We could proceed to
ladder and lattice filters as in [Markel and Gray, 1976] by (1) introducing a perfectly
reflecting (rigid or free) termination at the far right, and (2) commuting the delays
rightward from the upper rail down to the lower rail [Smith, 1986b]. The absence of
scattering junctions is due to the fact that the string has a uniform wave impedance. In
acoustic tube simulations, such as for voice or wind instruments (discussed in a later
section), lossless scattering junctions are used at changes in cross-sectional tube area
and lossy scattering junctions are used to implement tone holes. In waveguide bowed-
string synthesis (also discussed in a later section), the bow itself creates an active,
time-varying, and nonlinear scattering junction on the string at the bowing point.

A more compact simulation diagram which stands for either sampled or continuous
simulation is shown in Fig. 10.4. The figure emphasizes that the ideal, lossless
waveguide is simulated by a bidirectional delay line, and that bandlimited spatial
interpolation may be used to construct a displacement output for an arbitrary x not a
multiple of cT, as suggested by the output drawn in Fig. 10.4. Similarly, bandlimited
interpolation across time serves to evaluate the waveform at an arbitrary time not an
integer multiple of T [Smith and Gossett, 1984, Laakso et al., 1996].
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Figure 10.3 Digital simulation of the ideal, lossless waveguide with observation points
at x = 0 and x = 3X = 3cT.

Figure 10.4 Conceptual diagram of interpolated digital waveguide simulation.
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Any ideal, one-dimensional waveguide can be simulated in this way. It is important
to note that the simulation is exact at the sampling instants, to within the numerical
precision of the samples themselves. To avoid aliasing associated with sampling, we
require all waveshapes traveling along the string to be initially bandlimited to less
than half the sampling frequency. In other words, the highest frequencies present
in the signals yr (t) and yl(t) may not exceed half the temporal sampling frequency

ƒs 1/T; equivalently, the highest spatial frequencies in the shapes yr (x/c) and
yl (x/c) may not exceed half the spatial sampling frequency vs   1 /X .

10.3.1 Relation to Finite Difference Recursion

It is interesting to compare the digital waveguide simulation technique to the recursion
produced by the finite difference approximation (FDA) applied to the wave equation.
Recall from (10.10) that the time update recursion for the ideal string digitized via the
FDA is given by

(10.15)

To compare this with the waveguide description, we substitute the traveling-wave
decomposition y(n, m) = y + ( n – m) + y– (n + m) (which is exact in the ideal case
at the sampling instants) into the right-hand side of the FDA recursion above and see
how good is the approximation to the left-hand side y(n + 1, m ) = y + (n + 1 – m ) +
y– (n + 1 + m ). Doing this gives

(10.16)

Thus, we obtain the result that the FDA recursion is also exact in the lossless case.
This is surprising since the FDA introduces artificial damping when applied to lumped,
mass-spring systems, as discussed earlier.

The last identity above can be rewritten as

(10.17)

which says the displacement at time n + 1, position m, is the superposition of the
right-going and left-going traveling wave components at positions m – 1 and m + 1 ,
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respectively, from time n. In other words, the physical wave variable can be computed
for the next time step as the sum of incoming traveling wave components from the left
and right. This picture also underscores the lossless nature of the computation.

10.4 ALTERNATIVE WAVE VARIABLES

We have thus far considered discrete-time simulation of transverse displacement y in
the ideal string. It is equally valid to choose velocity v , acceleration a   ÿ,
slope y', or perhaps some other derivative or integral of displacement with respect to
time or position. Conversion between various time derivatives can be carried out by
means integrators and differentiators. Since integration and differentiation are linear
operators, and since the traveling wave arguments are in units of time, the conversion
formulas relating y, v, and a hold also for the traveling wave components y±, v ± ±, a .

Digital filters can be designed to give arbitrarily accurate differentiation and integra-
tion by finding an optimal, complex, rational approximation to H(e jω) = ( jω) k  over
the interval –ω max ≤ ω ≤ ωmax, where k is an integer corresponding to the degree of
differentiation or integration, and ωmax < π is the upper limit of human hearing. For
small guard bands δ     π – ω max, the filter order required for a given error tolerance
is approximately inversely proportional to δ. Methods for digital filter design given an
arbitrary desired frequency response can be found in [Rabiner and Gold, 1975, Parks
and Burrus, 1987, Laakso et al., 1996, Gutknecht et al., 1983, Smith, 1983, Beliczynski
et al., 1992].

10.4.1 Spatial Derivatives

In addition to time derivatives, we may apply any number of spatial derivatives to
obtain yet more wave variables to choose from. The first spatial derivative of string
displacement yields slope waves:

(10.18)

or, in discrete time,

(10.19)



432 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

>From this we may conclude that v– = cy' – and v + = –cy' +. That is, traveling slope
waves can be computed from traveling velocity waves by dividing by c and negating in
the right-going case. Physical string slope can thus be computed from a velocity-wave
simulation in a digital waveguide by subtracting the upper rail from the lower rail and
dividing by c.

By the wave equation, curvature waves, y" = ÿ/c², are simply a scaling of accel-
eration waves.

In the field of acoustics, the state of a vibrating string at any instant of time t0

is normally specified by the displacement y(t0 , x ) and velocity (t0, x ) for all x
[Morse, 1981]. Since displacement is the sum of the traveling displacement waves and
velocity is proportional to the difference of the traveling displacement waves, one state
description can be readily obtained from the other.

In summary, all traveling-wave variables can be computed from any one, as long
as both the left- and right-going component waves are available. Alternatively, any
two linearly independent physical variables, such as displacement and velocity, can
be used to compute all other wave variables. Wave variable conversions requiring
differentiation or integration are relatively expensive since a large-order digital filter
is necessary to do it right. Slope and velocity waves can be computed from each other
by simple scaling, and curvature waves are identical to acceleration waves to within a
scale factor.

In the absence of factors dictating a specific choice, velocity waves are a good
overall choice because (1) it is numerically easier to perform digital integration to get
displacement than it is to differentiate displacement to get velocity, (2) slope waves
are immediately computable from velocity waves. Slope waves are important because
they are proportional to force waves.

10.4.2 Force Waves

Referring to Fig. 10.5, at an arbitrary point x along the string, the vertical force applied
at time t to the portion of string to the left of position x by the portion of string to the
right of position x is given by

(10.20)

assuming |y' (t, x )| « 1, as is assumed in the derivation of the wave equation. Simi-
larly, the force applied by the portion to the left of position x to the portion to the right
is given by

(10.21)
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Figure 10.5 Transverse force propagation in the ideal string.

These forces must cancel since a nonzero net force on a massless point would produce
infinite acceleration.

Vertical force waves propagate along the string like any other transverse wave
variable (since they are just slope waves multiplied by tension K). We may choose
either ƒl or ƒr as the string force wave variable, one being the negative of the other. It
turns out that to make the description for vibrating strings look the same as that for air
columns, we have to pick ƒr , the one that acts to the right. This makes sense intuitively
when one considers longitudinal pressure waves in an acoustic tube: a compression
wave traveling to the right in the tube pushes the air in front of it and thus acts to the
right. We therefore define the force wave variable to be

(10.22)

Note that a negative slope pulls up on the segment to the right. Substituting from
(10.18), we have

(10.23)

where K/c      This is a fundamental quantity known as the wave
impedance of the string (also called the characteristic impedance), denoted as

(10.24)

The wave impedance can be seen as the geometric mean of the two resistances to
displacement: tension (spring force) and mass (inertial force).

The digitized traveling force-wave components become

(10.25)
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which gives us that the right-going force wave equals the wave impedance times
the right-going velocity wave, and  the left-going force wave equals minus the wave
impedance times the left-going velocity wave. Thus, in a traveling wave, force is
always in phase with velocity (considering the minus sign in the left-going case to be
associated with the direction of travel rather than a 180 degrees phase shift between
force and velocity). Note also that if the left-going force wave were defined as the
string force acting to the left, the minus sign would disappear. The fundamental relation
f + = R v + is sometimes referred to as the mechanical counterpart of Ohm’s Law, and
R in c.g.s. units can be called acoustical ohms [Kolsky, 1963].

In the case of the acoustic tube [Morse, 1981, Markel and Gray, 1976], we have the
analogous relations

(10.26)

where p+ (n ) is the right-going traveling longitudinal pressure wave component,  p– (n)
is the left-going pressure wave, and u±(n ) are the left and right-going volume velocity
waves. In the acoustic tube context, the wave impedance is given by

(Acoustic Tubes) (10.27)

where ρ is the mass per unit volume of air, c is sound speed in air, and A is the cross-
sectional area of the tube. Note that if we had chosen particle velocity rather than
volume velocity, the wave impedance would be R0 = ρc instead, the wave impedance
in open air. Particle velocity is appropriate in open air, while volume velocity is the
conserved quantity in acoustic tubes or “ducts” of varying cross-sectional area [Morse
and Ingard, 1968].

10.4.3 Power Waves

Basic courses in physics teach us that power is work per unit time, and work is a
measure of energy which may be defined as force times distance. Therefore, power
is in physical units of force times distance per unit time, or force times velocity. It
therefore should come as no surprise that traveling power waves are defined for strings
as

(10.28)

From the elementary relations f + = R v+ and ƒ – = – Rv –, we also have

(10.29)
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Thus, both the left- and right-going components as defined are nonnegative. The sum
of the traveling powers at a point gives the total power at that point in the waveguide:

(10.30)

If we had left out the minus sign in the definition of left-going power waves, the sign
of the traveling power would indicate its direction of travel, and the sum of left- and
right-going components would instead be the net power flow.

Power waves are important because they correspond to the actual ability of the
wave to do work on the outside world, such as on a violin bridge at the end of a
string. Because energy is conserved in closed systems, power waves sometimes give
a simpler, more fundamental view of wave phenomena, such as in conical acoustic
tubes. Also, implementing nonlinear operations such as rounding and saturation in
such a way that signal power is not increased gives suppression of limit cycles and
overflow oscillations, as discussed in the later section on signal scattering.

10.4.4 Energy Density Waves

The vibrational energy per unit length along the string, or wave energy density [Morse,
1981] is given by the sum of potential and kinetic energy densities:

(10.31)

Sampling across time and space, and substituting traveling wave components, one can
show in a few lines of algebra that the sampled wave energy density is given by

(10.32)

where

(10.33)
Thus, traveling power waves (energy per unit time) can be converted to energy density
waves (energy per unit length) by simply dividing by c, the speed of propagation. Quite
naturally, the total wave energy in the string is given by the integral along the string of
the energy density:

(10.34)

In practice, of course, the string length is finite, and the limits of integration are from
the x coordinate of the left endpoint to that of the right endpoint, e.g., 0 to L.
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10.4.5 Root-Power Waves

It is sometimes helpful to normalize the wave variables so that signal power is uniformly
distributed numerically. This can be especially helpful in fixed-point implementations.

From (10.29), it is clear that power normalization is given by

(10.35)

where we have dropped the common time argument ‘(n )’ for simplicity. As a result,
we obtain

(10.36)

and

(10.37)

The normalized wave variables and behave physically like force and velocity
waves, respectively, but they are scaled such that either can be squared to obtain instan-
taneous signal power. Waveguide networks built using normalized waves have many
desirable properties such as the obvious numerical advantage of uniformly distributing
signal power across available dynamic range in fixed-point implementations. Another
is that only in the normalized case can the wave impedances be made time varying
without modulating signal power [Gray and Markel, 1975, Smith, 1987]. In other
words, use of normalized waves eliminates “parametric amplification” effects: signal
power is decoupled from parameter changes.

10.5 SCATTERING AT AN IMPEDANCE DISCONTINUITY

When the wave impedance changes, signal scattering occurs, i.e., a traveling wave
impinging on an impedance discontinuity will partially reflect and partially transmit
at the junction in such a way that energy is conserved. This is a classical topic in
transmission line theory [Main, 1978], and it is well covered for acoustic tubes in a
variety of references [Markel and Gray, 1976, Rabiner and Schafer, 1978b]. However,
for completeness, elementary scattering relations will be outlined here for the case of
longitudinal force and velocity waves in an ideal string or rod. (In solids, force waves
are referred to as stress waves [Kolsky, 1963].) Longitudinal compression waves in
strings and rods behave like longitudinal pressure waves in acoustic tubes.

A single waveguide section between two partial sections is shown in Fig. 10.6. The
sections are numbered 0 through 2 from left to right, and their wave impedances are



PRINCIPLES OF DIGITAL WAVEGUIDE MODELS OF MUSICAL INSTRUMENTS 437

a)

b)

Figure 10.6 A waveguide section between two partial sections. a) Physical picture
indicating traveling waves in a continuous medium whose wave impedance changes
from R 0  to R1  to R 2. b) Digital simulation diagram for the same situation. The section
propagation delay is denoted as Z – T. The behavior at an impedance discontinuity is
characterized by a lossless splitting of an incoming wave into transmitted and reflected
components.
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R0 , R 1, and R2 , respectively. Such a rod might be constructed, for example, using
three different materials having three different densities. In the ith section, there are
two force traveling waves: ƒi

+  traveling to the right at speed c, and ƒ i
–  traveling to

the left at speed c. To minimize the numerical dynamic range, velocity waves may be
chosen instead when Ri > 1.

As in the case of transverse waves (10.25), the traveling longitudinal plane waves
in each section satisfy

(10.38)

where the wave impedance is now Ri  = with ρ being the mass density, and Y
being the Young’s modulus of the medium (defined as the stress over the strain, where
strain means displacement). If the wave impedance Ri is constant, the shape of a
traveling wave is not altered as it propagates from one end of a section to the other. In
this case we need only consider ƒi

+  and ƒ i
–  at one end of each section as a function of

time. As shown in Fig. 10.6, we define ƒi
± (t) as the traveling force-wave component

at the extreme left of section i. Therefore, at the extreme right of section i, we have
the traveling waves ƒi

+ (t – T) and ƒ i
–  (t + T ), where T is the travel time from one

end of a section to the other.
For generality, we may allow the wave impedances to vary with time. A number

of possibilities exist which satisfy (10.38) in the time-varying case. For the moment,
we will assume the traveling waves at the extreme right of section i are still given
by ƒ i

+ (t – T ) and ƒ i
– (t + T ). This definition, however, implies the velocity varies

inversely with the wave impedance. As a result, signal energy, being the product
of force times velocity, is “pumped” into or out of the waveguide by a changing
wave impedance. Use of normalized waves avoids this. However, normalization
increases the required number of multiplications, as we will see shortly.

As before, the physical force and velocity at the left end of section i are obtained
by summing the left- and right-goin traveling wave components:

(10.39)

Let fi(t, x) denote the force at position x and time t in section i, where x is measured
from the extreme left of section i (0 ≤ x ≤ CT ). Then we have

within section i. In particular, at the left and right boundaries of section i, we have

(10.40)

(10.41)

respectively, as labeled in Fig. 10.6b.
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10.5.1 The Kelly-Lochbaum and One-Multiply Scattering Junctions

At the impedance discontinuity, the force and velocity must be continuous, i.e.,

(10.42)

where force and velocity are defined as positive to the right on both sides of the junction.
Equations (10.38), (10.39), and (10.42) imply the following scattering equations (a
derivation is given in the next section for the more general case of N waveguides
meeting at a junction):

(10.43)

where

(10.44)

is called the ith reflection coefficient. (For generality, we allow the wave impedances,
hence the reflection coefficients, to vary with time; time variation induced by wave-
impedance variations remains “physical” and therefore does not invalidate the many
desirable passivity properties.) Since Ri (t) ≥ 0, we have k i (t)  [–1 1]. It can be
shown that if  |ki | > 1, then either R i or R i – 1 is negative, and this implies an active
(as opposed to passive) medium. Correspondingly, lattice and ladder recursive digital
filters are stable if and only if all reflection coefficients are bounded by 1 in magnitude.

The Kelly-Lochbaum scattering junction.Figure 10.7

The scattering equations are illustrated in Figs. 10.6b and 10.7. In linear predictive
coding of speech, this structure is known as the Kelly-Lochbaum scattering junction,
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and it is one of several types of scattering junction used to implement lattice and ladder
digital filter structures.

By factoring out ki (t) in each equation of (10.43), we can write

(10.45)

where
(10.46)

Thus, only one multiplication is actually necessary to compute the transmitted and
reflected waves from the incoming waves in the Kelly-Lochbaum junction. This
computation is shown in Fig. 10.8, and it is known as the one-multiply scattering
junction [Markel and Gray, 1976].

Figure 10.8 The one-multiply scattering junction.

Another one-multiply form is obtained by organizing (10.43) as

(10.47)

where

(10.48)

As in the previous case, only one multiplication and three additions are required per
junction. This one-multiply form generalizes more readily to junctions of more than
two waveguides, as we’ll see in a later section.
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A scattering junction well known in the LPC speech literature but not described
here is the so-called two-multiply junction [Markel and Gray, 1976] (requiring also
two additions). This omission is because the two-multiply junction is not valid as a
general, local , physical modeling building block. Its derivation is tied to the reflectively
terminated, cascade waveguide chain. In cases where it applies, however, it can be
the implementation of choice; for example, in DSP chips having a fast multiply-add
instruction, it may be possible to implement the two-multiply, two-add scattering
junction using only two instructions.

10.5.2 Normalized Scattering Junctions

Figure 10.9 The normalized scattering junction.

Using (10.35) to convert to normalized waves , the Kelly-Lochbaum junction (10.43)
becomes

(10.49)

as diagrammed in Fig. 10.9. This is called the normalized scattering junction [Markel
and Gray, 1976], although a more precise term would be the “normalized-wave scat-
tering junction.”

It is interesting to define θi sin–1 (ki), always possible for passive junctions since
–1 ≤ k i ≤ 1, and note that the normalized scattering junction is equivalent to a 2D
rotation:

(10.50)
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where, for conciseness of notation, the time-invariant case is written.
While it appears that scattering of normalized waves at a two-port junction requires

four multiplies and two additions, it is possible to convert this to three multiplies and
three additions using a two-multiply “transformer” to power-normalize an ordinary
one-multiply junction.

Transformer Normalization. The transformer is a lossless two-port defined by
[Fettweis, 1986]

(10.51)

The transformer can be thought of as a device which steps the wave impedance to a new
value without scattering; instead, the traveling signal power is redistributed among the
force and velocity wave variables to satisfy the fundamental relations f ± = ± Rv ±

(10.25) at the new impedance. An impedance change from Ri –1 on the left to R i on
the right is accomplished using

(10.52)

as can be quickly derived by requiring . The parameter gi

can be interpreted as the “turns ratio” since it is the factor by which force is stepped
(and the inverse of the velocity step factor).

≡ 1 .
left and right of the overall junction are at the same wave impedance. Thus, using
transformers, all waveguides can be normalized to the same impedance, e.g., Ri

The Three-Multiply Normalized Scattering Junction. Figure 10.10 illustrates a
three-multiply normalized scattering junction [Smith, 1986b]. The one-multiply junc-
tion of Fig. 10.8 is normalized by a transformer. Since the impedance discontinuity
is created locally by the transformer, all wave variables in the delay elements to the

complement arithmetic normalized to lie in [–1, 1), then the dynamic range of the
transformer coefficients is bounded by Thus, while transformer-
normalized junctions trade a multiply for an add, they require up to 50% more bits of
dynamic range within the junction adders.

It is important to notice that g i and 1/g i may have a large dynamic range in practice.
For example, if ki ∈ [– 1 + , 1 – ], the transformer coefficients may become as large
as If  is the “machine epsilon,” i.e., = 2 – (n–1) for typical n -bit two’s
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Figure 10.10 A three-multiply normalized scattering junction.

10.5.3 Junction Passivity

In fixed-point implementations, the round-off error and other nonlinear operations
should be confined when possible to physically meaningful wave variables. When
this is done, it is easy to ensure that signal power is not increased by the nonlinear
operations. In other words, nonlinear operations such as rounding can be made passive.
Since signal power is proportional to the square of the wave variables, all we need
to do is make sure amplitude is never increased by the nonlinearity. In the case of
rounding, magnitude truncation, sometime called “rounding toward zero,” is one way
to achieve passive rounding. However, magnitude truncation can attenuate the signal
excessively in low-precision implementations and in scattering-intensive applications
such as the digital waveguide mesh [Van Duyne and Smith, 1993]. Another option is
error power feedback in which case the cumulative round-off error power averages to
zero over time.

A valuable byproduct of passive arithmetic is the suppression of limit cycles and
overflow oscillations. Formally, the signal power of a conceptually infinite-precision
implementation can be viewed as a Lyapunov function bounding the squared amplitude
of the finite-precision implementation.

To formally show that magnitude truncation is sufficient to suppress overflow os-
cillations and limit cycles in waveguide networks built using structurally lossless
scattering junctions, we can look at the signal power entering and leaving the junction.
A junction is passive if the power flowing away from it does not exceed the power
flowing into it. The total power flowing away from the ith junction is bounded by the
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incoming power if

(10.53)

outgoing power incoming power

Let denote the finite-precision version of ƒ. Then a sufficient condition for junction
passivity is

(10.54)

(10.55)

Thus, if the junction computations do not increase either of the output force amplitudes,
no signal power is created. An analogous conclusion is reached for velocity scattering
junctions.

Passive Kelly-Lochbaum and One-Multiply Junctions. The Kelly-Lochbaum and
one-multiply scattering junctions are structurally lossless [Vaidyanathan, 1993] be-
cause they can be computed exactly in terms of only one parameter ki(or α i), and all
quantizations of the parameter within the allowed interval [– 1, 1] (or [0, 2]) correspond
to lossless scattering.4 The structural losslessness of the one-multiply junction has been
used to construct a numerically stable, one-multiply, sinusoidal digital oscillator [Smith
and Cook, 1992].

In the Kelly-Lochbaum and one-multiply scattering junctions, because they are
structurally lossless, we need only double the number of bits at the output of each
multiplier, and add one bit of extended dynamic range at the output of each two-
input adder. The final outgoing waves are thereby exactly computed before they are
finally rounded to the working precision and/or clipped to the maximum representable
magnitude.

For the Kelly-Lochbaum scattering junction, given n-bit signal samples and m-bit
reflection coefficients, the reflection and transmission multipliers produce n + m and
n + m + 1 bits, respectively, and each of the two additions adds one more bit. Thus, the
intermediate word length required is n + m + 2 bits, and this must be rounded without
amplification down to n bits for the final outgoing samples. A similar analysis gives
also that the one-multiply scattering junction needs n + m + 2 bits for the extended
precision intermediate results before final rounding and/or clipping.

Passive Four-Multiply Normalized Junctions. Unlike the structurally lossless cases,
the (four-multiply) normalized scattering junction has two parameters, si ki and

, and these can “get out of synch” in the presence of quantization.
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Specifically, let i si – s denote the quantized value of si, and let i c i – c de-
note the quantized value of ci . Then it is no longer the case in general that + = 1.
As a result, the normalized scattering junction is not structurally lossless in the pres-
ence of coefficient quantization. A few lines of algebra shows that a passive rounding
rule for the normalized junction must depend on the sign of the wave variable being
computed, the sign of the coefficient quantization error, and the sign of at least one of
the two incoming traveling waves. We can assume one of the coefficients is exact for
passivity purposes, so assume s= 0 and define , where [x] denotes
largest quantized value less than or equal to x. In this case we have c≥ 0. Therefore,

and a passive rounding rule which guarantees need only look at the sign
bits of and

Passive Three-Multiply Normalized Junctions. The three-multiply normalized
scattering junction is easier to “passify.” While the transformer is not structurally
lossless, its simplicity allows it to be made passive simply by using magnitude trunca-
tion on both of its coefficients as well as on its output wave variables. (The transformer
is passive when the product of its coefficients has magnitude less than or equal to 1.)
Since there are no additions following the transformer multiplies, double-precision
adders are not needed. However, precision and a half is needed in the junction adders
to accommodate the worst-case increased dynamic range. Since the one-multiply
junction is structurally lossless, the overall junction is passive if magnitude truncation
is applied to gi , 1/gi , the outgoing transformer waves, and the waves leaving the one-
multiply junction. In other words, the three-multiply normalized scattering junction is
passive as long as the transformer coefficients and the four computed wave variables
are not amplified by numerical round-off. Again these are sufficient but not necessary
conditions, and magnitude truncation will generally result in extra damping.

In summary, a general means of obtaining passive waveguide networks is to com-
pute exact results internally within each junction, and apply saturation (clipping on
overflow) and magnitude truncation (truncation toward zero) to the final outgoing wave
variables. Because the Kelly-Lochbaum and one-multiply junctions are structurally
lossless, exact intermediate results are obtainable using extended internal precision.
For the four-multiply normalized scattering junction, a passive rounding rule can be
developed based on two sign bits. For the three-multiply normalized scattering junc-
tion, it is sufficient to apply magnitude truncation to the transformer coefficients and
all four outgoing wave variables.
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10.6 SCATTERING AT A LOADED JUNCTION OF N WAVEGUIDES

In this section, scattering relations will be derived for the general case of N waveguides
meeting at a load. When a load is present, the scattering is no longer lossless, unless
the load itself is lossless (i.e., its impedance has a zero real part). For N > 2, v i

+  will
denote a velocity wave traveling into the junction, and will be called an “incoming”
velocity wave as opposed to “right-going.”5

Consider first the series junction of N waveguides containing transverse force and
velocity waves. At a series junction, there is a common velocity while the forces sum.
For definiteness, we may think of N ideal strings intersecting at a single point, and
the intersection point can be attached to a lumped load impedance RJ (s), as depicted
in Fig. 10.11 for N = 4. The presence of the lumped load means we need to look
at the wave variables in the frequency domain, i.e., V(s) = {v} for velocity waves
and F (s) = {f} for force waves, where {•} denotes the Laplace transform. In the
discrete-time case, we use the z transform instead, but otherwise the story is identical.

Figure 10.11 Four ideal strings intersecting at a point to which a lumped impedance
is attached. This is a series junction for transverse waves.

The physical constraints at the series junction are

(10.56)

(10.57)

where the reference direction for the load force FJ  is taken to be opposite that for
the F i. (It can be considered the “equal and opposite reaction” force at the junction.)
For a wave traveling into the junction, force is positive pulling up, acting toward the
junction. When the load impedance RJ (s) is zero, giving a free intersection point, the
junction reduces to the unloaded case, and signal scattering is energy preserving. In
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The parallel junction is characterized by

general, the loaded junction is lossless when re {RJ (jω)} ≡ 0, and memoryless when
im { R J (jω)} ≡ 0.

(10.58)

(10.59)

For example, Fi (s) could be pressure in an acoustic tube and Vi (s) the corresponding
volume velocity. In the parallel case, the junction reduces to the unloaded case when
the load impedance RJ (s) goes to infinity.

The scattering relations for the series junction are derived as follows, dropping the
common argument ‘(s)’ for simplicity:

(10.60)

(10.61)

(10.62)

where Ri is the wave impedance in the ith waveguide, a real, positive constant.
Bringing all terms containing VJ  to the left-hand side, and solving for the junction
velocity gives

(10.63)

(10.64)

where

(10.65)

Finally, from the basic relation VJ = V i = V i
+  + V i

– , the outgoing velocity waves
can be computed from the junction velocity and incoming velocity waves as

(10.66)



448 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

In the unloaded case, RJ (s) = 0, and we can return to the time domain and define

(10.67)

These we call the alpha parameters, and they are analogous to those used to characterize
“adaptors” in wave digital filters [Fettweis, 1986]. For unloaded junctions, the alpha
parameters obey

0 ≤ α i  ≤ 2 (10.68)

and

(10.69)

In the unloaded case, the series junction scattering relations are given (in the time
domain) by

(10.70a)

(10.70b)

The alpha parameters provide an interesting and useful parametrization of waveguide
junctions. They are explicitly the coefficients of the incoming traveling waves needed
to compute junction velocity for a series junction (or junction force or pressure at a
parallel junction), and losslessness is assured provided only that the alpha parameters
be nonnegative and sum to 2. Having them sum to something less than 2 simulates a
“resistive load” at the junction.

Note that in the lossless, equal-impedance case, in which all waveguide impedances
have the same value Ri = R , (10.67) reduces to

(10.71)

When, furthermore, N is a power of two, we have that there are no multiplies in
the scattering computation (10.70a). This fact has been used to build multiply-free
reverberators and other structures using digital waveguide meshes [Smith, 1987, Van
Duyne and Smith, 1995, Savioja et al., 1995].

10.7 THE LOSSY ONE-DIMENSIONAL WAVE EQUATION

In any real vibrating string, there are energy losses due to yielding terminations,
drag by the surrounding air, and internal friction within the string. While losses in
solids generally vary in a complicated way with frequency, they can usually be well
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approximated by a small number of odd-order terms added to the wave equation. In the
simplest case, force is directly proportional to transverse string velocity, independent of
frequency. If this proportionality constant is µ, we obtain the modified wave equation

(10.72)

Thus, the wave equation has been extended by a “first-order” term, i.e., a term propor-
tional to the first derivative of y with respect to time. More realistic loss approximations

proportional to ∂3 y/∂t3 , ∂5 y/∂ t5, and so on, giving frequency-would append terms
dependent losses.

It can be checked that, for small displacements, the following modified traveling
wave solution satisfies the lossy wave equation:

(10.73)

The left-going and right-going traveling-wave components decay exponentially in their
respective directions of travel.

Sampling these exponentially decaying traveling waves at intervals of T seconds
(or X = cT meters) gives

(10.74)

where 
The simulation diagram for the lossy digital waveguide is shown in Fig. 10.12.

Figure 10.12 Discrete simulation of the ideal, lossy waveguide.

Again the discrete-time simulation of the decaying traveling-wave solution is an
exact implementation of the continuous-time solution at the sampling positions and
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instants, even though losses are admitted in the wave equation. Note also that the losses
which are distributed in the continuous solution have been consolidated, or lumped,
at discrete intervals of cT meters in the simulation. The loss factor g = e – µ T / 2e

summarizes the distributed loss incurred in one sampling interval. The lumping of
distributed losses does not introduce an approximation error at the sampling points.
Furthermore, bandlimited interpolation can yield arbitrarily accurate reconstruction
between samples. The only restriction is again that all initial conditions and excitations
be bandlimited to below half the sampling rate.

10.7.1 Loss Consolidation

In many applications, it is possible to realize vast computational savings in digital
waveguide models by commuting losses out of unobserved and undriven sections of the
medium and consolidating them at a minimum number of points. Because the digital
simulation is linear and time invariant (given constant medium parameters K, , µ), and
because linear, time-invariant elements commute, the diagram in Fig. 10.13 is exactly
equivalent (to within numerical precision) to the previous diagram in Fig. 10.12.

Figure 10.13 Discrete-time simulation of the ideal, lossy waveguide. Each per-sample
loss factor g may be “pushed through” delay elements and combined with other loss
factors until an input or output is encountered which inhibits further migration. If further
consolidation is possible on the other side of a branching node, a loss factor can be
pushed through the node by pushing a copy into each departing branch. If there are
other inputs to the node, the inverse of the loss factor must appear on each of them.
Similar remarks apply to pushing backwards through a node.
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10.7.2 Frequency-Dependent Losses

In nearly all natural wave phenomena, losses increase with frequency. Distributed
losses due to air drag and internal bulk losses in the string tend to increase with
frequency. Similarly, air absorption increases with frequency, adding loss for sound
waves in acoustic tubes or open air [Morse and Ingard, 1968].

The solution of a lossy wave equation containing higher odd-order derivatives with
respect to time yields traveling waves which propagate with frequency-dependent
attenuation. Instead of scalar factors g distributed throughout the diagram, we obtain
lowpass filters having frequency-response per sample denoted by G (ω). If the wave
equation (10.1) is modified by adding terms proportional to ∂3y/∂ t3 and ∂ 5y / ∂ t5 , for
instance, then G(ω) is generally of the form

G(ω) = g0 + g2 ω2 + g4 ω4

where the gi are constants depending on the constant coefficients in the wave equation.
These per-sample loss filters may also be consolidated at a minimum number of
points in the waveguide without introducing an approximation error in the linear,
time-invariant case.

of the optimal rational loss filter are obtained by minimizing Gk (ω) – k(ejωT )  
with respect to the filter coefficients or the poles and zeros of the filter. To avoid
introducing frequency-dependent delay, the loss filter should be a zero-phase, finite-
impluse-response (FIR) filter [Rabiner and Gold, 1975]. Restriction to zero phase
requires the impulse response k (n) to be finite in length (i.e., an FIR filter) and it
must be symmetric about time zero, i.e., k(–n) = k (n). In most implementations,
the zero-phase FIR filter can be converted into a causal, linear phase filter by reducing
an adjacent delay line by half of the impulse-response duration.

In an efficient digital simulation, lumped loss factors of the form Gk (ω) are ap-
proximated by a  rational frequency response k (e jωT ). In general, the coefficients

10.8 THE DISPERSIVE ONE-DIMENSIONAL WAVE EQUATION

Stiffness in a vibrating string introduces a restoring force proportional to the fourth
derivative of the string displacement [Morse, 1981]:

where, for a cylindrical string of radius a and Young’s modulus Y, the moment constant
k is equal to k = Y πa 4 /4.

At very low frequencies, or for very small k, we return to the non-stiff case. At
very high frequencies, or for very large k, we approach the ideal bar in which stiffness
is the only restoring force. At intermediate frequencies, between the ideal string and
bar, the stiffness contribution can be treated as a correction term [Cremer, 1984]. This
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is the region of most practical interest because it is the principal operating region for
strings, such as piano strings, whose stiffness has audible consequences (an inharmonic,
stretched overtone series). The first-order effect of stiffness is to increase the wave
propagation speed with frequency:

where c0 is the wave travel speed in the absence of stiffness. Since sound speed
depends on frequency, traveling waveshapes will “disperse” as they propagate along
the string. That is, a traveling wave is no longer a static shape moving with speed c and
expressible as a function of t ± x /c. In a stiff string, the high frequencies propagate
faster than the low-frequency components. As a result, a traveling velocity step, such
as would be caused be a hammer strike, “unravels” into a smoother velocity step with
high-frequency “ripples” running out ahead.

In a digital simulation, a frequency-dependent speed of propagation can be imple-
mented in a lumped fashion using allpass filters which have a non-uniform delay
versus frequency.

Since the temporal and spatial sampling intervals are related by X = cT, this must
generalize to X = c(ω)T T(ω) = X/c(ω) = c0T0 /c(ω), where T0 = T (0) is
the size of a unit delay in the absence of stiffness. Thus, a unit delay z–1 m a y  b e
replaced by

(for frequency-dependent wave velocity)

That is, each delay element becomes an allpass filter which approximates the required
delay versus frequency. A diagram appears in Fig. 10.14, where Ha (z) denotes the
allpass filter which provides a rational approximation to z– c 0 / c ( ω ) .

For computability of the string simulation in the presence of scattering junctions,
there must be at least one sample of pure delay along each uniform section of string.
This means for at least one allpass filter in Fig. 10.14, we must have Ha ( ∞) = 0
which implies Ha (z) can be factored as z–1H'a (z), where H'a (z) is a causal, stable
allpass. In a systolic VLSI implementation, it is desirable to have at least one real
delay from the input to the output of every allpass filter, in order to be able to pipeline
the computation of all of the allpass filters in parallel. Computability can be arranged
in practice by deciding on a minimum delay, (e.g., corresponding to the wave velocity
at a maximum frequency), and using an allpass filter to provide excess delay beyond
the minimum.

Because allpass filters are linear and time invariant, they commute like gain factors
with other linear, time-invariant components. Fig. 10.15 shows a diagram equivalent
to Fig. 10.14 in which the allpass filters have been commuted and consolidated at
two points. For computability in all possible contexts (e.g., when looped on itself), a
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Figure 10.14 Section of a stiff string where allpass filters play the role of unit delay
elements.

single sample of delay is pulled out along each rail. The remaining transfer function,
Hc (z) = zH 3

a (z) in the example of Fig. 10.15, can be approximated using any allpass
filter design technique [Laakso et al., 1996, Lang and Laakso, 1994, Yegnanarayana,
1982]. Alternatively, both gain and dispersion for a stretch of waveguide can be
provided by a single filter which can be designed using any general-purpose filter
design method which is sensitive to frequency-response phase as well as magnitude;
examples include equation error methods (such as used in the Matlab invfreqz ()
function [Smith, 1983, pp. 48–50]), and Hankel norm methods [Gutknecht et al.,
1983, Beliczynski et al., 1992].

In the case of a lossless, stiff string, if Hc(Z) denotes the consolidated allpass transfer
function, it can be argued that the filter design technique used should minimize the
phase-delay error, where phase delay is defined by

(Phase Delay)

Minimizing the Chebyshev norm of the phase-delay error, Pc ( ) – c0 / c(ω) ∞ ,
approximates minimization of the error in mode tuning for the freely vibrating string
[Smith, 1983, pp. 182–184]. Since the stretching of the overtone series is typically
what we hear most in a stiff, vibrating string, the worst-case phase-delay error seems
a good choice in such a case. However, psychoacoustic experiments are necessary
to determine the error tolerance and the relative audibility of different kinds of error
behaviors.

ω
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Section of a stiff string where the allpass delay elements are consolidatedFigure 10.15
at two points, and a sample of pure delay is extracted from each allpass chain.

Alternatively, a lumped allpass filter can be designed by minimizing group delay,

(Group Delay)

The group delay of a filter gives the delay experienced by the amplitude envelope of a
narrow frequency band centered at ω, while the phase delay applies to the “carrier” at
ω, or a sinusoidal component at frequency ω [Papoulis, 1977]. As a result, for proper
tuning of overtones, phase delay is what matters, while for precisely estimating (or
controlling) the decay time in a lossy waveguide, group delay gives the effective filter
delay “seen” by the exponential decay envelope.

To model stiff strings, the allpass filter must supply a phase delay which decreases
as frequency increases. A good approximation may require a fairly high-order filter,
adding significantly to the cost of simulation. To a large extent, the allpass order
required for a given error tolerance increases as the number of lumped frequency-
dependent delays is increased. Therefore, increased dispersion consolidation is ac-
companied by larger required allpass filters, unlike the case of resistive losses.
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Part II — Applications
We will now review selected applications in digital waveguide modeling, specifically

single-reed woodwinds (such as the clarinet), and bowed strings (such as the violin).
In these applications, a sustained sound is synthesized by the interaction of the digital
waveguide with a nonlinear junction causing spontaneous, self-sustaining oscillation
in response to an applied mouth pressure or bow velocity, respectively. This type of
nonlinear oscillation forms the basis of the Yamaha “VL” series of synthesizers (“VL”
standing for “virtual lead”).

10.9 SINGLE-REED INSTRUMENTS

A simplified model for a single-reed woodwind instrument is shown in Fig. 10.16.

Figure 10.16 A schematic model for woodwind instruments.

If the bore is cylindrical, as in the clarinet, it can be modeled quite simply using a
bidirectional delay line [Smith, 1986a, Hirschman, 1991]. If the bore is conical, such
as in a saxophone, it can still be modeled as a bidirectional delay line, but interfacing
to it is slightly more complex, especially at the mouthpiece [Benade, 1988, Gilbert
et al., 1990, Smith, 1991, Välimäki and Karjalainen, 1994a, Scavone, 1997] Because
the main control variable for the instrument is air pressure in the mouth at the reed, it
is convenient to choose pressure wave variables.

To first order, the bell passes high frequencies and reflects low frequencies, where
“high” and “low” frequencies are divided by the wavelength which equals the bell’s
diameter. Thus, the bell can be regarded as a simple “cross-over” network, as is
used to split signal energy between a woofer and tweeter in a loudspeaker cabinet.
For a clarinet bore, the nominal “cross-over frequency” is around 1500 Hz [Benade,
1976]. The flare of the bell lowers the cross-over frequency by decreasing the bore
characteristic impedance toward the end in an approximately non-reflecting manner
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[Berners and Smith, 1994]; it serves a function analogous to that of a transformer
coupling of two electrical transmission lines.

Tone holes can also be treated as simple cross-over networks. However, it is
more accurate to utilize measurements of tone-hole acoustics in the musical acoustics
literature and convert the “transmission matrix” description, often used in the acoustics
literature, to the traveling-wave formulation by a simple linear transformation.6 For
typical fingerings, the first few open tone holes jointly provide a bore termination
[Benade, 1976]. Either the individual tone holes can be modeled as (interpolated)
scattering junctions, or the whole ensemble of terminating tone holes can be modeled
in aggregate using a single reflection and transmission filter, like the bell model.
The tone-hole model can be simply a lossy two-port junction, to model only the
internal bore loss characteristics, or a three-port junction, when it is desired also
to model accurately the transmission characteristics to the outside air. Since the
tone-hole diameters are small compared with most audio wavelengths, the reflection
and transmission coefficients can be implemented to a reasonable approximation as
constants, as opposed to crossover filters as in the bell. Taking into account the
inertance of the air mass in the tone hole, the tone hole can be modeled as a two-
port loaded junction having load impedance given by the air-mass inertance [Fletcher
and Rossing, 1993, Välimäki et al., 1993]. At a higher level of accuracy, adapting
transmission-matrix parameters from the best available musical acoustics literature
[Keefe, 1982, Keefe, 1990] yields first-order reflection and transmission filters in the
s-plane, and second-order digital approximations give very good approximations in the
z-plane [Scavone, 1997, Scavone and Smith, 1997, Smith and Scavone, 1997]. Digital
waveguide models of tone holes are elaborated further in [Scavone, 1997, Välimäki,
1995]. Outstanding issues for tone hole models include nonlinear fluid dynamics
effects such as vortex shedding and flow separation at the tone hole [Hirschberg et al.,
1995, Hirschberg et al., 1991]. For simple practical implementations, the bell model
can be used unchanged for all tunings, as if the bore were being cut to a new length for
each note and the same bell were attached.

Since the length of the clarinet bore is only a quarter wavelength at the fundamental
frequency, (in the lowest, or “chalumeau” register), and since the bell diameter is much
smaller than the bore length, most of the sound energy traveling into the bell reflects
back into the bore. The low-frequency energy that makes it out of the bore radiates
in a fairly omnidirectional pattern. Very high-frequency traveling waves do not “see”
the enclosing bell and pass right through it, radiating in a more directional beam.
The directionality of the beam is proportional to how many wavelengths fit along the
bell diameter; in fact, many wavelengths away from the bell, the radiation pattern is
proportional to the two-dimensional spatial Fourier transform of the exit aperture (a
disk at the end of the bell) [Morse and Ingard, 1968].

The theory of the single reed is described in [McIntyre et al., 1983]. In the digital
waveguide clarinet model described below [Smith, 1986a], the reed is modeled as
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a signal- and embouchure-dependent nonlinear reflection coefficient terminating the
bore. Such a model is possible because the reed mass is neglected. The player’s
embouchure controls damping of the reed, reed aperture width, and other parameters,
and these can be implemented as parameters on the contents of the lookup table or
nonlinear function.

10.9.1 Clarinet Overview

Figure 10.17 Waveguide model of a single-reed, cylindrical-bore woodwind, such as
a clarinet.

A diagram of the basic clarinet model is shown in Fig. 10.17. The delay-lines carry
left-going and right-going pressure samples p +

b and p –
b (respectively) which sample

the traveling pressure-wave components within the bore.
The reflection filter at the right implements the bell or tone-hole losses as well as
the round-trip attenuation losses from traveling back and forth in the bore. The bell
output filter is highpass, and power complementary with respect to the bell reflection
filter [Vaidyanathan, 1993].

At the far left is the reed mouthpiece controlled by mouth pressure pm . Another
control is embouchure, changed in general by modifying the reflection-coefficient

function , where A simple choice of embouchure control
is an offset in the reed-table address. Since the main feature of the reed table is
the pressure-drop where the reed begins to open, a simple embouchure offset can
implement the effect of biting harder or softer on the reed, or changing the reed
stiffness.
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10.9.2 Single-Reed Theory

Figure 10.18 Schematic diagram of mouth cavity, reed aperture, and bore.

A simplified diagram of the clarinet mouthpiece is shown in Fig. 10.18. The pressure
in the mouth is assumed to be a constant value pm , and the bore pressure pb  is defined
located at the mouthpiece. Any pressure drop p ∆  = pm  – pb across the mouthpiece
causes a flow u m into the mouthpiece through the reed-aperture impedance Rm (p ∆ )
which changes as a function of p∆ since the reed position is affected by p∆ .

The fundamental equation governing the action of the reed is continuity of volume
velocity, i.e.,

(10.75)

where
(10.76)

and

(10.77)

is the volume velocity corresponding to the incoming pressure wave p+
b and outgoing

pressure wave p – . (The physical pressure in the bore at the mouthpiece is of courseb
p b = p +

b  + p –
b .) The wave impedance of the bore air-column is denoted Rb (computable

as the air density times sound speed c divided by cross-sectional area).
In operation, the mouth pressure pm and incoming traveling bore pressure p+

b are
given, and the reed computation must produce an outgoing bore pressure p–

b which
satisfies (10.75), i.e., such that

(10.78)
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Solving for p–
b is not immediate because of the dependence of Rm  on p∆  which,

in turn, depends on p –
b . A graphical solution technique was proposed [Friedlander,

1953, Keller, 1953, McIntyre et al., 1983] which, in effect, consists of finding the
intersection of the two terms of the equation as they are plotted individually on the same
graph, varying p –

b . This is analogous to finding the operating point of a transistor by
intersecting its operating curve with the “load line” determined by the load resistance.

It is helpful to normalize (10.78) as follows: Define
and note that

where Then (10.78) can be multiplied
through by Rb  and written as 0 = G (p∆ ) + p∆ – p +

∆ , or

(10.79)

The solution is obtained by plotting G(x ) and p +
∆ – x on the same graph, finding

the point of intersection at (x, y ) coordinates (p∆ , G(p∆ )), and computing finally the
outgoing pressure wave sample as

(10.80)

An example of the qualitative appearance of G(x) overlaying p+
∆ – x is shown in

Fig. 10.19.

Figure 10.19 Normalized reed impedance
‘“bore load line”

overlaid with the
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Scattering-Theoretic Formulation of the Reed. Equation (10.78) can be solved for
p–

b
 to obtain

(10.81)

(10.82)

(10.83)

where

(10.84)

We interpret ρ(p∆ ) as a signal-dependent reflection coefficient.
Since the mouthpiece of a clarinet is nearly closed, Rm  » R b  which implies r ≈ 0

and ρ ≈ 1. In the limit as Rm  goes to infinity relative to Rb , (10.82) reduces to the
simple form of a rigidly capped acoustic tube, i.e., p –

b  =  p +
b .

Computational Methods. Since finding the intersection of G(x) and p +
∆ – x re-

quires an expensive iterative algorithm with variable convergence times, it is not well
suited for real-time operation. In this section, fast algorithms based on precomputed
nonlinearities are described.

Let h denote half-pressure p/2, i.e., and Then (10.83)
becomes

(10.85)

Subtracting this equation from p +
b gives

(10.86)

The last expression above can be used to precompute ρ as a function of
+pb = pm /2 – p +

b . Denoting this newly defined function as

(10.87)

(10.85) becomes
(10.88)
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This is the form chosen for implementation in Fig. 10.17. The control variable is mouth
half-pressure hm , and  h +

∆ = h m – p b
+ is computed from the incoming bore pressure

using only a single subtraction. The table is indexed by h+
∆ , and the result of the lookup

+is then multiplied by h Finally, the result of the multiplication is subtracted from∆
h m  to give the outgoing pressure wave into the bore. The cost of the reed simulation
is only two subtractions, one multiply, and one table lookup per sample.

Because the table contains a coefficient rather than a signal value, it can be more
heavily quantized both in address space and word length than a direct lookup of a
signal value such as p∆ (p

+
∆ )  or the like. A direct signal lookup, though requiring

much higher resolution, would eliminate the multiply associated with the scattering
coefficient.

Simple, qualitatively chosen reed table for the digital waveguide clarinet.Figure 10.20

In the field of computer music, it is customary to use simple piecewise linear
functions for functions other than signals at the audio sampling rate, e.g., for amplitude
envelopes, FM-index functions, and so on [Roads and Strawn, 1985, Roads, 1989].
Along these lines, good initial results were obtained using the simplified qualitatively
chosen table

(10.89)

depicted in Fig. 10.20 for m = 1/(hc
∆  + 1). The corner point h c

∆ is the smallest
pressure difference giving reed closure. Embouchure and reed stiffness correspond7

to the choice of offset h c
∆  and slope m. For simplicity, an additive offset for shifting

the curve laterally is generally used as an embouchure parameter. Brighter tones are
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obtained by increasing the curvature of the function as the reed begins to open; for
example, one can use    for increasing k ≥ 1.

Another approach is to replace the table-lookup contents by a piecewise polynomial
approximation. While less general, good results have been obtained in practice [Cook,
1992, Cook, 1996]. For example, one of the SynthBuilder clarinet patches employs
this technique using a cubic polynomial [Porcaro et al., 1995].

An intermediate approach between table lookups and polynomial approximations
is to use interpolated table lookups. Typically, linear interpolation is used, but higher
order polynomial interpolation can also be considered [Laakso et al., 1996].

Practical Details. To finish off the clarinet example, the remaining details of the
SynthBuilder clarinet patch “Clarinet2.sb” are described.

The input mouth pressure is summed with a small amount of white noise, corre-
sponding to turbulence. For example, 0.1% is generally used as a minimum, and larger
amounts are appropriate during the attack of a note. Ideally, the turbulence level should
be computed automatically as a function of pressure drop p∆ and reed opening geom-
etry [Flanagan and Ishizaka, 1976, Verge, 1995]. It should also be lowpass filtered as
predicted by theory.

Referring to Fig. 10.17, the reflection filter is a simple one-pole with transfer
function

(10.90)

where a1 (t) = v (t) – 0.642, v (t) = A v  sin(2πfv t), A v  is vibrato amplitude (e.g.,
0.03), and fv  is vibrato frequency (e.g., 5 Hz). Further loop filtering occurs as a result
of using simple linear interpolation of the delay line. (There is only one delay line in
the actual implementation since the lower delay line of Fig. 10.17 can be commuted
with the reflection filter and combined with the upper delay line, ignoring the path to
the output filter since a pure delay of less than a period in the final output sound is
inconsequential.) There is no transmission filter or tone-hole modeling in this simple
patch.

Legato note transitions are managed using two delay line taps and cross-fading from
one to the other during a transition [Jaffe and Smith, 1995, Smith, 1996].

10.10 BOWED STRINGS

A schematic block diagram for bowed strings is shown in Fig. 10.21. The bow divides
the string into two sections, so the bow model is a nonlinear two-port, in contrast with
the reed which was a nonlinear one-port terminating the bore at the mouthpiece. In the
case of bowed strings, the primary control variable is bow velocity, so velocity waves
are the natural choice for the delay lines.
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Figure 10.21 A schematic model for bowed-string instruments.

The theory of bow-string interaction is described in [Cremer, 1984, Friedlander,
1953, Keller, 1953, McIntyre and Woodhouse, 1979, McIntyre et al., 1983]. The
basic operation of the bow is to reconcile the bow-string friction curve with the string
state and string wave impedance. In a bowed string simulation as in Fig. 10.21, a
velocity input (which is injected equally in the left- and right-going directions) must
be found such that the transverse force of the bow against the string is balanced by
the reaction force of the moving string. If bow-hair dynamics are neglected, the bow-
string interaction can be simulated using a memoryless table lookup or segmented
polynomial in a manner similar to single-reed woodwinds.

10.10.1 Violin Overview

A more detailed diagram of the digital waveguide implementation of the bowed-string
instrument model is shown in Fig. 10.22 [Smith, 1986a]. The right delay-line pair
carries left-going and right-going velocity waves samples +

s,r and  –
s,r , respectively,

which sample the traveling-wave components within the string to the right of the bow,
and similarly for the section of string to the left of the bow. The ‘+’ superscript refers
to waves traveling into the bow.

String velocity at any point is obtained by adding a left-going velocity sample to the
right-going velocity sample immediately opposite in the other delay line, as indicated
in Fig. 10.22 at the bowing point. The reflection filter at the right implements the
losses at the bridge, bow, nut or finger-terminations (when stopped), and the round-
trip attenuation/dispersion from traveling back and forth on the string. To a very
good degree of approximation, the nut reflects incoming velocity waves (with a sign
inversion) at all audio wavelengths. The bridge behaves similarly to a first order, but
there are additional (complex) losses due to the finite bridge driving-point impedance
(necessary for transducing sound from the string into the resonating body).

u u
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Figure 10.22 Waveguide model for a bowed string instrument, such as a violin.

Figure 10.22 is drawn for the case of the lowest note. For higher notes the delay lines
between the bow and nut are shortened according to the distance between the bow and
the finger termination. The bow-string interface is controlled by differential velocity
u +

∆ which is defined as the bow velocity minus the current string velocity. Other
controls include bow force and angle which are changed by modifying the reflection-
coefficient ρ(u+

∆ ). Bow position is changed by taking samples from one delay-line
pair and appending them to the other delay-line pair. Delay-line interpolation can be
used to provide continuous change of bow position.

10.10.2 The Bow-String Scattering Junction

A derivation analogous to that for the single reed is possible for the simulation of the
bow-string interaction. The final result is as follows.

where u s,r denotes transverse velocity on the segment of the bowed string to the right
of the bow, and u s,l denotes velocity waves to the left of the bow. In addition we have

 where ub  is bow velocity, and
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Figure 10.23 illustrates a simplified, piecewise linear bow table   . The flat
center portion corresponds to a fixed reflection coefficient “seen” by a traveling wave
encountering the bow stuck against the string, and the outer sections of the curve give a
smaller reflection coefficient corresponding to the reduced bow-string interaction force
while the string is slipping under the bow. The notation v c

∆ at the corner point denotes
the capture or break-away differential velocity. Note that hysteresis (which explains
the “pitch flattening effect” when bow force is too heavy [McIntyre and Woodhouse,
1979]) is neglected.

465

The impedance ratio is defined as r(v∆ ) = 0.25 Rb (v∆) /Rs , where v∆ = v b  – v s is
the velocity of the bow minus that of the string, is the
string velocity in terms of traveling waves, Rs is the wave impedance of the string,
and Rb (v∆) is the friction coefficient for the bow against the string, i.e., bow force
Fb  (v∆ ) = Rb ( v∆ ) .  v∆ . (Force and velocity point in the same direction when they
have the same sign.)

Nominally, Rb (v∆) is constant (the so-called static coefficient of friction) for |v ∆ | ≤
v c

∆ , where v c
∆ is both the capture and break-away differential velocity. For |v ∆ | > v c

∆,
R b (v∆) falls quickly to a low dynamic coefficient of friction. It is customary in
the bowed-string physics literature to assume that the dynamic coefficient of friction
continues to approach zero with increasing |v ∆ | > v c

∆  [McIntyre et al., 1983, Cremer,
1984]. However, plausible bowed-string behavior can also be obtained using a simpler,
idealized friction model [Guettler, 1992], in which the bow alternates between acting
as a “velocity source” (while stuck to the string) and as a “force source” (while slipping
against the string).

Figure 10.23 Simple, qualitatively chosen bow table for the digital waveguide violin.
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10.11 CONCLUSIONS

Starting with the traveling-wave solution to the wave equation and sampling across
time and space, we obtained a modeling framework known as the “digital waveguide”
approach. Its main feature is computational economy in the context of a true physical
model. Successful computational models have been obtained for the singing voice,
several musical instruments of the string, wind, brass, and percussion families, and
more are under development.

Physics-based synthesis can provide extremely high quality and expressivity in a
very compact algorithm. Such computational models can provide extremely low bit
rates at very high quality levels for certain sounds. In addition to data compression
applications, such models can also provide a foundation for the future evolution of
musical instruments, moving it from the real world of wood and metal into the “virtual
world” where formerly impossible modifications are easily tried out.

Notes

1. The Yamaha VL1, introduced in 1994, appears to be the first synthesizer based on physical modeling
principles. Korg introduced a related product in 1995. Since then, simplified software-only implementations
have appeared.

2. As a specific example, the SynthBuilder virtual electric guitar patch implements 6 “steel” strings, a
stereo flanger, amplifier distortion and feedback, and on-chip vibrato, in real time at a 22 kHz sampling rate,
on a single Motorola DSP56001 DSP chip, clocked at 25 MHz, with 8 kWords of zero-wait-state SRAM
[Porcaro et al., 1995].

3. Note that a “spring reverb” is essentially a one-dimensional structure, “plate reverbs” are primarily
two-dimensional, and concert halls are three-dimensional. Since each of these increases in dimensionality
is associated with a significant increase in quality, it is reasonable to conjecture that simulated reverberation
in four dimensions or more may be even better.

4. Here it is assumed that – k i  and 1 ± k   in the Kelly-Lochbaum junction can be computed exactlyi

from k i in the number system being used. This is the case in two’s complement arithmetic as is typically
used in practice.

5. In the acoustic tube literature which involves only a cascade chain of acoustic waveguides, x + is
taken to be traveling to the right along the axis of the tube [Markel and Gray, 1976]. In classical network
theory [Belevitch, 1968] and in circuit theory, velocity (current) at the terminals of an N-port device is by
convention taken to be positive when it flows into the device.

6. For example, given [p u T  = M  T where and  are the pressure and volume velocity1 , 1 ] [ p 2 u 2  ]  p l u 1

on one side of a tone hole in an acoustic tube, p and u are the corresponding variables on the other side of2 2

the tone hole, and M is the transmission matrix, the transmission matrix formulation is easily converted to
a scattering matrix formulation by replacing p  by  pi  + p , replacing u  by (p  – p+ )/R  where R  isi i i i i

the wave impedance at position i in the tube, and solving for [p – , p–  ] in terms of [p+ ,  p+ ], where p+  are1 2 1 2 i

the known incoming traveling waves and p –  are the unknown traveling waves which are scattered outwardi

by the tone hole.

7. For operation in fixed-point DSP chips, the independent variable  is generally
confined to the interval [–1, 1). Note that having the table go all the way to zero at the maximum negative
pressure h + = –1 is not physically reasonable (0.8 would be more reasonable), but it has the practical
benefit that when the lookup-table input signal is about to clip, the re flection coefficient goes to zero, thereby

∆

opening the feedback loop.

, 

i i
– –+ 
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Digital Audio Broadcasting, 40
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Flutter (See Restoration)
Flutter, 177
Force waves, 432
Formant, 302, 322

speech, 245
Forward masking

auditory, 246
Fourier transform, 285
Frame size (Layer 1, 2), 76
Frequency domain smearing, 9, 13
Frequency modulation, 178, 315
Frequency response envelope, 95, 100, 119, 123

G.729 speech codec, 34
GSM (Global System for Mobile communications),

21, 25, 29
GSM speech codecs, 21
Gap detection

auditory, 243
Gaussian, 159
Gibbs Sampler, 149
Global degradation, 135
Glottal pulses, 245
Golden ear, 7
Gramophone disc recordings (See Sound

recordings)
Grifiths-Jim array, 269–270, 272
Groove deformation, 183

Hair cells, 240, 243, 245, 259
Hammond organs, 336
Hankel norm, 453
Hanning window, 14, 16
Harmonicity,  315
Head-related transfer function (HRTF), 92,

102-103
Hearing aid acoustics, 251
Hearing aid cosmetics, 237
Hearing aid

behind-the-ear, 249
in-the-ear, 249
linear, 248, 251

Hearing impairment, 236
Hearing loss, 236–237, 243, 247

central, 247
conductive, 239
retrocochlear, 247
simulated, 245

High-pass filter (See Detection)
High-pass filter, 156, 160
Hilbert transform

definition, 409
Householder matrix, 125
Huffman coding, 65
Hybrid filter bank, 56
Hyperparameters, 182

IIR Filter (See Infinite Impulse Response Filter)
IRCAM

4B, 213
4c, 214
4X, 215
ISPW, 232

IRIS
X-20, 225




