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INTRODUCTION

Karlheinz Brandenburg and Mark Kahrs

With the advent of multimedia, digital signal processing (DSP) of sound has emerged
from the shadow of bandwidth-limited speech processing. Today, the main appli-
cations of audio DSP are high quality audio coding and the digital generation and
manipulation of music signals. They share common research topics including percep-
tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless
very important topics are hearing aids using signal processing technology and hardware
architectures for digital signal processing of audio. In al these aress the last decade
has seen a significant amount of application oriented research.

The topics covered here coincide with the topics covered in the biannua work-
shop on “Applications of Signal Processing to Audio and Acoustics’. This event is
sponsored by the IEEE Signal Processing Society (Technical Committee on Audio
and Electroacoustics) and takes place at Mohonk Mountain House in New Paltz, New
York.

A short overview of each chapter will illustrate the wide variety of technical material
presented in the chapters of this book.

John Beerends: Perceptual Measurement Techniques. The advent of perceptual
measurement techniquesis a byproduct of the advent of digital coding for both speech
and high quality audio signals. Traditional measurement schemes are bad estimates for
the subjective quality after digital coding/decoding. Listening tests are subject to sta-
tistical uncertainties and the basic question of repeatability in a different environment.
John Beerends explains the reasons for the development of perceptual measurement
techniques, the psychoacoustic fundamental s which apply to both perceptual measure-
ment and perceptual coding and explains some of the more advanced techniques which
have been developed in the last few years. Completed and ongoing standardization
efforts concludes his chapter. This is recommended reading not only to people inter-
ested in perceptual coding and measurement but to anyone who wants to know more
about the psychoacoustic fundamentals of digital processing of sound signals.
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Karlheinz Brandenburg: Perceptual Coding of High Quality Digital Audio.
High quality audio coding is rapidly progressing from a research topic to widespread
applications. Research in this field has been driven by a standardization process within
the Motion Picture Experts Group (MPEG). The chapter gives a detailed introduction
of the basic techniquesincluding a study of filter banks and perceptual models. Asthe
main example, MPEG Audio is described in full detail. This includes a description of
the new MPEG-2 Advanced Audio Coding (AAC) standard and the current work on
MPEG-4 Audio.

William G. Gardner: Reverberation Algorithms. This chapter is the first in a
number of chapters devoted to the digital manipulation of music signals. Digitally
generated reverb was one of the first application areas of digital signal processing
to high quality audio signals. Bill Gardner gives an in depth introduction to the
physical and perceptual aspects of reverberation. The remainder of the chapter treats
the different types of artificial reverberators known today. The main quest in this
topic isto generate natural sounding reverb with low cost. Important milestonesin the
research, various historic and current types of reverberators are explained in detail.

Simon Godsill, Peter Rayner and Olivier Cappé Digital Audio Restoration.
Digital signal processing of high quality audio does not stop with the synthesis or
manipulation of new material: One of the early applications of DSP was the manipula-
tion of sounds from the past in order to restore them for recording on new or different
media. The chapter presents the different methods for removing clicks, noise and other
artifacts from old recordings or film material.

Mark Kahrs: Digital Audio System Architecture. An often overlooked part of the
processing of high quality audio is the system architecture. Mark Kahrs introduces
current technologies both for the conversion between analog and digital world and
the processing technologies. Over the years there is a clear path from specialized
hardware architectures to general purpose computing engines. The chapter covers
specialized hardware architectures as well as the use of generally available DSP chips.
The emphasis is on high throughput digital signal processing architectures for music
synthesis applications.

James M. Kates: Signal Processing for Hearing Aids. A not so obvious application
area for audio signa processing is the field of hearing aids. Nonetheless this field
has seen continuous research activities for a number of years and is another field
where widespread application of digital technologies is under preparation today. The
chapter contains an in-depth treatise of the basics of signal processing for hearing
aids including the description of different types of hearing loss, simpler amplification
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and compression techniques and current research on multi-microphone techniques and
cochlear implants.

Jean Laroche: Time and Pitch Scale Moadification of Audio Signals. One of
the conceptionally simplest problems of the manipulation of audio signalsis difficult
enough to warrant ongoing research for a number of years: Jean Laroche explains
the basics of time and pitch scale modification of audio signals for both speech and
musical signals. He discusses both time domain and frequency domain methods
including methods specially suited for speech signals.

Dana C. Massie: Wavetable Sampling Synthesis. The most prominent example
today of the application of high quality digital audio processing is wavetable sam-
pling synthesis. Tens of millions of computer owners have sound cards incorporating
wavetable sampling synthesis. Dana Massie explains the basics and modern technolo-
gies employed in sampling synthesis.

T.F. Quatieri and R.J. McAulay: Audio Signal Processing Based on Sinusoidal
AnalysigSynthesis. One of the basic paradigms of digital audio analysis, coding
(i.e. analysig/synthesis) and synthesis systems is the sinusoidal model. It has been
used for many systems from speech coding to music synthesis. The chapter contains
the unified view of both the basics of sinusoidal analysis/synthesis and some of the
applications.

Julius O. Smith I11: Principles of Digital Waveguide Models of Musical Instru-
ments. This chapter describes a recent research topic in the synthesis of music
instruments. Digital waveguide models are one method of physical modeling. Asin
the case of the Vocoder for speech, amodel of an existing or hypothetical instrument
is used for the sound generation. In the tutoria the vibrating string is taken as the
principle illustrative example. Another example using the same underlying principles
is the acoustic tube. Complicated instruments are derived by adding signal scattering
and reed-bore or bow-string interactions.

Summary This book was written to serve both as a text book for an advanced
graduate course on digital signal processing for audio or as a reference book for the
practicing engineer. We hope that this book will stimulate further research and interest
in this fascinating and exciting field.
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1 AUDIO QUALITY DETERMINATION
BASED ON PERCEPTUAL
MEASUREMENT TECHNIQUES

John G. Beerends

Royal PTT Netherlands N.V.
KRN Research, P. Box 421, AK Leidenham
The Netherlands

J.G.Beerends@research.kpn.com

Abstract: A new, perceptual, approach to determine audio quality is discussed.
The method does not characterize the audio system under test but characterizes the
perception of the output signal of the audio system. By comparing the degraded output
with the ideal (reference), using a model of the human auditory system, predictions can
be made about the subjectively perceived audio quality of the system output using any
input signal. A perceptual model is used to calculate the internal representations of both

the degraded output and reference. A simple cognitive model interprets differences
between the internal representations. The method can be used for quality assessment
of wideband music codecs as well as for telephone-band (300-3400 Hz) speech codecs.
The correlation between subjective and objective results is above 0.9 for a wide variety
of databases derived from subjective quality evaluations of music and speech codecs.
For the measurement of quality of telephone-band speech codecs a simplified method
is given. This method was standardized by the International Telecommunication Union
(Telecom sector) as recommendation P.861.

1.1 INTRODUCTION

With the introduction and standardization of new, perception based, audio (speech
and music) codecs, [1S092st, 1993], [1SO94st, 1994], [ETSIstdR06, 1992], [CCIT-
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TrecG728, 1992], [CCITTrecG729, 1995], classica methods for measuring audio
quality, like signal to noise ratio and total harmonic distortion, became useless.
During the standardization process of these codecs the quality of the different proposals
was therefore assessed only subjectively (see e.g. [Natvig, 1988], [1SO90, 1990] and
[1S091, 1991]). Subjective assessments are however time consuming, expensive and
difficult to reproduce.

A fundamental question is whether objective methods can be formulated that can
be used for prediction of the subjective quality of such perceptual coding techniques in
areliable way. A difference with classical approaches to audio quality assessment is
that system characterizations are no longer useful because of the time varying, signal
adaptive, techniques that are used in these codecs. In general the quality of modern
audio codecs is dependent on the input signal. The newly developed method must
therefore be able to measure the quality of the codec using any audio signal, that is
speech, music and test signals. Methods that rely on test signals only, either with or
without making use of a perceptual model, can not be used.

This chapter will present a genera method for measuring the quality of audio
devices including perception based audio codecs. The method uses the concept of the
internal sound representation, the representation that matches as close as possible the
one that is used by subjects in their quality judgement. The input and output of the
audio device are mapped onto the internal signal representation and the difference in
this representation is used to define a perceptual audio quality measure (PAQM). It
will be shown that this PAQM has a high correlation with the subjectively perceived
audio quality especially when differencesin the internal representation are interpreted,
in a context dependent way, by a cognitive module. Furthermore a simplified method,
derived from PAQM, for measuring the quality of telephone-band (300-3400 Hz)
speech codecs is presented. This method was standardized by the ITU-T (International
Telecommunication Union - Telecom sector) as recommendation P.861 [ITUTrecP861,
1996].

1.2 BASIC MEASURING PHILOSOPHY

In the literature on measuring the quality of audio devices one mostly finds measure-
ment techniques that characterize the audio device under test. The characterization
either has build in knowledge of human auditory perception or the characterization has
to be interpreted with knowledge of human auditory perception.

For linear, time-invariant systems a complete characterization is given by the im-
pulse or complex frequency response [Papoulis, 1977]. With perceptual interpretation
of this characterization one can determine the audio quality of the system under test.
If the design goal of the system under test is to be transparent (no audible differences
between input and output) then quality evaluation is simple and brakes down to the
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requirement of a flat amplitude and phase response (within a specified template) over
the audible frequency range (20-20000 Hz).

For systemsthat are nearly linear or time-variant, the concept of the impulse (com-
plex frequency) response is still applicable. For weakly non-linear systems the char-
acterization can be extended by including measurements of the non-linearity (noise,
distortion, clipping point). For time-variant systems the characterization can be ex-
tended by including measurements of the time dependency of the impulse response.
Some of the additional measurements incorporate knowledge of the human auditory
system which lead to system characterizations that have a direct link to the perceived
audio quality (e.g. the perceptually weighted signal to noise ratio).

The advantage of the system characterization approach is that it is (or better that
it should be) largely independent of the test signals that are used. The characteriza-
tions can thus be measured with standardized signals and measurement procedures.
Although the system characterization is mostly independent of the signal the subjec-
tively perceived quality in most cases depends on the audio signal that is used. If we
take e.g. a system that adds white noise to the input signal then the perceived audio
quality will be very high if the input signal is wideband. The same system will show
a low audio quality if the input signal is narrowband. For a wideband input signal
the noise introduced by the audio system will be masked by the input signal. For a
narrowband input signal the noise will be clearly audible in frequency regions where
thereis no input signal energy. System characterizations therefore do not characterize
the perceived quality of the output signal.

A disadvantage of the system characterization approach is that although the char-
acterization is valid for a wide variety of input signals it can only be measured on
the basis of knowledge of the system, This leads to system characterizations that are
dependent on the type of system that is tested. A serious drawback in the system
characterization approach is that it is extremely difficult to characterize systems that
show a non-linear and time-variant behavior.

An alternative approach to the system characterization, valid for any system, isthe
perceptual approach. In the context of this chapter a perceptua approach is defined
as an approach in which aspects of human perception are modelled in order to make
measurements on audio signals that have a high correlation with the subjectively
perceived quality of these signals and that can be applied to any signal, that is, speech,
music and test signals.

In the perceptual approach one does not characterize the system under test but one
characterizes the audio quality of the output signal of the system under test. It uses
the ideal signal as a reference and an auditory perception model to determine the
audible differences between the output and the ideal. For audio systems that should be
transparent the ideal signal is the input signal. An overview of the basic philosophy
used in perceptual audio quality measurement techniques is given in Fig. 1.1.
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Figure 1.1 Overview of the basic philosophy used in the development of perceptual
audio quality measurement techniques. A computer model of the subject is used to
compare the output of the device under test (e.g. a speech codec or a music codec)
with the ideal, using any audio signal. If the device under test must be transparent then
the ideal is equal to the input.
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The big advantage of the perceptual approach is that it is system independent and
can be applied to any system, including systems that show a non-linear and time-
variant behavior. A disadvantage isthat for the characterization of the audio quality of
a system one needs a large set of relevant test signals (speech and music signals).

If the perceptual approach is used for the prediction of subjectively perceived audio
quality of the output of a linear, time-invariant system then the system characterization
approach and the perceptual approach must lead to the same answer, In the system
characterization approach one will first characterize the system and then interpret the
results using knowledge of both the auditory system and the input signal for which one
wants to determine the quality. In the perceptual approach one will characterize the
perceptual quality of the output signals with the input signals as a reference.

Until recently several perceptual measurement techniques have been proposed but
most of them are either focussed on speech codec quality [Gray and Markel, 1976],
[Schroeder et al., 1979, [Gray et al., 1980], [Nocerino et a., 1985], [Quackenbush
et al., 1988], Hayashi and Kitawaki, 1992], [Halka and Heute, 1992], [Wang et al.,
1992], [Ghitza, 1994] [Beerends and Stemerdink, 1994b] or on music codec quality
[Paillard et al., 1992], [Brandenburg and Sporer, 1992], [Beerends and Stemerdink,
1992] [Colomes et a., 1994]. Although one would expect that a model for the
measurement of the quality of wide band music codecs can be applied to telephone-
band speech codecs, recent investigations show that this is rather difficult [Beerends,
1995].

In this chapter an overview is presented of the perceptual audio quality measure
(PAQM) [Beerends and Stemerdink, 1992] and it will be shown that the PAQM ap-
proach can be used for the measurement of the quality of music and speech codecs.
The PAQM method is currently under study within the ITU-R (International Telecom-
munication Union - Radio sector) [ITURsg10con9714, 1997], [I TURsg 10con9719,
1997] for future standardization of a perception based audio quality measurement
method. A simplified method, derived from PAQM, for measuring the quality of
telephone-band (300-3400 Hz) speech codecs was standardized by the ITU-T (In-
ternational Telecommunication Union - Telecom sector) as recommendation P.861
[ITUTrecP861, 1996] [ITUTsg 12rep31.96, 1996]. Independent validation of this
simplified method, called perceptual speech quality measure (PSQM), showed supe-
rior correlation between objective and subjective results, when compared to several
other methods [I TUTsgl2con9674, 1996].

A genera problem in the development of perceptual measurement techniques is
that one needs audio signals for which the subjective quality, when compared to a
reference, is known. Creating databases of audio signals and their subjective quality
is by no means trivial and many of the problems that are encountered in subjective
testing have a direct relation to problems in perceptual measurement techniques. High
correlations between objective and subjective results can only be obtained when the
objective and subjective evaluation are closely related, In the next section some
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important points of discussion are given concerning the relation between subjective
and objective perceptual testing.

1.3 SUBJECTIVE VERSUS OBJECTIVE PERCEPTUAL TESTING

In the development of perceptual measurement techniques one needs databases with
reliable quality judgements, preferably using the same experimental setup and the same
common subjective quality scale.

All the subjective results that will be used in this chapter come from large ITU
databases for which subjects were asked to give their opinion on the quality of an audio
fragment using a five point rating scale. The average of the quality judgements of the
subjects gives a so called mean opinion score (MOS) on afive point scale, Subjective
experiments in which the quality of telephone-band speech codecs (300-3400 Hz)
or wideband music codecs (20-20000 Hz compact disc quality) were evaluated are
used. For both, speech and music codec evaluation, the five point ITU MOS scaeis
used but the procedures in speech codec evaluation [CCITTrecP80, 1994] are different
from the experimental procedures in music codec evaluation [CCIRrec562, 1990],
[ITURrecBS1116, 1994].

In the speech codec evaluations, absolute category rating (ACR) was carried out with
quality labels ranging from bad (MOS=1.0) to excellent (MOS=5.0) [CCITTrecP80,
1994]. In ACR experiments subjects do not have access to the original uncoded
audio signal. In music codec evaluations a degradation category rating (DCR) scae
was employed with quality labels ranging from “difference is audible and very
annoying” (MOS=1.0) to “no perceptible difference” (MOS=5.0). The music codec
databases used in this paper were al derived from DCR experiments where subjects
had a known and a hidden reference [I TURrecBS1116, 1994].

In generd it is not allowed to compare MOS values obtained in different experi-
mental contexts. A telephone-band speech fragment may have a MOS that is above
4.0 in a certain experimental context while the same fragment may have aMOS that is
lower than 2.0 in another context. Even if MOS values are obtained within the same
experimental context but within a different cultural environment large differences in
MOS values can occur [Goodman and Nash, 1982]. It is therefore impossible to de-
velop a perceptual measurement technique that will predict correct MOS values under
al conditions.

Before one can start predicting MOS scores several problems have to be solved, The
first one is that different subjects have different auditory systems leading to a large range
of possible models. If one wants to determine the quality of telephone-band speech
codecs (300-3400 Hz) differences between subjects are only of minor importance.
In the determination of the quality of wideband music codecs (compact disc quality,
20-20000 Hz) differences between subjects are a major problem, especialy if the
codec shows dynamic band limiting in the range of 10-20 kHz. Should an objective
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perceptual measurement technique use an auditory model that represents the best
available (golden) ear, just model the average subject, or use an individual model for
each subject [Treurniet, 1996]. The answer depends on the application. For prediction
of mean opinion scores one has to adapt the auditory model to the average subject.
In this chapter all perceptual measurements were done with a threshold of an average
subject with an age between 20 and 30 years and an upper frequency audibility limit
of 18 kHz. No accurate data on the subjects were available.

Another problem in subjective testing is that the way the auditory stimulus is
presented has a big influence on the perceived audio quality. Is the presentation isin
aquiet room or is there some background noise that masks small differences? Are the
stimuli presented with loudspeakers that introduce distortions, either by the speaker
itself or by interaction with the listening room? Are subjects allowed to adjust the
volume for each audio fragment? Some of these differences, like loudness level and
background noise, can be modelled in the perceptual measurement fairly easy, whereas
for othersit is next to impossible. An impractical solution to this problem is to make
recordings of the output signal of the device under test and the reference signal (input
signal) at the entrance of the ear of the subjects and use these signalsin the perceptual
evaluation.

In this chapter all objective perceptua measurements are done directly on the
electrical output signal of the codec using a level setting that represents the average
listening level in the experiment. Furthermore the background noise present during
the listening experiments was modelled using a steady state Hoth noise [CCITTsupl3,
1989]. In some experiments subjects were allowed to adjust the level individually for
each audio fragment which leads to correlations that are possibly lower than one would
get if the level in the subjective experiment would be fixed for all fragments. Correct
setting of the level turned out be very important in the perceptual measurements.

It is clear that one can only achieve high correlations between objective measure-
ments and subjective listening results when the experimental context is known and can
be taken into account correctly by the perceptual or cognitive model.

The perceptual model as developed in this chapter is used to map the input and
output of the audio device onto internal representations that are as close as possible
to the internal representations used by the subject to judge the quality of the audio
device. It is shown that the difference in internal representation can form the basis
of a perceptual audio quality measure (PAQM) that has a high correlation with the
subjectively perceived audio quality. Furthermore it is shown that with a simple
cognitive module that interprets the difference in internal representation the correlation
between objective and subjective resultsis always above 0.9 for both wideband music
and telephone-band speech signals. For the measurement of the quality of telephone-
band speech codecs a simplified version of the PAQM, the perceptual speech quality
measure (PSQM), is presented.
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Before introducing the method for calculating the internal representation the psy-
choacoustic fundamental's of the perceptual model is explained in the next chapter.

1.4 PSYCHOACOUSTIC FUNDAMENTALS OF CALCULATING THE
INTERNAL SOUND REPRESENTATION

In thinking about how to calculate the internal representation of a signal one could
dream of a method where all the transformation characteristics of the individual el-
ements of the human auditory system would be measured and modelled. In this
exact approach one would have the, next to impossible, task of modelling the ear, the
transduction mechanism and the neural processing at a number of different abstraction
levels.

Literature provides examples of the exact approach [Kates, 1991b], [Yang et al.,
1992], [Giguére and Woodland, 19944], [Giguére and Woodland, 1994b] but no results
on large subjective quality evaluation experiments have been published yet. Prelimi-
nary results on using the exact approach to measure the quality of speech codecs have
been published (e.g. [Ghitza, 1994]) but show rather disappointing results in terms of
correlation between objective and subjective measurements. Apparently it is very diffi-
cult to calculate the correct internal sound representation on the basis of which subjects
judge sound quality. Furthermore it may not be enough to just calculate differencesin
internal representations, cognitive effects may dominate quality perception.

One can doubt whether it is necessary to have an exact model of the lower abstraction
levels of the auditory system (outer-, middle-, inner ear, transduction). Because audio
quality judgements are, in the end, a cognitive process a crude approximation of the
internal representation followed by a crude cognitive interpretation may be more ap-
propriate then having an exact internal representation without cognitive interpretation
of the differences.

In finding a suitable interna representation one can use the results of psychoacoustic
experiments in which subjects judge certain aspects of the audio signal in terms of
psychological quantities like loudness and pitch. These quantities already include
a certain level of subjective interpretation of physical quantities like intensity and
frequency. This psychoacoustic approach has led to a wide variety of models that
can predict certain aspects of a sound e.g. [Zwicker and Feldtkeller, 1967], [Zwicker,
1977], [Florentine and Buus, 1981], [Martens, 1982], [Srulovicz and Goldstein, 1983],
[Durlach et al., 1986], [Beerends, 1989], [Meddis and Hewitt, 1991]. However, if one
wants to predict the subjectively perceived quality of an audio device a large range of the
different aspects of sound perception has to be modelled. The most important aspects
that have to be modelled in the internal representation are masking, loudness of partially
masked time-frequency components and loudness of time-frequency components that
are not masked.
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Figure 1.2 From the masking pattern it can be seen that the excitation produced by a
sinusoidal tone is smeared out in the frequency domain. The right hand slope of the
excitation pattern is seen to vary as a function of masker intensity (steep slope at low
and flat slope at high intensities).

(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

For stationary sounds the internal representation is best described by means of a
spectral representation. The internal representation can be measured using a test signa
having a small bandwidth. A schematic example for asingle sinusoidal tone (masker)
is given in Fig. 1.2 where the masked threshold of such a tone is measured with a
second sinusoidal probe tone (target). The masked threshold can be interpreted as
resulting from an internal representation that is given in Fig. 1.2 as an excitation
pattern. Fig. 1.2 aso gives an indication of the level dependence of the excitation
pattern of a single sinusoidal tone. This level dependence makes interpretations in
terms of filterbanks doubtful.

For non-stationary sounds the internal representation is best described by means of
atemporal representation. The internal representation can be measured by means of a
test signal of short duration. A schematic example for asingle click (masker) is given
in Fig. 1.3 where the masked threshold of such a click is measured with a second click
(target). The masked threshold can be interpreted as the result of an internal, smeared
out, representation of the puls (Fig. 1.3, excitation pattern).
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Figure 1.3 From the masking pattern it can be seen that the excitation produced by a
click is smeared out in the time domain.

(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

An example of acombination of time and frequency-domain masking, using atone
burst, isgivenin Fig. 1.4.

For the examples given in Figs. 1.2-1.4 one should realize that the masked threshold
is determined with a target signa that is a replica of the masker signal. For target
signals that are different from the masker signal (e.g. a sine that masks a band of noise)
the masked threshold looks different, making it impossible to talk about the masked
threshold of a signal. The masked threshold of a signal depends on the target, while
the internal representation and the excitation pattern do not depend on the target.

In Figs. 1.2-1.4 one can see that any time-frequency component in the signal is
smeared out along both the time and frequency axis. This smearing of the signal
results in a limited time-frequency resolution of the auditory system. Furthermore it
is known that two smeared out time-frequency components in the excitation domain
do not add up to a combined excitation on the basis of energy addition. Therefore the
smearing consists of two parts, one part describing how the energy at one point in the
time-frequency domain results in excitation at another point, and a part that describes
how the different excitations at a certain point, resulting from the smearing of the
individual time-frequency components, add up.

Until now only time-frequency smearing of the audio signal by the ear, which leads
to an excitation representation, has been described. This excitation representation is
generally measured in dB SPL (Sound Pressure Level) as a function of time and
frequency. For the frequency scale one does, in most cases, not use the linear Hz
scale but the non-linear Bark scale. This Bark scale is a pitch scale representing the
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Figure 1.4 Excitation pattern for a short tone burst. The excitation produced by a short
tone burst is smeared out in the time and frequency domain.

(Reprinted with permission from [Beerends and Stemerdink, 1992], © Audio Engi-
neering Society, 1992)

psychophysical equivalent of frequency. Although smearing is related to an important
property of the human auditory system, viz. time-frequency domain masking, the
resulting representation in the form of an excitation pattern is not very useful yet. In
order to obtain an internal representation that is as close as possible to the internal
representation used by subjects in quality evaluation one needs to compresses the
excitation representation in a way that reflects the compression as found in the inner
ear and in the neural processing.

The compression that is used to calculate the internal representation consists of
a transformation rule from the excitation density to the compressed Sone density as
formulated by Zwicker [Zwicker and Feldtkeller, 1967]. The smearing of energy
is mostly the result of peripheral processes [Viergever, 1986) while compression is a
more central process [Pickles, 1988]. With the two simple mathematical operations,
smearing and compression, it is possible to model the masking properties of the
auditory system not only at the masked threshold, but also the partial masking [Scharf,
1964] above masked threshold (see Fig. 1.5).
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Figure 1.5 Overview on how masking is modelled in the internal representation model.
Smearing and compression with £ = E%%4 results in masking. The first representation
(top) is in terms of power P and may represent clicks in the time domain or sines in
the frequency domain. X represents the signal, or masker, and N the noise, or target.
The left side shows transformations of the masker, in the middle the transformation of
the target in isolation. The right side deals with the transformation of the composite
signal (masker + target). The second representation is in terms of excitation E and
shows the excitation as a function of time or frequency. The third representation is
the internal representation using a simple compression £ = E%94_ The bottom line
shows the effect of masking, the internal representation of the target in isolation, £ (N),
is significantly larger than the internal representation of the target in the presence of a
strong masker £(X+N) - £(X).

(Reprinted with permission from [Beerends, 1995], ©Audio Engineering Society,
1995)
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1.5 COMPUTATION OF THE INTERNAL SOUND REPRESENTATION

As a start in the quantification of the two mathematical operations, smearing and
compression, used in the internal representation model one can use the results of
psychoacoustic experiments on time-frequency masking and loudness perception. The
frequency smearing can be derived from frequency domain masking experiments where
a single steady-state narrow-band masker and a single steady-state narrow-band target
are used to measure the slopes of the masking function [Scharf and Buus, 1986],
[Moore, 1997]. These functions depend on the level and frequency of the masker
signal. If one of the signalsisasmall band of noise and the other a pure tone then the
slopes can be approximated by Eq. (1.1) (see Terhardt 1979, [Terhardt, 1979]):

S; = 31 dB/Bark, target frequency < masker frequency; (1.1

S, = (22 + min(230/f, 10) — 0.2L) dB/Bark,

target frequency > masker frequency;

with f the masker frequency in Hz and L the level in dB SPL. A schematic example
of this frequency-domain masking is shown in Fig. 1.2. The masked threshold can be
interpreted as resulting from a smearing of the narrow band signals in the frequency
domain (see Fig. 1.2). The dopes as given in Eq. (1.1) can be used as an
approximation of the smearing of the excitation in the frequency domain in which case
the masked threshold can be interpreted as a fraction of the excitation.

If more than one masker is present at the same time the masked energy threshold
of the composite signal M composite 1S Not simply the sum of the n individual masked
energy thresholds M; but is given approximately by:

n

Mcomposite = (Z Mia)l/a o< 1. (12)

i=1

This addition rule holds for simultaneous (frequency-domain) [Lufti, 1983], [Lufti,
1985] and non-simultaneous (time-domain) [Penner, 1980], [Penner and Shiffrin,
1980] masking [Humes and Jesteadt, 1989] athough the value of the compression
power o may be different along the frequency (0 freq) and time (Otime) axis.

In the psychoacoustic model that is used in this chapter no masked threshold is
calculated explicitly in any form. Masking is modelled by a combination of smearing
and compression as explained in Fig. 5. Therefore the amount of masking is dependent
on the parameters d freq and o time Which determine, together with the slopes S and
S2, the amount of smearing. However the values for afreq and atime found in literature
were optimized with respect to the masked threshold and can thus not be used in our
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model. Therefore these two a's will be optimized in the context of audio quality
measurements.

In the psychoacoustic model the physical time-frequency representation is calcu-
lated using a FFT with a 50% overlapping Hanning (sin?) window of approximately
40 ms, leading to atime resolution of about 20 ms. Within this window the frequency
components are smeared out according to Eqg. (1.1) and the excitations are added
according to Eq. (1.2) Due to the limited time resolution only a rough approximation
of the time-domain smearing can be implemented.

From masking data found in the literature [Jesteadt et al., 1982] an estimate was
made how much energy is left in aframe from a preceding frame using a shift of half
a window (50% overlap). This fraction can be expressed as a time constant tin the
expression:

AB(AL) = AT,

with At = time distance between two frames = T;. The fraction of the energy present
in the next window depends on the frequency and therefore a different T was used for
each frequency band. This energy fraction also depends on the level of the masker
[Jesteadt et al., 1982] but this level-dependency of t yielded no improvement in the
correlation and was therefore omitted from the model. At frequencies above 2000 Hz
the smearing is dominated by neural processes and remains about the same [Pickles,
1988]. The values of T are given in Fig. 1.6 and give an exponential approximation of
time-domain masking using window shifts in the neighborhood of 20 ms.

An example of the decomposition of a sinusoidal tone burst in the time-frequency
domain is given in Fig. 1.4. It should be realised that these time constants T only
give an exponential approximation, at the distance of half a window length, of the
time-domain masking functions.

After having applied the time-frequency smearing operation one gets an excitation
pattern representation of the audio signal in (dBex, Seconds, Bark). This representation
is then transformed to an internal representation using a non-linear compression
function. The form of this compression function can be derived from loudness
experiments.

Scaling experiments using steady-state signals have shown that the loudness of
a sound is a non-linear function of the intensity. Extensive measurements on the
relationship between intensity and loudness have led to the definition of the Sone. A
steady-state sinusoid of 1 kHz at alevel of 40 dB SPL is defined to have aloudness of one
Sone. The loudness of other sounds can be estimated in psychoacoustic experiments.
In afirst approximation towards calculating the internal representation one would map
the physical representation in dB/Bark onto a representation in Sone/Bark:

L =k(P ~ Py, (L4)

in which kis a scaling constant (about 0.01), P the level of the tone in pPa, Pothe
absolute hearing threshold for the tone in puPa, and y the compression parameter, in
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Figure 1.6 Time constant T, that is used in the time-domain smearing, as a function of
frequency. This function is only valid for window shifts of about 20 ms and only allows
a crude estimation of the time-domain smearing, using a atjme of 0.6.

(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

the literature estimated to be about 0.6 [ Scharf and Houtsma, 1986]. This compression
relates a physical quantity (acoustic pressure P) to a psychophysical quantity (loudness
L).

The Egs (1.1), (1.2) and (1.4) involve quantities that can be measured directly.
After application of Eq. (1.1) to each time frequency component and addition of al the
individual excitation contributions using (1.2), the resulting excitation pattern forms
the basis of the internal representation. (The exact method to calculate the excitation
pattern is given in Appendix A, B and C of [Beerends and Stemerdink, 1992] while a
compact algorithm is given in Appendix D of [Beerends and Stemerdink, 1992]).

Because Eq. (1.4) maps the physical domain directly to the internal domain it has
to be replaced by a mapping from the excitation to the internal representation. Zwicker
gave such amapping (eg. 52,17 in [Zwicker and Feldtkeller, 1967]):

— @ Y — _g Y o
c—k(s) (1 s+sEO) 1y, (1.5)
in which kis an arbitrary scaling constant, E the excitation level of the tone, Eq
the excitation at the absolute hearing threshold for the tone, sthe “schwell” factor as
defined by Zwicker [Zwicker and Feldtkeller, 1967] and y a compression parameter
that was fitted to loudness data. Zwicker found an optimal value y of about 0.23.

Although the y of 0.23 may be optimal for the loudness scale it will not be appro-

priate for the subjective quality model which needs an internal representation that is
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as close as possible to the representation that is used by subjects to base their qual-
ity judgements on. Therefore yis taken as a parameter which can be fitted to the
masking behavior of the subjects in the context of audio quality measurements. The
scaling k has no influence on the performance of the model. The parameter ywas
fitted to the ISO/MPEG 1990 (International Standards Organization/Motion Picture
Expert Group) database [1SO90, 1990] in terms of maximum correlation (minimum
deviation) between objective and subjective resuilts.

The composite operation, smearing followed by compression, results in partial
masking (see Fig. 1.5). The advantage of this method is that the model automatically
gives a prediction of the behavior of the auditory system when distortions are above
masked threshold.

Summarizing, the model uses the following transformations (see Fig. 1.7):

®  Theinput signal x(t) and output signal y(t) are transformed to the frequency
domain, using an FFT with a Hanning (sin?) window w(t) of about 40 ms.
This leads to the physical signa representations P(t, f) and Py (t,f) in (dB,
seconds, Hz) with a time-frequency resolution that is good enough as a starting
point for the time-frequency smearing.

m Thefrequency scale f (in Hz) istransformed to a pitch scale z (in Bark) and the
signal isfiltered with the transfer function gy (z) from outer to inner ear (free or
diffuse field). This results in the power-time-pitch representations p(t, z) and
py(t, z) measured in (dB, seconds, Bark). A more detailed description of this
transformation is given in Appendix A of [Beerends and Stemerdink, 1992].

m  The power-time-pitch representations px (t, 2) and py(t, z) are multiplied with
a frequency-dependent fraction e~ /1(2 using Eq. (1.3) and Fig. 1.6, for
addition with o jme Within the next frame (T: = time shift between two frames
= 20 ms). This models the time-domain smearing of x(t) and y(t).

m  The power-time-pitch representations px (t, z) and py(t, z) are convolved with
the frequency-smearing function A, as can be derived from Eq. (1.1), leading
to excitation-time-pitch (dB e, Seconds, Bark) representations Ex(t, 2z and
Ey (t, 2 (see Appendices B, C, D of [Beerends and Stemerdink, 1992]). The
form of the frequency-smearing function depends on intensity and frequency,
and the convolution is carried out in a non-linear way using Eq. (1.2) (see
Appendix C of [Beerends and Stemerdink, 1992]) with parameter o ¢req -

m  The excitation-time-pitch representations Ex(t, z) and E y(t, 2) (dB exc, Sec-
onds, Bark) are transformed to compressed |oudness-time-pitch representations
Lx(t, 2 and L.y(t, 2) (compressed Sone, seconds, Bark) using Eqg. (1.5) with
parameter y (see Appendix E of [Beerends and Stemerdink, 1992]).
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m  The compressed loudness-time-pitch representation £,(t, z) of the output of
the audio device is scaled independently in three different pitch ranges with
bounds at 2 and 22 Bark. This operation performs a global pattern matching
between input and output representations and already models some of the higher,
cognitive, levels of sound processing.

In psychoacoustic literature many experiments on masking behavior can be found
for which the interna representation model should, in theory, be able to predict the
behavior of subjects. One of these effects is the sharpening of the excitation pattern
after switching off an auditory stimulus [Houtgast, 1977], which is partly modelled
implicitly here in the form of the dependence of the slope S in Eq. (1.1) on intensity.
After “switching off” the masker the representation in the next frame in the model is
a “sharpened version of the previous frame”.

Another important effect is the asymmetry of masking between a tone masking
a band of noise versus a noiseband masking a tone [Hellman, 1972]. In models
using the masked threshold this effect has to be modelled explicitly by making the
threshold dependent on the type of masker e.g. by calculating a tonality index as
performed within the psychoacoustic models used in the ISO/MPEG audio coding
standard [1S092st, 1993]. Within the internal representation approach this effect is
accounted for by the nonlinear addition of the individual time frequency components
in the excitation domain.

1.6 THE PERCEPTUAL AUDIO QUALITY MEASURE (PAQM)

After calculation of the internal loudness-time-pitch representations of the input and
output of the audio device the perceived quality of the output signal can be derived from
the difference between the internal representations. The density functions £x(t, 2)
(loudness density £ asafunction of time and pitch for theinput X) and scaled £y(t, 2)
are subtracted to obtain a noise disturbance density function £n (t, 2). This£Ln (t, 2) is
integrated over frequency resulting in a momentary noise disturbance £ n (t) (see Fig.
1.7)

The momentary noise disturbance is averaged over time to obtain the noise distur-
bance L, . We will not use the term noise loudness because the value of yis taken such
that the subjective quality model is optimized; in that case £n does not necessarily
represent noise loudness. The logarithm (log 10) of the noise disturbance is defined as
the perceptual audio quality measure (PAQM).

The optimization of o freq, Otime and yis performed using the subjective audio
quality database that resulted from the ISO/MPEG 1990 audio codec test [IS0O90,
1990]. The optimization used the standard error of the estimated MOS from a third
order regression line fitted through the PAQM, MOS datapoints. The optimization
was carried out by minimization of the standard error of the estimated MOS as a
function of d freq , O time , V-
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Figure 1.7 Overview of the basic transformations which are used in the development
of the PAQM (Perceptual Audio Quality Measure). The signals X(t) and y(t) are
windowed with a window w(t) and then transformed to the frequency domain. The
power spectra as function of time and frequency, Px (t, f) and Py (t, f) are transformed
to power spectra as function of time and pitch, px(t, ) and py(t, ) which are convolved
with the smearing function resulting in the excitations as a function of pitch Ex (t, z)
and Ey(t, 2). After transformation with the compression function we get the internal
representations £y (t, z) and Ly(t, z) from which the average noise disturbance £,
over the audio fragment can be calculated.

(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)
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The optimal values of the parametersa freqad o time depend on the sampling of
the time-frequency domain. For the values used in our implementation, Az = 0.2
Bark and At =20 ms (total window length is about 40 ms), the optimal values of the
parameters in the model were found to be afreq = 0.8, atime = 0.6 and y = 0.04.
The dependence of the correlation on the time-domain masking parameteraime turned
out to be small.

Because of the small y that was found in the optimization the resulting density as
function of pitch (in Bark) and time does not represent the loudness density but a
compressed loudness density. The integrated difference between the density functions
of the input and the output therefore does not represent the loudness of the noise but
the compressed loudness of the noise.

The relationship between the objective (PAQM) and subjective quality measure

(MOS) in the optimal settings ofa freq ,0 time and Y, for the ISO/MPEG 1990 database
[1SO90, 1990], isgiven in Fig. 1.8. 1
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Figure 1.8 Relation between the mean opinion score and the perceptual audio quality
measure (PAQM) for the 50 items of the ISO/MPEG 1990 codec test [ISO90, 1990] in
loudspeaker presentation.

(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)
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The internal representation of any audio signal can now be calculated by using
the transformations given in the previous section. The quality of an audio device can
thus be measured with test signals (sinusoids, sweeps, noise etc) as well as “red life”
signals (speech, music). Thus the method is universally applicable. In general audio
devices are tested for transparency (i.e. the output must resemble the input as closely
as possible) in which case the input and output are both mapped onto their internal
representations and the quality of the audio device is determined by the difference
between these input (the reference) and output internal representations.

1.7 VALIDATION OF THE PAQM ON SPEECH AND MUSIC CODEC
DATABASES

The optimization of the PAQM that is described in the previous section results in a
PAQM that shows a good correlation between objective and subjective results. In
this section the PAQM s validated using the results of the second |SO/MPEG audio
codec test (ISO/MPEG 1991 [IS091, 1991]) and the results of the ITU-R TG10/2
1993 [ITURsg10cond9343, 1993] audio codec test. In this last test several tandeming
conditions of ISO/MPEG Layer Il and Il were evaluated subjectively while three
different objective evaluation models presented objective results.

This section also gives a validation of the PAQM on databases that resulted from
telephone-band (300-3400 Hz) speech codec evaluations.

The result of the validation using the ISO/MPEG 1991 database is given in Fig.
1.9. A good correlation (R3=0.91) and a reasonable low standard error of the estimate
(S3=0.48) between the objective PAQM and the subjective MOS values was found.

A point of concern is that for the same PAQM values sometimes big deviations in
subjective scores are found (see Fig. 1.9). 2

The result of the validation using the ITU-R TG10/2 1993 database (for the Contri-
bution Distribution Emission test) is given in Fig. 1.10% and shows a good correlation
and low standard error of the estimate (R3=0.83 and S3=0.29) between the objective
PAQM and the subjective MOS. These results were verified by the Swedish Broadcast-
ing Corporation [ITURsg 10cond9351, 1993] using a software copy that was delivered
before the ITU-R TG10/2 test was carried out.

The two validations that were carried out both use databases in which the subjective
quality of the output signals of music codecs was evaluated. If the PAQM isredly a
universal audio quality measure it should also be applicable to speech codec evaluation.
Although speech codecs generally use a different approach towards data reduction of
the audio bitstream than music codecs the quality judgement of both is always carried
with the same auditory system. A universal objective perceptual approach towards
quality measurement of speech and music codecs must thus be feasible. When looking
into the literature one finds a large amount of information on how to measure the quality
of speech codecs (e.g. [Gray and Markel, 1976], [Schroeder et a., 1979], [Gray et al.,
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Figure 1.9 Relation between the mean opinion score (MOS) and the perceptual audio
quality measure (PAQM) for the 50 items of the ISO/MPEG 1991 codec test [ISO91,
1991] in loudspeaker presentation. The filled circles are items whose quality was judged
significantly lower by the model than by the subjects.

(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)

1980], [Nocerino et al., 1985], [Quackenbush et al., 1988], [Hayashi and Kitawaki,
1992], [Halka and Heute, 1992], [Wang et a., 1992], [Ghitza, 1994] [Beerends and
Stemerdink 1994b]), but non of the methods can be used for both narrowband speech
and wideband music codecs.
To test whether the PAQM can be applied to evaluation of speech codec quality
a validation was setup using subjective test results on the ETSI GSM (European
Telecommunications Standards Institute, Global System for Mobile communications)
candidate speech codecs. Both the GSM full rate (13 kbit/s, [Natvig, 1988]) and
half rate (6 kbit/s, [ETSI91tm74, 1991]) speech codec evauations were used in the
validation. In these experiments the speech signals were judged in quality over a
standard telephone handset [CCITTrecP48, 1989]. Consequently in validating the
PAQM both the reference input speech signal and the degraded output speech signal
were filtered using the standard telephone filter characteristic [CCITTrecP48, 1989].
Furthermore the speech quality evaluations were carried out in a controlled noisy
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Figure 1.10 Relation between MOS and PAQM for the 43 I1SO layer Il tandeming
conditions of the ITU-R TG10/2 1993 [ITURsg10cond9343, 1993] audio codec test
(Reprinted with permission from [Beerends and Stemerdink, 1994a], ©Audio Engi-
neering Society, 1994)

environment using Hoth noise as a masking background noise. Within the PAQM
validation this masking noise was modelled by adding the correct spectral level of
Hoth noise [CCITTsupl3, 1989] to the power-time-pitch representations of input and
output speech signal.

The results of the validation on speech codecs are given in Figs. 1.11 and 1.12. One
obvious difference between this validation and the one carried out using music codecs
is the distribution of the PAQM values. For music the PAQM values are al below -0.5
(see Figs. 1.9, 1.10) while for speech they are mostly above —0.5 (see Figs. 1.11,*
1.12°°). Apparently the distortions in these databases are significantly larger than those
in the music databases. Furthermore the correlation between objective and subjective
results of this validation are worse then those of the validation using music codecs.

1.8 COGNITIVE EFFECTS IN JUDGING AUDIO QUALITY

Although the results of the validation of the PAQM on the music and speech codec
databases showed a rather good correlation between objective and subjective results,
improvements are till necessary. The reliability of the MOS predictions is not good
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Figure 1.11 Relation between the MOS and the PAQM for the ETSI GSM full rate
speech database. Crosses represent data from the experiment based on the modulated
noise reference unit, circles represent data from the speech codecs.

enough for the selection of the speech or music codec with the highest audio quality.
As stated in the section on the psychoacoustic fundamentals of the method, it may
be more appropriate to have crude perceptual model combined with a crude cognitive
interpretation then having an exact perceptual model. Therefore the biggest improve-
ment is expected to come from a better modelling of cognitive effects. In the PAQM
approach as presented until now, the only cognitive effect that is modelled is the over-
all timbre matching in three different frequency regions. This section will focus on
improvements in the cognitive domain and the basic approach as given in Fig. 1.1 is
modified slightly (see Fig. 1.13) by incorporating a central module which interprets
differences in the internal representation

Possible central, cognitive, effects that are important in subjective audio quality
assessment are:

1. Informational masking, where the masked threshold of a complex target
masked by a complex masker may decrease after training by more than 40
dB [Leek and Watson, 1984].
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2. Separation of linear from non-linear distortions. Linear distortions of
the input signal are less objectionable than non-linear distortions.

3. Auditory scene analysis, in which decisions are made as to which parts
of an auditory event integrate into one percept [Bregman, 1990].

4. Spectro-temporal weighting. Some spectra-temporal regions in the audio
signal carry more information, and may therefore be more important, than
others. For instance one expects that silent intervals in speech carry no
information are therefore less important.

1) Informational masking can be modelled by defining a spectra-temporal com-
plexity, entropy like, measure. The effect is most probably dependent on the amount
of training that subjects are exposed to before the subjective evaluation is carried
out. In general, quality evaluations of speech codecs are performed by naive listeners
[CCITTrecP80, 1994], while music codecs are mostly evaluated by expert listeners
[CCIRrec562, 1990], [I TURrecBS1116, 1994].

For some databases the informational masking effect plays a significant role and
modelling this effect turned out to be mandatory for getting high correlations between
objective and subjective results [Beerends et al., 1996]. The modelling can best be
done by calculating a local complexity number over a time window of about 100 ms. If
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Figure 1.12 The same as Fig. 1.11 but for the ETSI GSM half rate speech database.
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Figure 1.13 Basic approach used in the development of PAQM¢, the cognitive cor-
rected PAQM. Differences in internal representation are judged by a central cognitive
module.

(Reprinted with permission from [Beerends, 1995], ©Audio Engineering Society,
1995)

this local complexity is high then distortions within this time window are more difficult
to hear then when the local complexity islow [Beerends et al., 1996].

Although the modelling of informational masking gives higher correlations for some
databases, other databases may show a decrease in correlation. No general formulation
was found yet that could be used to model informational masking in a satisfactory,
genera applicable, way. Modelling of this effect is therefore till under study and not
taken into account here.

2) Separation of linear from non-linear distortions can be implemented fairly
easy by using adaptive inverse filtering of the output signal. However it gave no
significant improvement in correlation between objective and subjective results using
the available databases (ISO/MPEG 1990, ISO/MPEG 1991, ITU-R 1993, ETSI GSM
full rate 1988, ETSI GSM half rate 1991).

Informal experiments however showed that this separation is important when the
output signal contains severe linear distortions.
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3) Auditory scene analysis is a cognitive effect that describes how subjects sep-
arate different auditory events and group them into different objects. Although a
complete model of auditory scene analysis is beyond the scope of this chapter the
effect was investigated in more detail. A pragmatic approach as given in [Beerends
and Stemerdink, 19944] turned out to be very successful in quantifying an auditory
scene analysis effect. The idea in this approach is that if a time-frequency compo-
nent is not coded by a codec, the remaining signal still forms one coherent auditory
scene while introduction of a new unrelated time-frequency component leads to two
different percepts. Because of the split in two different percepts the distortion will be
more objectionable then one would expect on the basis of the loudness of the newly
introduced distortion component. This leads to a perceived asymmetry between the
disturbance of a distortion that is caused by not coding a time-frequency component
versus the disturbance caused by the introduction of a new time-frequency component.

In order to be able to model this cognitive effect it was necessary to quantify to what
extent a distortion, as found by the model, resulted from leaving out a time-frequency
component or from the introduction of a new time-frequency component in the signal.
One problem was that when a distortion is introduced in the signal at a certain time-
frequency point there will in general already be a certain power level at that point.
Therefore a time-frequency component will never be completely new. A first approach
to quantify the asymmetry was to use the power ratio between output and input at a
certain time-frequency point to quantify the “newness’ of this component. When the
power ratio between the output y and input x, p,/p, at a certain time-frequency point
is larger than 1.0 an audible distortion is assumed more annoying than when this ratio
is less than 1.0.

In the interna representation model the time-frequency plane is divided in cells
with aresolution of 20 msalong in the time axis (time index m) and of 0.2 Bark along
the frequency axis (frequency index ). A first approach was to use the power ratio
between the output y and input X, py/py in every (At, Af) cell (m, 1) as a correction
factor for the noise disturbance Ln(m, I) in that cell (nomenclature is chosen to be
consistent with [Beerends and Stemerdink, 1992]).

A better approach turned out to be to average the power ratio py/px between the
output y and input x over a number of consecutive time frames. This implies that
if a codec introduces a new time-frequency component this component will be more
annoying if it is present over a number of consecutive frames. The general form of the
cognitive correction is defined as:

C(m,)* Lp(m,1) ifC(m,l) <5
Vo VI \ 3
Lon(m, 1) = { 52 Lo(m, 1) it C(m,1) > 5

with

4 ,
C - @_(”_lff’_l) 16
(m,1) ;pm(m_z,” (1.6)
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and an additional clipping of the noise disturbance in each time window £, (m) =

| reximam £ (m, 1) at alevel of 20.

The simple modelling of auditory scene analysis with the asymmetry factor C(m, 1)
gave significant improvements in correlation between objective and subjective results.
However it was found that for maximal correlation the amount of correction, as quan-
tified by the parameter A , was different for speech and music. When applied to music
databases the optimal corrected noise disturbance was found for A = 1.4 (PAQM 1 4)
whereas for speech databases the optimal A was around 4.0 (PAQM 4,).

The results for music codec evaluations are given in Fig. 1.14% (ISO/MPEG 1991)
and Fig. 1.15° (ITU-R TG10/2 1993) and show a decrease in the standard error of the
MOS estimate of more than 25%. For the ISO/MPEG 1990 database no improvement
was found. For speech the improvement in correlation was dightly less but as it turned
out the last of the listed cognitive effects, spectro-temporal weighting, dominates
subjective speech quality judgements. The standard error of the MOS estimate in the
speech databases could be decreased significantly more when both the asymmetry and
spectra-temporal weighting are modelled simultaneously.

4) Spectra-temporal weighting was found to be important only in quality judge-
ments on speech codecs. Probably in music al spectra-temporal components in the
signal, even silences, carry information, whereas for speech some spectra-temporal
components, like formants, clearly carry more information then others, like silences.
Because speech databases used in this paper are al telephone-band limited spectral
weighting turned out to be only of minor importance and only the weighting over time
had to be modelled.

This weighting effect over time was modelled in a very simple way, the speech
frames were categorized in two sets, one set of speech active frames and one set of
silent frames. By weighting the noise disturbance occurring in silent frames with
a factor Ws;; between 0.0 (silences are not taken into account) and 0.5 (silences are
equally important as speech) the effect was quantified.

A problem in quantifying the silent interval behavior is that the influence of the
silent intervals depends directly on the length of these intervals. If the input speech
does not contain any silent intervals the influence is zero. If the input speech signal
contains a certain percentage of silent frames the influence is proportional to this
percentage. Using a set of trivial boundary conditions withC spn the average noise
disturbance over speech active frames andC siin the average noise disturbance over
silent frames one can show that the correct weighting is:

= Wsp-psp Psil ﬁsi[n (17)

Loy = on + T
W VVsp-Psp + Psil e M/sp Psp + Dsi

with:
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Lwn the noise disturbance corrected with a weight factor W;,
Wsp = (1— Wy ) [ Wg,

psi| the fraction of silent frames,

Psp the fraction of speech active frames (Psii + psp = 1.0).

When both the silent intervals and speech active intervals are equally important,
such as found in music codec testing, the weight factor Wy is equal to 0.5 and Eq.
(1.7) brakesdown to Lwn = Psy.Lspn T+ Psit .Lsiln . FOr both of the speech databases
the weight factor for silent interval noise for maximal correlation between objective
and subjective results was found to be 0.1 showing that noisein silent intervalsis less
disturbing than equally loud noise during speech activity.

When both the asymmetry effect, resulting from the auditory scene analysis, and
the temporal weighting are quantified correctly, the correlation between subjective
and objective results for both of the speech databases improves significantly. Using
A = 4.0 (asymmetry modelling) and a silent interval weighting of 0.1 (denoted as
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Figure 1.14 Relation between the mean opinion score (MOS) and the cognitive cor-
rected PAQM (PAQM¢ 14) for the 50 items of the ISO/MPEG 1991 codec test [ISO91,
1991] in loudspeaker presentation.

(Reprinted with permission from [Beerends and Stemerdink, 1992], ©Audio Engi-
neering Society, 1992)
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Figure 1.15 Relation between MOS and cognitive corrected PAQM (PAQM ¢ 4) for the
43ISO layer Il tandeming conditions of the ITU-R TG10/2 1993 [ITURsg10cond9343,

1993] audio codec test.
(Reprinted with permission from [Beerends and Stemerdink, 1994a], ©Audio Engi-

neering Society, 1994)

PAQMc4.0,wo.1) the decrease in the standard error of the MOS estimate is around
40% for both the ETSI GSM full rate (see Fig. 1.16) 8 and half rate database (see Fig.
1.179).

One problem of the resulting two cognitive modules is that predicting the sub-
jectively perceived quality is dependent on the experimental context. One has to set
values for the asymmetry effect and the weighting of the silent intervals in advance.

1.9 ITU STANDARDIZATION

Within the ITU severa study groups deal with audio quality measurements. However,
only two groups specifically deal with objective perceptual audio quality measure-
ments. ITU-T Study Group 12 deals with the quality of telephone-band (300-3400 Hz)
and wide-band speech signals, while ITU-R Task Group 10/4 deals with the quality of
speech and music signals in general.
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Figure 1.16 Relation between the MOS and the cognitive corrected PAQM
(PAQMc4.0,wo.1) for the ETSI GSM full rate speech database. Crosses represent data

from the experiment based on the modulated noise reference unit, circles represent
data from the speech codecs.

1.9.1 ITU-T, speech quality

Within ITU-T Study Group 12 five different methods for measuring the quality of
telephone-band (300-3400 Hz) speech signals were proposed.

The first method, the cepstral distance, was developed by the NTT (Japan). It uses
the cepstral coefficients [Gray and Markel, 1976] of the input and output signal of the
speech codec.

The second method, the coherence function, was developed by Bell Northern Re-
search (Canada). It uses the coherent (signal) and non-coherent (noise) powers to
derive a quality measure [CCITT86sg12con46,1986].

The third method was developed by the Centre National D’Etudes des Télé
communication (France) and is based on the concept of mutual information. It is
called the information index and is described in the ITU-T series P recommendations
[CCITTsup3, 1989] (supplement 3, pages 272-281).

The fourth method is a statistical method that uses multiple voice parameters and a
non linear mapping to derive a quality measure via a training procedure on a training set
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Figure 1.17 The same as Fig. 1.16 but for the ETSI GSM half rate speech database
using PAQMca4.0, wo.1-

of data. It is an expert pattern recognition technique and was developed by the National
Telecommunication Information Administration (USA) [Kubichek et al., 1989].

The last method that was proposed is the perceptual speech quality measure (PSQM),
a method derived from the PAQM as described in this chapter. It uses a simplified
internal representation without taking into account masking effects that are caused
by time-frequency smearing. Because of the band limitation used in telephone-band
speech coding and because distortions are always rather large, masking effects as
modelled in the PAQM are less important. In fact it has been shown that when
cognitive effects as described in the previous chapter are not taken into account the
modelling of masking behavior caused by time-frequency smearing may even lead to
lower correlations [Beerends and Stemerdink, 1994b]. Within the PSQM masking is
only taken into account when two time-frequency components coincide in both the
time and frequency domain. The time frequency mapping that is used in the PSQM
is exactly the same as the one used in the PAQM. Further simplifications used in the
PSQM are:
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= Noouter ear transfer function a, (z).
m A simplified mapping from intensity to loudness.
= A simplified cognitive correction for modelling the asymmetry effect.

An exact description of the PSQM method is given in [ITUTrecP861, 1996].

Although the PSQM uses a rather simple internal representation model the corre-
lation with the subjectively perceived speech quality is very high. For the two speech
quality databases that were used in the PAQM validation the method even gives a minor
improvement in correlation. Because of a difference in the mapping from intensity to
loudness a different weighting for the silent intervals has to be used (compare Figs.
1.16, 1.17 with 1.18,%° 1.191).
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Figure 1.18 Relation between the MOS and the PSQM for the ETSI GSM full rate
speech database. Squares represent data from the experiment based on the modulated
noise reference unit, circles represent data from the speech codecs.

Within ITU-T Study Group 12 a benchmark was carried out by the NTT (Japan)
on the five different proposals for measuring the quality of telephone-band speech
codecs. The results showed that the PSQM was superior in predicting the subjec-
tive MOS values. The correlation on the unknown benchmark database was 0.98
[ITUTsgl2con9674, 1996]. In this benchmark the asymmetry value A for the PSQM



AUDIO QUALITY DETERMINATION USING PERCEPTUAL MEASUREMENT 33

“T* Mean Opinion Score
5.0

T T ¥ 1
GSM HALF RATE; silence weight = 0.10
R3 = 0.957
83 =0.230

4.5

4.0
|

3.5 =

GO

3.0

2.5 EG@

%

1.5 &
\J\ .

1.0 . =

PSQM  —>

Figure 1.19 The same as Fig. 1.18 but for the ETSI GSM half rate speech database
using the PSQM.

was fixed and three different weighting factors for the silent intervals were evalu-
ated. The PSQM method was standardized by the ITU-T as recommendation P.861
[ITUTrecP861, 1996], objective quality measurement of telephone-band (300-3400
Hz) speech codecs.

A problem in the prediction of MOS values in speech quality evaluations is the
weight factor of the silent intervals which depends on the experimental context. Within
the ITU-T Study Group 12 benchmark the overall best performance was found for a
weight factor of 0.4. However as can be seen in Fig. 1.19 the optimum weight
factor can be significantly lower. In recommendation P.861 this weight factor of the
silent intervals is provisionally set to 0.2. An argument for a low setting of the silent
interval weight factor is that in real life speech codecs are mostly used in conversational
contexts. When one istalking over atelephone connection the noise on the line present
during talking is masked by ones own voice. Only when both parties are not talking
this noise becomes apparent. In the subjective listening test however this effect does
not occur because subjects are only required to listen. In al ITU-T and ETSI speech
codec tests the speech material contained about 50% speech activity, leading to an
overestimation of the degradation caused by noise in silent intervals.
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Figure 1.20 Relation between the PSQM and the MOS in experiment 2 of the ITU-T
8 kbit/s 1993 speech codec test for the German language. The silent intervals are
weighted with the optimal weighting factor (0.5). Squares represent data from the
experiment based on the modulated noise reference unit, the other symbols represent
data from the speech codecs.

When the silent interval weighting in an experiment is known the PSQM has a very
high correlation with the subjective MOS. In order to compare the reliability of subjec-
tive and objective measurements one should correlate two sets of subjective scores that
are derived from the same set of speech quality degradations and compare this result
with the correlation between the PSQM and subjective results. During the standardiza
tion of the G.729 speech codec [CCITTrecG729, 1995] a subjective test was performed
at four laboratories with four different languages using the same set of speech degra-
dations [ITUTsg12s92.93, 1993], [ITUTsg12sq3.94, 1994]. The correlation between
the subjective results and objective results, using the optimal weight factor, was be-
tween 0.91 and 0.97 for al four languages that were used [Beerends94dec, 1994]. The
correlation between the subjective scores of the different languages varied between
0.85 and 0.96. For two languages, German and Japanese, the results are reproduced
in Figs. 1.20%, 1.21% and 1.22" . These results show that the PSQM is capable of
predicting the correct mean opinion scores with an accuracy that is about the same as
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Figure 1.21 The same as Fig. 1.20 but for the Japanese language.

the accuracy obtained from a subjective experiment, once the experimental context is
known.

1.9.2 ITU-R, audio quality

Within ITU-R Task Group 10/4 the following six methods for measuring the quality
of audio signals were proposed:

Noise to Mask Ratio (NMR, Fraunhofer Gesellschaft, Institut fir Integrierte
Schaltungen, Germany, [Brandenburg and Sporer, 1992])

PERCeptual EVALuation method (PERCEVAL, Communications Research Cen-
tre,
Canada [Paillard et al., 1992])

Perceptual Objective Model (POM, Centre Commun d’ Etudes de Télédiffusion
et Télécommunication, France, [Colomes et al., 1994])

Disturbance Index (DI, Technical University Berlin, [Thiede and Kabot, 1996])

The toolbox (Institut fir Rundfunk Technik, Germany)
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Figure 1.22 Relation between the Japanese and German MOS values using the sub-
jective data of experiment 2 of the ITU-T 8 kbit/s 1993 speech codec test. Squares
represent data from the experiment based on the modulated noise reference unit, the
other symbols represent data from the speech codecs.

m  Perceptua Audio Quality Measure (PAQM, Royal PTT Netherlands, [Beerends
and Stemerdink, 1992], [Beerends and Stemerdink, 1994a])

The context in which these proposals were validated was much wider than the context
used in the ITU-T Study Group 12 validation. Besides a number of audio codec
conditions several types of distortions were used in the subjective evaluation. Because
of this wide context each proponent was allowed to put in three different versions of
his objective measurement method.

The wide validation context made it necessary to extend the PAQM method to
include some binaural processing. Furthermore different implementations of the
asymmetry effect were used and also a first attempt to model informational masking
was included [Beerends et al., 1996].

Although the PAQM method showed highest correlation between objective and
subjective results none of the eighteen (3*6) methods could be accepted as ITU-R
recommendation [ITURsg10con9714, 1997]. Currently in a joint effort between the
six proponents a new method is being developed, based on all eighteen proposals.
[ TURsg10con9719, 1997].
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1.10 CONCLUSIONS

A method for measuring audio quality, based on the interna representation of the
audio signal, has been presented. The method does not characterize the audio system,
but the perception of the output signal of the audio system. It can be applied to
measurement problems where a reference and a degraded output signal are available.
For measurement of audio codec quality the input signal to the codec is used as a
reference and the assumption is made that all differences that are introduced by the
codec lead to a degradation in quality.

In the internal representation approach the quality of an audio device is measured
by mapping the reference and output of the device from the physical signal representa-
tion (measured in dB, seconds, Hertz) onto a psychoacoustic (internal) representation
(measured in compressed Sone, seconds, Bark). From the difference in interna
representation the perceptual audio quality measure (PAQM) can be calculated which
shows good correlation with the subjectively perceived audio quality.

The PAQM is optimized using the ISO/MPEG music codec test of 1990 and validated
with several speech and music databases. The PAQM can be improved significantly
by incorporation of two cognitive effects. The first effect deals with the asymmetry
between the disturbance of a distortion that is caused by not coding a time-frequency
component versus the disturbance caused by the introduction of a new time-frequency
component. The second effect deals with the difference in perceived disturbance
between noise occurring in silent intervals and noise occurring during the presence
of audio signals. This last correction is only relevant in quality measurements on
speech codecs. When both cognitive effects are modelled correctly the correlations
between objective and subjective results are above 0.9 using three different music
codec databases and two different speech codec databases.

For measurement of the quality of telephone-band speech codecs a simplified
method, the perceptual speech quality measure (PSQM), is presented. The PSQM was
benchmarked together with four other speech quality measurement methods within
ITU-T Study Group 12 by the NTT (Japan). It showed superior performance in pre-
dicting subjective mean opinion scores. The correlation on the unknown benchmark
database was 0.98 [ITUTsgl2con9674, 1996]. The PSQOM method was standard-
ized by the ITU-T as recommendation P.861 [I TUTrecP861, 1996], objective quality
measurement of telephone-band (300-3400 Hz) speech codecs.

Notes

1. The 95% confidence intervals of the MOS lie in the range of 0.1-0.4. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error of
the estimate (R3=0.97 and S3=0.35) are derived from the third order regression line that is drawn using a
NAG curve fitting routine.
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2. The 95% confidence intervals of the MOS liein the range of 0.1-0.4. For someitems, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error of
the estimate (R3=0.9 1 and S3=0.48) are derived from the third order regression line that is drawn using a
NAG curve fitting routine.

3. The 95% confidence intervals of the MOS lie in the range of 0.1-0.5. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error
of the estimate (R3=0.83 and S3=0.29) are derived from the third order regression line that is drawn using
aNAG curve fitting routine. The result as given in this figure was validated by the Swedish Broadcasting
Corporation [ITURsg10cond9351, 1993].

4. The correlation and standard error of the estimate (R3=0.81 and S3=0.35) are derived from the third
order regression line that is drawn using a NAG curve fitting routine.

5. The correlation and standard error of the estimate (R3=0.83 and S3=0.44) are derived from the third
order regression line.

6. The 95% confidence intervals of the MOS ie in the range of 0.1-0.4. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The filled circles are the same items as
indicated in Fig. 1.9. The correlation and standard error of the estimate (R3=0.96 and S3=0.33) are derived
from the third order regression line that is drawn using a NAG curve fitting routine.

7. The 95% confidence intervals of the MOS lie in the range of 0.1-0.5. For some items, which differ
significantly from the fitted curve, the confidence intervals are given. The correlation and standard error
of the estimate (R3=0.91 and S3=0.22) are derived from the third order regression line that is drawn using
aNAG curvefitting routine. The result as given in this figure was validated by the Swedish Broadcasting
Corporation [ITURsg10cond9351, 1993].

8. The correlation and standard error of the estimate (R3=0.94 and S3=0.20) are derived from the third
order regression line that is drawn using a NAG curve fitting routine.

9. The correlation and standard error of the estimate (R3=0.94 and S3=0.27) are derived from the third
order regression line.

10. The correlation and standard error of the estimate (R3=0.96 and S3=0.17) are derived from the third
order regression line that is drawn using a NAG curve fitting routine.

11. The correlation and standard error of the estimate (R3=0.96 and S3=0.23) are derived from the third
order regression line.

12. The correlations and standard errors that are given are derived from a first (R1, S1) and second (R2,
S2) order regression line calculated with a NAG curve fitting routine. The second order regression lineis
drawn

13. The silent intervals are weighted with the optimal weighting factor (0.4). The correlations and
standard errors that are given are derived from afirst (R1, S1) and second (R2, S2) order regression line.
The second order regression line is drawn line.

14. The correlations and standard errors that are given are derived from a first (R1, S1) and second (R2,
S2) order regression line calculated with a NAG curve fitting routine. The second order regression lineis
drawn.
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Abstract: Perceptua coding of high quality digital audio signals or in short “audio
compression” is one of the basic technologies of the multimedia age. This chapter
introduces the basic ideas of perceptual audio coding and discusses the different options
for the main building blocks of a perceptual coder. Several well known algorithms are
described in detail.

2.1 INTRODUCTION

Perceptua coding of high quality digital audio is without doubt one of the most exciting
chaptersin applying signal processing to audio technology. The goal of this chapter is
to describe the basic technol ogies and to introduce some of the refinements which are
used to make decompressed sound perceptually equivalent to the original signal.

While the aggregate bandwidth for the transmission of audio (and video) signals
is increasing every year, the demand increases even more. This leads to a large
demand for compression technology. In the few years since the first systems and the
first standardization efforts, perceptual coding of audio signals has found its way to a
growing number of consumer applications. In addition, the technology has been used
for a large number of low volume professiona applications.
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Application areas of audio coding. Current application areas include

Digital Broadcasting: e.g. DAB (terrestrial broadcasting as defined by the Eu-
ropean Digital Audio Broadcasting group), WorldSpace (satellite broadcasting).

Accompanying audio for digital video: Thisincludes al of digital TV.
Storage of music including hard disc recording for the broadcasting environment.
Audio transmission via ISDN, e.g. feeder links for FM broadcast stations

Audio transmission via the Internet.

Requirements for audio coding systems. The target for the development of per-
ceptual audio coding schemes can be defined along severa criteria. Depending on the
application, they are more or less important for the selection of a particular scheme.

Compression efficiency: In many applications, to get a higher compression ratio
at the same quality of service directly trandates to cost savings. Therefore
signal quality at a given hit-rate (or the bit-rate needed to achieve a certain signal
quality) isthe foremost criterion for audio compression technol ogy.

Absolute achievable quality: For a number of applications, high fidelity audio
(defined as no audible difference to the original signal on CD or DAT) is required.
Since no prior selection of input material is possible (everything can be called
music), perceptual coding must be lossy in the sense that in most cases the
origina bits of amusic signal cannot be recovered. Nonetheless it is important
that, given enough hit-rate, the coding system is able to pass very stringent
quality requirements.

Complexity: For consumer applications, the cost of the decoding (and sometimes
of the encoding, too) is relevant. Depending on the application, a different
tradeoff between different kinds of complexity can be used. The most important
criteria are:

— Computational complexity: The most used parameter here is the signal pro-
cessing complexity, i.e. the number of multiply-accumulate instructions
necessary to process a block of input samples. If the algorithm is imple-
mented on a general purpose computing architecture like a workstation or
PC, thisis the most important complexity figure.

— Storage requirements: Thisisthe main cost factor for implementations on
dedicated silicon (single chip encoders/decoders). RAM costs are much
higher than ROM cost, so RAM requirements are most important.
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— Encoder versus decoder complexity: For most of the algorithms described
below, the encoder is much more complex than the decoder. This asym-
metry is useful for applications like broadcasting, where a one-to-many
relation exists between encoders and decoders. For storage applications,
the encoding can even be done off-line with just the decoder running in
realtime.

Astime moves along, complexity issues become less important. Better systems
which use more resources are acceptable for more and more applications.

= Algorithmic delay: Depending on the application, the delay is or is not an im-
portant criterion. It is very important for two way communications applications
and not relevant for pure storage applications. For broadcasting applications
some 100 ms delay seem to be tolerable.

m  Editability: For some applications, it is important to access the audio within a
coded bitstream with high accuracy (down to one sample). Other applications
demand just atime resolution in the order of one coder frame size (e.g. 24 ms)
or no editability at all. A related requirement is break-in, i.e. the possibility to
start decoding at any point in the bitstream without long synchronization times.

m  FError resilience: Depending on the architecture of the bitstream, perceptual
coders are more or less susceptible to single or burst errors on the transmission
channel. This can be overcome by application of error-correction codes, but
with more or less cost in terms of decoder complexity and/or decoding delay.

Source coding versus perceptual coding. In speech, video and audio coding the
origina data are analog values which have been converted into the digital domain using
sampling and quantization. The signals have to be transmitted with a given fiddlity,
not necessarily without any difference on the signal part. The scientific notation for
the”distortion which optimally can be achieved using a given data rate” is therate
distortion function ([Berger, 1971]). Near optimum results are normally achieved using
a combination of removal of data which can be reconstructed (redundancy removal)
and the removal of data which are not important (irrelevancy removal). It should be
noted that in most cases it is not possible to distinguish between parts of an algorithm
doing redundancy removal and parts doing irrelevancy removal.

In source coding the emphasis is on the removal of redundancy. The signal is coded
using its statistical properties. In the case of speech coding a model of the voca tract is
used to define the possible signals that can be generated in the voca tract. This leads to
the transmission of parameters describing the actual speech signal together with some
residual information. In this way very high compression ratios can be achieved.

For generic audio coding, this approach leads only to very limited success [Johnston
and Brandenburg, 1992]. The reason for thisis that music signals have no predefined
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method of generation. In fact, every conceivable digital signal may (and probably will
by somebody) be called music and sent to a D/A converter. Therefore, classical source
coding is not a viable approach to generic coding of high quality audio signals.

Different from source coding, in perceptual coding the emphasis is on the removal
of only the data which are irrelevant to the auditory system, i.e. to the ear. The signa is
coded in a way which minimizes noise audibility. This can lead to increased noise as
measured by Signal-to-Noise-Ratio (SNR) or similar measures. The rest of the chapter
describes how knowledge about perception can be applied to code generic audio in a
very efficient way.

2.2 SOME FACTS ABOUT PSYCHOACOUSTICS

The main guestion in perceptual coding is: What amount of noise can be introduced
to the signa without being audible? Answers to this question are derived from
psychoacoustics. Psychoacoustics describes the relationship between acoustic events
and the resulting auditory perceptions [Zwicker and Feldtkeller, 1967], [Zwicker and
Fastl, 1990], [Fletcher, 1940].

The few basic facts about psychoacoustics given here are needed to understand
the description of psychoacoustic models below. More about psychoacoustics can
be found in John Beerend’s chapter on perceptual measurement in this book and in
[Zwicker and Fastl, 1990] and other books on psychoacoustics (e.g. [Moore, 1997]).

The most important keyword is 'masking’. It describes the effect by which a fainter,
but distinctly audible signal (the maskee) becomes inaudible when a correspondingly
louder signal (the masker) occurs simultaneously. Masking depends both on the spec-
tral composition of both the masker and the maskee as well as on their variations with
time.

2.2.1 Masking in the Frequency Domain

Research on the hearing process carried out by many people (see [Scharf, 1970]) led
to a frequency analysis model of the human auditory system. The scale that the ear
appears to use is called the critical band scale. The critical bands can be defined in
various ways that lead to subdivisions of the frequency domain similar to the one
shown in table 2.1. A critical band corresponds to both a constant distance on the
cochlea and the bandwidth within which signal intensities are added to decide whether
the combined signal exceeds a masked threshold or not. The frequency scale that is
derived by mapping frequencies to critical band numbersis called the Bark scale. The
critical band model is most useful for steady-state tones and noise.

Figure 2.1 (according to [Zwicker, 1982]) shows a masked threshold derived from
the threshold in quiet and the masking effect of a narrow band noise (1 kHz, 60 dB
sound pressure level; masker not indicated in the figure). All signals with a level below
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Table 2.1 Critical bands according to [Zwicker, 1982]

Z/Bark fu/Hz folHz Afg/Hz fm/Hz
0 0 100 100 50
1 100 200 100 150
2 200 300 100 250
3 300 400 100 350
4 400 510 110 450
5 510 630 120 570
6 630 770 140 700
7 770 920 150 840
8 920 1080 160 1000
9 1080 1270 190 1170

10 1270 1480 210 1370
11 1480 1720 240 1600
12 1720 2000 280 1850
13 2000 2320 320 2150
14 2320 2700 380 2500
15 2700 3150 450 2900
16 3150 3700 550 3400
17 3700 4400 700 4000
18 4400 5300 900 4800
19 5300 6400 1100 5800
20 6400 7700 1300 7000
21 7700 9500 1800 8500
22 9500 12000 2500 10500
23 12000 15500 3500 13500

the threshold are not audible. The masking caused by a narrow band noise signal is
given by the spreading function. The slope of the spreading function is steeper towards
lower frequencies. A good estimate is a logarithmic decrease in masking over a linear
Bark scale (e.g., 27 dB / Bark). Its slope towards higher frequencies depends on the
loudness of the masker, too. Louder maskers cause more masking towards higher
frequencies, i.e., a less steep slope of the spreading function. Values of -6 dB / Bark
for louder signals and -10 dB / Bark for signals with lower loudness have been reported
[Zwicker and Fastl, 1990]. The masking effects are different depending on the tonality
of the masker. A narrow band noise signal exhibits much greater *'masking ability’
when masking a tone compared to a tone masking noise [Hellman, 1972].
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Figure 2.1 Masked thresholds: Masker: narrow band noise at 250 Hz, 1 kHz, 4 kHz
(Reprinted from [Herre, 1995] ©1995, courtesy of the author)

Additivity of masking. One key parameter where there are no final answers from
psychoacoustics yet is the additivity of masking. If there are several maskers and the
single masking effects overlap, the combined masking is usualy more than we expect
from a calculation based on signal energies. More about this can be found in John
Beerends chapter on perceptual measurement techniques in this book.

2.2.2 Masking in the Time Domain

The second main masking effect is masking in the time domain. As shown in Figure 2.2,
the masking effect of a signal extends both to times after the masker is switched of
(post-masking, also called forward masking) and to times before the masker itself is
audible (pre-masking, also called backwards masking). This effect makes it possible
to use analysis/synthesis systems with limited time resolution (e.g. high frequency
resolution filter banks) to code high quality digita audio. The maximum negative
time difference between masker and masked noise depends on the energy envelope of
both signals. Experimental data suggest that backward masking exhibits quite a large
variation between subjects as well as between different signals used as masker and
maskee. Figure 2.3 (from [Spille, 1992]) shows the results of a masking experiment
using a Gaussian-shaped impulse as the masker and noise with the same spectral density
function as the test signal. The test subjects had to find the threshold of audibility for
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Figure 2.2 Example of pre-masking and post-masking (according to [Zwicker, 1982])
(Reprinted from [Sporer, 1998] ©1998, courtesy of the author)

the noise signal. As can be seen from the plot, the masked threshold approaches the
threshold in quiet if the time differences between the two signals exceed 16 ms. Even
for atime difference of 2 ms the masked threshold is aready 25 dB below the threshold
at the time of the impulse. The masker used in this case has to be considered a worst
case (minimum) masker.

If coder-generated artifacts are spread in time in a way that they precede a time
domain transition of the signal (e.g. a triangle attack), the resulting audible artifact is
called “pre-echo”. Since coders based on filter banks always cause a spread in time
(in most cases longer than 4 ms) of the quantization error, pre-echoes are a common
problem to audio coding systems.

2.2.3 \Variability between listeners

One assumption behind the use of hearing models for coding is that “al listeners are
created equal”, i.e. between different listeners there are no or only small deviationsin
the basic model parameters. Depending on the model parameter, this is more or less
true:

»  Absolute threshold of hearing:
It is awell known effect that the absolute threshold of hearing varies between
listeners and even for the same listener over time with a general trend that the
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Figure 2.3 Masking experiment as reported in [Spille, 1992] (Reprinted from [Sporer,
1998] © 1998, courtesy of the author)

listening capabilities at high frequencies decrease with age. Hearing deficiencies
due to overload of the auditory system further increase the threshold of hearing
for part of the frequency range (see the chapter by Jim Kates) and can be found
quite often. Perceptual models have to take a worst case approach, i.e. have to
assume very good listening capabilities.

Masked threshold:

Fortunately for the designers of perceptual coding systems, variations for the
actual masked thresholds in frequency domain are quite small. They are small
enough to warrant one model of masking with a fixed set of parameters.

Masking in time domain:

The experiments described in [Spille, 1992] and other observations (including
the author) show that there are large variations in the ability of test subjects
to recognize small noise signals just before a loud masker (pre-echoes). It is
known that the capability to recognize pre-echoes depends on proper training
of the subjects, i.e. you might not hear it the first time, but will not forget the
effect after you heard it for the 100th time. At present it is still an open question
whether in addition to this training effect there is a large variation between
different groups of listeners.
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Figure 2.4 Example of a pre-echo. The lower curve (noise signal) shows the form of
the analysis window

m  Perception of imaging and imaging artifacts:
This item seems to be related to the perception of pre-echo effects (test subjects
who are very sensitive for pre-echoes in some cases are known to be very
insensitive to imaging artifacts). Not much is known here, so thisis atopic for
future research.

As can be seen from the comments above, research on hearing is by no means a
closed topic. Very simple models can be built very easily and can already be the base
for reasonably good perceptual coding systems. If somebody tries to built advanced
models, the limits of accuracy of the current knowledge about psychoacoustics are
reached very soon.

2.3 BASIC IDEAS OF PERCEPTUAL CODING

The basic idea about perceptua coding of high quality digital audio signalsisto hide
the quantization noise below the signal dependent thresholds of hearing. Since the
most important masking effects are described using a description in the frequency
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domain, but with stationarity ensured only for short time periods of around 15 ms,
perceptual audio coding is best done in time/frequency domain. This leads to a basic
structure of perceptual coders which is common to al current systems.

2.3.1 Basic block diagram
Figure 2.5 shows the basic block diagram of a perceptua encoding system.

—
_audo / Ana'VSIS\‘ ../ Quantization\__, ncodmg of \ _bistream
F!lterbank </ & Coding bltstream
1
L.

f
/Perceptual \777/

\ Model %
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Figure 2.5 Block diagram of a perceptual encoding/decoding system (Reprinted from
[Herre, 1995] © 1995, courtesy of the author)

B Flter bank:
A filter bank is used to decompose the input signal into subsampled spectral
components (time/frequency domain). Together with the corresponding filter
bank in the decoder it forms an analysis/synthesis system.

B Perceptual model:
Using either the time domain input signal or the output of the analysis filter
bank, an estimate of the actual (time dependent) masked threshold is computed
using rules known from psychoacoustics. Thisis called the perceptual model of
the perceptual encoding system.

B Quantization and coding:
The spectral components are quantized and coded with the aim of keeping
the noise, which is introduced by quantizing, below the masked threshold.
Depending on the algorithm, this step is done in very different ways, from simple
block companding to analysis-by-synthesis systems using additional noiseless
compression.
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B Frame packing:
A bitstream formatter is used to assemble the bitstream, which typically consists
of the quantized and coded spectral coefficients and some side information, e.g.
bit allocation information.

These processing blocks (in various ways of refinement) are used in every perceptual
audio coding system.

2.3.2 Additional coding tools

Along the four mandatory main tools, a number of other techniques are used to enhance
the compression efficiency of perceptua coding systems. Among these tools are:

®m  Prediction:
Forward- or backward adaptive predictors can be used to increase the redundancy
removal capability of an audio coding scheme. In the case of high resolution
filter banks backward adaptive predictors of low order have been used with
success [Fuchs, 1995].

m  Temporal noise shaping:
Dual to prediction in time domain (with the result of flattening the spectrum of
the residual), applying afiltering process to parts of the spectrum has been used
to control the temporal shape of the quantization noise within the length of the
window function of the transform [Herre and Johnston, 1996].

B M/S stereo coding:
The masking behavior of stereo signals is improved if a two-channel signal can be
switched between left/right and sum/difference representation. Both broadband
and critical band-wise switching has been proposed [Johnston, 19894].

B |ntensity stereo coding:
For high frequencies, phase information can be discarded if the energy envelope
is reproduced faithfully at each frequency, This is used in intensity stereo coding
[van der Waal and Veldhuis, 1991, Herre et a., 1992].

B Coupling channel:
In multichannel systems, a coupling channel is used as the equivalent to an n-
channel intensity system. This system is also known under the names dynamic
crosstalk or generalized intensity coding. Instead of n different channels, for part
of the spectrum only one channel with added intensity information is transmitted
[Fielder et a., 1996, Johnston et al., 1996].

B Stereo prediction:
In addition to the intra-channel version, prediction from past samples of one
channel to other channels has been proposed [Fuchs, 1995].
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B Spectrum flattening:
As a specia version to enhance the efficiency of the quantization and coding
module, an LPC analysis has been proposed to normalize the spectral values
[Iwakami et al., 1995].

2.3.3 Perceptual Entropy

The term “Perceptual Entropy” (PE, see [Johnston, 1988]) is used to define the lowest
data rate which is needed to encode some audio signal without any perceptual difference
to the original. An estimate of the PE (there is not enough theory yet to calculate a
"real” PE) can be used to determine how easy or how difficult it is to encode a given
music item using a perceptual coder.

In practice, the calculation of the PE requires an analysis filter bank and a perceptual
model. The PE is defined as

f=fu .
R  Jsignal(f) 21
PE = N 2 max (0,1og2 threshold( ) (2.1)

n

where N is the number of frequency components between f; and f,,, f| is the lower
frequency limit (eg. fi = 0 Hz), f is the upper frequency limit (e.g. f, = 20000
Hz), signal(f) is the amplitude of the frequency component f and threshold( f) isthe
estimated threshold level at the frequency f. This definition of the PE of course needs

the existence of a concept of audibility resp. an auditory threshold. Examples for this
are given later in this chapter.

2.4 DESCRIPTION OF CODING TOOLS

2.4.1 Filter banks

Thefilter bank is the deciding factor for the basic structure of a perceptual coding sys-
tem. Figure 2.6 shows the basic block diagram of an static n-channel analysis/synthesis
filter bank with downsampling by k. If k = n, it is caled a filter bank with critical
sampling. A number of basic parameters can be used to describe filter banks used for
audio coding:

m  Frequency resolution:
Over the past years, two main types of filter banks have been used for high
quality audio coding:

— Low resolution filter banks (e.g. 32 subbands), normally combined with a
quantization and coding module which works on blocks in time direction.
These are frequently called subband coders.
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— High frequency resolution filter banks (e.g. 512 subbands), normally com-
bined with a quantization and coding module which works by combining

adjacent frequency lines. These have traditionally been called transform
coders.

Analysis filter bank Synthesis filter bank
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Figure 2.6 Basic block diagram of an n-channel analysis/synthesis filter bank with
downsampling by k (Reprinted from [Herre, 1995] © 1995, courtesy of the author)

Mathematically, all transforms used in today’s audio coding systems can be seen
as filter banks. All uniform subband filter banks can be seen as transforms of
L input samples into N spectral components as derived for example in [Edler,
1995, Temerinac and Edler, 1993]. There is no basic difference between both
approaches, so any attempt to distinguish between subband coders and transform
coders is against current scientific knowledge. Therefore, in the following we
will use the term “filter bank” synonymously to “subband filter bank” and/or
“transform”.

A higher resolution filter bank for most signals exhibits alarger transform gain.
For this reason, high frequency resolution filter banks are the tool of choice for
audio coding systems built for maximum coding efficiency at low bit-rates.

m  Perfect reconstruction:
Perfect reconstruction filter banks allow the lossless reconstruction of the input
signal in an analysis-synthesis system without quantization. While not a neces-
sary feature, the use of a perfect reconstruction filter bank simplifies the design
of a coding system, While at some point other filter banks have been proposed
for use in perceptual coders (e.g. wave digital filters, see [Sauvagerd, 1988]),
al currently used filter banks are either perfect reconstruction or near perfect
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reconstruction (very small reconstruction error in the absence of quantization of
the spectral components).

m  Prototype window:
Especidly in the case of low bit-rates (implying that a lot of quantization noise
is introduced), the filter characteristics of the analysis and synthesis filters as
determined by the prototype window / windowing function are a key factor for
the performance of a coding system.

®  Uniform or non-uniform frequency resolution:

Both uniform or non-uniform frequency resolution filter banks have been pro-
posed since the first work on high quality audio coding. While a non-uniform
frequency resolution is closer to the characteristics of the human auditory sys-
tem, in practical terms uniform frequency resolution filter banks have been more
successful. This may be due to the fact that even at high frequencies for some
signals the larger coding gain of a high frequency resolution is needed [Johnston,
1996].

m  Static or adaptive filter bank:

In an analysis/synthesis filter bank, all quantization errors on the spectral com-
ponents show up on the time domain output signal as the modulated signal
multiplied by the synthesis window. Consequently, the error is smeared in time
over the length of the synthesis window / prototype filter. As described above,
this may lead to audible errors if premasking is not ensured. This pre-echo effect
(a somewhat misleading name, a better word would be pre-noise) can be avoided
if thefilter bank is not static, but switched between different frequency/time res-
olutions for different blocks of the overlap/add. An example of this technique
called adaptive window switching is described below.

The following section gives a short overview of filter banks which are currently used
for audio coding purposes.

QMF filter banks. Quadrature mirror filters (QMF, see [Esteban and Galand, 1977])
have often been proposed for audio coding. The most common configuration is the
tree of filters with atwo-way split. In one of the early examples [Theile et a., 1987]
the '64d’ filter design from [Johnston, 1980] has been used. The decomposition tree
is set up so that the filter bands resemble critical bands. The QMF halfband filters
are non-perfect reconstruction, but with perfect alias cancellation by design. The
reconstruction error of the analysis/synthesis pair can be held at small amplitudes by
increasing the filter length.

Instead of standard QMF filters, generalized QM F-techniques (GQMF) have been
used as well [Edler, 1988].

The disadvantages of the QM F-tree technique are
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®  Non-perfect reconstruction: The passband ripple which is typical for QMF filter
designs can lead to time domain artifacts which can be audible even if they are
at very low amplitudes.

m  |ong system delay: The overall system delay can reach 250 ms, if the technique
is used to design a filter bank with a frequency partitioning similar to critical
bands.

m  High computational complexity: The number of multiplications per sample
which is needed to compute a QM F-tree filter bank using e.g. 64-tap filtersis
much higher compared to polyphase filter banks or FFTs.

Wavelet based filter banks. In the last few years a number of audio coding systems
have been proposed using wavelet based filters [Sinha and Tewfik, 1993]. A thorough
description of the theory of wavelet based filter banks can be found in [Vetterli and
Kovagevié, 1995].

Polyphase filter banks. Polyphase filter banks as used in audio coding have been
introduced in [Rothweiler, 1983]. These are equally spaced filter banks which com-
bine the filter design flexibility of generalized QMF banks with low computational
complexity. Most current designs are based on the work in [Rothweiler, 1983].

The filter bank used in the MPEG/Audio coding system will be used as an example.
A 511 tap prototype filter is used. Figure 2.7 shows the prototype filter (window
function). It has been optimized for a very steep filter response and a stop band
attenuation of better than 96 dB. Figure 2.8 shows the frequency response of the filter
bank. In addition to the attenuation requirements it was designed as a reasonable
tradeoff between time behavior and frequency localization [Dehery, 1991].

The advantage of polyphase filter banks as used for audio coding is the combina-
tion of the degrees of freedom for the prototype filter design and the relatively low
complexity of the filter bank.

Only equally-spaced filter banks can be designed using this technique. Thisis the
main disadvantage of polyphase filter banks.

Fourier Transform based filter banks (DFT, DCT): Some of the first work done
in coding of high quality audio signals used DFT and DCT based transforms as known
from image coding. The origina idea of Adaptive Transform Coding (ATC) was
to decorrelate the signal via the transform. This technique had been introduced for
speech coding by [Zelinski and Noll, 1977] (see the description in [Jayant and Noall,
1982], too). The extension of this technique to high quality audio coding was first
presented in [Brandenburg et al., 1982]. To reduce blocking artifacts, windowing and
overlap/add techniques have been used. [Portnoff, 1980] gives a framework of FFT-
based short time analysis/synthesis systems using windowing. The first perceptual
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Figure 2.7 Window function of the MPEG-1 polyphase filter bank (Reprinted from
[Sporer, 1998] © 1998, courtesy of the author)

transform coding systems all implemented an overlap of 1/16 of the block length
[Krahé, 1988, Brandenburg, 1987, Johnston, 1989b].

Another, now commonly used viewpoint is to look at a transform based and win-
dowed analysis/synthesis system as a polyphase structure. The window takes the part
of aprototype filter. The transform does the modulation of the filtered signa into the
baseband.

In the last years al new high frequency resolution (transform) based coding systems
use MDCT techniques (see below) instead of DFT or DCT.

The advantage of the transform-based approach is low computational complexity.
An analysis/synthesis system with as much as 512 frequency components can be
realized using, for example, 10 multiplications per time domain sample.

Time domain aliasing cancellation based filter banks. The Modified Discrete
Cosine Transform (MDCT) was first proposed in [Princen et a., 1987] as a sub-
band/transform coding scheme using Time Domain Aliasing Cancellation (TDAC). It
can be viewed as a dual to the QM F-approach doing frequency domain aliasing can-
cellation. The window is constructed in a way that satisfies the perfect reconstruction
condition:

R +h(i + N/2)2 =1, i=0,..,N/2~1 2.2)
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Figure 2.8 Frequency response of the MPEG-1 polyphase filter bank (Reprinted from
[Sporer, 1998] © 1998, courtesy of the author)

where N is the window length. The equation above aready assumes that analysis
window and synthesis window are equal. While thisis not a necessary condition, it is
widely the case.

Normally, an overlap factor of two is used together with a sine window:

1+ 05,
v ),i=0,.N -1 (2.3)

h(i) = sin(m

The transform kernel isa DCT with atime-shift component added:

N-1
Xm)= Y h(k)zt(k)cos[gﬁ(zk F14+ M)(2m+ 1)] 2.4)
k=0

where N is the block length in time, M = N/2 is the block length in the frequency
domain, h(k), k=0, ..., N— 1 is the window, x, (k) are the samples of the tth block,
and X:(m), m=0, ..., M — 1 are the frequency domain values.
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As can be seen from the equation above, there is frequency domain subsampling.
As a result, the analysis/synthesis system does critical sampling of the input signal,
that is the number of time/frequency components for transform block is equal to the
update length of the input time domain sequence.

MDCT or similar schemes are used in several audio coding systems [Brandenburg,
1988, Mahieux et a., 1990, Brandenburg et al., 1991] [Davidson et a., 1990, Iwadare
et a., 1992] because they combine critical sampling with the good frequency resolu-
tion provided by a sine window and the computational efficiency of afast FFT-like
algorithm. Typically, 128 to 2048 equally spaced bands are used.

As a further advantage of MDCT-like filter banks it should be noted that the time
domain aliasing property needsto be valid for each half of the window independently
from the other. Thus hybrid window forms (with different types of window functions
for the first or second half) can be used. This leads to the realization of adaptive
window switching systems ([Edler, 1989], see below).

The MDCT is known under the name Modulated Lapped Transform ([Malvar,
1990]) as well. Extensions using an overlap of more than a factor of two have been
proposed [Vaupelt, 1991, Malvar, 1991] and used for coding of high quality audio
[Vaupelt, 1991]. This type of filter banks can be described within the framework
of cosine-modulated filter banks ([Koilpillai and Vaidyanathan, 1991][Ramstadt and
Tanem, 1991, Malvar, 1992)).

Other window functions than the sine window have been proposed as well (see
[Bosi et al., 1996b, Fielder et al., 1996]). Using Kaiser-Bessel-Derived window
functions, a filter characteristic exhibiting better side-lobe suppression is possible.
Thisisexplained in [Fielder et al., 1996].

Hybrid filter banks. Filter banks which consist of a cascade of different types of
filter banks are called hybrid filter banks. They have been introduced in [Brandenburg
and Johnston, 1990] to build an analysis/synthesis system which combines the different
frequency resolution at different frequencies possible with QM F-tree structures with
the computational efficiency of FFT-like algorithms. In the example of [Brandenburg
and Johnston, 1990Q], the input signal is first subdivided into 4 bands using a QM F-tree.
To avoid artifacts due to the QM F-filter bank, an 80-tap filter has been used. Each of
the 4 bands is further subdivided into 64 or 128 frequency lines using an MDCT. A
total of 320 frequency linesis generated. The time resolution for each line is between
21 msfor the lowest frequencies to 2.7 ms for the highest frequencies.

In ISO/MPEG Layer 3, adifferent approach to hybrid coding has been used (see
Figure 2.9. To ensure compatibility to Layers 1 and 2, the same polyphase filter bank
is used as the first filter in the hybrid filter bank. Each of the 32 polyphase subbands
is normally further subdivided into 18 frequency lines using an MDCT. By using the
window switching technique described below the subdivision can be switched to 6
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Figure 2.9 Block diagram of the MPEG Layer 3 hybrid filter bank (Reprinted from
[Herre, 1995] © 1995, courtesy of the author)

lines for either all of the 32 polyphase subbands or for only the 30 higher polyphase
subbands.

In summary it can be stated that hybrid filter banks alow increased flexibility in the
design by including the possihility to have different frequency resolutions at different
frequencies. Another degree of freedom which is gained by using hybrid filter banks
is the adaptive switching of the filter bank to different time/frequency behavior. On the
downside, a somewhat increased complexity compared to solutions based on cosine-
modul ated filter banks is necessary to implement adaptive hybrid systems.

Alias reduction for hybrid filter banks. One possible problem of all cascaded filter
banks specific to hybrid filter banks needs to be mentioned. Since the frequency
selectivity of the complete filter bank can be derived as the product of a single filter
with the alias components folded in for each filter, there are spurious responses (alias
components) possible at unexpected frequencies. Crosstalk between subbands over a
distance of several times the bandwidth of the final channel separation can occur. The
overall frequency response shows peaks within the stopbands.

In [Edler, 1992] a solution to this problem has been proposed. It is based on the
fact that every frequency component of the input signal influences two subbands of the
cascaded filter bank, one as a signal component and the other as an aliasing component.
Since this influence is symmetric, a compensation can be achieved using a butterfly
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structure with the appropriate weighting factors. No complete cancellation of the
additional alias terms can be achieved, but an optimization for the overall frequency
response can be done. The resulting frequency response of the hybrid filter banks
shows an improvement of the aliasing side |obes by about 5— 10 dB.

Adaptive filter banks. In the basic configuration, al filter banks described above
feature a time/frequency decomposition which is constant over time. As mentioned
above, there are possibilities to switch the characteristics of a filter bank, going from
one time/frequency decomposition to another one. We explain the basic principle
using the example of MPEG Audio Layer 3:

The technique is based on the fact that alias terms which are caused by subsampling
in the frequency domain of the MDCT are constrained to either half of the window.
Adaptive window switching as used in Layer 3 is based on [Edler, 1989]. Figure 2.10
shows the different windows used in Layer 3, Figure 2.11 shows a typical sequence
of window types if adaptive window switching is used. The function of the different

\
] T T T I 1 ! T T I 1 1
a) normal window b) start window
[ ] [ I T T 1
¢) short window d) stop window

Figure 2.10 Window forms used in Layer 3 (Reprinted from [Sporer, 1998] © 1998,
courtesy of the author)

window typesis explained as follows:

m  Longwindow:
This is the normal window type used for stationary signals.

m  Short window:
The short window has basically the same form as the long window, but with
1/3 of the window length. It is followed by an MDCT of 1/3 length. The time
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resolution is enhanced to 4 ms at 48 kHz sampling frequency. The combined
frequency resolution of the hybrid filter bank in the case of short windows is 192
lines compared to 576 lines for the normal windows used in Layer 3.

T I ! i T I I I I I r 1 I T i

Figure 2.11 Example sequence of window forms (Reprinted from [Sporer, 1998]
© 1998, courtesy of the author)

= Start window:
In order to switch between the long and the short window type, this hybrid
window is used. The left half has the same form as the left half of the long
window type. The right half has the value one for 1/3 of the length and the shape
of the right half of a short window for 1/3 of the length. The remaining 1/3 of
the window is zero. Thus, alias cancellation can be obtained for the part which
overlaps the short window.

B Stop window:
This window type enables the switching from short windows back to normal
windows. It is the time reverse of the start window.

A criterion when to switch the window form is necessary to control the adaptive
block switching. One possible criterion to switch the filter bank is derived from the
threshold calculation. If pre-echo control is implemented in the perceptual model as
described below, pre-echo conditions result in a much increased estimated Perceptual
Entropy (PE) [Johnston, 1988], i.e. in the amount of bits needed to encode the signal.
If the demand for bits exceeds the average value by some extend, a pre-echo condition
is assumed and the window switching logic is activated. Experimental data suggest that
abig surge in PE is always due to pre-echo conditions. Therefore pre-echo detection
via the threshold calculation works more reliable than purely time domain energy
calculation based methods.

2.4.2 Perceptual models

As discussed above, the model of hearing built into a perceptua coding system forms
the heart of the algorithm. A lot of systems (like MPEG Audio, see below) just define
the transmission format, thus allowing changes and improvements to the perceptual
model even after a standard is fixed and a lot of decoders are deployed at the customers.
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The main task of the perceptua model in a perceptual encoding system is to
deliver accurate estimates of the allowed noise (just masked threshold) according to
the time/frequency resolution of the coding system. Additional tasks include

m  the control of adaptive block switching for adaptive filter banks,
m  the control of abit reservoir if applicable,

®  the control of joint stereo coding tools like M/S and/or intensity coding

To solve these tasks, perceptual models often work directly on the time domain input
data thus allowing atime and/or frequency resolution of the model which is better than
the time and/or frequency resolution of the main filter bank of the perceptual coding
system.

A trivial example. In the simplest case, a static model can be used. In the case of
a frequency domain coding system, aworst-case SNR necessary for each band can be

derived from the masking curves. Here a bit allocation strategy assigns the number of
bits according to

nbits(i) = SN Ryorsy(s)/6-02dB (2.5)

that is, the number of bits per band iis derived from the worst-case SNR
SN Rworst) for this band.

This model has been used in the earliest known digital perceptua audio coding
system [Krasner, 1979]. Similar models have been used for the Low-Complexity-
Adaptive Transform Coding (LC-ATC, [Seitzer et a., 1988]) and AC-2 ([Davidson
et a., 1990]) systems.

More advanced models try to estimate a time-dependent Signal-to-Mask-Ratio
(SMR) for each band used in the coder. Because the knowledge about masking effects
islimited at this time and because different theories about additivity of masking or the
effects of tonality exist, there is no such thing as 'the correct psychoacoustic model’.

Estimation of tonality. Following early research work by Scharf (see [Scharf, 1970])
and Hellman (see [Hellman, 1972]) one way to derive an estimate of the masked
threshold is to distinguish between the masking estimates for noise maskers masking
tonal signals and tone maskers masking noise signals. To do this, an estimate of the
tonality of a signal is necessary. For complex signals we find that a tonality index
v (t,w) depending on time t and frequency w leads to the best estimation of a masked
threshold. To get such an estimate, a tonality measure using a simple polynomial
predictor has been proposed in [Brandenburg and Johnston, 1990].
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Two successive instances of magnitude and phase are used to predict magnitude
and phase at each frequency line:

r(t,)  magnitude at time t and frequency w (2.6)
P(t,w) phase at time t and frequency (2.7)
The predicted values7 and ® of r and ® are calculated as:
Flt,w) = rt—1w)+(rt-1lw) —r(t—2w)) (2.8)
d(t,w) = Bt —1,w)+ (Bt —1,w) - &t - 2,w)) (2.9)

The Euclidean distance between the predicted and the actual values is the unpredictabil-
ity (sometimes called the 'chaos-measure’) c(t ,w):

_ dist{[F(t,w), ®(t,w)], [r(t,w), B(t,w)]}

c(t,w) r(t,w) + abs[i(t,w))

(2.10)

If the signal at frequency is very tonal, the prediction will be accurate andc(t, w)
will be very small. If the signal is noise-like, ¢(t, w) assumes values up to 1 with a
mean of 0.5. Therefore the chaos measure can be limited to the range 0.05 to .5 with
0.05 considered fully tonal and 0.5 considered fully noise-like:

c{t,w) = max{0.05, min{0.5, c(t,w)]} (2.11)

The chaos measurec(t ,w) can be mapped to a tonality measurev(t ,w) viaanonlinear
mapping:
v{t,w) = —0.43 x log (¢ (t,w)) — 0.299 (2.12)

The tonality index v(t,w) denotes the final result of the tonality estimation and can be
applied to a perceptual model as for example the one described below.

MPEG-1 perceptual model 2. As an example for actual perceptual models we give
adescription of the “perceptual model 2" asit is described in the informative annex of
MPEG-1 audio [MPEG, 1992].

The frequency domain representation of the data is calculated via an FFT after
applying a Hann window with a window length of 1024 samples. The calculation is
done with a shift length equal to the block structure of the coding system. As described
below, the shift length is 576 samples for Layer 3 of the ISO/MPEG-Audio system.

The separate calculation of the frequency domain representation is necessary be-
cause the filter bank output values (polyphase filter bank used in Layer 1/2 or hybrid
filter bank used in Layer 3) can not easily be used to get a magnitude/phase represen-
tation of the input sequence as needed for the estimation of tonality.
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The tonality estimation is based on the simple polynomial predictor as described
above.

The magnitude values of the frequency domain representation are converted to a
1/3-critical band energy representation. This is done by adding the magnitude values
within athreshold calculation partition.

Whigh,,
e =y rw?’ (2.13)
Wiow,
where b is the threshold calculation partition index, low, and highy, are the lowest
and the highest frequency line in b and r(w) is the magnitude at frequency w.
A weighted unpredictability ¢y, is derived from the unpredictability measure, c(w),
which has been computed according to the procedure described above.

Whighy,
=Y rw)ie(w) (2.14)
W=Wlow,,

A convolution of these values with the cochlear spreading function follows. Due
to the non-normalized nature of the spreading function, the convolved versions of g,
and ¢, should be renormalized. The convolved unpredictability, G,, is mapped to the
tonality index, ty, using alog transform just as the unpredictability was mapped to the
tonality index, c(t, w), from equation (2.12).

The next step in the threshold estimation is the calculation of the just-masked noise
level (also called masking level) in the cochlear domain using the tonality index and
the convolved spectrum. This is done by first calculating the required signal to noise
ratio SNRpfor each threshold calculation band b.

SNR, = max{minval, t, s TM Ny, + {1 — t,) * NMT) (2.15)

where minvaly, is a tabulated minimum value per threshold calculation band. TMNb
and NMTy are estimates for the masking capabilities of tone masking noise and noise
masking tone [ Scharf, 1970, Hellman, 1972].

The final step to get the preliminary estimated threshold is the adjustment for the
threshold in quiet. Since the sound pressure level of the final audio output is not known
in advance, the threshold in quiet is assumed to be some amount below the LSB for
the frequencies around 4 kHz.

If necessary, pre-echo control occurs at this point. Thisis done by using an actual
threshold estimation which would be valid for the current block even if the sound which
could cause pre-echo artifacts would be deleted from the signal. A good approximation
for this hypothetical deletion is to use the data of the last block as an estimate for the
current block. To have data of earlier blocks available, the preliminary estimated
threshold is stored. It will be used for pre-echo control in the next input data block.
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The preliminary threshold of the current block is then modified using the preliminary
threshold of the last block.

thry = maz(thrpy, rpelev = throldy) (2.16)

wherethr pis the final estimated masked threshold for the threshold calculation
band b, thrpy is the preliminary threshold, throlds is the preliminary threshold of the
last block of data and rpelev is a constant. It introduces a weighting to the threshold
data of the last block. We use rpelev = 2.

All calculations up to now have been done using the threshold calculation partitions,
that is without any knowledge about the frequency partitioning used by the coding
system. To map these values to coder partitions, al the estimated threshold values are
first mapped to spectral densities. From there, using again the magnitude values r (w),
the signal to mask ratios SMR, are derived. n denotes the coder partition or coder
subband number.

SMR, = 10+ logm(%«) (2.17)

7

with e n denoting the signal energy in the coder partition or coder subband n and
thr n describing the estimated masked threshold for the coder partition n.

The values SMRn can be used either directly in the case of coding systems using
noise allocation or to control a bit allocation algorithm.

2.4.3 Quantization and coding

The quantization and coding tools in an encoder do the main data-reduction work.
Asin the case of filter banks, a number of design options are possible and have been
explored.

m  Quantization alternatives:
Most systems apply uniform quantization. One exception to this rule is the
application of non-uniform quantization with a power law in MPEG-1 and
MPEG-2 audio.

B Coding aternatives:
The quantized spectral components are stored and/or transmitted either directly
as quantized values according to a bit allocation strategy (including bit packing)
or as entropy coded words.

B Quantization and coding control structures:
The two approaches currently in wide use are

— Bit alocation (direct structure):
A bit alocation algorithm driven either by data statistics or by a perceptual
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model decides how many bits are assigned to each spectral component.
Thisis performed before the quantization is done.

— Noise allocation (indirect structure):
The data are quantized with possible modifications to the quantization step
sizes according to a perceptual model. A count of how many bits are used
for each component can only be done after the process is completed.

B Tools to improve quantization and coding:
A lot of small variations to the basic ideas have been applied to further remove
redundancy of the quantized values. Examples can be found e.g. in the docu-
ments describing standardized systems. [MPEG, 1992, MPEG, 1994a, MPEG,
1997a, ATSC, 1995].

The following sections describe some of the widely used tools for quantization and
coding in more detail.

Block companding. This method is aso known under the name “block floating
point”. A number of values, ordered either in time domain (successive samples) or in
frequency domain (adjacent frequency lines) are normalized to a maximum absolute
value. The normalization factor is called the scalefactor (or, in some cases, exponent).
All values within one block are then quantized with a quantization step size selected
according to the number of bits allocated for this block. A bit allocation algorithm
is necessary to derive the number of bits allocated for each block from the perceptual
model. In some cases, a simple bit allocation scheme without an explicit perceptual
model (but still obeying masking rules) is used.

Non-uniform scalar quantization. While usually non-uniform scalar quantization
is applied to reduce the mean squared quantization errors like in the well known
MAX quantizer, another possibility is to implement some default noise shaping via the
quantizer step size. This is explained using the example of the quantization formula
for MPEG Layer 3 or MPEG-2 Advanced Audio Coding:

The basic formulais

. Q.75
is(i) = nint ((L'”"—@> ~ 0.0946> (2.18)

quant

where xr (i) is the value of the frequency line at index i, quant is the actual quantizer
step size, nint isthe ‘nearest integer’ function and is(i) is the quantized absolute value
at index i.

The quantization is of the mid-tread type, i.e. values around zero get quantized to
zero and the quantizer is symmetric.

In this case, bigger values are quantized less accurately than smaller values thus
implementing noise shaping by default.
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Vector quantization. In vector quantization, not the individual filter bank output
samples are quantized, but n-tuples of values. This technique is used in most current
speech and video coding techniques. Recently, vector quantization has been applied in
a scheme called TWIN-VQ ([Ilwakami et al., 1995]). This system has been proposed
for MPEG-4 audio coding (see [MPEG, 1997h]).

Noise allocation followed by scalar quantization and Huffman coding. In this
method, no explicit bit allocation is performed. Instead, an amount of allowed noise
equal to the estimated masked threshold is calculated for each scalefactor band. The
scalefactors are used to perform a coloration of the quantization noise (i.e. they modify
the quantization step size for all values within a scalefactor band) and are not the
result of a normalization procedure. The quantized values are coded using Huffman
coding. The whole process is normally controlled by one or more nested iteration
loops. The technique is known as analysis-by-synthesis quantization control. It was
first introduced for OCF [Brandenburg, 1987], PXFM [Johnston, 1989b] and ASPEC
[Brandenburg et a., 1991]. In a practical application, the following computation steps
are performed in an iterative fashion:

m  Inner loop
The quantization of the actual datais performed including the buffer control.

B Caculation of the actual quantization noise
The quantization noise is calculated by subtracting the reconstructed from the
unquantized signal values and summing the energies per scalefactor band.

m  Scaling
For each scalefactor band which violates the masked threshold as known from
the calculation of the psychoacoustic model, the signal values are amplified.
This corresponds to a decrease of the quantizer step size only for these bands.

m  Check for termination of iteration loop
If no scaling was necessary or another reason to terminate the loop applies,
end the iterations. If not, continue with quantization using the modified signal
values.

Huffman coding. One very successful tool for high quality audio coding is static
Huffman coding applying different Huffman code tree tables according to the local
statistics of the signal. As an example for refinements to the basic concept of Huffman
coding, the following paragraph describes the noiseless coding techniques used within
MPEG Layer 3.

Codes are transmitted only up to the highest nhumbered frequency line with a
quantized value different from zero. The actually coded values are divided into one
region called big values, where the frequency lines are coded with a 2-dimensional
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Huffman code and another region at higher frequencies (below the vaues which default
to zero) containing only quantized values not exceeding magnitude 1. The values in
the latter region are quantized using a 4-dimensional Huffman code. The big values
region is split into 3 subregions. Each of them uses a separately selectable Huffman
code table. A set of 16 possible Huffman code tables is used. For each section the

Table 2.2 Huffman code tables used in Layer 3

Table Quantization Table size Number of bits per ESC
number levels pair of zeroes
0 0 0x0 0
1 3 2X2 1
2 5 3x3 1
3 5 3x3 2
4 not used
5 7 4x4 1
6 7 4x4 3
7 11 6Xx6 1
8 11 6x6 2
9 1 6x6 3
10 15 8x8 1
1 15 8x8 2
12 15 8x8 4
13 31 16 x 16 1
14 not used
15 31 16 x 16 3
16 33 16 x 16 1 *
24 33 16 x 16 4 *

table which is best adapted to the current signal statistics is searched. By individually
adapting code tables to subregions coding efficiency is enhanced and simultaneously
the sensitivity against transmission errors is decreased. The largest tables used in
Layer 3 contain 16 by 16 entries. Larger values are coded using an escape mechanism.
The table entry belonging to the largest value signals that the value is coded via a
PCM-code.

The table numbers 17 to 23 and 25 to 31 are used to point to tables 16 resp. 24 but
with different lengths of the codeword part which is coded using the escape mechanism.
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Short time buffering. While all systems described here are designed to work in a
fixed bit-rate environment, it is desirable to support some locally varying bit-rates.
Beyond the aim of smoothing out some local variations in the bit-rate demand, thisis
used to reduce the probability of audible pre-echoes even in systems where window
switching is applied.

As described above, the pre-echo control in the perceptual model can lead to a PE
signalling a bit-rate demand which isincreased by a possibly large factor.
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Figure 2.12 Example for the bit reservoir technology (Layer 3)

A buffer technique called bit reservoir was introduced to satisfy this additional need
for bits. It can be described as follows:

The amount of bits corresponding to a frame is no longer constant, but varying
with a constant long term average. To accommodate fixed rate channels, a maximum
accumulated deviation of the actual bit-rate to the target (mean) bit-rate is allowed. The
deviation is always negative, i.e. the actual mean hit-rate is never alowed to exceed
the channel capacity. An additional delay in the decoder takes care of the maximum
accumulated deviation from the target bit-rate.

If the actual accumulated deviation from the target bit-rate is zero, then (by def-
inition) it holds that the actual bit-rate equals the target bit-rate. In this case the bit
reservoir is called empty. If there is an accumulated deviation of n bits then the next
frame may use up to n bits more than the average number without exceeding the mean
bit-rate. In this case the bit reservoir is said to "hold n bits'.

Thisis used in the following way in Layer 3: Normally the bit reservoir is kept at
somewhat below the maximum number (accumulated deviation). If thereisasurgein
PE due to the pre-echo control then additional bits *taken from the reservoir’ are used
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to code this particular frame according to the PE demand. In the next few frames every
frame is coded using some hits less than the average amount. The bit reservoir gets
"filled up’ again.

Figure 2.12 shows an example (for Layer 3) of the succession of frames with
different amounts of bits actually used. A pointer called main-data-begin is used to
transmit the information about the actual accumulated deviation from the mean bit-rate
to the decoder. The side information is still transmitted with the frame rate as derived
from the channel capacity (mean rate). The main-data-begin pointer is used to find the
main information in the input buffer of the decoder.

2.4.4 Joint stereo coding

As for the underlying audio coding methods itself the goal of joint stereo coding
is to reduce the amount of information which is transmitted to the receiver without
introducing audible artifacts. This is done by using the stereo redundancy and the
irrelevancy of certain stereo coding artifacts.

Contrary to popular believe, for most signals there is not much correlation between
the time signals corresponding to the left and right channel of a stereo source [Bauer and
Seitzer, 1989b]. Only the power spectra of both channels are often highly correlated
[Bauer and Seitzer, 1989a]. For binaural recordings this fact can easily be derived from
alook at room acoustics and the way the signal is recorded. If the delay of some sound
due to room acoustics is less than the time resolution of the filter bank, we find the
resulting signals on both channels in the same sample period of the filter bank output.
Generally it is true that stereo redundancy can be used more easily in high frequency
resolution systems.

Looking for stereo irrelevancy we find that the ability of the human auditory system
to discriminate the exact location of audio sources decreases at high frequencies
[Blauert, 1983]. The cues to get spatia impression are mainly taken from the energy
maxima in space at each frequency.

Pitfalls of stereo coding. Unfortunately for the coding system designer, in addition
to the lack of redundancy between the stereo channels there are a number of issues
which complicate stereo coding. In some cases, the necessary bit-rate for stereo coding
exceeds the one for coding of two mono channels. Other effects forbit joint stereo
coding for some classes of signals.

An especially interesting topic is the discussion of the “ stereo unmasking effect”. It
describes the situation that certain coding artifacts which are masked in single channel
coding can become audible when presented as a stereo signal coded by a dual mono
coding system. The underlying psychoacoustic effects have been studied intensively by
Blauert [Blauert, 1983]. The key parameter in the determination of stereo unmasking
is the Binaural Masking Level Difference (BMLD). This effect is most pronounced at
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low frequencies. In any case the maximum masking is occurring when the direction
of the virtual quantization noise source coincides with the direction of the main signal
source.

The precedence effect describes the effect that sound sources are sometimes local -
ized not according to the loudness of left versus right channel but on the origin of
the first (not the loudest) wavefront. This time relationship between signals can be
distorted by certain joint stereo coding techniques resulting in an altered stereo image.

General ideas. To apply the general findings to bit-rate reduction, the first ideais to
rotate the stereo plane into the main axis direction (as shown in Figure 2.13. This has to
be done independently for different frequencies, i.e. for each subband or each critical
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Figure 2.13 Main axis transform of the stereo plane (Reprinted from [Herre, 1995]
© 1995, courtesy of the author)

band. The idea has not been implemented in any real world audio coding system
because more bits are spent to transmit the direction information than are gained by
this method. Two methods which have been used very successfully can be derived as
simplifications of the main axis transform idea:

M/S stereo coding simplifies on the origina idea by reducing the number of possible
directions (to two).

Intensity stereo coding does not reduce the number of directions but keeps only the
main channel information for each subband.

M/S stereo coding. M/S stereo coding was introduced to low bit-rate coding in
[Johnston, 1989a]. A matrixing operation similar to the technique used in FM stereo
transmission is used in the coder with the appropriate dematrixing in the decoder:
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Instead of transmitting the left and right signal, the normalized sum and difference
signals are handled (see Figure 2.14). They are referred to as the middle (M) and the
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Figure 2.14 Basic block diagram of M/S stereo coding (Reprinted from [Herre, 1995]
© 1995, courtesy of the author)

side (S) channel. The matrixing operation can be done in the time domain (i.e. before
the analysis filter bank) as well as in the frequency domain (i.e. after the analysis
filter bank). Figure 2.15 shows the matrix operation. M/S stereo coding can be seen
as a special case of a main axis transform of the input signal (see [van der Waal and
Veldhuis, 1991]).
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Figure 2.15 Signal flow graph of the M/S matrix (Reprinted from [Herre, 1995] © 1995,
courtesy of the author)

The main features of M/S stereo processing can be described as follows [Herre
et al., 1992]:

m  Emphasis on redundancy removal
The main focus of M/S joint stereo coding is on the redundancy removal for
mono-like signals which often are critical for dual mono coding systems due
to the stereo unmasking effects described below. The maximum gain is the
theoretical gain of amain axis transform of atwo-dimensional signal. However,
stereo irrelevancy effects can be used in an M/S coding framework, too.

B Perfect reconstruction
The matrixing done in M/S joint stereo coding is invertible. Without the quanti-
zation and coding of the matrix output the processing is completely transparent.
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Therefore M/S coding is applicable to higher hit-rate very high quality coding,
too.

B Signal dependend bit-rate gain
The added coding efficiency of M/S stereo coding depends heavily on the actual
signal. It varies from a maximum of nearly 50% if the left and right channel
signals are equal (or exactly out of phase) to situations where M/S must not be
used because of the possibility of new reverse unmasking effects.

m  Useful for the whole spectral range
Because M/S matrixing basically preserves the full spatial information, it may
be applied to the full audio spectral range without the danger of the introduction
of severe artifacts.

Intensity stereo coding. Intensity stereo coding is another simplified approximation
to the general idea of directional transform coding. For each subband which is trans-
mitted using intensity stereo modes, just the intensity information is retained. The
directional information is transmitted via the coding of independent scal efactor values
for the left and right channels. Thus, only the energy envelope is transmitted for both
channels. Due to the irrelevancy of exact location information at high frequencies this
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Figure 2.16 Basic principle of intensity stereo coding (Reprinted from [Herre, 1995]
© 1995, courtesy of the author)

method is relatively successful. The main spatial cues are transmitted, however some
details may be missing. It seems that thisis especially obviousif the decoded signal is
audited using headphones (see [MPEG, 1991]).

The main features of intensity stereo coding can be described as follows:

®  Emphasis on irrelevancy reduction
While signals with a large correlation of left versus right time domain signa still
benefit from intensity stereo coding, the main emphasis is on the reduced spatial
resolution at high frequencies.
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m  Not perfect reconstruction
The signa components which are orthogonal in respect to the transmitted energy
maximum are not transmitted, resulting in a loss of spatial information. The
energy of the stereo signal is preserved, however. The potentia loss of spatial
information is considered to be less annoying than other coding artifacts. There-
fore intensity stereo coding is mainly used at low bit-rates to prevent annoying
coding artifacts.

m  Saving of 50% of the sample data
For the frequency range where intensity stereo coding is applied, only one
channel of subband data has to be transmitted. If we assume that intensity stereo
coding is applied for half of the spectrum, we can assume a saving of about 20%
of the net bit-rate. The maximum saving is at about 40%.

m  Useful only for the high frequency range
As explained above, intensity stereo encoding is used only for part of the spec-
trum. Extending intensity stereo processing towards low frequencies can cause
severe artifacts such as amajor loss of directional information.

Coupling channels. In multichannel systems, a coupling channel is used as the
equivaent to an n-channel intensity stereo system. This system is also known under
the names dynamic crosstalk or generalized intensity coding. Instead of n different
channels, for part of the spectrum only one channel with added intensity information is
transmitted. Coupling channels are used in AC-3 ([Fielder et al., 1996]) and MPEG-2
AAC ([Johnston et al., 1996]).

In the coupling channel as used in MPEG-2 AAC [Johnston et d., 1996], the spectral
data transmitted in the coupling element can be applied to any number of channels.
Instead of replacing the data as in classical intensity coding, the coupling channel is
added to the other channels. This enables coding of a residual signal in each of the
channels.

2.4.5 Prediction

Prediction as a tool for high quality audio coding has been proposed a number of
times (see for example [Edler, 1988, Singhal, 1990, Dimino and Parladori, 1995,
Fuchs, 1995]). Prediction improves the redundancy reduction especialy for near
stationary signals. Dependent on the overall type of the coding system (low or high
frequency resolution), different prediction strategies have found to be most efficient.
The following example shows how prediction is used in a recent high frequency
resolution coding system (MPEG-2 Advanced Audio Coding, the description below
follows [Bosi et al., 1996h]).
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For high frequency resolution filter bank based coders the transmission of prediction
coefficients would take a huge amount of additional side information. Therefore, a
short (two tap) backward adaptive predictor is used. An attenuation factor is applied
to the predictor to lower the long term impact of a connection loss. Prediction is
switched on and off to ensure it is only used in blocks with an actual prediction gain.
Additionally, the predictors are reset in certain intervals. In this way, small differences
in the arithmetic accuracy between encoder and decoder do not lead to audible errors
and can be tolerated.

2.4.6 Multi-channel: to matrix or not to matrix

A newer addition to perceptua encoding of high quality digital audio are systems which
faithfully reproduce multichannel sound. The most common presentation structure is
the 5 channel system asseenin Figure 2.17. A center channel is added to the usual |eft
and right channels to increase the stability of the sound stage. With a center channel
present, a sound source in the center (like a news speaker) stays in the center even if
the listener is located slightly of-center. Two surround channels are added to give a
much improved sound stage.

Figure 2.17 ITU Multichannel configuration

To enable a smooth transition between two-channel stereo and discrete surround
sound transmission, different matrix systems have been proposed. One system is
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employed in the MPEG-2 backward compatible coding (see [MPEG, 19944]) and uses
an automatic downmix of the five original signals to yield a two-channel stereo signal
which contains all parts of the original signal. Other systems (JATSC, 1995],[MPEG,
19974] propose to do a downmix of a 5-channel signal at the receiver end if a two
channel presentation is needed. The following equation describes the mixdown of five
to two channels. L, R, C, Ls and Rs are the l€ft, right, center, left surround and
right surround channels of the multichannel signal. Lc and R¢ are the compatible
left and right channels generated from the five channel signal. The matrix-mixdown
coefficient ais usually selected to be one of 1/v/2.,1/2,1/(2+/2), 0.

1

Le=—>" [L+C/V2+a- L 2.19
1

Re= —— . [R+C/V2+a-R 2.20

c Ry [R+C/v2+a- Rs] (2.20)

Both compatibility matrixing in the encoder as well as downmix in the decoder have
specific disadvantages. Encoder matrixing can lead to noise leakage in the decoder.
This can be overcome, but at the expense of an increased bit-rate demand. Decoder
matrixing can lead to some artifacts, too. However, this has not been observed to
the same amount as the encoder matrixing artifacts. In both cases, the optimum two-
channel mix is probably different from the automatic downmix from five channels.

2.5 APPLYING THE BASIC TECHNIQUES: REAL CODING SYSTEMS

As examples how to apply the basic techniques several well known perceptual coders
are described below. The selection was based on the familiarity of the author with the
schemes, not on the scientific or commercial importance of the systems. An overview
containing more details about commercialy available coding systems can be found in
[Brandenburg and Bosi, 1997].

2.5.1 Pointers to early systems (no detailed description)

Instead of detailed descriptions it shall suffice to point to examples of early work
on high quality audio coding. The first reference known to the author mentioning
the idea of perceptua coding is [Blauert and Tritthart, 1975]. The origina paper
stimulating research on perceptual coding is [Schroeder et al., 1979]. Other references
to early work on high quality audio coding are [Krasner, 1979, Schroeder and Voessing,
1986, Brandenburg et al., 1982].
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2.5.2 MPEG Audio

Since 1988 ISO/IEC JTC1/SC29 WGL11, caled MPEG (Moving Pictures Experts
Group) undertakes the standardization of compression techniques for video and audio.
Three low bit-rate audio coding standards have been completed:

m  MPEG-1 Audio [MPEG, 1992] became IS (International Standard) in 1992.
It was designed to fit the demands of many applications including storage on
magnetic tape, digital radio and the live transmission of audio via ISDN. A
target system consisting of three modes called layers was devised. Layer 1 was
originally optimised for a target bit-rate of 192 khit/s per channel (as used in the
Digital Compact Cassette, DCC), Layer 2 for atarget bit-rate of 128 kbit/s per
channdl and Layer 3 for atarget bit-rate of 64 kbit/s per channel. Sampling rates
of 32 kHz, 44.1 kHz and 48 kHz are specified.

m  MPEG-2 Audio [MPEG, 19944 consists of two extensionsto MPEG-1:

— Backwards compatible multichannel coding adds the option of forward
and backwards compatible coding of multichannel signals including the
5.1 channel configuration known from cinema sound.

— Coding at lower sampling frequencies adds sampling frequencies of 16
kHz, 22.05 kHz and 24 kHz to the sampling frequencies supported by
MPEG-1. This adds coding efficiency at very low bit-rates.

Both extensions do not introduce new coding algorithms over MPEG-1 Audio.

B MPEG-2 Advanced Audio Coding [MPEG, 19974] contains the definition of
a second generation audio coding scheme for generic coding of stereo and
multichannel signals including 5.1 and 7.1 configurations. This was formerly
known under the name MPEG-2 NBC (non backwards-compatible coding).

MPEG-1 Layer 1 and Layer 2. The coding scheme contains the basic polyphase
filter bank to map the digital audio input into 32 subbands, fixed segmentation to format
the data into blocks, a psychoacoustic model to determine the adaptive bit allocation,
and quantization using block companding and frame coding. The following description
follows the lines of the basic block diagram of a perceptual coding system as shown
inFigure 2.5.

The polyphase filter bank used in MPEG-1 uses a 511-tap prototype filter as de-
scribed on page 53.

For each polyphase subband there are three main types of information to transmit:

®  Bit alocation
This determines the number of bits used to code each subband samples. The
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quantizer is controlled by the bit alocation as well. In Layer 1 there are 4
bits used to transmit the bit alocation for each subband. In Layer 2 there are
different possible bit alocation patterns depending on total bit-rate and sampling
rate. This reduces the number of bits spent on bit allocation information at low
bit-rates.

m  Scalefactors
A block floating point technique (block companding) is used to quantize the
subband samples. The calculation of scalefactorsis performed every 12 subband
samples. The maximum absolute value of the 12 subband samples is quantized
with a quantizer step size of 2 dB. With 6 hits alocated for the quantized
scalefactors, the dynamic range can be up to 120 dB. Only scalefactors for
subbands with a non-zero bit allocation are transmitted.

B Subband samples
The subband samples are transmitted using the wordlength defined by the bit
alocation for each subband. Uniform quantization and mid-tread quantizers are
used.

Compared to Layer 1 (as described above), Layer 2 provides additional coding of
bit allocation, scalefactors and samples. Different framing is used (24 ms versus 8 ms
in Layer 1). The bit allocation is valid for the whole frame while scalefactors are
used as exponents to blocks of 12 subband samples asin Layer 1. A scalefactor select
information is used to flag whether a scalefactor is transmitted for each of the 3 blocks
in a frame, for two of them or if oneis valid for all 3 blocks. The scalefactor select
information (scsfi) is coded using 2 bits per subband and frame. Whereas in Layer
1 the possible hit alocations are 0 and 2 to 15 hits, in Layer 2 additiona fractional
bit allocations are possible. They include quantizers using 3, 5, 7 and 9 quantization
levels. Since many subbands are typically quantized with no more quantization levels,
this results in a considerable bit-rate saving.

The bit allocation is derived from the SMR-values which have been calculated in
the psychoacoustic model. This is done in an iterative fashion. The objective is to
minimize the noise-to-mask ratio over every subband and the whole frame. In each
iteration step the number of quantization levelsis increased for the subband with the
worst (maximum) noise-to-mask ratio. This is repeated until all available bits have
been spent.

MPEG-1 Layer 3. Layer 3 combines some of the features of Layer 2 with the
additional coding efficiency gained by higher frequency resolution and Huffman coding
as found in ASPEC ([Brandenburg, 1991]). Figure 2.18 shows a block diagram.

Most of the features of Layer 3 have been described above.
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The hybrid filter bank used in Layer 3 has been described on page 56. The filter
bank is switchable with three possible selections corresponding to a576 line, 216 line
and 192 line frequency resolution.
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Figure 2.18 Block diagram of an MPEG-1 Layer 3 encode

Other coding toolsin Layer 3 include a different (nonuniform) quantizer, analysis-
by-synthesis control of the quantization noise and Huffman coding of the quantized
values to increase the coding efficiency. All these have already been described earlier
in this chapter.

In terms of joint stereo coding techniques, Layer 3 supports a combination of M/S
coding (broad band) and intensity stereo coding (see [Herreet a., 1992)).

MPEG-2 Audio. MPEG-2 audio coding contains two large additions to the MPEG-1
audio standard:

ISO/IEC IS 13818-3 is called “backward compatible MPEG-2 audio coding”
(MPEG-2 BC) and contains extensions to MPEG-1 audio covering backwards com-
patible (matrixed) multichannel coding, bitstream definition extensions to cover mul-
tilingual services and the extension of all coding modes of MPEG-1 to lower sampling
frequencies.

ISO/IEC IS 13818-7 is called “MPEG-2 Advanced Audio Coding” and covers a new,
non backwards compatible audio coding system for flexible channel configurations
including stereo and multichannel services.

Backwar ds compatible multichanné coding. IS 13818-3 contains the definition of
a backward-compatible multichannel coding system. The MPEG-1 L and R channels
are replaced by the matrixed signals Lc and Rc according to equations (2.19) and
(2.20), where L ¢ and R¢ are encoded with an MPEG-1 encoder. Therefore an MPEG-
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1 decoder can reproduce a comprehensive downmix of the full 5 channel information.
The basic frame format is identical to the MPEG-1 bitstream format. The additional

L:] MPEG-1 Header
7 MPEG-1 Data

MPEG-1/2 Bitstream format 8
[ | MPEG-1 Ancillary Data

| MPEG-2 Header
| .| MPEG-2Data

] MPEG-2 Ancillary Data

Figure 2.19  Transmission of MPEG-2 multichannel information within an MPEG-1
bitstream

channels eg. C, Ls and Rs aretransmitted in the MPEG-1 ancillary datafield.

During dematrixing in the decoder it can happen that the signa in a particular
channel is derived from two channels with the signals being out of phase (cancelling
each other). In this case, the corresponding quantization noise might not be out of
phase and therefore survive the dematrixing. It then becomes audible as a dematrixing
artifact. This way, quantization noise generated by coding of one channel can become
audible in other channels.

Asin the case of MPEG-1, there are three versions of the multichannel extension
caled Layer 1, Layer 2 and Layer 3. Layer 1 and Layer 2 MC extensions basically
both use a bitstream syntax similar to Layer 2. Asin the case of MPEG-1, Layer 3is
the most flexible system. As one special feature, MPEG-2 MC Layer 3 permits use
of aflexible number of extension channels. While the original idea behind thiswasto
alleviate the dematrixing artifact problem for some worst case items, this idea can be
used to do simulcast of two-channel stereo and 5-channel extension without the artistic
restrictions of afixed compatibility matrix.

Coding at lower sampling frequencies. Another extension of MPEG-1 is the ad-
dition of modes using lower sampling frequencies, i.e. below 32 kHz. These modes
are useful for the transmission of both wideband speech and medium quality audio at
bit-rates between 64 and 16 kbit/s per channel, with applications for commentary as
well as for Internet audio systems and whenever the bit-rate budget is very limited.
The basic idea behind the addition of lower sampling frequencies (LSF) is the increase
of coding gain for higher frequency resolution filter banks. Another advantage of L SF
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isan improved ratio of main information to side (esp. header) information. In a 1994
listening test [MPEG, 1994b] it was shown that 64 kb/s total bit-rate joint stereo Layer
3 at 24 kHz sampling frequencies approaches the quality (in reference to a 11 kHz
signal) which was found in 1990 for the 64 kbit/s per channel ASPEC system.

2.5.3 MPEG-2 Advanced Audio Coding (MPEG-2 AAC)

MPEG-2 AAC has been designed to reduce the bit-rate where broadcast quality can
be achieved as much as possible according to the state of the art. A number of
new or improved coding tools have been introduced in order to improve the coding
efficiency. This paragraph gives only a very short description of the main features.
More information can be found in [Bosi et al., 1996b].

The block diagram of the MPEG-2 AAC encoder is shown in Figure 2.20. A brief
description of the basic tools of the MPEG-2 AAC system follows:

Gain Control. A four-band polyphase quadrature filter bank (PQF) splits the input
signal into four equally-spaced frequency bands. This tool is used for the scaleable
sampling rate (SSR) profile only. Its time domain gain control component can be
applied to reduce pre-echo effects.

Filterbank. A modified discrete cosine transform (MDCT/IMDCT) is used for the
filter bank tool. The MDCT output consists of 1024 or 128 frequency lines. The
window shape is selected between two alternative window shapes.

Temporal Noise Shaping (TNS). The TNS tool is used to control the temporal
shape of the quantization noise within each window of the transform. This is done by
applying afiltering process to parts of the spectral data.

Intensity Coding/Coupling. The intensity coding/coupling tool combines channel
pairs or multiple channels and transmits only a single channel plus directional infor-
mation for parts of the spectrum.

Prediction. Prediction is used to improve the redundancy reduction for stationary
signals. Thistool isimplemented as a second order backward adaptive predictor.

M/S Stereo Coding. The M/S stereo coding tool allows to encode either Left and
Right or Mid and Side of a channel pair for selected spectral regions in order to improve
coding efficiency.

Scalefactors. The spectrum is divided in severa groups of spectral coefficients called
scalefactor bands which share one scalefactor. A scalefactor represents a gain value
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Figure 2.20 Block diagram of the MPEG-2 AAC encoder
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which is used to change the amplitude of all spectral coefficients in that scalefactor
band. This process provides shaping of the quantization noise according to the masked
thresholds as estimated in the perceptual model.

Quantization. In the quantization tool a non-uniform quantizer (as in Layer 3) is
used with a step size of 1.5 dB.

Noiseless Coding. Huffman coding is applied for the quantized spectrum, the differ-
ential scalefactors, and directional information. A total of 12 static Huffman codebooks
are employed to code pairs or quadruples of spectral values.

Perceptual Model. A psychoacoustic model similar to IS 11172-3 psychoacoustic
model |1 is employed.

2.5.4 MPEG-4 Audio

The newest coding system which is reported hereis currently still under development.
MPEG-4 audio, planned for completion in late 1998, will actually consist of a family
of coding algorithms targeted for different bit-rates and different applications.

Bridging the gap between signal synthesis, speech coding and perceptual audio
coding. The target bit-rates of MPEG-4 audio are from around 2 kbit/s up to 64 kbit/s
per channel. Depending on the application, generic audio coding or speech coding is
required. To fulfill this wide range of needs, MPEG-4 audio will contain a number of
different algorithms. MPEG-4 audio will use MPEG-2 Advanced Audio Coding for
the higher bit-rates utilize coding tools based on MPEG-2 AAC as well as other
proposals for lower bit-rates.

Scaleable audio coding. The main innovation of MPEG-4 audio besides the added
flexibility is scaleability. In the context of MPEG-4 audio this is defined as the property
that some part of a bitstream is still sufficient for decoding and generating a meaningful
audio signal with lower fidelity, bandwidth or a selected content. Depending whether
this embedded coding is realized as a number of large (e.g. 8 kbit/s) steps or with
a fine granularity, it is called large step or small step scaleability. While scaleability
can always be implemented via simulcast of different encoded versions of a signal,
MPEG-4 audio calls for solutions with asmall or no hit in coding efficiency due to the
scaleability feature.

Figure 2.21 shows a block diagram of the configuration for scaleability of the
planned MPEG-4 audio standard.

In the extreme case, scaleability can actually improve the coding efficiency at a
certain bit-rate: If a good quality speech coder is used for the core layer the resulting
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Figure 2.21 MPEG-4 audio scaleable configuration

Parametric core: Very low bit-rate coder based on parametric methods
CELP core: Speech coder

T/F-core: Time/frequency transform based perceptual coder

quality for speech signals may improve at combined bit-rates where this type of signal
normally results in audible artifacts.

2.6 CURRENT RESEARCH TOPICS

Up to now, the most advanced perceptual coding systems have been built within
the framework of the MPEG-Audio standardization effort. In parallel, research on
alternative algorithms has been going on at universities and research institutes not
involved in MPEG. The following paragraphs list just a few areas of active research
on high quality audio coding.

Filterbanks. There is still continued research on filter banks for high quality audio
coding. Topics include wavelet based filter banks, low delay filter banks [Schuller,
1995] or variable filter banks alowing a higher degree of variability than classic
window switching [Princen and Johnston, 1995].

Perceptual Models. It seems that the search for more accurate psychoacoustic mod-
els will not be over for some time to come. Progress at very low bit-rates and for
variable rate coding depends on the availability of better perceptual models. One area
with promising results is the application of nonlinear models as proposed in [Baumgarte
et al., 1995].

Quantization and Coding. While no major new ideas have been introduced for some
time, refinements and variations on the currently used methods for quantization and
coding are still an active research topic. Examples include experiments with arithmetic
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coding as conducted during the MPEG-2 NBC core experiment process [MPEG, 1996]
or tools to improve the efficiency of currently used systems for some signal classes
[Takamizawa et al., 1997].

Lossless and near lossless coding. For contribution and archiving purposes, the use
of low hit-rate audio coding is dangerous to the final audio quality. If signas are coded
in tandem at very low bit-rates, coding artifacts are accumul ating and become audible.
To overcome this problems, lossless and near lossless (high coding margin) systems
have been proposed (see [Cellier, 1994, Brandenburg and Henke, 1993]). While no
standardization is planned for such systems, there is ongoing work towards improved
systems for lossless and near lossless coding.

2.7 CONCLUSIONS

The art of perceptual audio coding is still in between research (with a solid scientific
foundation) and engineering (where it is important that things work even if nobody
knows why). While the rate of innovation has somewhat slowed down, high quality
audio coding is till a young research field with more results to be expected in the
future.
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3 REVERBERATION ALGORITHMS
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Abstract: This chapter discusses reverberation algorithms, with emphasis on algo-
rithms that can be implemented for realtime performance. The chapter begins with a
concise framework describing the physics and perception of reverberation. This includes
adiscussion of geometrical, modal, and statistical models for reverberation, the perceptual
effects of reverberation, and subjective and objective measures of reverberation. Algo-
rithms for simulating early reverberation are discussed first, followed by a discussion of
agorithms that simulate late, diffuse reverberation. This latter material is presented in
chronological order, starting with reverberators based on comb and allpass filters, then
discussing allpass feedback loops, and proceeding to recent designs based on inserting
absorptive losses into a lossless prototype implemented using feedback delay networks
or digital waveguide networks.

3.1 INTRODUCTION

Our lives are for the most part spent in reverberant environments. Whether we are
enjoying amusical performancein aconcert hall, speaking to colleaguesin the office,
walking outdoors on acity street, or even in the woods, the sounds we hear are invariably
accompanied by delayed reflections from many different directions. Rather than
causing confusion, these reflections often go unnoticed, because our auditory system
iswell equipped to deal with them. If the reflections occur soon after the initial sound,
the result is not perceived as separate sound events. Instead, the reflections modify
the perception of the sound, changing the loudness, timbre, and most importantly,
the spatial characteristics of the sound. Late reflections, common in very reverberant
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environments such as concert halls and cathedrals, often form a background ambience
which is quite distinct from the foreground sound.

Interestingly, the presence of reverberation is clearly preferred for most sounds,
particularly music. Music without reverberation sounds dry and lifeless. On the other
hand, too much reverberation, or the wrong kind of reverberation, can cause a fine
musical performance to sound muddy and unintelligible. Between these extremes is
a beautiful reverberation appropriate for the music at hand, which adds fullness and
a sense of space. Consequently, a number of concert halls have built reputations for
having fine acoustics, based on the quality of the perceived reverberation.

The importance of reverberation in recorded music has resulted in the the creation
of artificial reverberators, electro-acoustic devices that simulate the reverberation of
rooms. Early devices used springs or steel plates equipped with transducers. The
advent of digital electronics has replaced these devices with the modern digital rever-
berator, which simulates reverberation using a linear discrete-time filter. These devices
are ubiquitous in the audio production industry. Almost every bit of audio that we hear
from recordings, radio, television, and movies has had artificial reverberation added.
Artificial reverberation has recently found ancther application in the field of virtual
environments, where simulating room acoustics is critical for producing a convincing
immersive experience.

The subject of this paper is the study of signal processing algorithms that simulate
natural room reverberation. The emphasis will be on efficient algorithms that can be
implemented for real-time performance.

3.1.1 Reverberation as a linear filter

From a signal processing standpoint, it is convenient to think of a room containing
sound sources and listeners as a system with inputs and outputs, where the input and
output signal amplitudes correspond to acoustic variables at points in the room. For
example, consider a system with one input associated with a spherical sound source,
and two outputs associated with the acoustical pressures at the eardrums of a listener.
To the extent that the room can be considered a linear, time-invariant (LTI) system?,
a stereo transfer function completely describes the transformation of sound pressure
from the source to the ears of alistener. We can therefore simulate the effect of the
room by convolving an input signal with the binaural impulse response (BIR):

y(t) = /000 hp(r)z(t — T)dr (31)

yr(t) = /000 hp(r)z(t — r)dr

where hy_(t) and hr(t) are the system impulse responses for the left and right ear,
respectively; x(t) is the source sound; and y; (t) and yg(t) are the resulting signals
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for the left and right ear, respectively. This concept is easily generalized to the case of
multiple sources and multiple listeners.

3.1.2 Approaches to reverberation algorithms

We will speak of areverberation algorithm, or more simply, a reverberator, as alinear
discrete-time system that simulates the input-output behavior of a real or imagined
room. The problem of designing areverberator can be approached from a physical or
perceptual point of view.

The physical approach. The physical approach seeks to simulate exactly the prop-
agation of sound from the source to the listener for a given room. The preceding
discussion of binaural impulse responses suggests an obvious way to do this, by sim-
ply measuring the binaural impulse response of an existing room, and then rendering
the reverberation by convolution.

When the room to be simulated doesn’t exist, we can attempt to predict itsimpulse
response based on purely physical considerations. This requires detailed knowledge of
the geometry of the room, properties of all surfacesin the room, and the positions and
directivities of the sources and receivers. Given this prior information, it is possible to
apply the laws of acoustics regarding wave propagation and interaction with surfaces
to predict how the sound will propagate in the space. This technique has been termed
auralization in the literature and is an active area of research [Kleiner et a., 1993].
Typically, an auralization system first computes the impulse response of the specified
room, for each source-receiver pair. These finite impulse response (FIR) filters are
then used to render the room reverberation.

The advantage of this approach is that it offers a direct relation between the physical
specification of the room and the resulting reverberation. However, this approach is
computationally expensive and rather inflexible. Compared to other algorithms we
will study, real-time convolution with a large filter response is somewhat expensive,
even using an efficient algorithm. Furthermore, there is no easy way to achieve real-
time parametric control of the perceptual characteristics of the resulting reverberation
without recalculating alarge number of FIR filter coefficients.

The perceptual approach. The perceptual approach seeks to reproduce only the
perceptually salient characteristics of reverberation. Let us assume that the space of all
percepts caused by reverberation can be spanned by N independent dimensions, which
correspond to independently perceivable attributes of reverberation. If each perceptual
attribute can be associated with a physical feature of the impulse response, then we
can attempt to construct a digital filter with N parameters that reproduces exactly
these N attributes. In order to simulate the reverberation from a particular room, we
can measure the room response, estimate the N parameters by analyzing the impulse
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response, and then plug the parameter estimates into our “universal” reverberator.

The reverberator should then produce reverberation that is indistinguishable from the

original, even though the fine details of the impulse responses may differ considerably.
This approach has many potential advantages:

B The reverberation algorithm can be based on efficient infinite impul se response
(IIR) filters.

®  Thereverberation algorithm will provide real-time control of all the perceptually
relevant parameters. The parameters do not need to be correlated as they often
arein real rooms.

B |deally, only one agorithm is required to simulate all reverberation.

B Existing rooms can be simulated using the analysis/synthesis approach outlined
above.

One disadvantage of this method is that it doesn’t necessarily provide an easy way
to change a physical property of the simulated room.

The perceptually motivated method is essentially the approach that has been taken
in the design of reverberation algorithms, with severa cavesats. First, there is a great
deal of disagreement as to what the perceivable attributes of reverberation are, and
how to measure these from an impulse response. Second, it is difficult to design
digital filters to reproduce these attributes. Conseguently, the emphasis has been to
design reverberators that are perceptually indistinguishable from real rooms, without
necessarily providing the reverberator with a complete set of independent perceptual
controls.

In this paper, we will concentrate on the perceptually motivated method, because
the resulting recursive algorithms are more practical and useful. We first present
a concise physical and perceptual background for our study of reverberation, then
discuss algorithms to simulate early reverberation, and conclude with a discussion of
late reverberation algorithms.

3.2 PHYSICAL AND PERCEPTUAL BACKGROUND

The process of reverberation starts with the production of sound at a location within
a room. The acoustic pressure wave expands radialy outward, reaching walls and
other surfaces where energy is both absorbed and reflected. Technically speaking, all
reflected energy is reverberation. Reflection off large, uniform, rigid surfaces produces
areflection the way amirror reflects light, but reflection off non-uniform surfacesis a
complicated process, generaly leading to a diffusion of the sound in various directions.
The wave propagation continues indefinitely, but for practical purposes we can consider
the propagation to end when the intensity of the wavefront falls below the intensity of
the ambient noise level.
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Assuming a direct path exists between the source and the listener, the listener
will first hear the direct sound, followed by reflections of the sound off nearby sur-
faces, which are called early echoes. After a few hundred milliseconds, the number
of reflected waves becomes very large, and the remainder of the reverberant decay is
characterized by a dense collection of echoes traveling in al directions, whose intensity
isrelatively independent of location within the room. Thisis called late reverberation
or diffuse reverberation, because there is equal energy propagating in al directions. In
a perfectly diffuse soundfield, the energy lost due to surface absorption is proportional
to the energy density of the soundfield, and thus diffuse reverberation decays exponen-
tially with time. The time required for the reverberation level to decay to 60 dB below
theinitial level is defined as the reverberation time.

3.2.1 Measurement of reverberation

Measuring reverberation in aroom usually consists of measuring an irnpul se response
for a specific source and receiver. Pistol shots, balloon pops, and spark generators
can be used as impulsive sources. Another possibility is to use an omnidirectional
speaker driven by an electronic signal generator. Typical measurement signalsinclude
clicks, chirps (also known as time delay spectrometry [Heyser, 1967]), and various
pseudo-random noise signals, such as maximum length (ML) sequences [Rife and
Vanderkooy, 1987] and Golay codes [Foster, 1986]. The click (unit impulse) signal
allows a direct measurement of the impulse response, but results in poor signal to noise
ratio (SNR) because the signal energy is small for a given peak amplitude. The chirp
and noise signals have significantly greater energy for a given peak amplitude, and
allow the impulse response to be measured with improved SNR by deconvolving the
impulse response from the recorded signal. The measurement signals are deliberately
chosen to make the deconvolution easy to perform.

Figure 3.1 shows the impul se response of a concrete stairwell, plotting pressure as
a function of time. The direct response is visible at the far left, followed by some
early echoes, followed by the exponentially decaying late reverberation. The early
echoes have greater amplitude than the direct response due to the directivities of the
measurement speaker and microphone.

Rooms may contain a large number of sources with different positions and directivity
patterns, each producing an independent signal. The reverberation created in a concert
hall by a symphony orchestra cannot be characterized by a single impulse response.
Fortunately, the statistical properties of late reverberation do not change significantly
as a function of position. Thus, a point to point impulse response does characterize
the late reverberation of the room, although the early echo pattern is dependent on the
positions and directivities of the source and receiver.
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Figure 3.1 Impulse response of reverberant stairwell measured using ML sequences.

The fact that the early and late reverberation have different physical and perceptual
properties permits us to logically split the study of reverberation into early and late
reverberation.

3.2.2 Early reverberation

Early reverberation is most easily studied by considering a simple geometrical model
of the room. These models depend on the assumption that the dimensions of reflective
surfaces in the room are large compared to the wavelength of the sound. Consequently,
the sound wave may be modeled as aray that is normal to the surface of the wavefront
and reflects specularly, like light bouncing off a mirror, when the ray encounters a wall
surface. Figure 3.2 shows awall reflection using the ray model. The source is at point
A, and we are interested in how sound will propagate to a listener at point B.

The reflected ray may also be constructed by considering the mirror image of the
source as reflected across the plane of the wall. In figure 3.2, the image source thus
constructed is denoted A'. This technique of reflecting sources across wall surfacesis
called the source image method. The method allows a source with reflective boundaries
to be modeled as multiple sources with no boundaries.

The image source A' is afirst order source, corresponding to a sound path with a
single reflection. Higher order sources corresponding to sound paths with multiple
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Figure 3.2 Single wall reflection and corresponding image source A'.

reflections are created by reflecting lower order sources across wall boundaries. Fre-
quently the resulting sources are “invisible” to the listener position, and this condition
must be tested explicitly for each source. When the room is rectangular, as shown in
figure 3.3, the pattern of image sources is regular and trivia to calculate. Calculation
of the image source positions in irregularly-shaped rooms is more difficult, but the
problem has been solved in detail [Borish, 1984]. The number of image sources of
order kis roughly N*, where N is the number of wall surfaces. The source image
method is impractical for studying late reverberation because the number of sources
increases exponentialy, and the simplified reflection model becomes inaccurate.

X X X X X
X X X X X
X X x X X

Figure 3.3 A regular pattern of image sources occurs in an ideal rectangular room.

In order to calculate the impulse response at the listener’s position, the contributions
from all sources are summed. Each source contributes a delayed impulse (echo),
whose time delay is equal to the distance between the source and the listener divided
by the speed of sound. The echo amplitude is inversely proportional to the distance
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travelled, to account for spherical expansion of the sound, and proportiona to the
product of the reflection coefficients of the surfaces encountered. This model ignores
any frequency dependent absorption, which normally occurs during surface reflections
and air propagation. A more accurate model uses linear filters to approximate these
frequency dependent losses [Lehnert and Blauert, 1992], such that the spectrum of
each echo reaching the listener is determined by the product of the transfer functions
involved in the history of that echo:

Alw) = Gw) [] Tj(w) 32
JES

where A(w) is the spectrum of the echo, Sis the set of walls encountered, Ij(w) is
the frequency dependent transfer function that models reflection with the jth wall, and
G(w) models the absorptive losses and time delay due to air propagation.

The simplifying assumptions that permit us to consider only specular reflections are
no longer met when the wall surfaces contain features that are comparable in size to the
wavelength of the sound. In this case, the reflected sound will be scattered in various
directions, a phenomenon referred to as diffusion. The source image model cannot be
easily extended to handle diffusion. Most auralization systems use another geometrical
model, caled ray tracing [Krokstad et al., 1968], to model diffuse reflections. A
discussion of these techniquesis beyond the scope of this paper.

The early response consists largely of discrete reflections that come from specific
directions, and we now consider how to reproduce the directional information. It is well
known that the auditory cues for sound localization are embodied in the transformation
of sound pressure by the torso, head, and external ear (pinna) [Blauert, 1983]. A
head-related transfer function (HRTF) is a frequency response that describes this
transformation from a specific free field source position to the eardrum. HRTFs are
usually measured using human subjects or dummy-head microphones, and consist of
response pairs, for the left and right ears, corresponding to a large number of source
positions surrounding the head. When computing the binaural transfer function of a
room using the geometrical models just discussed, we must convolve each directional
echo with the HRTF corresponding to the direction of the echo [Wightman and Kistler,
1989, Begault, 1994].

The binaural directional cues captured by HRTFs are primarily the interaural time
difference (ITD) and interaural intensity difference (11D) which vary as a function of
frequency. Echoes that arrive from lateral directions (i.e. from either side of the lis-
tener) are important for modifying the spatial character of the perceived reverberation.
The ITD of alateral sound source is well modeled by a delay corresponding to the
difference in path lengths between the two ears. Similarly, the IID may be modeled as
alowpassfiltering of the signal arriving at the opposite (contral ateral) ear.
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3.2.3 Perceptual effects of early echoes

The perceptual effects of early reflections can be studied by considering a simple
soundfield consisting of the direct sound and a single delayed reflection. This situation
is easy to reproduce in an anechoic chamber or with headphones. Using musical
signals, when both the direct sound and reflection are presented frontally and the
reflection delay is greater than about 80 msec, the reflection will be perceived as a
distinct echo of the direct sound if it is sufficiently loud. As the reflection delay
becomes smaller, the reflection and direct sound fuse into one sound, but with a tonal
coloration attributed to the cancellation between the two signals at a periodic set of
frequencies. The reflection can also increase the loudness of the direct sound. The
delay and gain thresholds corresponding to the different percepts depend strongly on
the source sound used for the experiment.

When the reflection comes from a lateral direction, the reflection can profoundly
affect the spatia character of the sound. For small reflection delays (< 5 msec), the
echo can cause the apparent location of the source to shift. Larger delays can increase
the apparent size of the source, depending on its frequency content, or can create the
sensation of being surrounded by sound.

In the literature, various terms are used to describe the spatial sensations attributed
to lateral reflections, including spaciousness, spatial impression, envelopment, and
apparent source width (ASW). Despite the lack of consistent terminology, it is generally
accepted that spaciousness is a desirable attribute of reverberation [Beranek, 1992]. It
has been hypothesized that latera reflections affect the spatial character of the sound by
directly influencing the localization mechanisms of the auditory system [Griesinger,
1992]; the presence of the lateral energy causes large interaural differences which
would not otherwise occur in the presence of frontal (or medial) energy alone.

In Barron and Marshall’s research into this phenomena using musical signals, it was
determined that the degree of spatial impression was directly related to the sine of the
reflection incidence angle, reaching a maximum for 90 degree (fully lateral) incidence
[Barron and Marshall, 1981]. They proposed a simple acoustical measurement that
predicted the spatial impression, called the lateral fraction (LF). LF istheratio of early
energy received by a dipole microphone (null axis facing forward) to the total early
energy. A binaural acoustical measurement that has superceded LF for predicting
spatia impression is the interaural cross-correlation coefficient (IACC) [Hidaka et al.,
1995]:

ft2 pr{t)pr(t + 7)dr
(f; p%(t dtf“ 2 (t)dt)1/2

TACF(r) = (33

IACC = OIACK(T)jmax, for =1 < 7 <+1ms
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where pL and pr are the pressures at the entrance to the left and right ear canals,
respectively, and the integration limits t; and t, are chosen to be 0 and 80 msec,
respectively, when the “early” IACCE is calculated. IACF(t) is the normalized
cross-correlation function of the left and right ear pressures with atimelag of 1, and
IACC is the maximum of this function over a range of +1 msec, to account for the
maximum interaural time delay. The time lag corresponding to the maximum value of
IACF estimates the lateral direction of the source sound [Blauert and Cobben, 1978].
A broadening of the IACF, and consequently a lower IACC value, corresponds to
increased spatial impression.

3.2.4 Reverberation time

Sabine's pioneering research started the field of modern room acoustics and established
many important concepts, most notably the concept of reverberation time (RT) [Sabine,
1972]. His initial experiments consisted of measuring the reverberant decay time of
aroom, and observing the change in decay time as absorptive material was added to
the room. Sabine determined that the reverberant decay time was proportional to the
volume of the room and inversely proportional to the amount of absorption:

.V

T, x 1 (34)

where T, isthe reverberation time required for the sound pressure to decay 60 dB, Vis

the volume of the room, and A is a measure of the total absorption of materials in the

room. Because the absorptive properties of materials vary as a function of frequency,

the reverberation time does as well. Most porous materials, such as carpeting and

upholstery, are more absorptive at higher frequencies, and consequently the RT of
most rooms decreases with increasing frequency.

Reverberation time can be measured by exciting aroom to steady state with a noise
signal, turning off the sound source, and plotting the resulting squared pressure as a
function of time. The time required for the resulting energy decay curve (EDC) to
decay 60 dB is defined as the RT. Narrowband noise centered at some frequency can
be used to measure the RT at that frequency. The particular energy decay curve so
obtained will depend on details of the noise signa used. By averaging many successive
measurements using different noise signals, one obtains a more accurate estimate of
the true energy decay curve.

Schroeder has shown that this averaging is unnecessary [Schroeder, 1965]. The true
energy decay curve can be obtained by integrating the impulse response of the room
as follows:

EDC(t) = /m R2(r)dr (35)

t
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where h(t) is the impulse response of the room which may be narrowband filtered to
yield the EDC for some particular frequency. The integral (often called a Schroeder
integral) computes the energy remaining in the impulse response after time t

A useful way to display reverberation as a function of time and frequency is to
start with the impulse response, bandpass filter it into frequency bands, compute the
Schroeder integrals, and display the result as a 3-D surface. This has been proposed
by several authors[Jot, 1992b, Jot, 1992a, Griesinger, 1995] and the concept has been
formalized by Jot as the energy decay relief, EDR(t, w ), which is a time-frequency
representation of the energy decay. Thus, EDR(0, w) gives the power gain as a
function of frequency and EDR(t, wg) gives the energy decay curve for some frequency
wy. Figure 3.4 shows the energy delay relief of occupied Boston Symphony Hall
displayed in third octave bands. As expected, the reverberation decays faster at higher
freguencies.

The late portion of the EDR can be described in terms of the frequency response
envelope G(w) and the reverberation time T, (), both functions of frequency [Jot,
1992b]. G(w) is calculated by extrapolating the exponential decay backwards to time
0 to obtain a conceptual EDR(0, w) of the late reverberation. For diffuse reverberation,
which decays exponentialy, G(w) = EDR(O, w). In this case, the frequency response
envelope G(w) specifies the power gain of the room, and the reverberation time T, (w)
specifies the energy decay rate. The smoothing of these functions is determined by the
frequency resolution of the time-frequency distribution used.

3.2.5 Modal description of reverberation

When the room is highly idealized, for instance if it is perfectly rectangular with rigid
walls, the reverberant behavior of the room can be described mathematically in closed
form. This is done by solving the acoustical wave equation for the boundary conditions
imposed by the walls of the room. This approach yields a solution based on the natural
resonant frequencies of the room, called normal modes. For the case of a rectangular
room shown in figure 3.3, the resonant frequencies are given by [Beranek, 1986]:

fom S (1) 4 (22) 4 () @9)
"2V A\ L, L, L, '
where:

fn = nth normal frequency in Hz.

Nk, Ny, Nz = integers from O to « that can be chosen separately.
Lx, Ly, Lz = dimensions of the room in meters.

c= gpeed of sound in m/sec.

The number N ¢ of normal modes below frequency fis approximately [Kuttruff,
1991]:
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Figure 3.4 Energy decay relief for occupied Boston Symphony Hall. The impulse
response was measured at 25 kHz sampling rate using a balloon burst source on
stage and a dummy-head microphone in the 14th row. The Schroeder integrals are
shown in third octave bands with 40 msec time resolution. At higher frequencies there
is a substantial early sound component, and the reverberation decays faster. The
frequency response envelope at time 0 contains the non-uniform frequency response
of the balloon burst and the dummy-head microphone. The late spectral shape is a
consequence of integrating measurement noise. The SNR of this measurement is
rather poor, particularly at low frequencies, but the reverberation time can be calculated
accurately by linear regression over a portion of the decay which is exponential (linear

in dB).
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where V is the volume of theroom (V = Ly L, L ). Differentiating with respect to f,
we obtain the modal density as afunction of frequency:

Nfz

ANy ATV

T ! (3.8)
The number of modes per unit bandwidth thus grows as the square of the frequency.
For instance, consider a concert hall sized room with dimensions 44m x 25m x 17m
whose volume is 18,700 mé. Below 10,000 Hz, there are approximately 1.9 x 10°
normal modes. At 1000 Hz, the modal density per Hz is approximately 5800, and thus
the average spacing between modes is |ess than 0.0002 Hz.

When a sound source is turned on in an enclosure, it excites one or more of the normal
modes of the room. When the source is turned off, the modes continue to resonate
their stored energy, each decaying at a separate rate determined by the mode's damping
constant, which depends on the absorption of the room. Thisis entirely analogous to
an electrical circuit containing many parallel resonances [Beranek, 1986]. Each mode
has a resonance curve associated with it, whose inxquality factor (Q) depends on the
damping constant.

3.2.6 Statistical model for reverberation

The behavior of alarge, irregularly shaped room can also be described in terms of its
norma modes, even though a closed form solution may be impossible to achieve. It
can be shown that equation 3.8 regarding modal density is generally true for irregular
shapes [Kuttruff, 1991]. At high frequencies, the frequency response of the room is
determined by a great many modes whose resonance curves overlap. At each fre-
guency, the complex frequency response is a sum of the overlapping modal responses,
which may be regarded as independent and randomly distributed. If the number of
contributing terms is sufficiently large, the real and imaginary parts of the combined
frequency response can be modeled as independent Gaussian random variables. Con-
sequently, the resulting pressure magnitude response follows the well known Raleigh
probability distribution. This yields a variety of statistical properties of reverberation
in large rooms, including the average separation of maxima and the average height of
a maximum [Schroeder, 1954, Schroeder, 1987, Schroeder and Kuttruff, 1962]. This
statistical model for reverberation is justified for frequencies higher than:

T
fy = 20004/ 7 Hz. (3.9)

where Tris the reverberation time in seconds, and V is the volume of the room in m3.
The average separation of maximain Hz is given by:
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4
A e % 7 Ha. (3.10)

For example, a concert hall with volume of 18,700 m?® and an RT of 1.8 sec will have
A fmax = 2.2 Hz, for frequencies greater than fg= 20 Hz.

Ancther statistic of interest is the temporal density of echoes, which increases with
time. This can be estimated by considering the source image model for reverberation,
which for a rectangular room leads to a regular pattern of source images (figure 3.3).
The number of echoes Nt that will occur before time tis equal to the number of
image sources enclosed by a sphere with diameter ct centered at the listener [Kuttruff,
1991]. Since there is one image source per room volume, the number of image sources
enclosed by the sphere can be estimated by dividing the volume of the sphere by the
volume of the room:

_ Am(ct)?
Ny = 3y (3.12)

Differentiating with respect to t, we obtain the temporal density of echoes:
dN,  4rnc® 5
—_—= t .
TR (3.12)

Although this equation is not accurate for small times, it shows that the density of
echoes grows as the square of time.

3.2.7 Subjective and objective measures of late reverberation

A practical consequence of architecture is to permit acoustical performances to large
numbers of listeners by enclosing the sound source within walls. This dramatically
increases the sound energy to listeners, particularly those far from the source, relative
to free field conditions. A measure of the resulting frequency dependent gain of the
room can be obtained from the EDR evaluated at time 0. This frequency response can
be considered to be an equalization applied by the room, and is often easily perceived.

In the absence of any other information, the mid-frequency reverberation time is
perhaps the best measure of the overall reverberant characteristics of a room. We
expect a room with a long RT to sound more reverberant than a room with a short
RT, However, this depends on the distance between the source and the listener, which
affects the level of the direct sound relative to the level of the reverberation. The
reverberant level varies little throughout the room, whereas the direct sound falls off
inversely proportional to distance. Thus, the ratio of direct to reverberant level is an
important perceptual cue for source distance [Blauert, 1983, Begault, 19921.

One acoustical measure of the direct to reverberant ratio is called the clarity index
and is defined as:
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(3.13)

80 ms o dt
N p2 () B
fSO ms p (t)dt

C = 10logy, { 2

where p(t) is the impulse response of the room. This is essentially an early to late
energy ratio, which correlates with the intelligibility of music or speech signals in
reverberant environments. It is generally accepted that early energy perceptually fuses
with the direct sound and thus increases intelligibility by providing more useful energy,
whereas |ate reverberation tends to smear syllables and note phrases together.

When there is a sufficient amount of late reverberant energy, the reverberation forms
a separately perceived background sound. The audibility of the reverberation depends
greatly on the source sound as well as the EDR, due to masking of the reverberation
by the direct sound [Gardner and Griesinger, 1994, Griesinger, 1995]. Consequently,
the early portion of the reverberant decay, which is audible during the gaps between
notes and syllables, contributes more to the perception of reverberance than does the
late decay, which is only audible after complete stops in the sound. Existing measures
for reverberance focus on the initial energy decay. The most used measure is the early
decay time (EDT), typically calculated as the time required for the Schroeder integral
to decay from 0 to - 10 dB, multiplied by 6 to facilitate comparison with the RT.

Because late reverberation is spatially diffuse, the left and right ear signals will
be largely uncorrelated. The resulting impression is that the listener is enveloped by
the reverberation. A measurement of this, called IACCL, is obtained by calculating
IACC over the time limit 0.08 < t < 3 sec [Hidaka et al., 1995] (see equation 3.3).
We expect this to yield low values for nearly al rooms, and thus a high degree of
spaciousness in the late reverberation.

Various experiments have been performed in an effort to determine an orthogonal set
of perceptual attributes of reverberation, based on factor analysis or multidimensional
scaling. A typical experiment presents subjects with pairs of reverberant stimuli,
created by applying different reverberant responses to the same source sound, and the
subjects estimate the subjective difference between each pair [Jullien et a., 1992]. The
resulting distances are used to place the reverberant response datain an N-dimensional
space such that error between the Cartesian distance and the subjective distance is
minimized. The projection of the data points onto the axes can then be correlated with
known objective or subjective properties of the data to assign meaning to the axes.
A fundamental problem with this approach is that the number of dimensions is not
known a priori, and it is difficult to assign relevance to higher dimensions which are
added to improve the fit. In Jullien’s experiments, 11 independent perceptua factors
were found. The corresponding objective measures can be categorized as energy ratios
or energy decay slopes calculated over different time-frequency regions of the EDR.
Only one factor (alateral energy measure) is not derivable from the EDR.
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3.2.8 Summary of framework

The geometrical models allow the prediction of a room’s early reverberant response,
which will consist of aset of delayed and attenuated impulses. More accurate modeling
of absorption and diffusion will tend to fill in the gaps with energy. Linear filters can
be used to model absorption, and to a lesser extent diffusion, and alow reproduction
of the directional properties of the early response.

The late reverberation is characterized by a dense collection of echoes traveling
in al directions, in other words a diffuse sound field. The time decay of the diffuse
reverberation can be broadly described in terms of the mid frequency reverberation
time. A more accurate description considers the energy decay relief of the room.
This yields the frequency response envelope and the reverberation decay time, both
functions of frequency. The moda approach reveals that reverberation can be described
statistically for sufficiently high frequencies. Thus, certain statistical properties of
rooms, such as the mean spacing and height of frequency maxima, are independent of
the shape of the room.

Early reverberation perceptualy fuses with the direct sound, modifying its loud-
ness, timbre, and spatial impression. Lateral reflections are necessary for the spatial
modification of the direct sound. The level of the direct sound relative to the rever-
beration changes as a function of source distance, and serves as an important distance
cue. Generally speaking, increased early energy relative to total energy contributes to
the intelligibility of the signal, though this may not be subjectively preferred.

There are alarge number of subjective attributes of reverberation which have been
discussed in the literature. Most of these are monaura attributes directly correlated with
acoustical measures that can be derived from the EDR. Conseguently, it is convenient
to think of the EDR as representative of all the monaural objective measures of aroom
impulse response. Presumably, the fine details of this shape are irrelevant, particularly
in the late response, but no systematic study has been done to determine the resolution
required to perceptually reproduce a reverberant response from its EDR.

Thus, in order to simulate a perceptually convincing room reverberation, it is
necessary to simulate both the pattern of early echoes, with particular concern for
lateral echoes, and the late energy decay relief. The latter can be parameterized as the
frequency response envelope and the reverberation time, both of which are functions
of frequency. The challenge is to design an artificia reverberator which has sufficient
echo density in the time domain, sufficient density of maxima in the frequency domain,
and a natural colorless timbre.

3.3 MODELING EARLY REVERBERATION

We are now prepared to discuss efficient algorithms that can render reverberation in
real-time. For the case of early reverberation, the filter structures are fairly obvious.
As we have already mentioned, convolution is a general technique that can be used to
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render ameasured or predicted reverberant response. |mplementing convolution using
the direct form FIR filter (figure 3.5) is extremely inefficient when the filter size is
large. Typical room responses are several seconds long, which at a44.1 kHz sampling
rate would translate to an 88,200 point filter for a 2 second response (for each channel).
The early response consisting of the first 100 msec would require a 4410 point filter.
These filter sizes are prohibitively large for direct form implementation. However, it
is possible to implement convolution efficiently using a block processing algorithm
based on the Fast Fourier transform (FFT) [Oppenheim and Schafer, 1989].

One problem with using block convolution methods for real-time processing is the
input/output propagation delay inherent in block agorithms. Gardner has proposed
a hybrid convolution algorithm that eliminates the propagation delay by segmenting
the impulse response into blocks of exponentially increasing size [Gardner, 1995].
Convolution with the first block is computed using a direct form filter, and convolution
with the remaining blocks is computed using frequency domain techniques. For large
filter sizes, this hybrid algorithm is vastly more efficient than the direct form filter.

Figure 3.5 Canonical direct form FIR filter with single sample delays.

When the early response is derived from the source image model without any
special provisionsto model diffusion or absorption, the early response will be sparsely
populated with delayed and attenuated impulses. Consequently, it is possible to
efficiently implement this filter using a direct form structure with long delays between
filter taps. An example of this is shown in figure 3.6, which is a structure proposed
by Schroeder for generating a specific early echo pattern in addition to a late diffuse
reverberation [Schroeder, 1970b]. The FIR structure is implemented with the set of
delays m; and tap gains a;, and R(2) is a filter that renders the late reverberation.
Because this filter receives the delayed input signal, the FIR response will occur before
the late response in the final output.

Moorer proposed a slightly different structure, shown in figure 3.7, where the late
reverb is driven by the output of the early echo FIR filter [Moorer, 1979]. Moorer
described this as a way of increasing the echo density of the late reverberation. The
delays D1 and D2 can be adjusted so that the first pulse output from the late reverberator
corresponds with the last pulse output from the FIR section. The gain g serves
to balance the amount of late reverberation with respect to the early echoes. An
important feature of this structure, apart from the early echo modeling, is the control
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Figure 3.6 Combining early echoes and late reverberation [Schroeder, 1970b]. Rz)
is a reverberator.

it permits of the overall decay shape of the reverberation. For instance, if the FIR
response has awide rectangular envelope and the late reverberator has arelatively fast
exponential decay, then the cascade response will have an flat plateau followed by a
rapid decay. Such a multislope decay can be a useful and popular effect for musical
signals [Griesinger, 1989].

x[n]
z’ M 2o b
a9 ay ay

Figure 3.7 FIR filter cascaded with reverberator R(z) [Moorer, 1979].

Modeling the early echoes using a sparse FIR filter resultsin an early response that
can have an overly discrete sound quality, particularly with bright impulsive inputs.
In practice it is necessary to associate some form of lowpass filtering with the early
response to improve the sound quality. The simplest possible solution uses a single
lowpass filter in series with the FIR filter [Gardner, 1992], where the filter response
can be set empirically or by physical consideration of the absorptive losses.

In the structure shown in figure 3.6, Schroeder suggested replacing the gains a with
frequency dependent filters A (2). These filters can model the frequency dependent
absorptive losses due to wall reflections and air propagation. Each filter is composed
by considering the history of reflections for each echo, as given in equation 3.2. If
the reverberator is intended for listening over headphones, we can also associate with
each echo a directional filter intended to reproduce localization cues. This structure
is shown in figure 3.8, where A(2) is the transfer function which models absorptive
losses, and H | (z) and H r(z) are the HRTFs corresponding to the direction of the
echo.

Considering that the early echoes are not perceived as individual events, it seems
unlikely that the spectral characteristics of each echo need to be modeled so carefully
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Figure 3.8 Associating absorptive and directional filters with early echoes.

[Begault, 1994, Beth, 1995, Jot et al., 1995]. It is far more efficient to sum sets of
echoes together and process them with the same filter, such that all the echoes in a
set have the same absorption and spatial location. Another possibility is to reproduce
the interaural time and intensity difference separately for each echo, and lump the
remaining spectral cues into an average directional filter for each set of echoes [Jot
et al., 1995]. This is shown in figure 3.9. Each echo has an independent gain and
interaural time and intensity difference, allowing for individual lateral locations. The
final filter reproduces the remaining spectral features, obtained by a weighted average
of the various HRTFs and absorptive filters.

If the reverberation is not presented binaurally, the early lateral echoes will not
produce spatial impression, but will cause tonal coloration of the sound. In this
case it may be preferable to omit the early echoes altogether. This is an important
consideration in professional recording, and is the reason why orchestras are often
moved to the concert hall floor when recording, to avoid the early stage reflections
[Griesinger, 1989].

We conclude the section on early reverberation with an efficient algorithm that
renders a convincing sounding early reverberation, particularly in regards to providing
the sensation of spatial impression. Figure 3.10 shows Griesinger's binaural echo
simulator that takes a monophonic input and produces stereo outputs intended for
listening over headphones [Griesinger, 1997]. The algorithm simulates a frontally
incident direct sound plus six lateral reflections, three per side. The echo times
are chosen arbitrarily between 10 and 80 msec in order to provide a strong spatial
impression, or may be derived from a geometrical model. The algorithm is a variation
of the preceding structures: two sets of echoes are formed, and each set is processed
through the same directional filter. Here the directional filter is modeled using a delay
of 0.8 msec and a one-pole lowpass filter (figure 3.11) with a 2 kHz cutoff.

Various degrees of spatial impression can be obtained by increasing the gain of the
echoes (via the ge parameter). Whether the spatial impression is heard as a surrounding
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o
it

Figure 3.9 Average head-related filter applied to a set of early echoes lateralized
using delays Atj and gains g; [Jot et al., 1995]. T is the sampling period. If At; /T is
non-integer, then an interpolated delay is required.

e
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Figure 3.10 Binaural early echo simulator [Griesinger, 1997]. At = 0.8 msec.
H | p(2) is a one-pole lowpass filter (figure 3.11) with fc = 2 kHz.
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Figure 3.11 One-pole, DC-normalized lowpass filter.
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Spaciousness or as an increase in the source width depends on the input signal and the
strength and timing of the reflections. This early echo simulator sounds very good
with speech or vocal music as an input signal.

3.4 COMB AND ALLPASS REVERBERATORS

Now we discuss algorithms that reproduce late reverberation. The materia is presented
in roughly chronological order, starting with reverberators based on comb and allpass
filters, and proceeding to more general methods based on feedback delay networks.

3.4.1 Schroeder’s reverberator

The first artificia reverberators based on discrete-time signal processing were con-
structed by Schroeder in the early 1960's [Schroeder, 1962], and most of the important
ideas about reverberation algorithms can be traced to his original papers. Schroeder’s
original proposa was based on comb and allpass filters. The comb filter is shown in
figure 3.12 and consists of a delay whose output is recirculated to the input. The z
transform of the comb filter is given by:

—m

H(z) = (3.14)

1—gz—™m
where mis the length of the delay in samples and g is the feedback gain. The time
response of this filter is an exponentially decaying sequence of impulses spaced m
samples apart. The system poles occur at the complex nth roots of g, and are thus
harmonically spaced on a circle in the z plane. The frequency response is therefore
shaped like a comb, with m periodic peaks that correspond to the pole frequencies.
Schroeder determined that the comb filter could be easily modified to provide a flat
frequency response by mixing the input signal and the comb filter output as shown in
figure 3.13. The resulting filter is called an allpass filter because its frequency response
has unit magnitude for all frequencies. The z transform of the allpass filter is given by:

27 —yg
H -2
(Z) 1 — gz_7n
The poles of the alpass filter are thus the same as for the comb filter, but the alpass
filter now has zeros at the conjugate reciprocal locations. The frequency response of
the allpass filter can be written:

(3.15)

1 - ge-{-jwm,

1 - ge~jwm
In this form it is easy to see that the magnitude response is unity, because the first
term in the product, e~ “™, has unit magnitude, and the second term is a quotient of
complex conjugates, which aso has unit magnitude. Thus,

H(e™) = eiem (3.16)
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Figure 3.12 Comb filter: (clockwise from top-left) flow diagram, time response, fre-
guency response, and pole diagram.
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Figure 3.13 Allpass filter formed by modification of a comb filter: (clockwise from
top-left) flow diagram, time response, frequency response, and pole-zero diagram.
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|H(e)| =1 (3.17)

The phase response of the allpass filter is a non-linear function of frequency, leading
to asmearing of the signal in the time domain.

Let us consider attempting to create a reverberator using a single comb or alpass
filter. For the case of a comb filter, the reverberation time T, is given by:

20logyo(g:) _ —60

i T = 7: (3.18)
where gi isthe gain of the comb filter, m; isthe length of the delay in samples, and T is
the sampling period. For a desired reverberation time, we can choose the delay length
and the feedback gain to tradeoff modal density for echo density. Of course, there
are serious problems with using a single comb filter as a reverberator. For short delay
times, which yield rapidly occurring echoes, the frequency response is characterized
by widely spaced frequency peaks. These peaks correspond to the frequencies that
will be reverberated, whereas frequencies falling between the peaks will decay quickly.
When the peaks are widely spaced, the comb filter has a noticeable and unpleasant
characteristic timbre. We can increase the density of peaks by increasing the delay
length, but this causes the echo density to decrease in the time domain. Consequently,
the reverberation is heard as a discrete set of echoes, rather than a smooth diffuse
decay.

An alpass filter has a flat magnitude response, and we might expect it to solve
the problem of timbral coloration attributed to the comb filter. However, the response
of an alpass filter sounds quite similar to the comb filter, tending to create a timbral
coloration. Thisis because our ears perform a short-time frequency anaysis, whereas
the mathematical property of the alpass filter is defined for an infinite time integration.

By combining two elementary filters in series, we can dramatically increase the
echo density, because every echo generated by the first filter will create a set of echoes
in the second. Comb filters are not good candidates for series connection, because the
only frequencies that will pass are those that correspond to peaks in both comb filter
respones. However, any number of allpass filters can be connected in series, and the
combined response will still be allpass. Consequently, series allpass filters are useful
for increasing echo density without affecting the magnitude response of the system.

A parallel combination of comb filters with incommensurate delaysis also a useful
structure, because the resulting frequency response contains peaks contributed by all
of theindividual comb filters. Moreover, the combined echo density is the sum of the
individual densities. Thus, we can theoretically obtain arbitrary density of frequency
peaks and time echoes by combining a sufficient number of comb filtersin parallel.

Schroeder proposed a reverberator consisting of parallel comb filters and series
allpass filters [Schroeder, 1962], shown in figure 3.14. The delays of the comb filters
are chosen such that the ratio of largest to smallest is about 1.5 (Schroeder suggested
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arange of 30 to 45 msec). From equation 3.18, the gains g of the comb filters are set
to give adesired reverberation time T, according to

g = 1073 T/ (3.19)

The allpass delays t; and tg are much shorter than the comb delays, perhaps 5 and 1.7

bafallel comb filte; ]

y[n]

; -85
serles allpass flltcr

Figure 3.14 Schroeder’s reverberator consisting of a parallel comb filter and a series
allpass filter [Schroeder, 1962].

msec, with both alpass gains set to around 0.7. Consequently, the comb filters produce
the long reverberant decay, and the alpass filters multiply the number of echoes output
by the comb filters.

3.4.2 The parallel comb filter
The ztransform of the parallel comb structure is given by [Jot and Chaigne, 1991]:

_m.

N
H(z) = Z T (3.20)

where N is the number of comb filters. The poles are given by solutions to the
following equation:
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N
[T —2m) =0 (3.21)
=1

For each comb filter, the pole moduli are the same, and given by:

vi = /g = 10731/ (3.22)

Assuming all thegains g, are set from the same reverberation time T, , the pole moduli
yi will be the same for all comb filters. Thus, all the resonant modes of the parallel
comb structure will decay at the same rate. If the pole moduli were not al the same,
the poles with the largest moduli would resonate the longest, and these poles would
determine the tonal characteristic of the late decay [Moorer, 1979, Griesinger, 1989].
Consequently, to avoid tona coloration in the late decay, it is important to respect
condition 3.22 regarding the uniformity of pole modulus [Jot and Chaigne, 1991].

When the delay lengths of the comb filters are chosen to be incommensurate, in
other words sharing no common factors, the pole frequencies will al be distinct (except
at frequency 0). Furthermore, in the time response, the echoes from two comb filters i
and k will not overlap until sample number m; my.

3.4.3 Modal density and echo density

Two important criteria for the realism of a reverberation algorithm are the modal
density and the echo density. The modal density of the parallel combs, expressed as
the number of modes per Hz, is[Jot and Chaigne, 1991]:

-1
Dp=> m=N-r (3.23)
2=0

where T; is the length of delay i in seconds, and T is the mean delay length. It is
apparent that the modal density of the paralel combs is constant for all frequencies,
unlike real rooms, whose modal density increases as the square of frequency (equa-
tion 3.8). However, in real rooms, once the modal density passes a certain threshold,
the frequency response is characterized by frequency maxima whose mean spacing is
constant (eguations 3.9 and 3.10). It is therefore possible to approximate a room’'s
frequency response by equating the modal density of the parallel comb filters with
the density of frequency maxima in the room’s response [ Schroeder, 1962]. The total
length of the comb delays, expressed in seconds, is equal to the modal density of the
parallel comb filter, expressed as number of modes per Hz. Equating this to the density
of frequency maxima of real rooms, we obtain the following relation between the total
length of the delays and the maximum reverberation time we wish to simulate [Jot,
1992h]:
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> ri=Dn> Dy~ T‘Z‘x (3.24)
where Dtis the density of frequency maxima according to the the statistical model
for late reverberation (equal to the reciprocal of A fmax in eguation 3.10) and Tmax iS
the maximum reverberation time desired.

Equation 3.24 specifies the minimum amount of total delay required. In practice,
low modal density can lead to audible beating in response to narrowband signals.
A narrowband signal may excite two neighboring modes which will beat at their
difference frequency. To alleviate this, the mean spacing of modes can be chosen so
that the average beat period is at least equal to the reverberation time [Stautner and
Puckette, 1982]. This leads to the following relationship:

Z Ti Z Tmax (325)

For the case of the parallel comb filter, following constraint 3.22 guarantees that all
the modes will decay at the same rate, but does not mean they will al have the same
initial amplitude. As shown in figure 3.12, the height of a frequency peak is 1/ (1 - g).
Following equation 3.18, longer delays will have smaller feedback gains, and hence
smaller peaks. The modes of the parallel comb filter can be normalized by weighting
the input of each comb filter with a gain proportional to its delay length [Jot, 1992b].
In practice, these normalizing gains are not necessary if the comb delay lengths are
relatively similar.

The echo density of the parallel combs is the sum of the echo densities of the
individual combs. Each comb filter i outputs one echo per timeti , thus the combined
echo density, expressed as the number of echoes per second, is [Jot and Chaigne,
1991]:

N
D. =

1=

!
—

A=

S =

R

(3.26)
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This approximation is valid when the delays are similar. It is apparent that the echo
density is constant as a function of time, unlike real rooms, whose echo density
increases with the square of time (eguation 3.12). Schroeder suggested that 1000
echoes per second was sufficient to sound indistinguishable from diffuse reverberation
[Schroeder, 1962]. Griesinger has suggested that 10000 echoes per second may
be required, and adds that this value is a function of the bandwidth of the system
[Griesinger, 1989]. The mathematical definition of echo density includes all echoes
regardless of amplitude, and does not consider system bandwidth. Jot has suggested
the term time density to refer to the perceptua correlate of echo density, and he relates
this to the crest factor of the impulse response [Jot, 1992b]. Griesinger obtains a
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measure of the time density of an impulse response by counting all echoes within 20
dB of the maximum echo in a 20 msec sliding window [Griesinger, 1989].

From equations 3.23 and 3.26, we can derive the number of comb filters required
to achieve agiven modal density D ,, and echo density D, [Jot and Chaigne, 1991]:

N ~+/D,D, (3.27)

Schroeder chose the parameters of his reverberator to have an echo density of 1000
echoes per second, and a frequency density of 0.15 peaks per Hz (one peak per 6.7 Hz).
Strictly applying equation 3.27 using these densities would require 12 comb filters with
amean delay of 12 msec. However, this ignores the two series allpass filters, which
will increase the echo density by approximately a factor of 10 [Schroeder, 1962]. Thus,
only 4 comb filters are required with amean delay of 40 msec.

3.4.4 Producing uncorrelated outputs

The reverberator in figure 3.14 is a monophonic reverberator with a single input and
output. Schroeder suggested a way to produce multiple outputs by computing linear
combinations of the comb filter outputs [Schroeder, 1962]. This requires that the
allpass filters be placed in front of the comb filters, as shown in figure 3.15. A mixing
matrix isthen used to form multiple outputs, where the number of rowsis equal to the
number of comb filters, and the number of columnsis equal to the number of outputs.
Schroeder suggested that the coefficients of the mixing matrix have values of +1 or
-1, and Jot suggests that the mixing matrix have orthogonal columns [Jot, 1992b].
The purpose of the linear combinations is to produce outputs which are mutually
uncorrelated. For example, the mixing matrix

+1 +1
+1 -1
+1 +1
+1 -1

(3.28)

when used in the system of figure 3.15 produces a stereo reverberator which is quite
spacious and enveloping when listened to over headphones.

Given two outputs y1 (t) and y »(t) that are mutually uncorrelated, we can mix these
signals to achieve any desired amount of interaural cross-correlation (see equation 3.3),
as shown in equation 3.29 and figure 3.16 [Martin et a., 1993, Jot, 1992b]:

yL(t) = cos(6)y1(t) + sin(B)y=(t) (3.29)

yr(t) = sin(B)y1(t) + cos(6) ya(t)
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Figure 3.15 Mixing matrix M used to form uncorrelated outputs from parallel comb
filters [Schroeder, 1962)]. Ai(Z) are allpass filters, and C; (z) are comb filters.
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Figure 3.16  Controlling IACC in binaural reverberation [Martin et al., 1993, Jot, 1992b)].

3.4.5 Moorer’s reverberator

Schroeder’s original reverberator sounds quite good, particularly for short reverberation
times and moderate reverberation levels. For longer reverberation times or higher
levels, some sonic deficiencies become noticeable and these have been described by
various authors [Moorer, 1979, Griesinger, 1989, Jot and Chaigne, 1991]:

®  The initial response sounds too discrete, leading to a grainy sound quality,
particularly for impulsive input sounds, such as a snare drum.

B The amplitude of the late response, rather than decaying smoothly, can exhibit
unnatural modulation, often described as a fluttering or beating sound.

m  For longer reverberation times, the reverberation sounds tonally colored, usually
referred to as a metallic timbre.
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B Theecho density isinsufficient, and doesn’t increase with time.

All reverberation algorithms are susceptible to one or more of these faults, which
usualy do not occur in real rooms, certainly not good sounding ones. In addition to
these criticisms, there is the additional problem that Schroeder’s original proposal does
not provide a frequency dependent reverberation time.

Moorer later reconsidered Schroeder’s reverberator and made several improvements
[Moorer, 1979]. The first of these was to increase the number of comb filters from 4 to
6. Thiswas necessary in order to effect longer reverberation times, while maintaining
sufficient frequency and echo density according to equation 3.27. Moorer also inserted
aone-pole lowpass filter into each comb filter feedback loop, as shown in figure 3.17.
The cutoff frequencies of the lowpass filters were based on a physical consideration of
the absorption of sound by air. Adding the lowpass filters caused the reverberation time
to decrease at higher frequencies and Moorer noted that this made the reverberation
sound more realistic. In addition, several other benefits were observed. The response
to impulsive sounds was greatly improved, owing to the fact that the impulses are
smoothed by the lowpass filtering. This improves the subjective quality of both the
early response and the late response, which suffers less from a metallic sound quality
or a fluttery decay.

Figure 3.17 Comb filter with lowpass filter in feedback loop [Moorer, 1979].

Despite these improvements many problems remained. The frequency dependent
reverberation time is the net result of the lowpass filtering, but it is not possible
to specify a function T, (w) which defines the reverberation time as a function of
frequency. Furthermore, the recurring problems of metallic sounding decay and fluttery
|ate response are reduced but not entirely eliminated by this reverberator.

3.4.6 Allpass reverberators

We now study reverberators that are based on a series association of allpass filters?.
Schroeder experimented with reverberators consisting of 5 allpass filters in series,
with delays starting at 100 msec and decreasing roughly by factors of 1/3, and with
gains of about 0.7 [Schroeder, 1962]. Schroeder noted that these reverberators were
indistinguishable from real rooms in terms of coloration, which may be true with
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stationary input signals, but other authors have found that series allpass filters are
extremely susceptible to tonal coloration, especially with impulsive inputs [Moorer,
1979, Gardner, 1992]. Moorer experimented with series alpass reverberators, and
made the following comments [Moorer, 1979]:

®  The higher the order of the system, the longer it takes for the echo density to
build up to apleasing level.

m  The smoothness of the decay depends critically on the particular choice of the
delay and gain parameters.

B The decay exhibits an annoying, metallic ringing sound.

The ztransform of a series connection of N alpass filtersis:

N i
HEz =[] I (3.30)

1 —giz—™

1=1
where m; and g; are the delay and gain, respectively, of alpass filteri. It is possible to
ensure that the pole moduli are all the same, by basing the gains on the delay length as
indicated by equation 3.19. However, this does not solve the problem of the metallic
sounding decay.

Gardner has described reverberators based on a “nested” allpass filter, where the
delay of an allpass filter is replaced by a series connection of a delay and another
allpass filter [Gardner, 1992]. This type of alpass filter isidentical to the lattice form
shown in figure 3.18. Several authors have suggested using nested allpass filters for
reverberators [Schroeder, 1962, Gerzon, 1972, Moorer, 1979]. The general form of
such afilter is shown in figure 3.19, where the allpass delay is replaced with a system
function A(z), which isallpass. Thetransfer function of thisform iswritten:

N Alz)-g
Hz) = s~ T (3.31)

The magnitude squared response of H(z) is:

2 _ AP - 20Re{A(2)} +¢*
1 = 2gRe[A(z)} + IAG)P

which is verified to be alpass if A(z) isallpass[Gardner, 1992, Jot, 1992b]. Thisfilter
is not realizable unless A( z) can be factored into a delay in series with an allpass filter,
otherwise a closed loop is formed without delay. The advantage of using a nested
allpass structure can be seen in the time domain. Echoes created by the inner allpass
filter are recirculated to itself viathe outer feedback path. Thus, the echo density of a
nested allpass filter increases with time, asin real rooms.

\H (2)] = 1if |A(z)] = 1 (3.32)
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Figure 3.19 Generalization of figure 3.18.

A useful property of allpass filters is that no matter how many are nested or cascaded
in series, the response is till allpass. This makes it very easy to verify the stability of
the resulting system, regardless of complexity. Gardner suggested a general structure
for a monophonic reverberator constructed with allpass filters, shown in figure 3.20
[Gardner, 1992]. The input signal flows through a cascade of allpass sections A ( 2),
and is then recirculated upon itself through alowpassfilter Hip (z) and an attenuating
gain g. Gardner noted that when the output of the allpass filters was recircul ated to the
a sufficient delay, the characteristic metallic sound of the series allpass
was greatly reduced.

y[n]

Figure 3.20 Reverberator formed by adding absorptive losses to an allpass feedback
loop [Gardner, 1992].
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The output is formed as a linear combination of the outputs of the allpass sections.
The stability of the system is guaranteed, provided the magnitude of the loop gain is less
than 1 for all frequencies (i.e. |gH Lp (/%) |< 1 for al w). The overall transfer function
of this system is in general not allpass, due to phase cancellation between the output
taps and also the presence of the outer feedback loop. As the input signal is diffused
through the allpass filters, each tap outputs a different response shape. Consequently,
it is possible to customize the amplitude envelope of the reverberant decay by adjusting
the coefficients a; . The reverberation time can be adjusted by changing the feedback
gain g. The lowpass filter simulates frequency dependent absorptive losses, and lower
cutoff frequencies generally result in a less metallic sounding, but duller, late response.

Figure 3.21 shows a complete schematic of an allpass feedback loop reverberator
described by Dattorro [Dattorro, 1997], who attributes this style of reverberator to
Griesinger. The circuit is intended to simulate an electro-acoustical plate reverberator,
characterized by a rapid buildup of echo density followed by an exponential reverberant
decay. The monophonic input signal passes through several short allpass filters, and
then enters what Dattorro terms the reverberator “tank”, consisting of two systems
like that of figure 3.20 which have been cross-coupled. This is a useful structure for
producing uncorrelated stereo outputs, which are obtained by forming weighted sums
of taps within the tank. The reverberator incorporates a time varying delay element in
each of the cross-coupled systems. The purpose of the time varying delaysisto further
decrease tonal coloration by dynamically altering the resonant frequencies.

There are many possible reverberation algorithms that can be constructed by adding
absorptive losses to alpass feedback loops, and these reverberators can sound very
good. However, the design of these reverberators has to date been entirely empirical.
There is no way to specify in advance a particular reverberation time function T; (0,
nor is there a deterministic method for choosing the filter parameters to eliminate tonal
coloration.

3.5 FEEDBACK DELAY NETWORKS

Gerzon generalized the notion of unitary multichannel networks, which are

N-dimensional analogues of the allpass filter [Gerzon, 1976]. An N-input, N-output
LTI system is defined to be unitary if it preserves the total energy of all possible input
signals. Similarly, a matrix M is unitary if [|[Mu]| = [|u|for &l vectors u, which is
equivalent to requiringthat MTM = M MT =1, where | is the identity matrix. It is
trivial to show that the product of two unitary matrices is also unitary, and consequently
the series cascade of two unitary systems is a unitary system. Simple unitary systems
we have encountered include a set of N delay lines, and a set of N dlpass filters.
It is also easy to show that an N-channel unitary system and an M-channel unitary
system can be combined to form an (N + M) channel unitary system by diagonally
juxtaposing their system matrices. Gerzon showed that a feedback modification can be
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Figure 3.21 Dattorro’s plate reverberator based on an allpass feedback loop, in-
tended for 29.8 kHz sampling rate [Dattorro, 1997]. H 1(z) and H 2(2) are low-
pass filters described in figure 3.11; H1(Z) controls the bandwidth of signals enter-
ing the reverberator, and H2(z) controls the frequency dependent decay. Stereo
outputs y; and yr are formed from taps taken from labelled delays as follows:
yL = a[266] + a[2974] — b[1913] + ¢[1996] — d[1990] — e[187] — f[1066], yr =
d[353] + d[3627] — €[1228] + f[2673] — a[2111] — b[335] — c[121]. In practice, the
input is also mixed with each output to achieve a desired reverberation level. The time
varying functions u(t) and v(t) are low frequency (= 1 Hz) sinusoids that span 16
samples peak to peak. Typical coefficients values are g; = 0.75, g, = 0.625, g3 =
0.7, 94=0.5, g5= 0.9.
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made to a unitary system without destroying the unitary property [Gerzon, 1976], ina
form completely analogous to the feedback around the delay in an alpass filter. Gerzon
applied these principles to the design of multichannel reverberators, and suggested the
basic feedback topologies found in later work [Gerzon, 1971, Gerzon, 1972].

Stautner and Puckette proposed a four channel reverberator consisting of four delay
lines with a feedback matrix [Stautner and Puckette, 1982], shown in figure 3.22.
The feedback matrix allows the output of each delay to be recirculated to each delay
input, with the matrix coefficients controlling the weights of these feedback paths. The
structure can be seen as a generalization of Schroeder’s parallel comb filter, which
would arise using a diagona feedback matrix. This structure is capable of much
higher echo densities than the parallel comb filter, given a sufficient number of non-
zero feedback coefficients and incommensurate delay lengths. The delays were chosen
in accordance with Schroeder’ s suggestions.

Ay 85 843 a4
dyy Ay Ay3 Ayy

A3 83y d33 gy
Ayp Ayp Byy By
b . Y 3
[ [ zmi} >
|
3 z-m? | >
=
X y
Vg ST N
=¥ [z mg] —
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Figure 3.22 Stautner and Puckette’s four channel feedback delay network [Stautner
and Puckette, 1982].

Stautner and Puckette make a number of important points regarding this system:

B Stability is guaranteed if the feedback matrix A is chosen to be the product of a
unitary matrix and a gain coefficient g, where 00d1 < 1. They suggest the matrix:

01 1 0
1Ll -10 0 -1

A«gﬁ 10 0 -1 (3.33)
01 -1 0

where g controls the reverberation time. If OgC= 1, A is unitary.



REVERBERATION ALGORITHMS 119

B Theoutputs will be mutually incoherent, and thus can be used in afour channel
loudspeaker system to render a diffuse soundfield.

B Absorptive losses can be simulated by placing a lowpass filter in series with each
delay line.

B The early reverberant response can be customized by injecting the input signal
appropriately into the interior of the delay lines.

The authors note that fluttering and tonal coloration is present in the late decay of
this reverberator. They attribute the fluttering to the beating of adjacent modes, and
suggest that the beat period be made greater than the reverberation time by suitably
reducing the mean spacing of modes according to equation 3.25. To reduce the tonal
coloration, they suggest randomly varying the lengths of the delays.

3.5.1 Jot’s reverberator

We now discuss the recent and important work by Jot, who has proposed a reverberator
structure with two important properties [Jot, 1992b]:

B A reverberator can be designed with arbitrary time and frequency density while
simultaneously guaranteeing absence of tonal coloration in the late decay.

B Theresulting reverberator can be specified in terms of the desired reverberation
time T (w) and frequency response envelope G(w).

Thisis accomplished by starting with an energy conserving system whose impulse
response is perceptually equivalent to stationary white noise. Jot calls this a reference
filter, but we will also use the term lossless prototype. Jot chooses lossless prototypes
from the class of unitary feedback systems. In order to effect a frequency dependent
reverberation time, absorptive filters are associated with each delay in the system. This
is done in a way that eliminates coloration in the late response, by guaranteeing the
local uniformity of pole modulus.

Jot generalizes the notion of a monophonic reverberator using the feedback delay
network (FDN) structure shown in figure 3.23. The structure is a completely general
specification of alinear system containing N delays.

Using vector notation and the z transform, the equations for the output of the system
y (2) and the delay lines s; (z) are [Jot and Chaigne, 1991]:

y(2) = cTs(z) + dx(2) (3.34)
s(z) = D(2[AS(z) + bx(2)] (3.39)

where:
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Figure 3.23 Feedback delay network as a general specification of a reverberator con-
taining N delays [Jot and Chaigne, 1991]
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The FDN can be extended to multiple inputs and outputs by replacing the vec-
tors b and c with appropriate matrices. The system transfer function is obtained by
eiminating s(z) from the preceding equations [Jot and Chaigne, 1991]:

H(z) = Zz; =T [D(z"!) -~ A]"'b + d (3.38)

The system zeros are given by [Rocchesso and Smith, 1994]:

.,
det[A — b% ~ D=0 (339)

The system poles are given by those values of zthat nullify the denominator of
equation 3.38, in other words the solutions to the characteristic equation:
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det[A ~D(z"1)] =0 (3.40)

Assuming A is areal matrix, the solutions to the characteristic equation 3.40 will
either be real or complex-conjugate pole pairs. Equation 3.40 is not easy to solve in
the general case, but for specific choices of A the solution is straightforward. For
instance, when A is diagonal, the system represents Schroeder’s parallel comb filter,
and the poles are given by equation 3.21. More generally, when A is triangular, the
matrix A — D (z~1) is also triangular; and because the determinant of a triangular
matrix isthe product of the diagonal entries, equation 3.40 reduces to:

N
[Tt ~2m) =0 (3.41)
=1

This is verified to be identical to equation 3.21. Any series combination of elementary
filters — for instance, a series alpass filter — can be expressed as a feedback delay
network with atriangular feedback matrix [Jot and Chaigne, 1991].

3.5.2 Unitary feedback loops

Another situation that interests us occurs when the feedback matrix A is chosen to
be unitary, as suggested by Stautner and Puckette. Because the set of delay lines is
also a unitary system, a unitary feedback loop is formed by the cascade of the two
unitary systems. A general form of this situation is shown in figure 3.24, where U1 (3
corresponds to the delay matrix, and U, (2) corresponds to the feedback matrix.

<] -» oL ]

Figure 3.24 Unitary feedback loop [Jot, 1992b].

Because a unitary system preserves the energy of input signals, it is intuitively
obvious that a unitary feedback loop will conserve energy. It can be shown that the
system poles of a unitary feedback loop al have unit modulus, and thus the system
response consists of non-decaying eigenmodes [Jot, 1992b].

Another way to demonstrate thisis to consider the state variable description for the
FDN shown in figure 3.23. It is straightforward to show that the resulting state transition
matrix is unitary if and only if the feedback matrix A is unitary [Jot, 1992b, Rocchesso
and Smith, 1997]. Thus, a unitary feedback matrix is sufficient to create a lossless
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FDN prototype. However, we will later see that there are other choices for the feedback
matrix that aso yield a lossess system.

3.5.3 Absorptive delays

Jot has demonstrated that unitary feedback |oops can be used to create |ossless proto-
types whose impulse responses are perceptualy indistinguishable from stationary white
noise [Jot and Chaigne, 1991]. Moorer previously noted that convolving source signals
with exponentially decaying Gaussian white noise produces a very natural sounding
reverberation [Moorer, 1979]. Consequently, by introducing absorptive losses into a
suitable lossless prototype, we should obtain a natural sounding reverberator. Jot's
method for introducing absorptive losses guarantees that the colorless quality of the
lossless prototype is maintained. This is accomplished by associating a gain k <1
with each delay i in thefilter, as shown in figure 3.25.

>

Figure 3.25 Associating an attenuation with a delay.
The logarithm of the the gain is proportional to the length of the delay:

ki = y™ (3.42)

Provided al the delays are so modified, this has the effect of replacing zwith z yin
the expression for the system function H(z), regardless of the filter structure. Starting
from a lossless prototype whose poles are al on the unit circle, the above modification
will cause al the poles to have amodulus equal to y. Therefore, the lossless prototype
response h[n] will be multiplied by an exponential envelope y" where yis the decay
factor per sampling period [Jot and Chaigne, 1991, Jot, 1992b]. By maintaining
the uniformity of pole modulus, we avoid the situation where the response in the
neighborhood of a frequency is dominated by a few poles with relatively large moduli.

The decay envelope is made frequency dependent by specifying frequency de-
pendent losses in terms of the reverberation time T,(w). This is accomplished by
associating with each delay i an absorptive filter h (z), as shown in figure 3.26. The
filter is chosen such that the logarithm of its magnitude response is proportional to
the delay length and inversely proportional to the reverberation time, as suggested by
equation 3.19 [Jot and Chaigne, 1991]:

~60T
T (w)
This expression ignores the phase response of the absorptive filter, which has the effect

201log,, |hi(e?)] = m; (3.43)
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Figure 3.26 Associating an absorptive filter with a delay.

of slightly modifying the effective length of the delay. In practice, it is not necessary
to take the phase delay into consideration [Jot and Chaigne, 1991]. By replacing each
delay with an absorptive delay as described above, the poles of the prototype filter no
longer appear on a circle centered at the origin, but now lie on a curve specified by the
reverberation time T, (w).

A consequence of incorporating the absorptive filters into the lossless prototype is
that the frequency response envelope of the reverberator will no longer be flat. For
exponentially decaying reverberation, the frequency response envelope is proportional
to the reverberation time at al frequencies. We can compensate for this effect by
associating a correction filter t(z) in series with the reference filter, whose sguared
magnitude is inversely proportional to the reverberation time [Jot, 1992b]:

(3.44)

After applying the correction filter, the frequency response envelope of the reverberator
will be flat. This effectively decouples the reverberation time control from the overall
gain of the reverberator. The final reverberator structure is shown in figure 3.27.
Any additional equalization of the reverberant response, for instance, to match the
frequency envelope of an existing room, can be effected by another filter in series with
the correction filter.

3.5.4 Waveguide reverberators

Smith has proposed multichannel reverberators based on a digital waveguide network
(DWN) [Smith, 1985]. Each waveguide is a bi-directional delay line, and junctions
between multiple waveguides produce lossless signal scattering. Figure 3.28 shows an
N-branch DWN which is isomorphic to the N-delay FDN shown in figure 3.23 [Smith
and Rocchesso, 1994].

The waves travelling into the junction are associated with the FDN delay line
outputs si[n]. The length of each waveguide is half the length of the corresponding
FDN delay, because the waveguide signal must make a complete round trip to return
to the scattering junction. An odd-length delay can be accommodated by replacing the
non-inverting reflection with a unit sample delay.
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Figure 3.27 Reverberator constructed by associating a frequency dependent absorp-
tive filter with each delay of a lossless FDN prototype filter [Jot and Chaigne, 1991].
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Figure 3.28 Waveguide network consisting of a single scattering junction to which
N waveguides are attached. Each waveguide is terminated by an ideal non-inverting
reflection, indicated by a black dot [Smith and Rocchesso, 1994].
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The usual DWN notation defines the incoming and outgoing pressure variables as
p;* =si[n] and p; = s;j[n + m], respectively, and therefore the operation of the
scattering junction can be written in vector notation as

p~ =Apt (3.45)

where A isinterpreted as a scattering matrix associated with the junction.

Aswe have already discussed, alossless FDN results when the feedback matrix is
chosen to be unitary. Smith and Rocchesso have shown that the waveguide interpreta-
tion leads to a more general class of lossless scattering matrices [Smith and Rocchesso,
1994]. Thisis due to the fact that each waveguide may have a different characteristic
admittance. A scattering matrix islossless if and only if the active complex power is
scattering-invariant, i.e., if and only if

pt'Tpt = p Ip-

= A'TA =T

where I is a Hermitian, positive-definite matrix which can be interpreted as a
generalized junction admittance. For the waveguide in figure 3.28, we have I =
diag(l 1, ... n), where I"; is the characteristic admittance of waveguide i. When A is
unitary, we have I' = |. Thus, unitary feedback matrices correspond to DWNs where
the waveguides all have unit characteristic admittance, or where the signal values are
in units of root power [ Smith and Rocchesso, 1994].

Smith and Rocchesso have shown that a DWN scattering matrix (or a FDN feedback
matrix) is lossless if and only if its eigenvalues have unit modulus and its eigenvec-
tors are linearly independent. Therefore, lossless scattering matrices may be fully
parameterized as

A=TDT (3.46)

where D is any unit modulus diagonal matrix, and T is any invertible matrix [Smith and
Rocchesso, 1994]. Thisyields a larger class of |ossless scattering matrices than given
by unitary matrices. However, not all |ossless scattering matrices can be interpreted as
aphysical junction of N waveguides (e.g., consider a permutation matrix).

3.5.5 Lossless prototype structures

Jot has described many lossless FDN prototypes based on unitary feedback matrices.
A particularly useful unitary feedback matrix Ay, which maximizes echo density
while reducing implementation cogt, is taken from the class of Householder matrices
[Jot, 1992D):
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2
Ay =Jy - NuNu]TV (3.47)

where JN isan N X N permutation matrix, and up is an Nx1 column vector of 1's. This
unitary matrix contains only two different values, both nonzero, and thus it achieves
maximum echo density when used in the structure of figure 3.27. Because uyu ,T\l isa
matrix containing all 1's, computation of Anx consists of permuting the elements of
x according to J N, and adding to these the sum of the elements of x times the factor
—2/N. This requires roughly 2N operations as opposed to the N2 operations normally
required. When J N isthe identity matrix | N, the resulting system is a modification of
Schroeder’s parallel comb filter which maximizes echo density as shown in figure 3.29.

-2/IN
<1 —

Figure 3.29 Modification of Schroeder’s parallel comb filter to maximize echo density
[Jot, 1992b].

Jot has discovered that this structure produces a periodic parasitic echo with period
equal to the sum of the delay lengths. This is a result of constructive interference
between the output signals of the delays, and can be eliminated by choosing the
coefficients c; in figure 3.27 such that every other channel undergoes a phase inversion
(multiplication by -1) [Jot, 1992b]. Ancther interesting possibility proposed by Jot is
choosing J N to be a circular permutation matrix. This causes the delay lines to feed
one another in series, which greatly simplifies the memory management in the final
implementation.

Rocchesso and Smith have suggested using unitary circulant matrices for the feed-
back matrix of a FDN [Rocchesso and Smith, 1994]. Circulant matrices have the
form:
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al0] all] af2) - a[N-=1]
a[N - 1] 0] al] - [N -2

— | a[N—=2] aN-1}] af0] - a[N -3 (3.48)
o[1] af2] a3] - afo)

Multiplication by a circulant matrix implements circular convolution of a column
vector with the first row of the matrix. A circulant matrix A can be factored as
shown in equation 3.46 where T is the discrete Fourier transform (DFT) matrix and
D is a diagonal matrix whose elements are the DFT of the first row of A. The
diagonal elements of D are the eigenvalues of A. A circulant matrix is thus lossless
(and unitary) when its eigenvalues (the spectrum of the first row) have unit modulus.
The advantages of using a circulant matrix are that the eigenvalues can be explicitly
specified, and computation of the product can be accomplished in O(N log( N)) time
using the Fast Fourier transform (FFT).

All of the late reverberator structures we have studied can be seen as an energy
conserving system with absorptive losses inserted into the structure. When the ab-
sorptive losses are removed, the structure of the lossless prototype is revealed. This
is true for Schroeder’s parallel comb filter when the feedback coefficients are unity,
which corresponds to a FDN feedback matrix equal to the identity matrix. The allpass
feedback loop reverberator in figure 3.20 consists of a unitary feedback loop when
absorptive losses are removed. Stautner and Puckette’'s FDN reverberator is aso a
unitary feedback loop when = 1 (see equation 3.33). However, the method shown
for adding the absorptive losses in these reverberators does not necessarily prevent
coloration in the late decay. This can be accomplished by associating an absorptive
filter with each delay in the reverberator according to equation 3.43.

The parameters of the reference structure are the number of delays N, the lengths
of the delays m;, and the feedback matrix coefficients, If a large number of inputs
or outputs is desired, this can also affect the choice of the reference structure. The
total length of the delays in seconds, equal to the modal density, should be greater than
the density of frequency maxima for the room to be simulated. Thus, the minimum
total length required is T /4, after equation 3.24. A total delay of 1 to 2 seconds is
sufficient to produce a reference filter response that is perceptually indistinguishable
from white noise [Jot, 1992b], which gives an upper bound on the total delay required
for infinite reverberation times with broadband input signals. To improve the quality of
the reverberation in response to narrowband input signals, one may wish to use a total
delay at least equal to the maximum reverberation time desired, after equation 3.25.
The number of delays and the lengths of the delays, along with the choice of feed-
back matrix, determines the buildup of echo density. These decisions must be made
empirically by evaluating the quality of the reference filter response.
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3.5.6 Implementation of absorptive and correction filters

Once a lossless prototype has been chosen, the absorptive filters and the correction
filter need to be implemented based on a desired reverberation time curve. Jot has
specified asimple solution using first order 1R filters for the absorptive filters, whose
transfer functions are written [Jot, 1992b]:

1=5
Remarkably, thisleadsto a correction filter which isfirst order FIR:
1— Bzt
t(z) = 95 (3.50)

The filter parameters are based on the reverberation time at zero frequency and the
Nyquist frequency, notated T, (0) and T, (), respectively:

2

1073/ (0) o7 %
ki = 10 =1 D (3.51)
— Zﬁ ﬂ___l_\/_é ___TT(W)
I=\ oy’ T iy T T (0

The derivation of these parameters is detailed in the reference [Jot, 1992b]. The family
of reverberation time curves obtained from first order filters is limited, but leads to
natural sounding reverberation. Jot also describes methods for creating higher order
absorption and correction filters by combining first order sections.

3.5.7 Multirate algorithms

Jot’s method of incorporating absorptive filters into a lossless prototype yields a system
whose poles lie on a curve specified by the reverberation time. An alternative method to
obtain the same pole locus is to combine a bank of bandpass filters with a bank of comb
filters, such that each comb filter processes a different frequency range. The feedback
gain of each comb filter then determines the reverberation time for the corresponding
frequency band.

This approach has been extended to a multirate implementation by embedding
the bank of comb filters in the interior of a multirate analysis/synthesis filterbank
[Zoelzer et al., 1990]. A multirate implementation reduces the memory requirements
for the comb filters, and also allows the use of an efficient polyphase analysis/synthesis
filterbank [Vaidyanathan, 1993].



REVERBERATION ALGORITHMS 129

3.5.8 Time-varying algorithms

There are severa reasons why one might want to incorporate time variation into a
reverberation algorithm. One motivation is to reduce coloration and fluttering in the
reverberant response by varying the resonant frequencies. Another use of time variation
isto reduce feedback when the reverberator is coupled to an electro-acoustical sound
reinforcement system, as is the case in reverberation enhancement systems [Griesinger,
1991]. The time variation should always be implemented so as to yield a natural
sounding reverberation free from audible amplitude or frequency modulations. There
are several ways to add time variation to an existing algorithm:

m  Modulate the lengths of the delays, e.g., as shown in figure 3.21.

B Vary the coefficients of the feedback matrix in the reference filter while main-
taining the energy conserving property, or similarly vary the allpass gains of an
alpass feedback loop reverberator.

®  Modulate the output tap gains of an allpass feedback loop structure such asin
figure 3.20, or similarly vary the mixing matrix shown in equation 3.28.

There are many ways to implement variable delay lines [Laakso et al., 1996]. A
simple linear interpolator works well, but for better high frequency performance, it may
be preferable to use a higher order Lagrangian interpolator. Dattorro has suggested
using allpass interpolation, which is particularly suitable because the required modu-
lation rateis low [Dattorro, 1997]. Obviously, modulating the delay length causes the
signal passing through the delay to be frequency modulated. If the depth or rate of the
modulation is too great, the modulation will be audible in the resulting reverberation.
Thisis particularly easy to hear with solo piano music. The maximum detune should
be restricted to afew cents, and the modulation rate should be on the order of 1 Hz.

The notion of changing the filter coefficients while maintaining an energy conserving
system has been suggested by Smith [Smith, 1985], who describes the result as placing
the signal in a changing lossless maze. Smith suggests that all coefficient modulation
be done at sub-audio rates to avoid sideband generation, and warns of an “undulating”
sound that can occur with slow modulation that is too deep.

Although many commercial reverberators use time variation to reduce tonal col-
oration, very little has been published on time-varying techniques. There is no theory
which relates the amount and type of modulation to the reduction of tonal coloration
in the late response, nor is there a way to predict whether the modulation will be
noticeable. Consequently, all the time-varying methods are completely empirical in
nature.
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3.6 CONCLUSIONS

This paper has discussed algorithms for rendering reverberation in real-time. A
straightforward method for simulating room acoustics is to sample a room impulse
response and render the reverberation using convolution. Synthetic impul se responses
can be created using auralization techniques. The availability of efficient, zero delay
convolution algorithms make this a viable method for real-time room simulation. The
drawback of this method isthe lack of parameterized control over perceptually salient
characteristics of the reverberation. This can be a problem when we attempt to use
these systems in interactive virtual environments.

Reverberators implemented using recursive filters offer parameterized control due
to the small number of filter coefficients. The problem of designing efficient, natural
sounding reverberation algorithms has always been to avoid unpleasant coloration and
fluttering in the decay. In many ways, Jot’s work has revolutionized the state of the
art, because it is now possible to design colorless reverberators without resorting to
solely empirical design methods. It is possible to specify in advance the reverberation
time curve of the reverberator, permitting an analysis/synthesis method for reverberator
design which concentrates on reproducing the energy decay relief of the target room.
Interestingly, many of the fundamental ideas can be traced back to Schroeder’s original
work, which is now more than thirty years old.

There are still problems to be solved. Reproducing a complicated reverberation
time curve using Jot’s method requires associating a high order filter with each delay
in the lossless prototype, and this is expensive. It is an open question whether the
constraint of uniform pole modulus necessarily requires one absorptive filter per delay
line (Jean-Marc Jot, personal communication, 1994). Many of the commercialy
available reverberators probably use time-variation to reduce tonal coloration, yet the
study of time-varying agorithms has received ailmost no attention in the literature. A
genera theory of tonal coloration in reverberation is needed to explain why certain
algorithms sound good and others sound bad.

The study of reverberation has been fertile ground for many acousticians, psychol-
ogists, and electrical engineers. There is no doubt it will continue to be so in the
future.
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Notes

1. Rooms are very linear but they are not time-invariant due to the motion of people and air. For
practical purposes we consider them to be LTI systems.

2. There are many ways to implement allpass filters [Moorer, 1979, Jot, 1992b]; two methods are shown
in Figures 3.13 and 3.14.
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Abstract: This chapter is concerned with the application of modern signal processing
techniques to the restoration of degraded audio signals. Although attention is focussed on
gramophone recordings, film sound tracks and tape recordings, many of the techniques
discussed have applications in other areas where degraded audio signals occur, such as
speech transmission, telephony and hearing aids.

We aim to provide a wide coverage of existing methodology while giving insight into
current aress of research and future trends.
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4.1 INTRODUCTION

The introduction of high quality digital audio media such as Compact Disk (CD) and
Digitad Audio Tape (DAT) has dramatically raised general awareness and expectations
about sound quality in all types of recordings. This, combined with an upsurge in
interest in historical and nostalgic material, has led to a growing requirement for
restoration of degraded sources ranging from the earliest recordings made on wax
cylinders in the nineteenth century, through disc recordings (78 rpm, LP, etc.) and
finally magnetic tape recording technology, which has been available since the 1950's.
Noise reduction may occasionally be required even in a contemporary digital recording
if background noiseisjudged to be intrusive.

Degradation of an audio source will be considered as any undesirable modification
to the audio signal which occurs as a result of (or subseguent to) the recording process.
For example, in a recording made direct-to-disc from a microphone, degradations
could include noise in the microphone and amplifier as well as noise in the disc cutting
process. Further noise may be introduced by imperfections in the pressing material,
transcription to other media or wear and tear of the medium itself. We do not strictly
consider any noise present in the recording environment such as audience noise at
a musical performance to be degradation, since this is part of the ‘performance’.
Removal of such performance interference is a related topic which is considered
in other applications, such as speaker separation for hearing aid design. An ideal
restoration would then reconstruct the original sound source exactly as received by
the transducing equipment (microphone, acoustic horn, etc.). Of course, thisideal can
never be achieved perfectly in practice, and methods can only be devised which come
close according to some suitable error criterion. This should ideally be based on the
perceptual characteristics of the human listener.

Analogue restoration techniques have been available for at least as long as magnetic
tape, in the form of manual cut-and-splice editing for clicks and frequency domain
equalization for background noise (early mechanica disk playback equipment will aso
have this effect by virtue of its poor response at high frequencies). More sophisticated
electronic click reducers were based upon high pass filtering for detection of clicks,
and low pass filtering to mask their effect [Carrey and Buckner, 1976, Kinzie, Jr, and
Gravereaux, 1973].2 None of these methods was sophisticated enough to perform a
significant degree of noise reduction without interfering with the underlying signal
quality. Digital methods allow for a much greater degree of flexibility in processing,
and hence greater potentia for noise removal, although indiscriminate application of
inappropriate digital methods can be more disastrous than analogue processing!

Some of the earliest digital signal processing work for audio restoration involved
deconvolution for enhancement of a solo voice (Caruso) from an acoustically recorded
source (see Miller [Miller, 1973] and Stockham et al. [Stockham et a., 1975]). Since
then, research groups at Cambridge, Le Mans, Paris and el sewhere have worked in the
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area, developing sophisticated techniques for treatment of degraded audio. The results
of thisresearch are summarized and referenced later in the chapter.

There are severa distinct types of degradation common in audio sources. These
can be broadly classified into two groups:. localized degradations and global degra-
dations. Localized degradations are discontinuities in the waveform which affect only
certain samples, including clicks, crackles, scratches, breakages and clipping. Global
degradations affect all samples of the waveform and include background noise, wow
and flutter and certain types of non-linear distortion. Mechanisms by which all of
these defects can occur are discussed later.

The chapter is organized as follows. We firstly describe models which are suitable
for audio signal restoration, in particular those which are used in later work. Subsequent
sections describe individual restoration problems separately, considering the alternative
methods available to the restorer. A concluding section summarizes the work and
discusses future trends.

4.2 MODELLING OF AUDIO SIGNALS

Many signal processing techniques will be model-based, either explicitly or implicitly,
and this certainly applies to most of the audio restoration algorithms currently available.
The quality of processing will depend largely on how well the modelling assumptions
fit the data. For an audio signal, which might contain speech, music and general
acoustical noises the model must be quite general and robust to deviations from the
assumptions. It should also be noted that most audio signals are non-stationary in
nature, although practical modelling will often assume short-term stationarity of the
signal. We now discuss some models which are appropriate for audio signals.

A model which has found application in many areas of time series processing,
including audio restoration (see sections 4.3 and 4.7), is the autoregressive (AR) or all-
pole model (see Box and Jenkins [Box and Jenkins, 1970], Priestley [Priestley, 1981]
and also Makhoul [Makhoul, 1975] for an introduction to linear predictive analysis)
in which the current value of asignal is represented as a weighted sum of P previous
signal values and a white noise term:

slp} =Y sln—ila; + eln]. (4.
i=1

The AR model is a reasonable representation for many stationary linear processes,
allowing for noise-like signals (poles close to origin) and near-harmonic signal (poles
close to unit circle). A more appropriate model for many situations might be the
autoregressive moving-average (ARMA) model which allows zeros as well as poles.
However, the AR model offers far greater analytic flexibility than the ARMA model,
so a high order AR model will often be used in practice to approximate an ARMA
signal (it iswell known that an infinite order AR model can represent any finite-order
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ARMA moded (see, e.g. [Therrien, 1992])). Model order for the autoregressive
process will reflect the complexity of the signal under consideration. For example, a
highly complex musical signal can require a model order of P > 100 to represent the
waveform adequately, while simpler signals may be modelled by an order 30 system.
Strictly, any processing procedure should thus include a model order selection strategy.
For many applications, however, it is sufficient to fix the model order to a value high
enough for representation of the most complex signal likely to be encountered. Clearly
no audio signal is truly stationary, so it will be necessary to implement the model in
a block-based or adaptive fashion. Suitable block lengths and adaptation rates will
depend upon the signal type, but block lengths between 500 and 2000 samples at the
44.1kHz sampling rate are generally found to be appropriate.

There are many well-known methods for estimating AR models, including maxi-
mum likelihood/least-squares [Makhoul, 1975] and methods robust to noise [Huber,
1981, Spath, 1991]. Adaptive parameter estimation schemes are reviewed in [Haykin,
1991]. The class of methods robust to noise, both block-based and adaptive, will
be of importance to many audio restoration applications, since standard parameter
estimation schemes can be heavily biased in the presence of noise, in particular im-
pulsive noise such as is commonly encountered in click-degraded audio. A standard
approach to this problem is the M-estimator [Huber, 1981, Spath, 1991]. This method
achieves robustness by iteratively re-weighting excitation values in the least-squares
estimator using a non-linear function such as Huber’s psi-function [Huber, 1964] or
Tukey's bisquare function [Mosteller and Tukey, 1977]. Applications of these methods
to parameter estimation, detection of impulses and robust filtering include [Martin,
1981, Arakawa et al., 1986, Efron and Jeen, 1992].

Another model which is a strong candidate for musical signals is the sinusoidal
model, which has been wused effectively for speech applications
([McAulay and Quatieri, 1986b] and chapter 9 of this book). A constrained form
of the sinusoidal model is implicitly at the heart of short-time spectral attenuation
(STSA) methods of noise reduction (see section 4.5.1). The model is also a fundamen-
tal assumption of the pitch variation algorithms presented in section 4.6. In its general
form the signal can be expressed as:

P, nT
s[n] = Z a;[n] sin (/ w; (t)dt + qﬁi> : (4.2)

i=1 0
This is quite a general model, allowing for frequency and amplitude modulation (by
allowing & [n] and wj(t) to vary with time) as well as the 'birth’ and ‘death’ of individual
components (by allowing Pyto vary with time). However, parameter estimation for
such a general model is difficult, and restrictive constraints must typically be placed
upon the amplitude and frequency variations. The sinusoidal model is not suited to
modelling noise-like signals, although an acceptable representation can be achieved
by using alarge number of sinusoids in the expansion.
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Other models include adaptations to the basic AR/ARMA models to alow for
speech-like periodic excitation pulses [Rabiner and Schafer, 1978a] and non-linearity
(see section 4.7). Further ‘non-parametric’ modelling possihilities arise from other
basis function expansions which might be more appropriate for audio signal analysis,
including Wavelets [Akansu and Haddad, 1992) and signal dependent transforms which
employ principal component-based analysis [Gerbrands, 1981]. Choice of model will
in general involve a compromise between prior knowledge of signal characteristics,
computational power and how critical the accuracy of the model is to the application.

4.3 CLICK REMOVAL

The term ‘clicks is used here to refer to a generic localized type of degradation
which is common to many audio media. We will classify all finite duration defects
which occur at random positions in the waveform as clicks. Clicks are perceived in
a number of ways by the listener, ranging from tiny ‘tick’ noises which can occur in
any recording medium, including modern digital sources, through the characteristic
‘scratch and ‘crackle’ noise associated with most analogue disc recording methods.
For example, a poor quality 78 rpm record might typically have around 2,000 clicks
per second of recorded material, with durations ranging from less than 20us up to
4ms in extreme cases. See figure 4.1 for a typical example of a recorded music
waveform degraded by localized clicks. In most examples at least 90% of samples
remain undegraded, so it is reasonable to hope that a convincing restoration can be
achieved.

There are many mechanisms by which clicks can occur. Typical examples are
specks of dirt and dust adhering to the grooves of a gramophone disc (see figure 4.3
2) or granularity in the material used for pressing such a disc. Further click-type
degradation may be caused through damage to the disc in the form of small scratches
on the surface, Similar artifacts are encountered in other analogue media, including
optical film sound tracks and early wax cylinder recordings, although magnetic tape
recordings are generally free of clicks. Ticks can occur in digital recordings as aresult
of poorly concealed digital errors and timing problems.

Peak-related dictortion, occurring as a result either of overload during recording or
wear and tear during playback, can giverise to asimilar perceived effect to clicks, but
isreally adifferent area which should receive separate attention (see section 4.7), even
though click removal systems can often go some way towards alleviating the worst
effects.

4.3.1 Modelling of clicks

Localized defects may be modelled in many different ways. For example, a defect may
be additive to the underlying audio signal, or it may replace the signal altogether for
some short period. An additive model has been found to be acceptable for most surface
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Figure 4.1 Click-degraded music waveform taken from 78 rpm recording
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Figure 4.2 AR-based detection, P=50. (a) Prediction error filter (b) Matched filter.
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Figure 4.3 Electron micrograph showing dust and damage to the grooves of a 78rpm
gramophone disc.
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defects in recording media, including small scratches, dust and dirt. A replacement
model may be appropriate for very large scratches and breakages which completely
obliterate any underlying signal information, although such defects usually excite long-
term resonances in mechanical playback systems and must be treated differently (see
section 4.4). Here we will consider primarily the additive model, although many of
the results are at least robust to replacement noise.

An additive model for localized degradation can be expressed as:

z[n] = s[n] + inlvn] 4.3

wheres[n] isthe underlying audio signal,v[n] is a corrupting noise process and i[n] is
a 0/l ‘switching’ process which takes the value 1 only when the localized degradation
is present. Clearly the value of v[n] is irrelevant to the output when the switch isin
position 0. The statistics of the switching processi [n] thus govern which samples are
degraded, while the statistics of v[n] determine the amplitude characteristics of the
corrupting process.

This model is quite general and can account for a wide variety of noise characteristics
encountered in audio recordings. It does, however, assume that the degradation process
does not interfere with the timing content of the original signal, as observed in Xn] .
This is reasonable for al but very severe degradations, which might temporarily upset
the speed of playback, or actual breakages in the medium which have been mechanically
repaired (such as a broken disc recording which has been glued back together).

Any procedure which is designed to remove localized defects in audio signals must
take account of the typical characteristics of these artifacts. Some important features
which are common to many click- degraded audio media include:

= Degradation tends to occur in contiguous ‘bursts’ of corrupted samples, starting
at random positions in the waveform and of random duration (typically between
1 and 200 samples at 44.1 kHz sampling rates). Thus there is strong dependence
between successive samples of the switching process i[n], and the noise cannot
be assumed to follow a classical impulsive noise pattern in which single impulses
occur independently of each other (the Bernoulli model). It is considerably
more difficult to treat clusters of impulsive disturbance than single impulses,
since the effects of adjacent impulses can cancel each other in the detection
space (‘missed detections') or add constructively to give the impression of more
impulses (‘fase alarms’).

= The amplitude of the degradation can vary greatly within the same recorded
extract, owing to a range of size of physical defects. For example, in many
recordings the largest click amplitudes will be well above the largest signal
amplitudes, while the smallest audible defects can be more than 40dB below
the local signal level (depending on psychoacoustical masking by the signal and
the amount of background noise). This leads to a number of difficulties. In
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particular, large amplitude defects will tend to bias any parameter estimation
and threshold determination procedures, leaving smaller defects undetected. As
we shall see in section 4.3.2, threshold selection for some detection schemes
becomes a difficult problem in this case.

Many approaches are possible for the restoration of such defects. It is clear, however,
that the ideal system will process only on those samples which are degraded, leaving
the others untouched in the interests of fidelity to the original source. Two tasks can
thus be identified for a successful click restoration system. The first is a detection
procedure in which we estimate the processi[n], that is decide which samples are
degraded. The second is an estimation procedure in which we attempt to reconstruct
the underlying audio data when corruption is present. A method which assumes that
no useful information about the underlying signal is contained in the degraded samples
will involve a pure interpolation of the audio data using the undegraded samples, while
more sophisticated techniques will attempt in addition to extract extra information from
samples degraded with noise using some degree of noise modelling.

4.3.2 Detection

Click detection for audio signals involves the identification of samples which are not
drawn from the underlying audio signal; in other words they are drawn from a spurious
‘outlier’ distribution. We will see a close relationship between click detection and
work in robust parameter estimation and treatment of outliers, from fields as diverse as
medical signal processing, underwater signal processing and statistical data analysis.
In the statistical field in particular there has been a vast amount of work in the treatment
of outliers (see e.g. [Beckman and Cook, 1983, Barnett and Lewis, 1984] for extensive
review material, and further references in section 4.3.4). Various criteria for detection
are possible, including minimum probability of error, P, and related concepts, but
strictly speaking the aim of any audio restoration is to remove only those artifacts
which are audible to the listener. Any further processing is not only unnecessary
but will increase the chance of distorting the perceived signal quality. Hence a truly
optimal system should take into account the trade-off between the audibility of artifacts
and perceived distortion as a result of processing, and will involve consideration of
complex psychoacoustical effects in the human ear (see e.g. [Moore, 1997]). Such
an approach, however, is difficult both to formulate and to realize, so we will limit
discussion here only to criteria which are well understood in a mathematical sense.
The simplest click detection methods involve a high-pass filtering operation on the
signal, the assumption being that most audio signals contain little information at high
frequencies, while impulses have spectral content at al frequencies. Clicks are thus
enhanced relative to the signal by the high-pass filtering operation and can easily be
detected by thresholding the filtered output. The method has the advantage of being
simple to implement and having no unknown system parameters (except for a detection
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threshold). This principle is the basis of most anal ogue de-clicking equipment [Carrey
and Buckner, 1976, Kinzie, Jr. and Gravereaux, 1973] and some simple digital click
detectors [Kasparis and Lane, 1993]. Of course, the method will fail if the audio signal
has strong high frequency content or the clicks are band-limited. Along similar lines,
wavelets and multiresolution methods in general [Akansu and Haddad, 1992, Chui,
1992a, Chui, 1992b] have useful localization properties for singularities in signals
(see e.g. [Mallatt and Hwang, 1992]), and a Wavelet filter at a fine resolution can be
used for the detection of clicks. Such methods have been studied and demonstrated
successfully by Montresor, Valiére et al. [Valiéere, 1991, Montresor et al., 1990].

Other methods attempt to incorporate prior information about signal and noise into
amodel-based detection procedure. Techniques for detection and removal of impulses
from autoregressive signals have been developed from robust filtering principles (see
section 4.2 and [Arakawa et al., 1986, Efron and Jeen, 1992]). These methods apply
non-linear functions to the autoregressive excitation sequence, and can be related to the
click detection methods of Vaseghi and Rayner [Vaseghi and Rayner, 1988, Vaseghi,
1988, Vaseghi and Rayner, 1990], which are now discussed. See also section 4.3.4 for
recent detection methods based on statistical decision theory.

Autoregressive (AR) model-based Click Detection. In this method ([Vaseghi and
Rayner, 1988, Vaseghi, 1988, Vaseghi and Rayner, 1990]) the underlying audio data
s[ n] is assumed to be drawn from a short-term stationary autoregressive (AR) process
(see equation (4.1)). The AR model parameters a and the excitation variance 02 are
estimated from the corrupted datax[n] using some procedure robust to impulsive noise,
such as the M-estimator (see section 4.2).

The corrupted data x[n] is filtered using the prediction error filter H(z) = (1 —

P
> " a:;27") to give adetection signal e[n] :
i=1

ealn) = zn) — Zz[r — i)a;. (4.4)

=1

Substituting for x[n] from (4.3) and using (4.1) gives:

P
eafn] = e[n] + inje[n] = D _iln — ijv[n ~ ila; (4.5)

i=1

which is composed of the signal excitation e[n] and a weighted sum of present and
past impul sive noise values. If s[ n] is zero mean and has varianceo 2 then e[n] is white
2

5

[ ——7

J— n{(e»‘ﬁ)|2 !

noise with variances? = 2x . The reduction in power here from signa
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to excitation can be 40dB or more for highly correlated audio signals. Consideration
of (4.5), however, shows that a single impulse contributes the impul se response of the
prediction error filter, weighted by the impulse amplitude, to the detection signal e[n] ,
with maximum amplitude corresponding to the maximum in the impulse response.
This means that considerable amplification of the impulse relative to the signal can
be achieved for al but uncorrelated, noise-like signals. It should be noted, however,
that this amplification is achieved at the expense of localization in time of the impulse,
whose effect is now spread over P + 1 samples of the detection signal ey[n]. This will
have adverse consequences when a number of impulses is present in the same vicinity,
since their impulse responses may cancel one another out or add constructively to
give false detections. More generally, threshold selection will be troublesome when
impulses of widely differing amplitudes are present, since a low threshold which is
appropriate for very small clicks will lead to false detections in the P detection values
which follow a large impulse.

Detection can then be performed by thresholding es[n]? to identify likely impulses.
Choice of threshold will depend upon the AR model, the variance of e[n] and the
size of impulses present (see [Godsill, 1993] for optimal thresholds under Gaussian
signal and noise assumptions), and will reflect trade-offs between false and missed
detection rates. See figure 4.2(a) for atypical example of detection using this method,
which shows how the impulsive interference is strongly amplified relative to the signal
component.

An adaptation of this method, also devised by Vaseghi and Rayner, considers the
impulse detection problem from a matched filtering perspective [VanTrees, 1968].
The ‘signa’ is the impulse itself, while the autoregressive audio data is regarded as
coloured additive noise. The prediction error filter described above can then be viewed
as a pre-whitening stage for the autoregressive noise, and the full matched filter is given
by H(z)H (z7'), anon-causal filter with 2P + 1 coefficients which can be realized
with P samples of lookahead. The matched filtering approach provides additional
amplification of impulses relative to the signal, but further reduces localization of
impulses for a given model order. Choice between the two methods will thus depend
on the range of click amplitudes present in a particular recording and the degree of
separation of individual impulses in the waveform. See figure 4.2(b) for an example of
detection using the matched filter. Notice that the matched filter has high-lighted a few
additional impulse positions, but at the expense of a much more ‘smeared’ response
which will make accurate localization very awkward. Hence the prediction-error
detector is usually preferred in practice.

Both the prediction error detection algorithm and the matched filtering algorithm
are efficient to implement and can be operated in real time using DSP microprocessors.
Results of a very high standard can be achieved if a careful strategy is adopted for
extracting the precise click locations from the detection signal. Iterative schemes
are also possible which re-apply the detection algorithms to the restored data (see
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section 4.3.3) in order to achieve improved parameter estimates and to ensure that any
previously undetected clicks are detected.

4.3.3 Replacement of corrupted samples

Once clicks have been detected, a replacement strategy must be devised to mask their
effect. It is usually appropriate to assume that clicks have in no way interfered with the
timing of the material, so the task is then to fill in the ‘gap’ with appropriate material
of identical duration to the click. As discussed above, this amounts to an interpolation
or generalized prediction problem, making use of the good data values surrounding
the corruption and possibly taking account of signa information which is buried in
the corrupted section. An effective technique will have the ability to interpolate gap
lengths from one sample up to at least 100 samples at a sampling rate of 44.1 kHz.

The replacement problem may be formulated as follows. Consider N samples of
audio data, forming a vector s. The corresponding click-degraded data vector is x, and
the (known) vector of detection valuesi [n] isi. The audio data s may be partitioned
into two sub-vectors, one containing elements whose value is known (i.e. i [n] = 0),
denoted by sy, and the second containing unknown elements which are corrupted by
noise (i[n] = 1), denoted by s,. Vectors x and i are partitioned in a similar fashion.
The replacement problem requires the estimation of the unknown data g, given the
observed (corrupted) data x. This will be a statistical estimation procedure for audio
signals, which are stochastic in nature, and estimation methods might be chosen to
satisfy criteria such as minimum mean-square error (MMSE), maximum likelihood
(ML), maximum a posteriori (MAP) or perceptua features.

Numerous methods have been developed for the interpolation of corrupted or miss-
ing samples in speech and audio signals. The ‘classical’ approach is perhaps the median
filter [Tukey, 1971, Pitas and Venetsanopoulos, 1990] which can replace corrupted
samples with a median value while retaining detail in the signal waveform. A suit-
able system is described in [Kasparis and Lane, 1993], while a hybrid autoregressive
prediction/ median filtering method is presented in [Nieminen et al., 1987]. Median
filters, however, are too crude to deal with gap lengths greater than a few samples.
Other techniques ‘splice’ uncorrupted data from nearby into the gap [Lockhart and
Goodman, 1986, Platte and Rowedda, 1985] in such a manner that there is no signal
discontinuity at the start or end of the gap. These methods rely on the periodic nature
of many speech and music signals and also require areliable estimate of pitch period.

The most effective and flexible methods to date have been model-based, alowing
for the incorporation of reasonable prior information about signal characteristics. A
good coverage is given by Veldhuis [Veldhuis, 1990], and a number of interpolators
suited to speech and audio signals is presented. These are based on minimum variance
estimation under various modelling assumptions, including sinusoidal, autoregressive,
and periodic. The autoregressive interpolator, originally derived in [Janssen et al.,
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1986], was later developed by Vaseghi and Rayner [Vaseghi, 1988, Vaseghi and Rayner,
1988, Vaseghi and Rayner, 1990] for the restoration of gramophone recordings. This
interpolator and other developments based on autoregressive modelling are discussed
in the next section.

Autoregressive interpolation. An interpolation procedure which has proved highly
successful is the Least Squares AR-based (LSAR) method [Janssen et a., 1986, Veld-
huis, 1990], devised originaly for the concealment of uncorrectable errors in CD
systems. Corrupted data is considered truly ‘missing’ in that no account is taken of its
value in making the interpolation. We present the algorithm in a matrix/vector notation
in which the locations of degraded samples can be arbitrarily specified within the data
block through the detection vector i.

Consider ablock of N data samples s which are drawn from a short-term stationary
AR process with parameters a. Equation 4.1 can be re-written in matrix/vector notation
as:

e=As (4.6)

where A isan (N — P) x N) matrix, whose (j — P )th row is constructed so as to
generate the prediction error,e[j] = s[j] — Efil s{j —i]a; . Elements on the right
hand side of this equation can be partitioned into known and unknown sections as
described above, with A being partitioned by column. The least squares solution is
then obtained by minimizing the sum of squares E = e' ew.r.t. the unknown data
segment, to give the solution:

SLMS = ‘(AuTAu)nlAuTAtc Sk (4.7)

This interpolator has useful properties, being the minimum-variance unbiased estimator
for the missing data [Veldhuis, 1990]. Viewed from a probabilistic perspective, it
corresponds to maximization of p(sy | sk ,a, 62) under Gaussian assumptions,® and
is hence also the maximum a posteriori (MAP) estimator [Godsill, 1993, Veldhuis,
1990]. In cases where corruption occurs in contiguous bursts separated by at least P
‘good’ samples, the interpolator leads to a Toeplitz system of equations which can be
efficiently solved using the Levinson-Durbin recursion [Durbin, 1959]. See figure 4.4
for examples of interpolation using the L SAR method. A succession of interpolations
has been performed, with increasing numbers of missing samples from left to right in
the data (gap lengths increase from 25 samples up to more than 100). The autoregressive
model order is 60. The shorter length interpolations are almost indistinguishable from
the true signal (left-hand side of figure 4.4(a)), while the interpolation is much poorer
as the number of missing samples becomes large (right-hand side of figure 4.4(b)).
This is to be expected of any interpolation scheme when the data is drawn from a
random process, but the situation can often be improved by use of a higher order
autoregressive model. Despite poor accuracy of the interpoland for longer gap lengths,
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good continuity is maintained at the start and end of the missing data blocks, and the
signal appears to have the right ‘character’. Thus effective removal of click artifacts
in typical audio sources can usually be achieved.

The basic formulation given in (4.7) assumes that the AR parameters are known
a priori. In practice we may have a robust estimate of the parameters obtained
during the detection stage (see section 4.3.2). This, however, is strictly sub-optimal
and we should perhaps consider interpolation methods which treat the parameters as
unknown. Minimization of the term E = e' ew.r.t. both sy and a corresponds to
the joint least squares estimator for the parameters and the missing data, and also
to the approximate joint ML estimator.* E, however, contains fourth-order terms in
the unknowns and cannot be minimized analytically. Janssen, Veldhuis and Vries
[Janssen et al., 1986] propose an aternating variables iteration which performs linear
maximizations w.r.t. data and parameters in turn, and is guaranteed to converge at
least to a local maximum of the likelihood. The true likelihood for the missing
data, p(sk | Su), can be maximized using the expectation-maximize (EM) algorithm
[Dempster et al., 1977], an approach which has been investigated by O Ruanaidh and
Fitzgerald [ORuanaidh, 1994, ORuanaidh and Fitzgerald, 1993]. Convergence to local
maxima of the likelihood is also a potential difficulty with this method.

The LSAR approach to interpolation performs well in most cases. However, certain
classes of signal which do not fit the modelling assumptions (such as periodic pulse-
driven voiced speech) and very long gap lengths can lead to an audible ‘dulling’ of
the signal or unsatisfactory masking of the original corruption. Increasing the order of
the AR model will usually improve the results; however, several developments to the
method are now outlined which can lead to better performance.

Vaseghi and Rayner [Vaseghi and Rayner, 1990] propose an extended AR model
to take account of signals with long-term correlation structure, such as voiced speech,
singing or near-periodic music. The model, which is similar to the long term prediction
schemes used in some speech coders, introduces extra predictor parameters around the
pitch period T, so that equation 4.1 becomes:

P

Q
s[n] = Z s[n — 4 Z sin =T — jlb; + e[n}, (4.8)

=1 -

where Q is typically smaller than P. Least squares/ML interpolation using this model
is of a similar form to equation 4.7, and parameter estimation is straightforwardly
derived as an extension of standard AR parameter estimation methods (see section
4.2). The method gives a useful extra degree of support from adjacent pitch periods
which can only be obtained using very high model orders in the standard AR case.
As aresult, the ‘under-prediction’ sometimes observed when interpolating long gaps
is improved. Of course, an estimate of T is required, but results are quite robust
to errors in this. Veldhuis [Veldhuis, 1990][chapter 4] presents a special case of this



DIGITAL AUDIO RESTORATION 147

(a) Gap lengths left to right from 25-50 samples
2000 — . — .

T T T

1500 e ‘ o
1000

500

amplitude
=)

~500¢

-1000

|- True signal
=15001) Interpolated signal 1
- Interpolation regions
~2000 . . s . L I L . L
0 50 100 150 200 250 300 350 400 450 500
(b) Gap lengths left to right from 70-120 samples
2000 - L U T 7 T T
1500

1000

500

amplitude
o

-500

-1000

- ~ True signal
— Interpolated signal
----- Interpolation regions

-1500

o - 1

-2000 ! —
600 650 700 750 800 850 900 950 1000 1050 1100

sample number

Figure 4.4 AR-based interpolation, P=60, classical chamber music, (a) short gaps,
(b) long gaps



148 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

interpolation method in which the signal is modelled by one single ‘prediction’ element
at the pitch period (i.e. Q = 0 and P = 0 in the above equation).

A second modification to the LSAR method is concerned with the characteristics of
the excitation signal. We notice that the LSAR procedure (4.7) seeks to minimize the
excitation energy of the signal, irrespective of its time domain autocorrelation. Thisis
quite correct, and desirable mathematical properties result (see above). However, figure
4.6 shows that the resulting excitation signal corresponding to the corrupted region can
be correlated and well below the level of surrounding excitation. As a result, the ‘ most
probable’ interpolands may under-predict the true signal levels and be over-smooth
compared with the surrounding signal. In other words, ML/MAP procedures do not
necessarily generate interpolands which are typical for the underlying model, which
is an important factor in the perceived effect of the restoration. Rayner and Godsill
[Rayner and Godsill, 1991] have devised a method which addresses this problem.
Instead of minimizing the excitation energy, we consider interpolands with constant
excitation energy. The excitation energy may be expressed as:

E=(sy —s)TA, A, (sy —s) + Es, E> Eus, (4.9

where E ¢ is the excitation energy corresponding to the LSAR estimate si°. The
positive definite matrix Ay T A can be factorized into ‘square roots' by Cholesky
or any other suitable matrix decomposition [Golub and Van Loan, 1989] to give
A,TA, =M "M, where M is a non-singular square matrix. A transformation of
variables u = M (s, —s;°) then serves to de-correlate the missing data samples,
simplifying equation (4.9) to:

E=uTu + Eg, (4.10)

from which it can be seen that the (non-unique) solutions with constant excitation
energy correspond to vectors u with constant L,-norm. The resulting interpoland
can be obtained by the inverse transformation ss = M ~tu + s!'. One suitable
criterion for selecting u might be to minimize the autocorrelation at non-zero lags
of the resulting excitation signal, since the excitation is assumed to be white noise.
This, however, requires a non-linear minimization, and a practical aternative is to
generate u as Gaussian white noise with variance (E — E s)/l, wherel is the number
of corrupted samples. The resulting excitation will have approximately the desired
energy and uncorrelated character. A suitable value for E is the expected excitation
energy for the AR model, provided thisis greater than E.s, i.e. E = max(Es, Ng?2).
Viewed within a probabilistic framework, the case when E = E;s + |62, where | is
the number of unknown sample values, is equivalent to drawing a sample from the
posterior density for the missing data, p(s, O sk, a, 02). Figures 4.5-4.7 illustrate
the principles involved in this sampled interpolation method. A short section taken
from a modern solo vocal recording is shown in figure 4.5, alongside its estimated



DIGITAL AUDIO RESTORATION 149

autoregressive excitation. The waveform has a fairly ‘noise-like’ character, and the
corresponding excitation is noise-like as expected. The standard LSAR interpolation
and corresponding excitation is shown in figure 4.6. The interpolated section (between
the dotted vertical lines) is reasonable, but has lost the random noise-like quality of the
original. Examination of the excitation signal shows that the LSAR interpolator has
done ‘too good' a job of minimizing the excitation energy, producing an interpolant
which, while optimal in a mean-square error sense, cannot be regarded as typica of the
autoressive process. This might be heard as a momentary change in sound quality
at the point of interpolation. The sampling-based interpolator is shown in figure 4.7.

Its waveform retains the random quality of the original signal, and likewise the
excitation signa in the gap matches the surrounding excitation. Hence the sub-
optimal interpolant is likely to sound more convincing to the listener than the LSAR
reconstruction.

O Ruanaidh and Fitzgerald [ORuanaidh and Fitzgerald, 1994, ORuanaidh, 1994]
have successfully extended the idea of sampled interpolates to a full Gibbs Sampling
framework [Geman and Geman, 1984, Gelfand and Smith, 1990] in order to generate
typical interpolates from the marginal posterior density p(sy 0 sk ). The method is
iterative and involves sampling from the conditional posterior densities of s, a and
02 in turn, with the other unknowns fixed at their most recent sampled values. Once
convergence has been achieved, the interpolation used is the last sampled estimate
from p(su Sk, &, 03).

Other methods. Several transform-domain methods have been developed for click
replacement. Montresor, Valiére and Baudry [Montresor et al., 1990] describe a
simple method for interpolating wavelet coefficients of corrupted audio signals, which
involves substituting uncorrupted wavelet coefficients from nearby signal according to
autocorrelation properties. This, however, does not ensure continuity of the restored
waveform and is not a localized operation in the signal domain. An aternative method,
based in the discrete Fourier domain, which is aimed at restoring long sections of
missing data is presented by Maher [Maher, 1994]. In a similar manner to the sinusoidal
coding algorithms of McAulay and Quatieri [McAulay and Quatieri, 1986b], this
technique assumes that the signal is composed as a sum of sinusoids with slowly
varying frequencies and amplitudes (see equation 4.2). Spectral peak ‘tracks from
either side of the gap are identified from the Discrete Fourier Transform (DFT)
of successive data blocks and interpolated in frequency and amplitude to generate
estimated spectra for the intervening material. The inverse DFTs of the missing data
blocks are then inserted back into the signal. The method is reported to be successful
for gap lengths of up to 30ms, or well over 1000 samples at audio sampling rates. A
method for interpolation of signals represented by the multiple sinusoid model is given
in [Veldhuis, 1990][ Chapter 6].
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Godsill and Rayner [Godsill and Rayner, 1993a, Godsill, 1993] have derived an
interpolation method which operates in the DFT domain. This can be viewed as
an aternative to the LSAR interpolator (see section 4.3.3) in which power spectral
density (PSD) information is directly incorporated in the frequency domain. Real
and imaginary DFT components are modelled as independent Gaussians with variance
proportional to the PSD at each frequency. These assumptions of independence are
shown to hold exactly for random periodic processes [Therrien, 1989], so the method
is best suited to musical signals with strongly tonal content. The method can, however,
also be used for other stationary signals provided that a sufficiently long block Iength
is used (e.g. 500-2000 samples) since the assumptions also improve as block length
increases [Papoulis, 1991]. The Maximum a posteriori solution is of a similar form
and complexity to the LSAR interpolator, and is particularly useful as an aternative
to the other method when the signal has a quasi-periodic or tonal character. A robust
estimate is required for the PSD, and this can usually be obtained through averaged
DFTs of the surrounding data, although iterative methods are also possible, as in the
case of the LSAR estimator.

Recent statistical model-based detection and interpolation methods are discussed in
the next section.

4.3.4 Statistical methods for the treatment of clicks

The detection and replacement techniques described in the preceding sections can be
combined to give very successful click concealment, as demonstrated by a number
of research and commercia systems which are now used for the re-mastering of old
recordings. However, some of the difficulties outlined above concerning the ‘masking’
of smaller defects by large defects in the detection process, the poor time localization
of some detectors in the presence of impulse ‘bursts' and the inadequate performance of
existing interpolation methods for certain signal categories, has led to further research
which considers the problem from a more fundamental statistical perspective.

In [Godsill and Rayner, 1992, Godsill and Rayner, 1995a, Godsill, 1993] click
detection is studied within a model-based Bayesian framework (see e.g. [Box and
Tiao, 1973, Bernardo and Smith, 1994]). The Bayesian approach is a simple and
elegant framework for performing decision and estimation within complex signal
and noise modelling problems such as this, and relevant Bayesian approaches to
the related problem of outlier detection in statistical data can be found in [Box and
Tiao, 1968, Abraham and Box, 1979, McCulloch and Tsay, 1994]. Detection is
formulated explicitly as estimation of the noise *switching’ process i [n] (see section
4.3.1) conditional upon the corrupted data x[ n]. The switching process can be regarded
as a random discrete (1/0) process for which a posterior probahility is calculated.
Detection is then achieved by determining the switching values which minimize risk
according to some appropriate cost function. In the most straightforward case, this
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will involve selecting switch values which maximize the posterior probability, leading
to the maximum a posteriori (MAP) detection. The posterior detection probability for
ablock of N data points may be expressed using Bayes' rule as:

P@|x) = p_.__(xll(iif ()

where all terms are implicitly conditional upon the prior modelling assumptions, M.
The prior detection probability P(i) reflects any prior knowledge about the switching
process. In the case of audio clicks this might, for example, incorporate the knowledge
that clicks tend to occur as short ‘bursts’ of consecutive impulses, while the mgjority
of samples are uncorrupted. A suitable prior which expresses this time dependence is
the discrete Markov chain prior (see [Godsill and Rayner, 19953, Godsill, 1993] for
discussion this point). The term p(x) is constant for any given set of observations,
and so can be ignored as a constant scale factor. Attention will thus focus on p(xJi),
the detection-conditioned likelihood for a particular detection vector i. It is shown in
[Godsill and Rayner, 1995a, Godsill, 1993, Godsill and Rayner, 1992] that within the
additive noise modelling framework of (4.3), the likelihood term is given by

(4.12)

p(x | 1) :/ Pvuli®u = Su | 1) Ps(8) [se=xxc dsu (4.12)
sy

where p,, [ isthe probability density function for the corrupting noise values and ps
is the density for the underlying audio data. This formulation holds for any random
additive noise process which is independent of the signal. In particular, the calculation
of (4.12) is analytic in the case of linear Gaussian models, In [Godsill and Rayner,
1992, Godsill and Rayner, 19953, Godsill, 1993] the autoregressive signal model with
Gaussian corruption is studied in detail.

In order to obtain the MAP detection estimate from the posterior probability
expression of equation (4.11) an exhaustive search over al 2V possible configurations
of the (1/0) vector i is necessary. This is clearly infeasible for any useful value of N, so
alternative strategies must be devised. A sequential approach is developed in [Godsill
and Rayner, 1995a, Godsill, 1993] for the Gaussian AR case. Thisis based around a
recursive calculation of the likelihood (4.12), and hence posterior probability, as each
new data sample is presented. The sequential agorithm performs a reduced binary tree
search through possible configurations of the detection vector, rejecting branches which
have low posterior probability and thus making considerable computational savings
compared with the exhaustive search. The method has been evaluated experimentally
in terms of detection error probabilities and perceived quality of restoration and found
to be a significant improvement over the autoregressive detection methods described
in section 4.3.2, although more computationally intensive.

Click detection within a Bayesian framework has introduced the concept of an ex-
plicit model for the corrupting noise process through the noise density pv [ Effective
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noise modelling can lead to improvements not only in click detection, but aso in re-
placement, since it allows useful signal information to be extracted from the corrupted
data values. This information is otherwise discarded as irrevocably lost, as in the
interpolators described in earlier sections. In fact, it transpires that an intrinsic part
of the likelihood calculation in the Bayesian detection algorithm (equation 4.12) is
calculation of the MAP estimate for the unknown data conditional upon the detection
vector i. This MAP interpolation can be used as the final restored output after detec-
tion, without resort to other interpolation methods. The form of this ‘interpolator’ is
closely related to the LSAR interpolator (section 4.3.3) and may be expressed as.

MaAP T 0';? - T 0’3

s = - <Au A, + ;3—1> (Au Acse — Eg’”) , (4.13)
(see [Godsill and Rayner, 1995a][equations (12-14)]), where 0\,2 is the variance of
the corrupting noise, which is assumed independent and Gaussian. Of course, the
quality of the restored output is now dependent on the validity of the assumed noise
statistics. The Bayesian detector itself shows considerable robustness to errors in
these assumptions [Godsill and Rayner, 1995a, Godsill, 1993], but the interpolator is
less tolerant. This will be particularly noticeable when the true noise distributions are
more ‘heavy-tailed’ than the Gaussian, a scenario for which there is strong evidence
in many degraded audio signals. The noise modelling can in fact be generalized to a
more realistic class of distributions by allowing the individual noise components v[n]
to have separate, unknown variances and even unknown correlation structure. We are
essentially then modelling noise sources as continuous scale mixtures of Gaussians:

p(uln]) = / N (0, \g(A)dA

where N(i, A) isthe Gaussian distribution with mean i and variance A, and g( ) is a
continuous ‘mixing’ density [West, 1984]. These extensions allow for non-Gaussian
defects with of widely varying magnitude and also for the noise correlation which might
be expected when the signa has been played through a mechanical pick-up system
followed by equalization circuitry. This noise modelling framework can be used to

develop highly robust interpolators, and a Bayesian approach which requires no prior

knowledge of AR parameters or noise statistics is presented in [Godsill and Rayner,
1995b], using an iterative EM-based solution. Similar noise modelling principles
can be used to extend the Bayesian detection agorithms, and Markov chain Monte
Carlo (MCMC) methods [Hastings, 1970, Geman and Geman, 1984, Gelfand and
Smith, 1990] are presented for the solution of this problem in [Godsill and Rayner,

1998, Godsill and Rayner, 1996b]. An example of these Bayesian iterative restoration
methods for removal of clicks is shown in figure 4.8 for atypical 78 rpm recording. The
same framework may be extended to perform joint removal of clicks and background
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Figure 4.8 Restoration using Bayesian iterative methods

noise in one single procedure, and some recent work on this problem can be found in
[Godsill and Rayner, 19964] for autoregressive signals and in [Godsill, 1997a, Godsill,
1997hb] for autoregressive moving-average (ARMA) signals.

The statistical methods described here provide a highly flexible framework for
audio restoration and signal enhancement in general. Solution for these complex
models is usually of significantly higher computational complexity than the techniques
described in earlier sections, but this is unlikely to be problematic for applications where
restoration quality is the highest priority. The methods are still in their infancy, but
we believe that future research work in the field will require sophisticated statistical
modelling of signals and noise, with associated increases in solution complexity, in
order to achieve improved fidelity of restoration. The Bayesian methods discussed
here are likely to find application in many other areas of audio processing (see later
sections).

4.4 CORRELATED NOISE PULSE REMOVAL

A further problem which is common to severa recording media including gramophone
discs and optical film sound tracks is that of low frequency noise pulses. This form
of degradation is typically associated with large scratches or even breakages in the
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surface of a gramophone disc. The precise form of the noise pulse depends upon the
mechanical and electrical characteristics of the playback system, but a typica result
isshown in figure 4.9. A large discontinuity is observed followed by a decaying low
frequency transient. The noise pulses appear to be additively superimposed on the
undistorted signal waveform (see figure 4.10).

Low frequency noise pulses appear to be the response of the playback system to
extreme step-like or impulsive stimuli caused by breakages in the groove walls of
gramophone discs or large scratches on an optical film sound track. The audible
effect of this response is a percussive ‘pop’ indexNoise, Pop noise or ‘thump’ in the
recording. This type of degradation is often the most disturbing artifact present in a
given extract. It isthus highly desirable to eliminate noise pulses as afirst stage in the
restoration process.

The effects of the noise pulse are quite long-term, as can be seen from figure 4.9, and
thus a straightforward interpolation using the methods of section 4.3.3 is not a practical
proposition. Since the mgjority of the noise pulse is of very low frequency it might
be thought that some kind of high pass filtering operation would remove the defect.
Unfortunately this does not work well either, since the discontinuity at the start of the
pulse has significant high frequency content. Some success has been achieved with
a combination of localized high pass filtering, followed by interpolation to remove
discontinuities. However it is generally found that significant artifacts remain after
processing or that the low frequency content of the signal has been damaged.

It should be noted that the problem of transient noise pulses can in principle be
circumvented by use of suitable playback technology. For example, in the case of
gramophone disks the use of a laser-based reader should eliminate any mechanical
resonance effects and thus reduce the artifact to a large click which can be restored
using the methods of previous sections. Of course, this does not help in the many
cases where the original source medium has been discarded after transcription using
standard equipment to another medium such as magnetic tape!

Template-based methods. The first digital approach to this problem was devised
by Vaseghi and Rayner [Vaseghi, 1988, Vaseghi and Rayner, 1988]. This technique,
which employs a ‘template’ for the noise pulse waveform, has been found to give good
results for many examples of broken gramophone discs. The observation was made
that the resonant sections (i.e. after theinitial discontinuity) of successive noise pulses
in the same recording were nearly identical in shape (to within a scale factor). This
would correspond with the idea that noise pulses are simply the step response of a linear
time-invariant (LTI) mechanical system. Given the waveform of the repetitive section
of the noise pulse (the ‘template’ t[ n]) it is then possible to subtract appropriately scaled
versions from the corrupted signal x[n] wherever pulses are detected. The position M
and scaling G of the noise pulse are estimated by cross-correlating the template with
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the corrupted waveform, and the restored signal is then obtained as:
yln] =zn] — Gtln — M|, M<n<M+N, (4.14)

where Ntis the length of the template. Any remaining samples close to the start of the
pulse which are irrevocably distorted can then be interpolated using a method such as
the LSAR interpolator discussed earlier (see section 4.3.3).

The template t[n] is obtained by long term averaging of many such pulses from
the corrupted signal. Alternatively, a noise-free example of the pulse shape may be
available from a ‘silent’ section of the recording or the lead-in groove of a gramophone
disc.

The template method has been very successful in the restoration of many recordings.
However, it is limited in several important ways which hinder the complete automation
of pulse removal. While the assumption of constant template shape is good for
short extracts with periodically recurring noise pulses (e.g. in the case of a broken
gramophone disc) it is not a good assumption for many other recordings. Even where
noise pulses do correspond to a single radial scratch or fracture on the record the
pulse shape is often found to change significantly as the recording proceeds, while
much more variety is found where pulses correspond to randomly placed scratches
and breakages on the recording. Further complications arise where severa pulses
become superimposed as is the case for several closely spaced scratches. These effects
may be partly due to the time-varying nature of the mechanical system as the stylus
moves towards the centre of the disk, but also non-linearity in the playback apparatus.
There is some evidence for the latter effect in optical film sound track readers [Godsill,
1993], where the frequency of oscillation can be observed to decrease significantly as
the response decays.

Correct detection can also be a chalenge. This may seem surprising since the
defect is often very large relative to the signal. However, audible noise pulses do occur
in high amplitude sections of the signal. In such cases the cross-correlation method
of detection can give false alarms from low frequency components in the signal; in
other circumstances noise pulses can be missed altogether. Thisis partly as aresult of
the correlated nature of the signal which renders the cross-correlation procedure sub-
optimal. A true matched filter for the noise pulse would take into account the signal
correlations (see e.g. [Van Trees, 1968]) and perhaps achieve some improvements in
detection. This issue is not addressed here, however, since other restoration methods
are now available.

Model-based separation methods. A full study of the noise pulse mechanism would
involve physical modelling of the (possibly non-linear) playback system for both
gramophone systems and optical sound track readers. A full description is beyond the
scope of this article (see [Roys, 1978] for some more detail), but can be used to shed
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further light upon this and other audio restoration areas including click removal and
background noise reduction.

A linear modelling approach to noise pulse removal is presented in [Godsill, 1993].
In this it is assumed that the corrupted waveform x consists of a linear sum of the
underlying audio waveform sand resonant noise pulses v:

X=S+V. (4.15)

We note that sand v are the responses of the playback system, including mechanical
components and amplification/ equalization circuitry, to the recorded audio and noise
signals, respectively. The assumption of a linear system allows the overall response
x to be written as the linear superposition of individual responses to signal and noise
components.

Here the noise pulses are modelled by a low order autoregressive process which
is driven by a low level white noise excitation with variance g2, most of the time,
and bursts of high level impulsive excitation with variance 62, » 02, at the initial
discontinuity of the noise transient. We can define a binary noise switching process
i[n] to switch between low and high variance componentsin asimilar way to the click
generation model of section 4.3. This modelling approach is quite flexible in that it
allowsfor variations in the shape of individual noise pulses aswell asfor the presence
of many superimposed pulses within a short period. The restoration task is then one
of separating the two superimposed responses, sand v. If the audio signal’s response
is also modelled as an autoregressive process then the MAP estimator for s under
Gaussian assumptions is obtained from:

(ATA

g

+ AUTAU”AU> s = A, TA, A, x (4.16)
Terms of this equation are defined similarly to those for the LSAR interpolator of
section 4.3.3, with subscript ‘v’ referring to the autoregressive process for the noise
pulses. Ay is adiagonal matrix whose mth diagonal element A, [m] is the variance of
the mth noise excitation component, i.e.

Ay[m] = 050 + i[m](o?, — 030). (4.17)

This signal separation algorithm requires knowledge of both AR systems, including
noise variances and actual parameter values, as well as the switching vector i which
indicates which noise samples have impulsive excitation and which have low level
excitation. These can be treated as unknowns within a similar iterative statistical
framework to that outlined for click removal in section 4.3.4, and this could form a
useful piece of future research. In practice, however, these unknowns can usually
be estimated by simpler means. The switching process can be estimated much as
clicks are detected (see section 4.3.2), with a higher threshold selected to indicate large
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disturbances which are likely to be noise pulses. The autoregressive system for the
noise can often be estimated from a noise pulse captured during a ‘silent’ section of the
recording or from a similar type of pulse taken from another recording, and the very
large (or even infinite) value chosen for the high level excitation variancec?2;. The
autoregressive system for the underlying audio data is then estimated from uncorrupted
data in the vicinity of the noise pulses, usualy in the section just prior to the start of
the section to be restored.

Even with suitable estimation schemes for the unknown parameters, the separation
formula of equation (4.16) is of relatively high computational complexity, since the
noise process can affect thousands of samples following the initial impulsive discon-
tinuity. This problem can be partially overcome by restoring samples which are fairly
distant from theinitial transient using asimple linear phase high-pass filter. The sepa-
ration algorithm is then constrained to give continuity with thisfiltered signal at either
end of the restored section in much the same way as the LSAR interpolator (section
4.3.3). Further computational savings can be achieved by working with a sub-sampled
version of the noise pulse waveform, since it is typically over-sampled by a factor of at
least one hundred for the much of its duration. This sub-sampling can be incorporated
into the separation algorithm by use of an analytic interpolation operator such as the
second order spline. An alternative scheme, which takes advantage of the Markovian
nature of the AR models, is based on Kalman filtering [Anderson and Moore, 1979).
Thisis currently being investigated and results will be reported in future publications.

Results from the model-based separation approach have demonstrated much more
generality of application and ease of automation than the templating technique, which
can be a highly operator-intensive procedure, and the perceived quality of output
is certainly at least as good as the templating method. Figures 4.11-4.13 show the
restoration of a particularly badly degraded 78 rpm recording which exhibits many
closely spaced noise transients. A second order autoregressive model was found to be
adequate for modelling the noise transients, while the signal was modelled to order
80. The restored signa (shown on a different scale) shows no trace of the original
corruption, and the perceptual results are very effective.

Summary. Two principal methods for removal of low frequency noise transients are
currently available. The model-based separation approach has shown more flexibility
and generality, but is computationally rather intensive. It is felt that future work in
the area should consider the problem from arealistic physical modelling perspective,
which takes into account linear and non-linear characteristics of gramophone and film
sound playback systems, in order to detect and correct these artifacts more effectively.
Such an approach could involve both experimental work with playback systems and
sophisticated non-linear modelling techniques. Statistical approaches related to those
outlined in the click removal work (section 4.3.4) may be applicable to this latter task.
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Figure 4.11 Degraded audio signal with many closely spaced noise transients

8000 T T v T - T

6000 - E

4000 -

20001 4

amplitude
[

i

42

-2000 +

-4000 |-

-6000 - E

-8000 - , 1

-10000

0] 1000 2000 3000 4000 5000 6000 7000

sample number

Figure 4.12 Estimated noise transients for figure 4.11
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Figure 4.13 Restored audio signal for figure 4.11 (different scale)
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45 BACKGROUND NOISE REDUCTION

Random, additive background noise is aform of degradation common to all analogue
measurement, storage and recording systems. In the case of audio signals the noise,
which is generally perceived as ‘hiss' by the listener, will be composed of electrical
circuit noise, irregularities in the storage medium and ambient noise from the recording
environment. The combined effect of these sources will generally be treated as one
single noise process, although we note that a pure restoration should strictly not treat
the ambient noise, which might be considered as a part of the original ‘ performance’.
Random noise generally has significant components at all audio frequencies, and thus
simple filtering and equalization procedures are inadequate for restoration purposes.

Anaogue tape recordings typically exhibit noise characteristics which are stationary
and for most purposes white. At the other end of the scale, many early 78 rpm and
cylinder recordings exhibit highly non-stationary noise characteristics, such that the
noise can vary considerably within each revolution of the playback system. This
results in the characteristic ‘ swishing' effect associated with some early recordings. In
recording media which are also affected by local disturbances, such as clicks and low
frequency noise resonances, standard practice is to restore these defects prior to any
background noise treatment.

Noise reduction has been of great importance for many years in engineering disci-
plines. The classic |east-squares work of Norbert Wiener[Wiener, 1949] placed noise
reduction on afirm analytic footing, and still forms the basis of many noise reduction
methods. In the field of speech processing a large number of techniques has been de-
veloped for noise reduction, and many of these are more generally applicable to noisy
audio signals. We do not attempt here to describe every existing method in detail,
since these are well covered in speech processing texts (see for example [Lim and
Oppenheim, 1979, Lim, 1983, Ball, 1991]). We do, however, discuss some standard
approaches which are appropriate for general audio signals and emerging techniques
which are likely to be of use in future work. It is worth mentioning that where methods
are derived from speech processing techniques, as in for example the spectral atten-
uation methods of section 4.5.1, sophisticated modifications to the basic schemes are
required in order to match the stringent fidelity requirements and signal characteristics
of an audio restoration system.

Certainly the most popular methods for noise reduction in audio signals to date are
based upon short-time Fourier processing. These methods, which can be derived from
non-stationary adaptations to the frequency-domain Wiener filter, are discussed fully
in section 4.5.1.

Within a model-based framework, Lim and Oppenheim [Lim and Oppenheim,
1978] studied noise reduction using an autoregressive signal model, deriving iterative
MAP and ML procedures. These methods are computationally intensive, although
the signal estimation part of the iteration is shown to have a simple frequency-domain
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Wiener filtering interpretation (see also [Paliwal and Basu, 1987, Koo et al., 1989] for
Kalman filtering realizations of the signal estimation step). It isfelt that new and more
sophisticated model-based procedures may provide noise reducers which are compet-
itive with the well-known short-time Fourier based methods. In particular, modern
statistical methodology for solution of complex problems (for example, the Markov
chain Monte-Carlo (MCMC) methods discussed in section 4.3.4 for click removal)
alows for more realistic signal and noise modelling, including non-Gaussianity, non-
linearity and non-stationarity. Such a framework can also be used to perform joint
restoration of both clicks and random noise in one single process. A Bayesian approach
to this joint problem using an autoregressive signal model is described in [Godsill,
1993][section 4.3.2] and [Godsill and Rayner, 1996a] and in [Godsill, 1997a, God-
sill, 1997b] for the more general autoregressive moving average (ARMA) model,. In
addition, [NiedZwiecki, 1994, NiedZwiecki and Cisowski, 1996] present an extended
Kaman filter for joint removal of noise and clicks from AR- and ARMA-modelled
audio signals.

Other methods which are emerging for noise reduction include the incorporation of
psychoacoustical masking properties of human hearing [Canagaragjah, 1991, Canagara-
jah, 1993, Tsoukalas et a., 1993] and noise reduction in alternative basis expansions,
in particular the wavelet domain [Berger et al., 1994] and sub-space representations
[Dendrinos et a., 1991, Ephraim and VanTrees, 1993, Ephraim and Van Trees, 1995].
These approaches address various short-comings of existing noise-reduction proce-
dures, and could thus lead to improvements over existing techniques.

4.5.1 Background noise reduction by short-time spectral attenuation

This section deals with a class of techniques known as Short-Time Spectral Attenuation
(STSA) °. STSA is a single input noise reduction method that basically consists in
applying a time-varying attenuation to the short-time spectrum of the noisy signal.
STSA techniques are non-parametric and generally need little knowledge of the signal
to be processed. They rank among the most popular methods for speech enhancement
and their use has been widely predominant for the restoration of musical recordings.

v[n]

-

L] ] *@——E[T—LL Restoration  |—— ¥[7]

Figure 4.14 Modeled restoration process
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General overview.

Hypotheses.  Figure 4.14 shows the basic hypotheses common to all short-time spec-
tral attenuation techniques. It is supposed that the original audio signal s[n] has
been corrupted by an additive noise signal v[n] uncorrelated with s[n] and that the
only observable signal is the degraded signal x[n] [Lim, 1983]. In the field of au-
dio, restoration techniques applicable in such a situation are sometimes referred to as
non-complementary [Dolby, 1967] or one-ended [Etter and Moschytz, 1994] to differ-
entiate them from a class of frequently used denoising methods which rely on some
pre-processing of the signal prior to the degradation (see [Dolby, 1967]).

The knowledge concerning the noise is usualy limited to the facts that it can be
considered as stationary and that it is possible to estimate its power spectral density

(or quantities that are directly related to it) [Lim and Oppenheim, 1979, Lim, 1986].
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Figure 4.15 Background noise suppression by short-time spectral attenuation

Principle. Figure 4.15 shows the general framework of short-time spectral attenua-
tion: the first step consistsin analyzing the signal with a (in geneneral, multirate) filter
bank, each channel of the filter-bank is then attenuated (multiplied by a real positive
gain, generally smaller than 1), and finally the sub-band signals are put back together
to obtain the restored signal. The time-varying gain to be applied in each channel is de-
termined by the so called noise suppression rule [McAulay and Malpass, 1980, Vary,
1985] which usually relies on an estimate of the noise power in each channel (repre-
sented by the dotted part of Figure 4.15). The two elements that really characterize a
particular STSA technique are the filter-bank characteristics and the suppression rule.

In most STSA techniques the short-time analysis of the signal is performed by
use of the Short-Time Fourier Transform (STFT) [Lim and Oppenheim, 1979, Boll,
1991, Ephraim and Malah, 1984, Moorer and Berger, 1986], or with a uniform filter-
bank that can be implemented by STFT [Sondhi et al., 1981, Vary, 1985, Lagadec
and Pelloni, 1983]. Note that in such cases the two interpretations (multirate filter-
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bank, and short-time Fourier transform) can be used interchangeably as they are fully
equivaent [Crochiere and Rabiner, 1983]. Examples of STSA techniques based on the
use of non-uniform filter banks can be found in [Petersen and Boll, 1981, McAulay
and Malpass, 1980].

In designing the filter-bank, it is necessary to bear in mind the fact that the sub-
band signals will sometimes be strongly modified by the attenuation procedure. As a
conseguence, while it is of course desirable to obtain a (nearly) perfect reconstruction
in the absence of modification, it is also important to avoid effects such as sub-band
spectral aliasing which could create distortions in the restored signal [Crochiere and
Rabiner, 1983]. With the short-time Fourier transform, satisfying results are obtained
with a sub-band sampling rate two or three times higher than the critical-sampling rate
(ie. with a50% to 66% overlap between successive short-time frames) [Cappé, 1991].

Historical considerations. Historically, short-time spectral attenuation was first de-
veloped for speech enhancement during the 1970s [Lim and Qppenheim, 1979, Boll,
1991, Sondhi et al., 198I]. The application of STSA to the restoration of audio record-
ings came afterwards [Lagadec and Pelloni, 1983, Moorer and Berger, 1986, Vaseghi,
1988, Vaseghi and Frayling-Cork, 1992, Valiére, 1991, Etter and Moschytz, 1994]
with techniques that were generally directly adapted from earlier speech-enhancement
techniques.

Prior to works such as [Allen and Rabiner, 1977] and [Crochiere, 1980], there was
not necessarily an agreement about the equivalence of the filter-bank and the STFT
approaches (see aso [Crochiere and Rabiner, 1983]). Traditionally, the filter-bank
interpretation is more intuitive for audio engineers [Lagadec and Pelloni, 1983, Moorer
and Berger, 1986, Etter and Moschytz, 1994] while the short-time spectrum is typicaly
a speech analysis notion [Lim and Oppenheim, 1979]. Also controversial is the
problem of short-time phase: in the STFT interpretation, the short-time attenuation
corresponds to a magnitude-only modification of the short-time spectrum. The fact
that only the magnitude of the short-time spectrum is processed has been given various
interpretations, including an experimental assessment for speech signals in [Wang and
Lim, 1982].

The most widespread opinion is that the phase need not be modified because of
the properties of the human auditory system [Lim and Oppenheim, 1979]. Strictly
speaking however, the assertion that the ear is “insensitive to the phase” was highlighted
by psychoacoustic findings only in the case of stationary sounds and for the phase of
the Fourier transform [Moore, 1997]. Moreover, it is well known that in the case of
STFT, phase variations between successive short-time frames can give rise to audible
effects (such as frequency modulation) [Vary, 1985].

It should however be emphasized that there is usually no choice but to keep the
unmodified phase because of the lack of hypotheses concerning the unknown signal
(recall that only the second order statistics of the signal and noise are supposed to be
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known). This is well known for techniques derived from Wiener filtering (time-domain
minimum mean squared error filtering), and a similar result is proved in [Ephraim and
Malah, 1984] for a frequency domain criterion (using strong hypotheses concerning the
independence of the short-time transform bins). Although other criteria could be used,
these results indicate that it may be be difficult to outperform the standard magnitude
attenuation paradigm without introducing more elaborate hypotheses concerning the
behavior of the signal.

Scope of the method.  Until now, STSA techniques have been largely predominant
in the field of speech enhancement and appear to have been used amost exclusively
for the restoration of musical recordings.

One of the reasons for this wide application of STSA techniques is certainly the
fact that they correspond to a non-parametric approach which can be applied to a large
class of signals. By contrast, considering that most music recordings contain several
simultaneous sound sources, it is unlikely that some of the methods relying on very
specific knowledge of the speech signal properties (such as the model-based speech
enhancement techniques [Boll, 1991, Ephraim, 1992]) could be generalized for audio
restoration.

Another reason for the success of STSA techniques in the field of audio engineering
is maybe the fact that they have a very intuitive interpretation: they extend to a
large number of sub-bands the principle of well known analog devices used for signal
enhancement, such as the noise gate [Moorer and Berger, 1986] (see also [Etter and
Moschytz, 1994] for alink with compandors).

Suppression rules. Let X (p,0x) denote the short-time Fourier transform of x[n],
where p is the time index, and 6k the normalized frequency index (Bk lies between 0 and
1 and takes N discrete values for k= 1,..., N, N being the number of sub-bands).
Note that the time index p usually refers to a sampling rate lower than the initial signal
sampling rate (for the STFT, the down-sampling factor is equal to hop-size between to
consecutive short-time frames) [Crochiere and Rabiner, 1983].

The result of the noise suppression rule can always be interpreted as the application
of areal gain G(p, 8«) to each bin of the short-time transform X(p, 6x) of the noisy
signal. Usually, this gain corresponds to an ‘attenuation’, ie. lies between 0 and
1. For most suppression rules, G(p,6«k) depends only on the power level of the
noisy signal measured at the same bin |X (p, 8) |* and on an estimate of the power
of the noise at the frequency 6, Pv(ek) = E{|V (p, 8x)|?} (which does not depend
on the time index p because of the noise stationarity). In the following, the ratio
Q(p,6k) = |X(p,6k)|2/PV(ek) will be referred to as the relative signal level. Note
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that since the noise v[n] is un-correlated with the unknown signal s[n], we have

E{Q(p. )} =1+ Eﬂ?g%)ﬂ (4.18)

so that the expected value of the relative signal level is aways larger than 1.

Standard examples of noise-suppression rules include the so-called Wienef sup-
pression rule, the power-subtraction (see Figure 4.16), the spectral subtraction [Boll,
1979, Lim and Oppenheim, 1979, McAulay and Malpass, 1980, Vary, 1985], as well as
several families of parametric suppression curves [Lim and Oppenheim, 1979, Moorer
and Berger, 1986, Etter and Moschytz, 1994).
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Figure 4.16 Suppression rules characteristics: gain (dB) versus relative signal level
(dB). Solid line: Power subtraction; dashed line: Wiener.

All the suppression rules mentioned above share the same general behavior in that
G(p, 8k) = 1 when the relative signal leve is high (Q (p,6«) > > 1), and

lim G{p, ) =0
Q(p,9r)—1 (.6)

In many cases, the noise level PV(GK) is artificially over-estimated (multiplied by a
factor B > 1) sothat G(p, 6x) isnull assoonas Q(p, 6k) < B [Lim and Oppenheim,
1979, Moorer and Berger, 1986].

Reference [Boll, 1991] presents a detailed review of suppression rules that are
derived from a Bayesian point of view supposing a prior knowledge of the probability
distribution of the sub-band signals. These suppression rules are more elaborate in the



DIGITAL AUDIO RESTORATION 169

sense that they generally depend both on the relative signal level (or a quantity directly
related to it) and on a characterization of the a priori information (a priori probability
of speech presence in [McAulay and Malpass, 1980], a priori signal-to-noise ratio in
[Ephraim and Malah, 1984]).

Finally, some suppression rules used for speech enhancement do not require any
knowledge of the noise characteristics [Bunnell, 1990, Cheng and O’ shaughnessy,
1991]. These techniques, designed for improving speech intelligibility, can hardly
be generalized to the case of audio recordings since they generate non-negligible
distortions of the signal spectrum regardless of the noiselevel.

Evaluation.

‘Deterministic’ analysis. While it is rather difficult to analyze the results of STSA
techniques in a genera case, it becomes relatively simple when it is supposed that
the unknown input signal is a pure tone, or more generally, a compound of several
pure tones with frequencies sufficiently spaced apart. This hypothesis is pertinent
since a large proportion of steady instrumental sounds can be efficiently described,
both perceptively and analytically, as a sum of slowly modulated pure tones [Deutsch,
1982, Benade, 1976, Hall, 1980].
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Figure 4.17 Restoration of a sinusoidal signal embedded in white noise (of power
0 dB). (a) The noisy signal (the dotted lines feature the filter bank characteristics); (b)
The processed signal.

As pointed out in [Lagadec and Pelloni, 1983], short-time spectral attenuation
does not reduce the noise present in the sub-bands that contain signal components.
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Figure 4.17 shows an illustration of this fact for a sinusoidal signal embedded in white
noise: if the level of the sinusoid is large enough, the channels in which it lies are left
unattenuated while the other channels are strongly attenuated. As a consequence the
output signal consists of the sinusoidal signal surrounded by a narrow band of filtered
noise. Note aso that if the sinusoid level is too low, al the channels are strongly
attenuated and the signal is completely cancelled.

Cancelling of thesignal.  For asinusoidal signal of frequency 6 (which is sup-
posed to correspond to the center frequency of one of the filters of the filter-bank), it is
easily checked (assuming that the additional noise power spectra density is sufficiently
smooth) that Eq. 4.18 becomes

P,
E{Q(p.0)} =1+ SOW; (4.19)

where Ps isthe power of the sinusoid, S, (8) the power spectral density of the noise at
frequency 8 and Wy is the bandwidth of the sub-band filter centered around frequency
0 (see [Cappé and Laroche, 1995] for a demonstration in the STFT case).

As a consequence, the level of the signal components that are mistakenly cancelled
by the restoration process increases with the bandwidth of the analyzing filter-bank.
Although deceptively simple, this results nonetheless states that the signal enhancement
can be made more efficient by sharpening the channel bandwidth as much as alowed
by the stationarity hypothesis.

For the STFT case, the bandwidth of the filter-bank isinversely proportional to the
duration of the short-time frame and it is shown in [Cappé and Laroche, 1995], using
standard results concerning the simultaneous frequency masking phenomenon, that
the processing can suppress audible signal components (ie. components that were not
masked by the additive noise) if the short-time duration is well below 40 ms.

Audibility of the noise at the output. In the case where the signal component
is not cancelled, the processed signal exhibits a band of filtered noise located around
the sinusoidal component. It is clear that this phenomenon, if audible, is an important
drawback of the method because it makes the remaining nuisance noise correlated with
the signal, which was not the case for the original broad-band noise.

It isshown in [Cappé and Laroche, 1995] for the STFT case, that this effect isonly
perceptible when the frame duration is short (smaller than 20-30 msy'.

As for the results mentioned previously concerning signal cancellation, the obtained
audibility limit should only be considered as an order of magnitude estimate in real
situations since it does not take into account the possible mutual masking between
different signal components (a phenomenon which may prevail when the noise level
is very low) [Cappé and Laroche, 1995]. These results still support several earlier
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experimental findings [Moorer and Berger, 1986, Valiere, 1991] concerning the in-
fluence of the STFT window duration in STSA techniques. In practice, the STFT
frame duration should be sufficiently long to avoid creating undesirable modulation
effects [Moorer and Berger, 1986] (audible band of noise remaining around signal
components). Moreover, for audio signals, the duration of the short-time frame can
generally be set advantageously to larger values than those used for speech [Valiére,
1991] (because it lowers the limit of signal cancellation).

Transient signals. The previous results are related to the case of steady portions
of musical sounds, however it is well-known that musical recordings also feature many
transient parts (note onsets, percussions) that play an important part in the subjective
assessment of the signal characteristics [Hall, 1980, Deutsch, 1982].

As with many other techniques which make use of a short-time signal analyzer, it
is possible to observe specific signal distortions, generated by the restoration process,
which occur when transient signals are present [Johnston and Brandenburg, 1992]. In
STSA techniques the distortion manifests itself as a smearing of the signal waveform for
low-level signal transients. This phenomenon as well as its perceptive consequences
are amplified as the short-time frame duration increases [Vadiére, 1991, Cappé and
Laroche, 1995, Oppenheim and Lim, 1981].

The analysis of such transient effects is made more difficult by the fact that there
is no ‘prototype’ transient signal as simple and as pertinent as the pure tone was for
steady sounds. However, the results obtained in a simplistic case (the abrupt onset of a
pure tone) seem to indicate that the observed smearing of the transient part of low level
signals is mainly due to the modification of the signal spectrum by the suppression
rule [Cappé and Laroche, 1995]. Thisisin contrast with what happens in applications
where the magnitude of the short-time spectrum is not drastically modified, such as
time-scaling with STFT, where the smearing of transient signals is mostly caused by
the phase distortions [Griffin and Lim, 1984b, Oppenheim and Lim, 1981].

As a consequence, methods that exploit the redundancy of the magnitude of the
short-time spectra to restore a ‘correct' phase spectrum [Griffin and Lim, 1984b, Nawab
and Quiatieri, 1988b] are not efficient in eliminating the transient distortions caused by
STSA.

Consequences of the random nature of the attenuation. In the previous section
we deliberately left apart a major problem: the fact that the attenuation is a random
guantity. The randomness of the attenuation comes from the fact that it is (in general)
determined as a function of the relative signal level which in turn involves the short-
time transform of the noisy signal. This aspect plays a key role in STSA because
the relative signa level is estimated by the periodogram (at least in the STFT case)
characterized by a very high variance.
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A well known result states that the values of the discrete Fourier transform of a
stationary random process are normally distributed complex variables when the length
of the Fourier transform is large enough (compared to the decay rate of the noise
correlation function) [Brillinger, 1981]. This asymptotic normal behavior leads to a
Rayleigh distributed magnitude and a uniformly distributed phase (see [McAulay and
Malpass, 1980, Ephraim and Malah, 1984] and [Papoulis, 1991]).

Using the normality assumption, it is shown in [Cappé and Laroche, 1995] that the
probability density of the relative signal level Q (omitting the two indexes p and6y) is

£(@) = el@(@-1] (2\/62 (Q -~ 1)) (4.20)

where 1,(x) denotes the modified Bessel function of order 0, and () denotes the
average value of the relative signal level as obtained from Eq. 4.18. The corresponding
distributions are shown on figure 4.18 for 6 different average values of the relative
signa level.
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Figure 4.18 Probability density of the relative signal level for different mean values Q
(from left to right: 0, 4, 8, 12, 16 and 20dB).

What is striking on figure 4.18 is the fact that even for signal components of non-
negligible levels (such as @ = 8dB), the relative signal levels can still take very low
values (below 0dB). As a consequence, the use of STSA generates strong random
variations of the low-level signal components [Cappé and Laroche, 1995]. Although
systematic, these variations are not always heard in practice because they are often
perceptively masked either by some other signal components (especially when the noise
level islow) or by the fraction of broad band noise that remains after the processing.
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Themusical noise phenomenon.

What is musical noise?. The other important feature of figure 4.18 is that when
only the noise is present (when Q = 1), the observed relative signal level can still
take high values. It is thus practically possible to separate the noise from the low
level signal components on the basis of the relative signal level. As a result, the total
cancellation of the noise can only be obtained at the cost of some distortion of the
low-level components.

In most STSA techniques, the noise that remains after the processing has a very
unnatural disturbing quality, especialy in a musical context [Moorer and Berger, 1986].
This phenomenon is generally referred to as musical noise [Ephraim and Malah,
1984] (also as ‘musical tones’ [Sondhi et al., 1981] or ‘residual noise’ [Etter and
Moschytz, 1994, Vaseghi and Frayling-Cork, 1992]). The musical noise phenomenon
is a direct consequence of the fact that the periodogram estimate used for evaluating
the relative signal level yields values that are (asymptotically) uncorrelated even for
neighboring bins [Brillinger, 1981]. This result, which holds for short-time transform
bins belonging to the same analysis frame is complemented by the fact that bins from
successive frames will also tends to be uncorrelated for frames which do not overlap in
time (again, under the hypothesis of a sufficiently fast decay of the noise autocorrelation
function).

Combining these two properties, it is easily seen that STSA transforms the original
broad band noise into a signal composed of short-lived tones with randomly distributed
frequencies. Moreover, with a *standard’ suppression rule (one that depends only on
the relative signal level as measured in the current short-time frame) this phenomenon
can only be eliminated by a crude overestimation of the noise level. Using the result of
Eq. 4.20 in the case where Q) = 1, it is easily shown that the overestimation needed to
make the probability of appearance of musical noise negligible (below 0.1%) is about
9 dB [Cappé, 1991].

Solutions to the musical noise problem.  Various empirical modifications of the basic
approach have been proposed to overcome this problem. A first possibility consists
of taking advantage of the musical noise characteristics: more precisaly, the short
duration of the musical noise components (typically a few short-time frames) [Boll,
1979, Vaseghi and Frayling-Cork, 1992) and the fact that the appearance of musical
noise in one sub-band is independent of that in other sub-bands [Sondhi et al., 1981].
The main shortcoming of this type of approach is that, since they are based on average
statistical properties, the musical noise is reduced (ie. its appearance is made less
frequent) but not completely eliminated.

Another possibility isto use a smoothed estimate of the relative signal level. Time-
smoothing has been considered in [Boll, 1979] and [Etter and Moschytz, 1994], but
frequency smoothing can also be used [Canagarajah, 1993, Cappé, 1991]. Limitations
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of this smoothing approach include the fact that it can generate signal distortion,
particularly during transients, when time-smoothing is used. A more elaborate version
of the time-smoothing approach aimed at reducing signal distortion is described in
[Erwood and Xydeas, 1990].

Finally, an aternative approach consists in concealing the musical noise artifact
behind a sufficient level of remaining noise [Moorer and Berger, 1986, Canagarajah,
1993]. One simple way to proceed consists in constraining the computed gain to lie
above a preset threshold (which is achieved by the ‘noise floor' introduced by
et a. [Berouti et al., 1979]).

The Ephraim and Malah suppression rule. Besides these procedures specifically
designed to counter the musical noise artifact, it has been noted that the suppression
rules proposed by Ephraim and Maah [Ephraim and Malah, 1983, Ephraim and Malah,
1984, Ephraim and Malah, 1985] do not generate musical noise [Ephraim and Malah,
1984, Valiere, 1991, Cappé, 1994]. Thisis shown in [Cappé, 1994] to be a consequence
of the predominance of the time-smoothed signal level (the so called ‘apriori signal to
noise ratio’) over the usual ‘instantaneous’ relative signal level.

A nice feature of the Ephraim and Malah suppression rule is the ‘intelligent’ time-
smoothing of the relative signal level resulting from the use of an explicit statistical
model of the sub-band noise: a strong smoothing when the level is sufficiently low
to be compatible with the hypothesis that only the noise is present, and no smoothing
otherwise [Cappé, 1994]. Surprisingly, this behavior of the Ephraim and Malah
suppression rule is related to the principle adopted in [Erwood and Xydeas, 1990]
(which consists in varying the horizon of the time-smoothing depending on the signal
level). The Ephraim and Malah suppression rule therefore alows a very ‘natura’
means on fixed thresholds) of reducing the musical noise artifact without
introducing penalizing signal distortions.

When using the Ephraim and Malah suppression rule, it appears that it is till
useful to limit the attenuation in order to avoid the reappearance of the musical noise
phenomenon at low-levels. In practice, the average attenuation applied to the noisy
part can be easily controlled via one of the parameters of the method (see [Cappé,
1994]) in the range from 0dB to approximately - 15dB (with lower values the musical
noise effect can be audible in some cases). An interesting generalization consists in
specifying a frequency dependent average noise reduction in order to take into account
the fact that all regions of the noise spectrum do not contribute equally to the loudness
sensation [Moore, 1989, Zwicker and

Current trendsand per spectives.

Improving the noise characterization. Inmany rea life applications, the hypothesis
that the noise is stationary is unrealistic and it is necessary to track the time-variations
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of the noise characteristics. For audio restoration, it seems that this aspect can play
an important part in the case of old analog disk recordings. Indeed, the noise present
on such recordings sounds ‘less regular’ than the tape hiss heard on analog tapes. It
is also common to observe a discrepancy between the noise characteristics measured
before and after the recorded part [Cappé, 1991].
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Figure 4.19 Short-time power variations. (a) for a standard analog cassette; (b) for a
78 rpm recording. The signal power is estimated at a 10ms rate and normalized by its
average value.

An example of such a behavior can be seen on figure 4.19 which displays the
time variations of the short-time power® for two noises measured on different audio
recording: on a standard analog cassette for part (a), on a 78 rpm record for part (b),
The sharp spikes seen on part (b) of figure 4.19 are simply due to the presence of
impulsive degradations in the disk noise, which of course is not the case for the tape
noise. However, the comparison between the two parts of figure 4.19 shows that the
range of the power variations is much more important for the analog disk noise (part
[b]) than for the tape noise (part [&]).

It is also interesting to note that the long-term power variations of the disk noise
(part [b] of figure 4.19) seem to be related to the disk rotation period (0.77s for a 78
rpm record). This result indicates that the noise present on this particular analog disk
is certainly not stationary, but that it could be cyclostationary [Gardner, 1994]. More
elaborate tests would be needed to determine if this noise is indeed cyclostationary,
and what type of cyclostationarity is actually involved (the simplest model would be
an amplitude modul ated stationary process) [Gerr and Allen, 1994].
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In practice, it isimportant to emphasize that the various procedures that have been
proposed for updating the estimate of the noise characteristics in the context of speech
enhancement [Boll, 1979, McAulay and Malpass, 1980, Sondhi et al., 1981, Erwood
and Xydeas, 1990] are usualy not applicable for audio signas: they rely on the
presence of signal pauses that are frequent in natural speech, but not necessarily in
musical recordings. The development of noise tracking procedures that are suited for
an application to audio signals thus necessitates a more precise knowledge of the noise
characteristics in cases where it cannot be considered stationary.

Use of perceptual noise-reduction criteria.  Recently, efforts have been devoted to the
development of noise suppression strategies based on perceptual criteria [Canagarajah,
1991, Canagaragjah, 1993, Tsoukalas et a., 1993, Mourjopoulos et a., 1992]. As of
today, the proposed techniques only make use of data concerning the simultaneous
masking effect in order to determine the frequency regions where the noise is most
audible. A surprising side effect of these techniques is that they notably reduce the
musical noise phenomenon [Canagarajah, 1993]. This feature can be attributed to the
strong smoothing of the frequency data in the upper frequency range performed in
these techniques to simulate the ear’ s frequency integration properties.

Clearly more work needs to be done to take advantage of other known properties
of the auditory system in the context of noise reduction. Interesting clues include the
consideration of non-simultaneous masking effects that may be helpful in reducing
transient distortions, as well as absolute thresholds of hearing. A troublesome point
associated with the use of such perceptua criteria is that they require the knowledge of
the listening acoustic intensity [Moore, 1989]. For most applications this requirement
cannot be satisfied so that only a worst-case analysis is feasible. However, in cases
where the noise reduction is performed directly at the playback level, the adaptation
of the noise suppression rule to the effective acoustic intensity of the audio signal is
certainly a promising aspect.

I mproving the properties of the short-time transform.  Another interesting area of
research deals with the design of the short-time transform. It is striking to see that
while many efforts have been dedicated to the study of advanced suppression rules,
little has been done concerning the analysis part of the noise reduction-system.

The first approach that need to be more precisely evaluated is the use of non-uniform
filter banks [Petersen and Boll, 1981, Valiére, 1991], especialy if they are applied in
connection with perceptua criteria. Indeed, non-uniform filter banks allow a frequency
dependent specification of the time-resol ution/bandwidth compromise which could be
adapted to the known features of our hearing system. The results of section 4.16 show
that a high frequency-resolution is needed anyway, at least in the lower part of the
spectrum, to ensure a sufficient separation of sinusoidal signal components from the
noise.
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A complementary approach is based on the observation that the use of a fixed anal-
ysis scheme may be too constraining, which leads to the design of analysis/synthesis
structures that are adapted to the local characteristics of the signal. For speech en-
hancement, various recent works report the successful use of subspace representations
in place of the STFT [Dendrinos et al., 1991, Ephraim and VanTrees, 1993, Ephraim
and Van Trees, 1995, Jensen et al., 1995]. The subspace representation is still frame-
based but it is characterized by a high frequency-resolution (see [Dendrinos et al.,
1991, Ephraim and Van Trees, 1995] for the link with damped sinusoidal models).
It has however been shown, using stationarity assumptions, that subspace approaches
are asymptotically equivalent to STSA techniques for large frame durations [Ephraim
and Van Trees, 1995]. For audio restoration, it can thus be expected that both type
of methods will yield comparable results. The Adapted Waveform Analysis method
described in [Berger et al., 1994] presents a different approach based on a wavelet
decomposition of the signal. This promising method basically operates by determin-
ing a basis of wavelets [Kronland-Martinet et al., 1987] which is best adapted to the
characteristics of the signal.

4.5.2 Discussion

A number of noise reduction methods have been described, with particular emphasis
on the short-term spectral methods which have proved the most robust and effective to
date. However, it is anticipated that new methodology and rapid increases in readily-
available computational power will lead in the future to the use of more sophisticated
methods based on realistic signal modelling assumptions and perceptua optimality
criteria

4.6 PITCH VARIATION DEFECTS

A form of degradation commonly encountered in disc, magnetic tape and film sound
recordings is an overall pitch variation not present in the original performance. The
terms ‘wow’ and ‘flutter’ are often used in this context and are somewhat inter-
changeable, athough wow tends to refer to variations over longer time-scales than
flutter, which often means a very fast pitch variation sounding like a tremolo effect.
This section addresses chiefly the longer term defects, such as those connected varia-
tions in gramophone turntable speeds, which we will refer to as wow, although similar
principles could be applied to short-term defects.

There are several mechanisms by which wow can occur. One cause is a variation
of rotational speed of the recording medium during either recording or playback. A
further cause is eccentricity in the recording or playback process for disc and cylinder
recordings, for example a hole which is not punched perfectly at the centre of a
gramophone disc. Lastly it is possible for magnetic tape and optical film to become
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unevenly stretched during playback or storage; this too leads to pitch variation in
playback. Accounts of wow are given in [Axon and Davies, 1949, Furst, 1946].

In some cases it may be possible to make a physical correction for this defect, as
the case of a gramophone disk whose hole is not punched centrally. In most cases,
however, no such correction is possible, and signal processing techniques must be
used. The only approach currently known to the authors is that of Godsill and Rayner
[Godsill, 1993, Godsill and Rayner, 1993b, Godsill, 1994], which is described here.

The physical mechanism by which wow is produced is equivalent to a non-uniform
warping of the time axis. If the undistorted time-domain waveform of the gramophone
signal is written as s(t) and the time axis is warped by a monotonically increasing
function f,, (t) then the distorted signal is given by:

z(t) = s(fu(t)) (4.21)

If the time warping function f,() is known then it is possible to regenerate the
undistorted waveform s(t) as

s(t) = <(f51(1)) (4.22)

A wow restoration system is thus primarily concerned with estimation of the time
warping function or equivalently the pitch variation function p,, (t) = f(t). In the
discrete signal domain we have discrete observations x[n] = X(nT), where T is the
sampling period. If the pitch variation function corresponding to each sampling instant,
denoted by py[n], is known then it is possible to estimate the undistorted signal using
digital resampling operations.

If we have good statistical models for the undistorted audio signal and the process
which generates the wow, it may then be possible to estimate the pitch variation p,[n]
from the wow-degraded data x[n]. Any of the standard models used for audio signals
(see section 4.2) are possible, at least in principle. However, the chosen model must be
capable of capturing accurately the pitch variations of the data over the long time-scales
necessary for identification of wow. One suitable option is the generalized harmonic
model (see section 4.2, equation (4.2)). This represents tonal components in the signal
as sinusoids, alowing for a simple interpretation of the wow as a frequency modulation
which is common to all components present at a particular time.

Consider a fixed-frequency sinusoidal component 5(t) = sin(woit + @o;) from
a musical signal, distorted by a pitch variation function py(t). The pitch-distorted
component X;(t) can be written as (see [Godsill, 1993)):

zi(t) = s:(fwl(t)
= sin (wm / Do (B1dE + (2501) , (4.23)
0
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Frequency Tracks from example "Viola"
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Figure 4.20 Frequency tracks generated for example ‘Viola'. (Reprinted with permis-
sion from [Godsill, 1994], ©1994, |EEE)

which is a frequency-modulated sine-wave with instantaneous frequency wgi pw(t).
The same multiplicative modulation factor py(t) will be applied to all frequency
components present at one time. Hence we might estimate py[n] as that frequency
modulation which is common to al sinusoidal components in the music. This principle
isthe basis of the frequency domain estimation algorithm now described.

4.6.1 Frequency domain estimation

In this procedure it is assumed that musical signals are made up as additive combi-
nations of tones (sinusoids) which represent the fundamental and harmonics of all
the musical notes which are playing. Since this is certainly not the case for most
non-musical signals, we might expect the method to fail for, say, speech extracts or
acoustical noises. Fortunately, it is for musical extracts that pitch variation defects
are most critical. The pitch variation process is modelled as a smoothly varying
waveform with no sharp discontinuities, which is reasonable for most wow generation
mechanisms.

The method proceeds in three stages. The first stage involves estimation of the tonal
components using a DFT magnitude-based peak tracking algorithm closely related to
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Figure 4.21 Estimated (full line) and true (dotted line) pitch variation curves generated
for example ‘Viola'. (Reprinted with permission from [Godsill, 1994],01994, |EEE)

Frequency tracks trom example "Midsum"

0.9+

frequency (kHz)
5
T

(93 10 20 30 40 50 60 70 8O o0 100

time (units of 2048 samples)

Figure 4.22 Frequency tracks generated for example ‘Midsum’. (Reprinted with per-
mission from [Godsill, 1994], © 1994, IEEE)

that described in [McAulay and Quatieri, 1986b] and chapter 9. This pre-processing
stage, allowing for individual note starts and finishes, provides a set of time-frequency
‘tracks’ (see figures 4.20 and 4.22), from which the overdl pitch variation is estimated.
It is assumed in this procedure that any genuine tonal components in the corrupted
signal will have roughly constant frequency for the duration of each DFT block.

The second stage of processing involves extracting smooth pitch variation infor-
mation from the time-frequency tracks. For the nth block of data there will be P,
frequency estimates corresponding to the B, tonal components which were being
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1.01 Estimated pitch variation curve from example "Midsum
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Figure 4.23 Pitch variation curve generated for example ‘Midsum’. (Reprinted with
permission from [Godsill, 1994], ©1994, IEEE)

tracked at that time. The ith tonal component has a nominal centre frequency fy;,
which is assumed to remain fixed over the period of interest, and a measured frequency
f; [n]. Variations in fi[n] are attributed to the pitch variation value p,,[n] and a noise
component v;[n]. This noise component is composed both of inaccuracies in the
frequency tracking stage and genuine ‘ performance’ pitch deviations (such as vibrato
or tremolo) in tona components. Smooth pitch variations which are common to all
tones present may then be attributed to the wow degradation, while other variations
(non-smooth or not common to all tones) are rejected as noise, vi[n]. The approach
could of course fail during non-tonal (‘unvoiced’) passages or if note ‘dides dominate
the spectrum, and future work might aim to make the whole procedure more robust to
this possibility.

Each frequency track has a‘birth’ and ‘death’ index by and d; such that b; denotes
the first DFT block at which fy; is present (‘active’) and d; the last (each track is
then continuously ‘active’ between these indices). Freguencies are expressed on a
log-freuency scale, as this leads to linear estimates of the pitch curve (see [Godsill,
1993] for comparison with alinear-frequency scale formulation). The model equation
for the measured log-frequency tracks fi[n] isthen:

i1 foi + pun[n] +valn], by <n < d; .
fv,l [TL] = 0, otherwise [’ 1 <i < Pmax» (424)
where subscript ‘I’ denotes the logarithm of the frequency quantities previously defined.
Pmax isthetotal number of tonal components tracked in the interval of N data blocks.
At block n there are Py, active tracks, and the length of the ith track is then given by
Ni=d, —b + 1
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If the noise terms vji [n] are assumed i.i.d. Gaussian, the likelihood function for the
unknown centre frequencies and pitch variation values can be obtained. A singular
system of equations results if the Maximum likelihood (ML) (or equivaently least
sguares) solution is attempted. The solution is regularized by incorporation of the prior
information that the pitch variation is a ‘smooth’ process, through a Bayesian prior
probability framework. A second difference-based Gaussian smoothness prior is used,
which leads to a linear MAP estimator for the unknowns (see [Godsill, 1993, Godsill,
1994] for full details). The estimate is dependent upon aregularizing parameter which
expresses the degree of second difference smoothness expected from the pitch variation
process. In [Godsill, 1993, Godsill, 1994) this parameter is determined experimentally
from the visual smoothness of results estimated from a small sample of data, but other
more rigorous means are available for estimation of such ‘hyperparameters’ given the
computational power (see, e.g. [Raan, 1994, MacKay, 1992]). Examples of pitch
variation curves estimated from synthetic and real pitch degradation are shown in
figures 4.21 and 4.23, respectively.

The estimation of pitch variation allows the final re-sampling operation to proceed.
Equation (4.22) shows that, in principle, perfect reconstruction of the undegraded signal
is possible in the continuous time case, provided the time warping function is known.
In the discrete domain the degraded signal x[n] is considered to be a non-uniform
re-sampling of the undegraded signal s[n], with sampling instants given by the time-
warping function f,,[n]. Note, however, that the pitch varies very slowly relative to the
sampling rate. Thus, at any given time instant it is possible to approximate the non-
uniformly sampled input signal as a uniformly sampled signal with samplerate UT' =
pw[n]/ T. The problem is then simplified to one of sample rate conversion for which
there are well-known techniques (see e.g. [Crochiere and Rabiner, 1983, Rabiner,
1982]). Any re-sampling or interpolation technique which can adjust its sample rate
continuously is suitable, and a truncated ‘sinc’ interpolation is proposed in [Godsill,
1993, Godsill and Rayner, 1993b, Godsill, 1994].

Summary. Informal listening tests indicate that the frequency-based method is ca-
pable of a very high quality of restoration in musical extracts which have a strong tonal
character. The procedure is, however, sensitive to the quality of frequency tracking and
to the constant-frequency harmonic model assumed in pitch estimation. New work in
the area might attempt to unify pitch variation estimation and frequency tracking into
a single operation, and introduce more robust modelling of musical harmonics.

4.7 REDUCTION OF NON-LINEAR AMPLITUDE DISTORTION

Many examples exist of audio recordings which are subject to non-linear amplitude
distortion. Distortion can be caused by a number of different mechanisms such as
deficiencies in the original recording system and degradation of the recording through
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excessive use or poor storage. This section formulates the reduction of non-linear
amplitude distortion as a non-linear time series identification and inverse filtering
problem. Models for the signal production and distortion process are proposed and
techniques for estimating the model parameters are outlined. The section concludes
with examples of the distortion reduction process.

An audio recording may be subject to various forms of non-linear distortion, some
of which are listed below:

1. Non-linearity in amplifiers or other parts of the system gives rise to intermodu-
lation distortion [Sinclair, 1989].

2. Cross-over distortion in Class B amplifiers [Sinclair, 1989].

3. Tape saturation due to over recording [Sinclair, 1989]: recording at too high a
level on to magnetic tape leads to clipping or severe amplitude compression of
asigna.

4. Tracing distortion in gramophone recordings [Roys, 1978]: the result of the
playback stylus tracing a different path from the recording stylus. This can occur
if the playback stylus has an incorrect tip radius.

5. Deformation of grooves in gramophone recordings [Roys, 1978]: the action of
the stylus on the record groove can result in both elastic and plastic deformation
of the record surface. Elastic deformation is aform of distortion affecting both
new and used records; plastic deformation, or record wear, leads to a gradual
degradation of the reproduced audio signal.

The approach to distortion reduction is to model the various possible forms of
distortion by anon-linear system, Rather than be concerned with the actual mechanics
of the distortion process, a structure of non-linear model is chosen which isthought to
be flexible enough to simulate the different types of possible distortion.

4.7.1 Distortion Modelling

A general model for the distortion process is shown in figure 4.24 where the input to
the nonlinear system is the undistorted audio signal s[n] and the output is the observed
distorted signal x[n].

The general problem of distortion reduction is that of identifying the non-linear
system and then applying the inverse of the non-linearity to the distorted signal x[n]
in order to recover the undistorted signal g[n]. Identification of the non-linear system
takes two main forms depending on the circumstances. The first is when the physical
system which caused the distortion is available for measurement. For example the
recording system which produced a distorted recording may be available. Under these
circumstances it is possible to apply a known input signal to the system and apply
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Figure 4.24 Model of the distortion process

system identification techniques in order to determine the non-linear transfer function
or apply adaptive techniques to recover the undistorted signal [Preis and Polchlopek,
1984, Schafer et al., 1981, Landau, 1960, Landau and Miranker, 1961]. The second, and
much more common, situation is when the only information available is the distorted
signal itself. The approach is now to postulate a model for both the undistorted signal
and the distortion process. Time series identification techniques must then be used
to determine values for the model parameters. This section will concentrate on this
situation which might be called blind identification.

Choice of a suitable non-linear model to represent the signal and distortion processes

is not a straightforward decision since there are many different classes from which to
choose.

4.7.2 Non-linear Signal Models

A non-linear time series model transforms an observed signal x[t] into a white noise
process e[t], and may be written in discrete form [Priestley, 1988] as:

elt] = F'{ .. zt—2],z[t — 1], 2], x[t + 1], 2]t + 2],...}

where F' {.} is some non-linear function.
Assuming that F'{.} is an invertible function this may be expressed as:

z[t] = F{ .. e[t —2,elt —1],e[t],elt + 1) e[t +2],...} (4.25)

This functional relationship may be expressed in a number of different forms; two of
which will be briefly considered.
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The Volterra Series. For a time invariant system defined by equation 4.25, it is
possible to form a Taylor series expansion of the non-linear function to give [Priestley,
1988]:

LL[t] = kp + Z hile[t—i]] + Z i h,il'izﬁ[t—il]e[t—iz} +

11 =—00 1] — 00 1= —00

S0 N hinaelt —irlelt —ideft —ds] + - (4.26)

1] =—00 12=—00 13==— 00

where the coefficients ko, h;, , hi, ;,, . . . are the partial derivatives of the operator F.
Note that the summation involving h;; in the discrete Volterra series corresponds to
the normal convolution relationship for alinear system with impulse response h;, (n).
The Volterra Series is a very general class of non-linear model which is capable of
modelling a broad spectrum of physical systems. The generdity of the model, while
making it very versatile, is also its main disadvantage: for successful modelling of an
actual system, avery large order of Volterra expansion is often needed, a task which
is generally not practical. In view of this, it becomes necessary to consider other
representations of non-linear time series.

NARMA Modelling. The NARMA (Non-Linear AutoRegressive Moving Average)
model was introduced by L eontaritis and Billings [Leontaritis and Billings, 1985] and
defined by:
zin] = f{zjn—1],.. . z{n - P.),eln —1],...e[n — P.]} + e[n]
Combining theterms x[n —1],...Xx[n —Px] and e[n —1], ... e[n — P¢] into asingle
vector w(n) and expanding as a Taylor series gives the following representation of a
non-linear system [Chen and Billings, 1989].
P.+P, P, +P. P,+P.

zn] = ag + Z a;, wi, (n) + Z Z ai, i, Wi, (Mwiy (n) + ...

=1 11=1 dp=1g

P,+P.  Put+P.

Z . Z Giy. Wi (n) . ws (n) + s(n) (4.27)
11=1 =1
where:
[ zn—1] ]
win) = | R
| cin ) |
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The advantage of such an expansion is that the model is linear in the unknown param-
eters a so that many of the linear model identification techniques can also be applied
to the above non-linear model. Iterative methods of obtaining the parameter estimates
for a given model structure have been developed [Billings and VVoon, 1986]. A num-
ber of other non-linear signal models are discussed by Priestley [Priestley, 1988] and
Tong [Tong, 1990].

4.7.3 Application of Non-linear models to Distortion Reduction

The general Volterraand NARMA models suffer from two problems from the point of
view of distortion correction. They are unnecessarily complex and even after identi-
fying the parameters of the model it is still necessary to recover the undistorted signal

by some means. In section 4.2 it was noted that audio signals are well-represented by
the autoregressive (AR) model defined by equation 4.1:

P
an»~zaz+e n).
i=1

Thus a distorted signal may be represented as a linear AR model followed by a
non-linear system as shown in figure 4.25.

efn] AR s{n] | Non-linear x[n]
Model System

Figure 4.25 Model of the signal and distortion process

Two particular models will be considered for the non-linear system.

Memoryless Non-linearity. A specia case of the Volterra system given by equa-
tion4.26 is:

@[n] = hos[n] + hoos®[n] + - ho. os¥[n] + -
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This is termed a memoryless non-linearity since the output is a function of only the
present value of the input s[n]. The expression may be regarded as a power series
expansion of the non-linear input-output relationship of the non-linearity. In fact this
representation is awkward from an analytical point of view and it is more convenient
to work in terms of the inverse function. Conditions for invertibility are discussed in
Mercer [Mercer, 1993].

sln] = kyz[n] + koa®[n] + - - kgatn] + - - -

oo
= Z koxd[n]
g=0

An infinite order model is clearly impractical to implement. Hence it is necessary to
truncate the series:

s[n] = Z kq2?[n] (4.28)

A reasonable assumption is that there is negligible distortion for low-level signals,
ie {x[n] = s[n]; for s[n] = 0} so that kg = 1. (Note that this assumption would
not be valid for crossover distortion). This model will be referred to in genera as
the Autoregressive-Memoryless Non-linearity (AR-MNL) model and as the AR(P)-
MNL(Q) to denote a AR model of order P and a memoryless non-linearity of order

Q.
Note that if the non-linear parameters k; can be identified then the undistorted signal
{s[n]} can be recovered from the distorted signal {x[n]} by means of equation 4.28.

Non-linearity with Memory. The AR-MNL modé is clearly somewhat restrictive
in that most distortion mechanisms will involve memory. For example an amplifier
with a non-linear output stage will probably have feedback so that the memoryless
non-linearity will be included within afeedback loop and the overall system could not
be modelled as a memoryless non-linearity. The general NARMA model incorporates
memory but its use imposes a number of analytical problems. A special case of the
NARMA mode isthe NAR (Non-linear AutoRegressive) model in which the current
output X[n] is a non-linear function of only past values of output and the present input
s[n]. Under these conditions equation 4.27 becomes.

P, P
f[[n] = -+ Z Z ailizx[n — Z]]I[TI - 12} + ...
11=11p=13
P P,

Z e Z @i, xn—i]...xln—19] + sl (4.29)

'
11=1 =1
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The linear terms in x[n —i 1] have not been included since they are represented by the
linear terms in the AR model. This model will be referred to as Autoregressive Non-
linear Autoregressive (AR-NAR) model in general and as AR(P)-NAR(Q) model in
which the AR section has order P and only Q of the non-linear terms from equation 4.29
are included. Note that the undistorted signal {s[n]} can be recovered from the

distorted signal {x[n]} by use of equation 4.29 provided that the parameter values can
be identified.

4.7.4 Parameter Estimation

In order to recover the undistorted signal it is necessary to estimate the parameter
values in equations 4.28 and 4.29. A general description of parameter estimation is
given in many texts, e.g. Norton [Norton, 1988, Kay, 1993].

One powerful technique is Maximum Likelihood Estimation (MLE) which requires
the derivation of the Joint Conditional Probability Density Function (PDF) of the output
sequence { x[n]}, conditional on the model parameters. The input {€[n]} to the system
shown in figure 4.25 is assumed to be a white Gaussian noise (WGN) process with
zero mean and a variance of o2. The probability density of the noise input is:

1 n)

Pl = o exp { —252—}

Since {e[n]} is a WGN process, samples of the process are independent and the
joint probability for a sequence of data ({e[n]}, n = P + 1toN) is given hy:

roy V=P 1 N
pe[P +1],.. e[N]) = [\/:‘Z'TFUJ exp{——ﬁ Z eQ[n]} (4.30)

n=P41

The terms {e[1], e[2]...€[P]} are not included because they cannot be calculated in
terms of the observed output { x[n]} so that, strictly speaking, the above is a conditional
probability but there is little error if the number of observations N > P.

An expression for the Joint Probability Density Function for the observations {x[n]}
may be determined by transformations from {e[n]} to {s[n]} and from {s[n]} to { x[n]}.
This gives the likelihood function for the AR-MNL system as:

px[P + 1}, z[P + 2],...z[N]lak,0) =

roroNer ‘ﬁ I +‘i ko2t ]‘}l (v ‘i a 71431)
gko,x?*n]}| exp ¢ ——= e“In] k4.
L v 27"‘7} 7-J:P+1 q=2 ! 202 n=P+1 f
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where a is a vector containing the parameters a; ...ap of the AR model and k is
a vector containing the parameters ko...kg. The noise sequence {e[n]} may be
expressed in terms of the observed distorted signal {x[n]} using equations 4.1 and
4.28

The Likelihood function for the AR-NAR system is:

| N-P-P, 1 N
P PT 1, N 71{, = e 2
plalP Py 1l el koo] = | | 1{ = 3DD e[n]}
n=P+P,+1

where ais the vector of AR parameters and Kk is a vector containing the parameters a;, ,
ai,i,, - - Of the NAR model. The noise sequence {€[n]} may be expressed in terms of
the observed distorted signal {x[n]} using equations 4.1 and 4.29

The MLE approach involves maximising the Likelihood function with respect to a,
k and 0. The values of a, k and o which maximise this equation are the Maximum
Likelihood estimates of the model.

Computational aspects. In general there is no anaytic solution to maximising the
Likelihood eguations so that it is necessary to perform a multidimensional optimisation
over the unknown model parameters. However before performing the optimisation it
is necessary to select amodel of appropriate order; too low an order resultsin a poor
system which is unable to correct distortion, too high an order results in an unnecessarily
complicated model which imposes a heavy computational burden in determining the
optimal parameter values. Model order selection for the memoryless non-linearity is
simply a matter of choosing the order of the polynomial expansion in equation 4.28.
However the problem is more complex with the NAR model, equation 4.29, since the
number of permutations of terms can be extremely large. There is no intuitive means
for estimating which non-linear terms should be included and it is necessary to perform
the Maximum Likelihood optimisation for each combination of termsin order to find
an acceptable system. Such a global search over even a relatively limited subset of
the possible model terms is prohibitively expensive and iterative methods have been
developed to search the space of model functions to determine an acceptable, although
not necessarily optimal, system [Mercer, 1993].

In order to compare the performance of models containing different non-linear
terms it is necessary to use a criterion which achieves a compromise between the
overly simple model and the overly complex model. One such criterion is the Akaike
Information Criterion, AIC(¢) (see e.g. Akaike [Akaike, 1974]) given by:

AlIC(p) = - 2loge{Maximised Likelihood Function} +
@> [Number of Parameters] (4.32)
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The Akaike Information Criterion is used to select the model which minimises the
AIC(¢) function for a specified value of . In the origina formulation of the above
equation, Akaike used a value of ¢ = 2 but an aternative selection criterion proposed
by Leontaritis and Billings [Leontaritis and Billings, 1987] is based on a value of

Q=4

4.7.5 Examples

Mercer [Mercer, 1993] presents results for the two models discussed. For the mem-
oryless non-linearity a section of music from arecording of a brass band was passed
through the non-linearity defined by:

k= [ 000 030 000 050 ].

An AR model of order 25 was assumed and a non-linearity with Q < 9 was allowed.
Figure 4.26 shows a section of the original, distorted and restored signals.

In order to test the AR-NAR model a section of music was passed through the
non-linear system:

0.07x[n— 1] X[n — 4] x{n — 6] + 0.05X[n — 2] Xx[n — 2] x[n — 3]
0.06x[n— 3] X[n— 6] X[n— 8] + 0.06X[n—4]x[n—7]X[n—7]
0.05x[n— 8] x[n—9] x[n —9] + s[n]

x[n]

+ o+

An AR(30)-NAR(Q) model was fitted to data blocks containing 5000 samples of the
distorted data. The non-linear terms alowed in the model were of the form:

w(n —i)w(n —j)w(n —k)
fori=1:9 j=i:9 k=j:09.

and a model complexity of Q < 20 was alowed. Typica results are shown in
figure 4.27 which shows a section of the original, distorted and restored signals.

4.7.6 Discussion

The techniques introduced in this section perform well on audio data which have been
distorted by the appropriate model. However extensive testing is required to determine
whether or not the non-linear models proposed are sufficiently flexible to model real
distortion mechanisms.

Further work is required on methods for searching the space of non-linear models
of a particular class (eg. AR-NAR) to determine the required model complexity.
This may perhaps be best achieved by extending the Maximum Likelihood approach
to a full Bayesian posterior probability formulation and using the concept of model
evidence [Pope and Rayner, 1994] to compare models of different complexity. Some
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recent work in this field [Troughton and Godsill, 1997] applies Bayesian Markov chain
Monte Carlo (MCMC) methods to the problem of non-linear model term selection. It
is planned to extend this work in the near future to model selection for the AR-NAR
distortion models discussed earlier in this section.

4.8 OTHER AREAS

In addition to the specific areas of restoration considered in previous sections there are
many other possibilities which we do not have space here to address in detail. These
include processing of stereo signals, processing of multiple copies of mono recordings,
frequency range restoration and pitch adjustment.

Where stereo signals are processed, it is clearly possible to treat each channel as
a separate mono source, to which many of the above processes could be applied (al-
though correction of pitch variations would need careful synchronization!). However,
this is sub-optimal, owing to the significant degree of redundancy and the largely un-
correlated nature of the noise sources between channels. It is likely that a significantly
improved performance could be achieved if these factors were utilized by arestoration
system. This might be done by modelling cross-channel transfer functions, a difficult
process, owing to complex source modelling effects involving room acoustics. Initial
investigations have shown some promise, and this may prove to be a useful topic of
further research.

A related problem is that of processing multiple copies of the same recording. Once
again, the uncorrelated nature of the noise in each copy may lead to an improved
restoration, and the signal components will be closely related. In the simplest case, a
stereo recording is made from a mono source. Much of the noise in the two channels
may well be uncorrelated, in particular small impulsive-type disturbances which affect
only one channel of the playback system. Multi-channel processing techniques can then
be applied to extraction of the signal from the noisy sources. A Bayesian approach to
this problem, which involves simple FIR modelling of cross-channel transfer functions,
is described in [Godsill, 1993], while a joint AR-modelling approach is presented in
[Hicks and Godsill, 1994]. In the case where sources come from different records,
alignment becomes a major consideration. Vaseghi and Rayner [Vaseghi and Rayner,
1988, Vaseghi, 1988, Vaseghi and Rayner, 1989] use an adaptive filtering system for
this purpose in a dual-channel de-noising application.

In many cases the frequency response of the recording equipment is highly in-
adequate. Acoustic recording horns, for example, exhibit unpleasant resonances at
mid-range frequencies, while most early recordings have very poor high frequency
response. In the case of recording resonances, these may be identified and corrected
using a cascaded system model of source and recording apparatus. Such an approach
was investigated by Spenser and Rayner [Spenser and Rayner, 1989, Spenser, 1990].
In the case where high frequency response is lacking, a model which can predict
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high frequency components from low is required, since any low-level high frequency
information in the noisy recorded signal is likely to be buried deep in noise. Such
a process becomes highly subjective, since different instruments will have different
high frequency characteristics. The procedure may thus be regarded more as signal
enhancement than restoration.

Pitch adjustment will be required when a source has been played back at a different
(constant) speed from that at which it was recorded. This is distinct from wow (see
section 4.6) in which pitch varies continuously with time. Correction of this defect can
often be made at the analogue playback stage, but digital correction is possible through
use of sample-rate conversion technology (see section 4.6). Time-scale modification
(see the chapter by Laroche) is not required, since changes of playback speed lead to
a corresponding time compression/expansion. We note that correction of this defect
will often be a subjective matter, since the original pitch of the recording may not be
known exactly (especialy in the case of early recordings).

4.9 CONCLUSION AND FUTURE TRENDS

This Chapter has attempted to give a broad coverage of the main areas of work in
audio restoration. Where a number of different techniques exist, asin the case of click
removal or noise reduction, a brief descriptive coverage of all methods is given, with
more detailed attention given to a small number of methods which the authors feel to
be of historical importance or of potential use in future research. In reviewing existing
work we point out areas where further developments and research might give new
insight and improved performance.

It should be clear from the text that fast and effective methods are now available
for restoration of the major classes of defect (in particular click removal and noise
reduction). These will generally run in real-time on readily available DSP hardware,
which has alowed for strong commercial exploitation by companies such as CEDAR
Audio Ltd. in England and the American-based Sonic Solutions in California. It
seems to the authors that the way ahead in audio restoration will be at the high
quality end of the market, and in developing hew methods which address some of
the more complex problems in audio, such as correction of non-linear effects (see
section 4.7). In audio processing, particularly for classical music signals, fidelity of
results to the original perceived sound is of utmost importance. This is much more
the case than, say, in speech enhancement applications, where criteria are based on
factors such as intelligibility. In order to achieve significant improvements in high
quality sound restoration sophisticated algorithms will be required, based on more
realistic modelling frameworks. The new models must take into account the physical
properties of the noise degradation process as well as the psychoacousical properties
of the human auditory system. Such frameworks will typicaly not give analytic results
for restoration, as can be seen even for the statistical click removal work outlined in
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section 4.3.4, and solutions might, for example, be based on iterative methods such as
Expectation-maximize (EM) or Markov chain Monte Carlo (MCMC) which are both
powerful and computationally intensive. This is, however, likely to be in accord with
continual increases in speed and capacity of computational devices.

To conclude, the range of problems encountered in audio signals from all sources,
whether from recorded media or communications and broadcast channels, present
challenging statistical estimation problems. Many of these have now been solved
successfully, but there is still significant room for improvement in achieving the highest
possible levels of quality. It is hoped that the powerful techniques which are now
practically available to the signal processing community will lead to new and more
effective audio processing in the future.

Notes

1. the ‘Packburn’ unit achieved masking within a stereo setup by switching between channels
2. With acknowledgement to Mr. B.C. Breton, Scientific Imaging Group, CUED

3. provided that no samples are missing from thefirst P elements of s; otherwise a correction must be
made to the data covariance matrix (see [Godsill, 1993])

4. the approximation assumes that the parameter likelihood for thefirst P data samplesisinsignificant
[Box and Jenkins, 1970]

5. These techniques are also often referred to as 'spectral subtraction’. We will not use this terminology
in order to avoid ambiguities between the general principle and the particular technique described in [Boll,
1979], nor will we use the term ‘spectral estimation’ as quite a number of the STSA techniques are not based
on a statistical estimation approach.

6. This suppression rule is derived by anaogy with the well-known Wiener filtering formula replacing
the power spectral density of the noisy signal by its periodogram estimate.

7. Strictly speaking, this effect could still be perceived for longer window durations when the relative
signal level approaches 1. However, it is then perceived more like an erratic fluctuation of the sinusoid level
which is hardly distinguishable from the phenomenon to be described in section 4.17.

8. More precisely, the quantity displayed is the signal power estimated from 10ms frames. As the
power spectral densities of the two types of noise exhibit a strong peak at the null frequency, the two noises
were pre-whitened by use of an all-polefilter [Cappé, 1991]. This pre-processing guarantees that the noise
autocorrelation functions decay sufficiently fast to obtain a robust power estimate even with short frame
durations [Kay, 1993].
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Abstract: Audio signal processing systems have made considerable progress over
the past 25 years due to increases in computational speed and memory capacity. These
changes can be seen by examining the implementation of increasingly complex agorithms
in less and less hardware. In this chapter, we will describe how machines have been
designed to implement DSP agorithms. We will also show how progress in integration

has resulted in the special purpose chips designed to execute a given agorithm.

5.1 INTRODUCTION

Audio signal processing systems have made considerable progress over the past 25
years due to increases in computational speed and memory capacity. These improve-
ments are a direct result of the ever increasing enhancements in silicon processing
technologies. These changes can be demonstrated by examining the implementation
of increasingly complex algorithmsin less and less hardware. In this chapter, we will
describe how sound is digitized, analyzed and synthesized by various means. The
chapter proceeds from input to output with a historical bent.
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5.2 INPUT/OUTPUT

A DSP system begins at the conversion from the analog input and ends at the conversion
from the output of the processing system to the analog output as shown in the figure
5.1

Analog / Digital/ ;
Coﬁziz:ilgr?ing Digital P Digita! Analog i Coﬁ‘gi?i‘sging
Conversion rocessing Conversion

Figure 5.1 DSP system block diagram

Anti-aliasing filters (considered part of “Anaog Conditioning”) are needed at the
input to remove out of band energy that might alias down into baseband. The anti-
aliasing filter at the output removes the aliases that result from the sampling theorem.

After the anti-aliasing filter, the analog/digital converter (ADC) quantizes the
continuous input into discrete levels. ADC technology has shown considerable im-
provement in recent years due to the development of oversampling and noise-shaping
converters. However, alook at the previous technologies [Blesser, 1978] [Blesser and
Kates, 1978][Fielder, 1989] will help appreciate the current state-of-the-art.

After digital processing, the output of the system is given to a digital/analog con-
verter (DAC) which converts the discrete levels into continuous voltages or currents.
This output must also be filtered with a low pass filter to remove the aliases. Subse-
quent processing can include further filtering, mixing, or other operations. However,
these shall not be discussed further.

5.2.1 Analog/Digital Conversion

Following the discussion in Bennett ( [Bennett, 1948]), we define the Signal to Noise
Ratio (SNR) for a signal with zero mean and a quantization error with zero mean as
follows: first, we assume that the input is a sine wave. Next, we define the root mean
square (RMS) value of the input as

A2h!
TRMS = \/5

(5.1)
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where A is the smallest quantization level and b — 1 bits are present in the maximum
value. The noise energy of such a signal will be the integral of the quantization noise
over time:

o2 = A (5.2)
noise = \/1—2‘ .
Thiswill give
1 +A/2
Onoise == Z/ eﬁoisc de (5.3)
—-A/2

Since SNR is %Se , and deriving the output in decibels, we get

SNR(dB) =10 log,, 2° V1.5 (5.4)

or, the well known 6 dB per bit.

It is important to remember that this equation depends on the assumption that the
quantizer is a fixed point, “mid-tread” converter with sufficient resolution so that the
resulting quantization noise (enoise) IS White. Furthermore, the input is assumed to
be a full scale sinusoidal input. Clearly, few “real world” signals fit this description,
however, it suffices for an upper bound. In redlity, the RMS energy of the input is quite
different due to the wide amplitude probability distribution function of real signals.
One must also remember that the auditory systemis not flat (see the chapter by Kates)
and therefore SNR is at best an upper bound.

Given equation 5.4, we can see how many hits are required for high fidelity. Compact
Disks use 16 hits, giving a theoretical SNR of approximately 96 dB; however, thisis
not as quiet as well constructed analog mixing desks where SNRs of over 120 dB
are typically found. An equivalent digital system must therefore be prepared to
accommodate fixed point lengths exceeding 20 bits. Recent converters offer 24 bits
(but only 112 dB SNR). Floating point converters can provide the same dynamic range
but with less SNR. We will discuss this shortly, but before it, we will examine the
typical fixed point converter.

Fixed Point Converters. The technology of fixed point converters before the intro-
duction of oversampling, is covered amply in a book by Analog Devices [Sheingold,
1986]. Terminology of converter performance are reviewed by Tewksbury, et al.
[Tewksbury et al., 1978] Besides oversampling converters (known as “Delta-Sigma”
or “Sigma-Delta’), there are four basic types of converters:
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®m  Syccessive Approximation
= |ntegration

= Counter (servo)

= Padld

Audio applications ignore al but the first type; integration converters are too slow
to convert a sample in one sampling time. This is also true of counter converters,
since it takes 2° clock cycles to reach the full scale range for b bits. Parallel converters,
like the well known “flash” converter, are excessive in their use of silicon area for
large b because 2P comparators are needed as well as a large resistive dividers. There-
fore, we will concentrate on successive approximation and oversampling delta-sigma
converters.

Successive Approximation. A typical successive approximation converter is shown
in figure 5.2.

Clock
Analog Comparator Digital
Input
+ Shift Register Output
y Control Logic
Analog ]
Ret
> DAC

Figure 5.2 Successive Approximation Converter

Under control of afinite state machine, a b-bit shift register is used as the input to a
DAC. The output of the DAC is compared with the analog input; if the comparison is
negative, then the latest bit was an overestimation and therefore the bit should be zero;
otherwise the bit is a one. Clearly, the linearity of the DAC effects the overall linearity
of the system. Also, the input must not change during the conversion process therefore
the addition of a sample and hold must be considered. However, this also introduces
other sources of error including droop due to hold capacitor leakage and aperature
jitter in the sample and hold clock. However, these errors are further compounded
by dlew rate limitations in the input and sample and hold amplifiers. These issues
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were addressed early by Stockham [Stocskham, 1972] and were covered extensively
by Talambiras [Talambiras, 1976][ Talambiras, 1985]. A more recent analysis of jitter
effects in oversampling converters was given by Harris [Harris, 1990] who analyzed
jitter effects asaform of FM modulation.

Dither.  Starting from Robert’s pioneering paper [Roberts, 1976], the use of dither in
audio was seriously analyzed by Vanderkooy and Lipshitz [Vanderkooy and Lipshitz,
1984]. The basic idea is simple: to whiten the quantization error, a “random” error
signal is introduced. While the introduction of noise will make the signal “noisier”,
it will also decorrelate the quantization error from the input signal (but not totaly).
Vanderkooy and Lipshitz also propose the use of triangular dither derived from the
sum of two uniform random sources [Vanderkooy and Lipshitz, 1989].

Dither can be subtracted out (“subtractive dither”) after quantization and thereby
whiten the signal. But in most systems this may be either difficult or impossible to do
because the dither signal is not available. Therefore “non-subtractive” dither is the
most common use of dithering. Yamasaki [Yamasaki, 1983] discusses the use of large
amplitude dither (as much as 32A) in subtractive dither systems.

A typical example of subtractive dither use in an A/D converter can be found in a
Teac patent [Nakahashi and Ono, 1990]. Notable features include the use of limiting
and overload detectors as well as the ability to control the dither amplitude. A clever
example of non-subtractive dither [Frindle, 1995][Frindle, 1992] separates the input
signal into two paths. One of the paths is now inverted and then both paths are added
to a random noise source. After the DAC, the two analog signals are subtracted; the
result is the sum of the conversion errors and twice the input signal.

Oversampling converters. Bennett's [Bennett, 1948] pioneering paper points out that
the quantization noise is integrated over a frequency range. For a spectraly flat (i.e.,
white) signal the noise power is given by the following eguation:

Enoise = ERMSV 2/fs = ERMSV 2T, (55)

where fs isthe sampling rate and T is the sampling period (1/fs)). As the sampling
frequency fsincreases, Enoise Will decrease accordingly. This key fact can be calculated
together with the noise power to derive the oversampling factor needed to achieve a
given noise floor [Candy and Temes, 1992] as follows:

fs’
[ =
N o7, (5.6)
where fg: is the new sampling frequency. Inserting this into the integral in equation
5.3 will result in noise energy of s, so then the SNR will decrease by 3 dB (one)
half bit) for each doubling of the sampling frequency.
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As shown in section 5.2, the resolution is a direct consequence of the degree of
oversampling. Audio converters have used oversampling ratios of a much as 128 times
leading to an improvement of 21 dB.

Another key development was the introduction of noise shaping. The idea is
to filter the error output of the quantizer and push the error energy into the higher
frequencies. This benefit depends critically on the design of the error filter. The
following analysis is after van de Plassche [van de Plassche, 1994]. Suppose that the
filter isasimple first-order function E(z) = |1 —z71| Let ws = @ where f isthe
highest frequency component of the input signal. Then, evaluating the amplitude of
E (2) gives 2(1 — cos w). The shaped noise energy will be the area between D.C. and

s, or
e?haped = / 62 (57)
0

where [ is the error, in this case, the error function E(z).

So, substituting E(z) into the integral of equation 5.7 gives the noise power of
€daped = 2(Ws —sin ws)[P. Without noise shaping, the area will be simply the flat
integral, so then eyniform = 02 ws

So, finally, the improvement due to error noise shaping will be the ratio of %‘ﬁ% =
V2(1 — sin(ws) /ws).

Candy and Temes [Candy and Temes, 1992] list several criteria for choosing the
internal architecture of oversampling converters. These include

= Bit resolution for upsampling factor

= Complexity of the modulator/demodulator
= Stability

= Dithering

Higher order architectures have been successfully used to build converters for
digital audio applications [Adams, 1986][Hauser, 1991]. However, the complexity of
modulator and demodulator increases with the order. Higher order architectures also
exhibit stability problems [van de Plassche, 1994]. Dithering is a remedy to many of
the problems of low level signals (see the previous section) and has been used in sigma
delta converters as part of the noise shaping loop [Vanderkooy and Lipshitz, 1989].

Today, in 1997, adesigner can find oversampling audio converters with a reported
resolution of up to 24 hits. In reality, the resulting noise is well below the theoretical
maximum (approximately 144 dB).

Besides the elimination of the sample-and-hold, oversampling converters also re-
duce the complexity of the anti-aliasing filter. Previous anti-aliasing filters required the
use of high order active filters (11th order elliptic for example) that resulted in phase
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distortion [Preis and Bloom, 1984]. The oversampling results in a higher Nyquist
frequency and therefore the filter rolloff can be much slower. The typical filter to
a Delta-sigma converter is a trivial one pole RC filter. However, note that fidelity
problems associated with slew rate limitations in input amplifiers [Talambiras, 1976]
[Talambiras, 1985] are not eliminated, however.

Floating Point Converters. A floating point converter represents the number as a
triple: (S, E, M), where S is the sign, E the exponent and M is the mantissa. The
exponent base (B) is a power of two. The mantissa is a rational number of the form
P/Q, where 0 < P < BIEl and Qs exactly BIEI.

For floating point representations, the variance of the error is
02 =g202 (5.8)

€

where oy isthe relative roundoff error. (This assumes that the error is multiplicative).
Therefore, the SNR of a floating point converter is

2
UT
SNRﬂoming =10 10%10 (5,—2';_5) (59)

or, simplifying, .

SNRﬂoating =10 1Ogl(} (0_2') (5.10)

In order to evaluate this equation, we need a value for go. Kontro, et a. [Kontro

et al., 1992] used the Probability Distribution Function (PDF) of floating point roundoff
error in multiplication:

AZ
02 =
¢ Blog 2

(5.11)

where A= 27m andby, is the number of bits in the mantissa. This gives an
SNR 6ating Of 6.26 +6.02 bm dB.

One of the early research converters [Kriz, 1976][Kriz, 1975] used floating point
for both the DAC and ADC. Kriz used a 12 bhit mantissa and a 3 bit exponent (the
missing bit is the sign bit) for a theoretical SNR of 78 dB. The DAC is shown in figure
5.3.

Note however, that the amplifier gain must be dynamically changed depending on
signal amplitude, which leads to discontinuities. Kriz also points out the slew rate
problems in the track and hold. His solution was to use a DC feedback loop with an
analog integrator.

Kriz also discusses the construction of a matching 16 bit ADC. He duplicated his
integrating solution but used a 8 hit DAC in the DC offset path as shown above.

Fielder [Fielder, 1985] discusses the use of a converter with 12 bit signed magnitude
and 6 dB gain steps resulting in a possible dynamic range of 115 dB. An equivalent
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16 bit input Digital 12 bit Precision Track
Voltage and
Scaler DAC Divider Hold
Digital 3 bit "exponent"
Range
Detector

Figure 5.3 16 Bit Floating Point DAC (from [Kriz, 1975])

fixed point converter would have 20 bits! However, as discussed above, the noise
performanceisn’t as good because of the missing codes.

The subsequent development of high quality linear, fixed point converters has
largely eliminated floating point converters for audio applications. Note, however, that
Y amaha used floating point converters until only recently. This was a direct result of
using logarithmic arithmetic internally on their chips (see section 5.14). A relatively
recent example of an oversampling Sigma-Delta converter ( [Kalliojrvi et al., 1994])
combines oversampling sigma Delta conversion with floating point quantization.

Given the ever increasing number of floating point processors, coupled with the
need for better SNR (i.e., over 120 dB) might push the development of matching
floating point converters. More work remains to be done.

522 Sampling clocks

Jitter is the deviation of the sampling instant due to noise and other phenomena. Jitter
can be analyzed using a battery of statistical and probabilistic methods [Liu and Stanley,
1965]. In particular, Liu and Stanley analyze the jitter for a storage system where four
cases can be considered:

1. input only (“readin”)

2. output only (“readout”)

3. input and output with identical jitter (“locked”)
4. independent input and output jitter

Let us consider the accuracy required for the sampling clock in a DSP system. van
de Plassche has the following analysis: If the input is full range and near the Nyquist
frequency, then we have the greatest slope. Let us use a simple sinusoid as the input,
i.e, V = Asin(wt). The variation in the output of the converter that depends on the
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variation in the sampling time instant A t will be Av. The slope of the input is:

AA

-Zk7 = Aw COS(th) (512)

So, thenif AA = 28 (pesk to peak), then At = ; Since,w = 2T, then

mcos( wt)?

2—71

At = —
7 feos{2m ft) (5.13)
And, at t = 0, then we have
2—71
Aty =
0 p (5.14)

As an example, consider a CD-audio signal with 16 bits of resolution with a sampling
freguency of 44.1 MHz. The time uncertainty (Ato) will be 110 picoseconds!

As the digital signal passes through cables and other degrading elements the jitter
can and will increase. More attention has been paid to these issues of late [Shelton,
1989][Lidbetter et al., 1988].

5.3 PROCESSING

The history of audio signal processors is directly correlated with the development of
silicon technology. Aswe will see, the first digital synthesizers were constructed from
discrete SSI TTL level components. In fact, early synthesizers like the Synclavier
used a mixture of digital and analog technology — a prime example being the use of a
multiplying DAC for envelope control [Alonso, 1979]. A review of early architecture
circa 1975 was given by Allen [Allen, 1975].

Further development of synthesizers was critically dependent on the technology
of multiplier implementation, TI's early 2 bit by 4 bit Wallace Tree [Karen, 1993]
[Waser and Flynn, 1982] was introduced in 1974. The AMD25S10 was an early
improvement: 4 bits by 4 bits. Monolithic Memories' 74S558 multiplier was 8 bits by
8 bits. The major improvement was the 16 by 16 multiplier (the TRW MPY-16). This
single chip did more for audio signa processing than almost any other device. It was
used for many of the IRCAM machines and also the Alles synthesizer.

Simultaneous improvements in ALU width during the same period can be witnessed
by the development of the AMD 2901 4 bit slice [Mick and Brick, 1980]. Thisflexible
ALU building block was very popular in the design of ALUs; combined with a TRW
multiplier the resulting machine architectures were flexible and powerful.

The use of Emitter Coupled Logic (ECL) is also possible [Blood, 1980] [Hastings,
1987] but it suffers because of low levels of integration (typically 2 and 4 bit wide
parts) as well a high demands for current and fans. In spite of these limitations, the
group at Lucasfilm used ECL technology for the ASP [Moorer et al., 1986]. For the
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era, ECL was the path to high speed computing (an independent exampleis the Dorado
[Clark et a., 19814]).

Further increases in the density of chips led to the development of the modern signal
processor, beginning in 1979 with the Intel i2920. This was followed by the Texas
Instruments TMS 320 series (begining with the 32010) that rapidly captured a large
segment of the market. The 24 bit width of the Motorola 56000 was welcomed by the
digital audio community and found rapid use in many applications. The 56000 also
included parallel moves and well designed addressing modes.

In spite of constant improvement in processor technology, there are still applications
that are computationally expensive. This will lead to the use of multiple DSP chipsin
multiprocessors as well as the development of special purpose chips for synthesis. All
of these developments will be discussed in the following sections.

5.3.1 Requirements

Before we can discuss the design and architecture of processors for audio DSP tasks,
we must discuss the requirements these processors must meet. Then, we will be in a
better position to see how the different implementations result in better results. So,
we will begin by dividing the requirements into the different tasks. Gordon [Gordon,
1985] has an overview of architecture for computer music circa 1985.

In typical use, a speech agorithm is just as usable for wideband audio with the
following caveats in mind: (1) higher sampling rates decrease the available processor
time per sample (2) higher frequency ranges may mean a greater number of poles and
zeros in signal modeling.

AnalysigSynthesis.

Linear Prediction (LPC). LPC is the most popular form of speech coding and
synthesis. While it is usually used for speech coding [Markel and Gray, 1976] it
can also be used for other time-varying filter models. The LPC analysis process can
be divided into two parts. excitation derivation and filter analysis. The filter analysis
uses an all-pole model derived from a specific acoustical model. For example, the
vocal tract can be modeled as an al pole lattice filter; the lattice filter coefficients
are derived from the acoustical vocal tract model (more specificaly, the reflection
coefficients). LPC filter coefficients can be computed using any number of avenues
including the Covariance, Autocorrelation or Lattice methods. These methods all use
iterative matrix algebra; the implications for machine architecture are the need for fast
array indexing, multiplies and/or vector arithmetic.

The excitation signal depends on the source model (vocal cord models are used
in speech for both voice and unvoiced sources). LPC models can be used in other
circumstances, for example, the modeling of acoustic musical instruments where the
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excitation function represents the nonlinear source and the time-varying filter represents
the acoustic transmission line of the instrument. When modeling wideband signals, the
number of poles can become extremely high (more than 50 poles is not uncommon).

The Phase Vocoder. The Phase Vocoder [Flanagan and Golden, 1966][Gordon and
Strawn, 1985] is a common analysis technique because it provides an extremely
flexible method of spectral modification. The phase vocoder models the signal as
a bank of equally spaced bandpass filters with magnitude and phase outputs from
each band. Portnoff’s implementation of the Short Time Fourier Transform (STFT)
provides a time-efficient implementation of the Phase Vocoder. The STFT requires a
fast implementation of the Fast Fourier Transform (FFT), which typically involves bit
addressed arithmetic.

Perceptual Coding. More recently, coding techniques that take advantage of the
masking properties of the inner ear have been developed. These techniques are dis-
cussed in Brandenburg's chapter. A typical perceptual model uses frequency domain
filtering followed by coding and compression. The receive end (decoder) receives
coded and compressed stream and decodes and expands the data. The resulting data
is converted back into audio data. Because of the extensive bandwidth reduction
of perceptua coding, such algorithms will be finding their way into more and more
E:ng;ercial products including Digital Audio Broadcasting and Digital Video Disk

Perceptual coders are an interesting class of DSP algorithm; although it has a signal
processing ‘core’ (typically the DCT (Discrete Cosine Transform)), the algorithm
spends most of its time in non-iterative code. For example, the MPEG coder has
algorithms that separate noise-components from harmonic-components as well as
Huffman coding and bit-rate coding. This code doesn’t exhibit the same tight loops
DSP processors were designed to handle.

Analysis. We can divide analysis agorithms into time and frequency domain pro-
cesses. Certainly, the division between these categories is arbitrary since we can mix
them together to solve an audio problem. However, it suffices for our purposes.

Time Domain Analysis. Perhaps the simplest and most traditional use of a DSP is
filtering. DSPs are designed to implement both Finite Impulse Response (FIR) and
Infinite Impulse Response (1IR) filters as fast as possible by implementing (a) asingle
cycle multiply accumulate instruction (b) circular addressing for filter coefficients.
These two requirements can be found in all modern DSP architectures.
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The typical IR filter is defined by the following equation:

=N

y[n] = afijz[n — 1] Z bljlyin — 7 (5.15)
4=0

As can be seen, it requires memory (N+M+1 locations) for the tapped delay lines
as well as N+M+1 filter coefficients. It also requires a multiplier with a result that is
accumulated by the sum. It is important that the accumulator have a “guard band” of
sufficient size to avoid overflow during accumulation. The FIR filter is similar except
it lacks the feedback terns.

Most audio filters are typically |IR filters because a). They are directly transformed
from their analog counterparts viathe bilinear transform b). They are faster to compute
than the longer FIR version.

IIR filters can be implemented in any number of different ways, including direct
form, parallel form, cascaded second order sections and lattices.

It is easy to assume that the filter coefficients in equation 5.15 (a[i] and b[j]) are
constant. In fact, there are many instances when this is not the case. For example,
in real-time audio processing a user moves a slide potentiometer (either physical or
possibly on the display); this is digitized and the host processor must change the
coefficientsin variousfilters.

The filter coefficients must be updated at a regular interval. If the number of filters
coefficients is large (for example, a high order LPC filter) and/or a large number of
filters must operate in parallel, then this may interfere with the computation. Moorer
called it the “parameter update problem” [Moorer, 1981].

It should also be noted that in audio, many operations are calibrated in decibels.
Thisimplies the need for a logarithm (base 10). If possible, such computations should
be avoided since the Taylor series calculation method is multiplier intensive. Short
cuts, such as direct table lookup are preferable when possible.

Frequency Analysis. The Discrete Fourier Transform (and its fast implementation,
the Fast Fourier Transform [Brigham, 1974]) (FFT) as well asits cousin, the Discrete
Cosine Transform [Rao and Yip, 1990] (DCT) require block operations, as opposed to
single sample inputs. The DFT can be described recursively, with the basis being the
2 point DFT calculated as follows:

X[0] = z[0] +a[l]«Wg (5.16)
X[ = z[0) + 1]« Wh7? (5.17)
N/2 _

where W = e ~I@TUN) ‘ginceWwg =1andW " = — 1, then no multiplications are
required, just sign flipping. Thisis the well known Butterfly” computation.
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Since either the inputs or outputs of the FFT are in bit reversed form, it is useful
to have a method to address the data. Although algorithms have been published for
bit-reversal [Karp, 1996], the added computation time may not be worth it. Therefore,
either table lookup may be used or carries can be propagated from left to right, which
produces the needed bit reversal. Since the added feature is just a modification of the
carry chain, it is deemed easy enough to implement (leaving aside the issue of the
implementation of the addressing mode).

5.3.2 Processing

Some algorithms have a hard time being categorized into one of analysis or synthesis.
This includes coders and rate changers. Coders, such as the audio coders discussed in
in the chapter by Brandenburg, require the use of a compression technique, such as a
Huffman code. Computation of this code at the encoder side is not nearly as simple as
its accompanying decoder.

Reverberation, discussed by Gardner in his chapter, points out the need for extremely
large memories. Reverberators can be implemented using time-domain filtering with
delays or in the frequency domain with convolution. In the time-domain implementa-
tion, the delays must be the length of the impulse response. Recall that at the size of
the memory will be M = Tgo/ Ts. For Teo = 2.0 secondsand Ts = 20 microseconds,
M = 5 x 10°, or amemory address of 19 bits. Therefore, the address space should be
larger than 16 bits. The lesson of large number of address bits (and pins!) may seem
obvious, but DSPs have used static RAM and therefore the required address space is
small to match small wallets.

The frequency domain implementation uses FFTs to convert the incoming window
of samples to the frequency domain, multiplies it by the impulse response of the room
and then uses the Inverse FFT to get back to the time domain. For large impulses, this
generates considerable delay. Gardner discusses how to avoid thisin his chapter.

Restoration. With the introduction of the Compact Disc, the restoration of old record-
ings has become big business. However, the origina tape (or disk) masters are often
in bad physical condition resulting in pops, clicks and other media maladies. Many
of these defects can be overcome with the use of DSP technology. The most famous
use of DSP technology was made by Stockham [Stockham et al., 1975] who restored
Caruso’s recordings from the early part of this century. Stockham used a cepstrum
based technique to do blind deconvolution to remove the effect of the recording horn
from the recorded master. Computationally, this demanded spectral analysis using the
FFT and further processing.

In the past five years, there has been extensive use of statistical methods to recover
signals partially obscured by noise (see the chapter by Godsill, Rayner and Cappé).
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5.3.3 Synthesis

We can divide synthesis techniques into four basic categories: Additive (Linear),
Subtractive, Nonlinear and Physical modeling. Synthesis algorithms depend critically
on the implementation of oscillators. For example, in the implementation of Frequency
Modulation (F.M.), the output of one oscillator will serve as the input to another. Since
the number of real time oscillators depends on the number of simple oscillators, it is
important to efficiently and speedily implement the realizations.

Low-noise oscillator synthesis is not trivial however most methods use lookup tables
with fractional interpolation. Oscillators can be implemented by (a) table lookup or
(b) 1R filters with poles located exactly on the unit circle.

Moore [Moore, 1977b] studied the effect of oscillator implementation using lookup
tables and found that linear interpolation produces the least distortion and that trunca-
tion produces the worst. This result was confirmed by Hartmann [Hartmann, 1987].
Another possibility is to use a recursive (IIR) filter with poles located on the unit
circle. This“coupled form” [Tierney et al., 1971] offers a alternate method that avoids
using memory space. Frequency resolution requirements were calculated by Snell in
a superpipeline oscillator design for dynamic Fourier synthesis [Snell, 1977].

Oscillators also require “control inputs” such as amplitude or frequency parameters.
These are often time-varying and so smooth interpolation may be required.

Linear Synthesis. The most popular method of synthesis is so-called “Additive
Synthesis’, where the output is a sum of oscillators. While it is commonly assumed that
the oscillators produce sinusoids (Fourier synthesis), in fact, they can be any waveform.
Furthermore, with “static” additive synthesis, a pre-mixed combination of harmonics
was stored in the lookup table. Unfortunately, this doesn’t permit inharmonic partials.
“Dynamic” Fourier synthesis allows the amplitudes and frequencies of the partials to
be varied relative to each other. Computationaly, it is important to recognize the that
updating oscillator coefficients for large numbers of oscillators can be expensive.

Subtractive Synthesis. “Subtractive Synthesis’ is the process of filtering a broad-
band source with a time-varying filter. The most classical example of this is voca
tract synthesis using Linear Prediction Coding (LPC) (see section 5.3.1). This requires
a broadband (or noisy) source and, in the case of LPC, an IIR filter with time vary-
ing coefficients. The filter coefficients will require interpolation and storage. These
seemingly insignificant operations can not be ignored.

Nonlinear synthesis: Frequency Modulation. Frequency Modulation (FM), origi-
nally described by Chowning [Chowning, 1973], was patented by Stanford [Chowning,
1977] and later licensed to Yamaha and used in the now famous DX-7 synthesizer.
The FM equation
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y[n] = A sin(wet + I sin(wmt + ¢)) (5.18)

requires two oscillators and two amplitude terms. All four of these inputs can be
described using envelopes or with constants. The envelopes involve the calculation
of either straight lines or exponentia curves. The following equation (from the unit
generator gend from cmusic [Moore, 1990b]) permits both:
1— el(m)a
1—ex

f@) =y + (y2 — y1)( ) (5.19)

wherex; £ X £ X, and a is the “transition parameter”:
m  if a =0, then f(x) = y1, astraight line

. if a <0, then f(X) is exponentia

m f a > 0, then f(X) isinverse exponential

Lastly, I () = 222+

FM instruments are made from cascades of FM oscillators where the outputs of
several oscillators are mixed together.

Physical Modelling. The last method of synthesis, physical modeling, is the mod-
eling of musical instruments by their simulating their acoustic models. One popular
model is the acoustic transmission line (discussed by Smith in his chapter), where
a non-linear source drives the transmission line model. Waves are propagated down
the transmission line until discontinuities (represented by nodes of impedance mis-
matches) are found and reflected waves are introduced. The transmission lines can be
implemented with lattice filters.

The non-linear sources are founded on differential equations of motion but their
simulation is often done by table lookup.

5.3.4 Processors

This section will be presented in a historical fashion from oldest to newest technology.
This will demonstrate the effect of technology on the design and implementation
of DSP systems and offer a perspective on the effect of underlying technology on
architecture of audio signal processing systems.

One of the earliest machines for audio manipulation was GROOVE, an experimental
machine built at Bell Laboratories [Mathews and Moore, 1970]. GROOVE was
composed of a digital computer controlling an analog synthesizer. The emphasis was
on the human interaction, not the analysis or synthesis of sound.
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Sequential (MSI scale) machines. The SPS-41 [Knudsen, 1975] was a very early
DSP. It had three sections: An ALU, loop control and 1/0. The ALU processed complex
data in the form of two 16 bit words. A multiplier produces the requisite four products
forming another complex pair (note that the products must be scaled before storing the
result). The loop control has a very fast test: each instruction has four bits of “indirect
tests’. The four bits address a 16 word memory that permits the testing of 16 bits. The
I/0 section is basically a DMA controller and resembles the PPUs of the CDC 6000
series [Thornton, 1970].

The Groove machine mentioned above was the inspiration for Moore' s “FRMBox”
[Moore, 1977a] [Moore, 1985]. It strongly resembles a CPU as shown in figure 5.4.
A centralized control unit polls the modules and stores the output from each board in a

Data,
Addr
Control control bus
Memory .
_memory out:
Counter .
Common

Mermory Module

memory in ¢

Figure 5.4 Block diagram of Moore's FRMbox

unique location in a centralized common memory. Each board was time multiplexed 32
times, so for an 8 board system there are 256 time slots per sample time. The controller
permits multiple sources for a given “virtual” generator via a memory pointer in the
control memory. The principal limitation is the size of the bus and the number of
virtual units on a given board. However, for a given sampling frequency there are
a maximum number of slots per sample time. For example, 256 slots at a 48 KHz
sampling freguency is 81 nanosecond per slot. It is possible, of course, to expand the
number of slots by adding multiple centralized controllers; but then the issue becomes
communication from one controller to another.

In 1973, a small company in San Francisco designed a custom processor from early
MSI scale logic. The design was done by Peter Samson [Samson, 1980][ Samson,
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1985] and was eventually delivered to CCRMA at Stanford in 1975. For its era, it
was a large processor, using approximately 2500 integrated circuits and resembling a
large green refridgerator. The multipliers were constructed using a modified Wallace
Tree [Koren, 1993] and ran at 50 ns per multiply. The sample word width was 20 bits
athough several data paths were smaller. The overall structure of the machine (known
at Stanford as the “ Samson Box”) is shown in figure 5.5.

Decoded Control inputs

y ¥

Delay DAG
s
Memory Modifiers Generators
== ‘:ﬁ
Sum
Memory

G

M G

Figure 5.5 Samson Box block diagram

Briefly, each “instruction” is decoded and given to the appropriate part of the
machine. The separate fields of each instruction are interpreted by the specific section.
The timing of the machine is quite interesting. A sample time is divided into
processing, update and overhead ticks (atick is 195 ns). There are always 8 overhead
ticks since the latency of the pipelineis 8 ticks. So, for agiven samplerate, the number
of processing cyclesis aways known and can be divided by the programmer into time
spent calculating samples (processing) or updating of coefficients in memory by the
host computer (updates). A pause in updating is created via a LINGER command that
waits a specific number of ticks.

The architecture of the machine can be divided into three sections. generators,
modifiers and delay memory. Each section is pipelined and does not share hardware
with the other sections. The pipeline timing for generators is detailed below in Table
5.5:

The pipelining for modifiers is more complex: the control for each modifier is
different and is therefore not detailed here (see figure 4 of [Samson, 1980] for a sketch
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Table 5.1 Pipeline timing for Samson box generators

Tick Generator

Oscillator Envelope
0 Memory read
1 Add
2 Multiply
3 ROM lookup Addr Reg read
4 Multiply ROM lookup
5 Sign negation Sign negation
6 Multiply envelope & generator
7 Write into Sum memory

of the datapath). The “Samson Box” was used extensively for synthesis - not analysis.
In part this was due to the unique architecture of the machine and in part from the
difficulty of inserting real time data into the machine via the delay memory. Moorer
[Moorer, 1981] also points out that the command FIFO often got in the way of time
critical updates. Loy [Loy, 1981] mentions the lack of precision in the modifiers (20
bits) and generators (13 bits) sometimes produced audible results. One must remember,
however, that the time frame was the mid-1970s and so resulting integration was SSI
and M S| scale and word widths were costly in terms of area and wires.

The interconnect of the “Samson Box” was quite novel. It was called “sum memory”
and was implemented by parallel loading counters and then writing the result back
into RAM. The connection memory acted as a double-buffered multiport memory by
dividing the memory into “quadrants’ as shown in figure 5.5.

The current generators and modifiers write into the current half while the previous
tick’s results are available to current processing. Because the output of the sum memory
may feed as many as three inputs, it must be time multiplexed over asingletick, which
leads to a short time available to the memory.

In 1976 Moorer [Moorer, 1980b] proposed a machine designed for closed-form
[Moorer, 1976] summations. With the exception of the amplitude and spectrum
envelope generators, it is a conventional microprogrammed machine with ainstruction
decoder and input and output bus. The envelope generator allows up to 16 different
line segments; these are programmed to provide different instrumental timbres.

In 1979, TRW introduced the MPY 16, a 16 by 16 bit multiplier. Alles [Alles, 1987]
[Alles, 1980] used this new chip to design a 32 voice synthesizer using only 110 chips.
Each voice was computed in one microsecond, resulting in a 31.25 KHz sampling rate.
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Each slot was further divided into 16 clock cycles (of 64 ns each). At IRCAM, P.
diGiugno designed an early machined named the “4A”.

F 16K wavetable
rreq ramp) . Switch
Registers

Option register

Amplitude ramp

Figure 5.6 diGiugno 4A processor

Note that the start and stop registers are used for creating linear ramps; these ramps
are used to control both amplitude and frequency parameters in oscillators. At the
endpoint of the ramp, an interrupt is generated on the host (an LSI-11). As Moorer
[Moorer, 1981] points out, this can lead to a considerable number of interrupts and
delays due to interrupt processing.

H. Alles visited IRCAM and together with P. Di Giugno designed the follow-on to
the 4A: the 4B [Alles and di Giugno, 1977]. This machine differed from the 4A in the
following ways:
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= Expanded interconnect (switch) registers (from 4 to 16)

= Larger wavetable

This was the direct result of improved technology. Also the wavetable was
writable from the host processor.

= New data paths to accommodate FM synthesis

The datapath is shown in figure 5.7.

JL freq amp. T
ram ramp
I
Wave Register
Table File
*
v

Figure 5.7 IRCAM 4B data path

Alles [Alles, 1977] further expands on the 4B oscillator module by describing the
design of a matching filter and reverb module using the TRW multiplier. A separate
“switch” module allows for the arbitrary interconnection of the functional units. The
switch itself was a small processor with a simple instruction set.

The following problems were identified in the 4B:

m  Undersampling the envelopes resulted in audible artifacts
m  The interconnect was “hard-wired” and could not be reprogrammed by software

m  Since parameter memory and interconnect memory were separate, it was impos-
sible to mix the two

The next generator synthesizer designed by DiGuigno was named the 4C [Moorer
et a., 1979]. The 4C represented a technological improvement over the 4B by using
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larger memories and a variable interconnect. It has five basic functional unit generators:
(2) Wavetable oscillators, (2) multiply/accumulators (1) envelope generator, (1) output
and (1) timer. Each one of these unit generators is time multiplexed 32 times. A block
diagram of the data path of the machine is shownin figure 5.8.

Host data bus

Host address bus

Data memory output bus

xX ; J
—_ Wave Data [ _DataMem Addr
Table t+ Memory

—t —

Figure 5.8 IRCAM 4C data path

Redrawn Figure 17.4 (omits some paths) from [Moorer et al., 1979]

Moorer [Moorer, 1981] points out the following shortcomings in the design of the
4C:

s Short table length: Short tables without interpolation result in distortion partic-
ularly with stored low frequency sounds

= Lack of time synchronization with updates: Because the 4C clock is different
from the host (PDP-11) clock, it is impossible to change parameters sample
synchronously.

= Fractional multiplier: There is no way to increase the magnitude of a product
except by hacking the output of the multiplier.

The last 4n machine from IRCAM was the 4X [Asta et a., 1980]. The system block
diagram of the machine is shown in figure 5.9.

Synthesis units are controlled from the host via an “interface unit” that permits DMA
transfers to the private bus (shown here in three buses Data,Ctrl and Addr). The
generators can input and output data to and from the data bus under control from the
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Figure 5.9 IRCAM 4X system block diagram

interface unit. The interconnection unit serves to connect the generator units together
via an interconnection memory implemented with queues (FIFOs). It also contains
timers for use in controlling amplitude and frequency envelopes. Unlike the previous
4n machines, the 4X included numerous “bypass’ paths in the arithmetic pipeline of
the synthesis units.

The combination of the AMD 2901 4-bit slice together with the TRW multiplier was
very popular. A Sony design was used for a microprogrammable real-time reverberator
[Segiguchi et al., 1983]. They used five 2901s together with the TRW multiplier to
create a machine with a 170 ns cycle time. A simple 16 bit pipelined machine
designed for music synthesis was described by Wallraff [Wallraff, 1987]. The machine
was flexible enough to be used in other signal processing tasks. Another example of
such a machine was used in an early audio coder [Brandenburg et al., 1982-].

The TRW multiplier also found its way into the center of the Sony DAW-1000A
editor [Sony, 1986]. A simplified block diagram of the signal processor section is
shown in figure 5.10

Note that products can be fed backward; also note that crossfades are found in
ROMs which are input to just one side of the multiplier; the inputs including faders
and audio inputs are fed to the other side after been converted via logarithmic ROMs.

A very fast CPU customized for the calculation of second order sections was used
by Neve [Lidbetter, 1983] (in collaboration with the BBC) in 1979. They used a Time
Division Multiplex (TDM) parallel data bus with 16 time slots. At each time slot,
the “channel processor” executed 14 microinstructions (at a rate of 100 ns) of a filter
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Figure 5.10 Sony DAE-1000 signal processor

program. The TDM output of the channel processor(s) were combined and simply
mixed by a separate mixing processor.

The COmputer for Processing Audio Signals (COPAS) [McNally, 1979] was an
early microprogrammed mixer. It used a 48 bit microinstruction word executed every
163 ns (about 6 MHZz) but could have been improved with a faster multiplier. For a
sampling rate of 32 KHz, the machine can execute 191 instructions. This was enough
to do 10 biquads (second order sections). It should be noted that the A/D was routed
through a microprocessor which offloads the main computational resource.

The Lucasfilm SoundDroid [Moorer, 1985b] was a complex system that included
a complicated microcoded machine as the arithmetic processor. The first edition of
this machine used a horizontally microprogrammed ECL processor called the Audio
Signal Processor (or ASP) [Moorer et a., 1986][Moorer, 1983]. The ASP had a 50
ns instruction clock and executed 400 MAcs per 48 KHz sample time by pipelining
multiplies and starting a multiply every microcycle. A separate host machine controls
the ASPsvia a controller over a private bus. The various ASPs have connections to
high speed /O devices whereas the ASP controller takes care of the slower speed
DACs and ADCs. Figure 5.11 shows the ALU data path of the ASP (redrawn and
simplified from figure 5.3 from [Moorer et al., 1986]). To avoid pipeline “bubbles’,
the ASP placed branch decisions in the data path by using the result of comparisons to
control the output of multiplexers.



218 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

A bus
B bus
\ / i A B
ALU \Multtpller memory memory
4
f Shifter ;
ALU /
Result bus

Figure 5.11 Lucasfilm ASP ALU block diagram

The large dynamic RAMs and interconnections to the update and DSP bus are shown
in figure 5.12. A direct connection between the disk drives and the signal processor’'s
DRAM banks was provided in Lucasfilm’'s ASP and SoundDroid processors, enabling
real-time multitrack digital audio storage and retrieval for mixing desks.

A special feature of the ASP is the time ordered update queue [Moorer, 19853
[Moorer, 1980a] shown in figure 5.13 (labeled “255 element queue”). The queue is
pipelined and uses pointers implemented in hardware. This queue can be used to
update data in either the dynamic RAMs or the static RAM coefficient memories. A
more striking application is the use of the update queue to automatically change the
microcode on external events. It should be obvious that such a queue is of particular
utility when dealing with time stamped musical events. Furthermore, it was equipped
with a bypass for passing real-time events (such as the first slope of an envelope upon
note-on) to the head of the queue, with associated events (e.g. the subsequent envelope
slopes and targets) inserted in time order into the queue.

At this point, the stage is set for the transition from MSI scale logic into LS| and
VLS| processors.

Sequential single processors. With the constant improvement of integration tech-
nology, it became possible to include a 16 by 16 multiplier as part of the ALU of a
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microprocessor. Together with addressing modes designed for DSP applications (such
as bit reversal for FFTs and modular addressing for delay lines and filter coefficients),
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this produced a powerful combination. Serial input and output was aso introduced
with DSPs. Serial 1/O is quite reasonable for handling audio rates for a small num-
ber of channels. Many fixed point processors only have 16 hits of data and address.
The limited amount of address bits implies a limited amount of time for reverbera-
tion agorithms (at 44.1 KHz sampling rate, 16 bits of address is approximately 1.5
seconds.)

Although other DSPs were utilized before 1982, it was the introduction of the
Texas Instruments Tl (Texas Instruments), TMS320 series that dramatically changed
the environment for DSP algorithm designers. For the first time, an inexpensive, com-
mercially available machine was capable of computing speech and modem algorithms
in real-time.

Lee [Lee, 1988][Lee, 1989] surveyed processor architecture circa 1988. He pointed
out that principal differences between the arithmetic sections in integer microprocessors
and DSPs are:

m  more precision
= useof saturation arithmetic
= the ability to accumulate and shift products

The memory organization of DSPs are also different from “ordinary” processors
because (1) Memory is typical static RAM and virtua memory support is totally absent
(2) Severa machines separate data and instruction streams (Harvard Architecture) (at
the cost of extra pins). Additionally, modular arithmetic address modes have been
added to most processors. This mode finds particular utility in filter coefficient pointers,
ring buffer pointers and, with bit reversed addressing, FFTs. One further differenceis
the use of loop buffers for filtering. Although often called “instruction caches’ by the
chip manufacturers, they are typically very small (for example, the AT& T DSP-16 has
16 instructions) and furthermore, the buffer is not directly interposed between memory
and the processor.

Fixed Point. Texas Instruments introduced the TMS320C10 in 1982. This chip cap-
tured a sizable market share due to its simple instruction set, fast multiply accumulate
and DSP addressing modes. The TMS320 also features a “Harvard Architecture”,
which doubles the number of address and data pins but also doubles the bandwidth.
The TMS320C10 was followed by the TMS320C20. This chip continues to have
considerable market share. The latest edition of this chip is the TM S320C50, which
has four times the execution rate of the original C10. There are other members of the
family [Lin et al., 1987] that implement various aspects of 1/0 interfaces and memory
configurations.

AT&T introduced a DSP early on called the DSP2 [Boddie et al., 1981]. Although
for internal consumption in Western Electric products, this chip led the way to the
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DSP-16. The DSP-16 was extremely fast and difficult to program. It featured only two
accumulators and 16 registers (two of these were special purpose). The serial 1/0 aso
contains a small TDMA section that can be used for multiprocessor communication
(see section 5.17).

Motorola introduced the 56000 [Kloker, 1986] in 1986. The 56000 has been used
quite successfully in many digital audio projects because

m 24 bits of datawidth provided room for scaling, higher dynamic range, extra se-
curity against limit cycles in recursive filters, better filter coefficient quantization
and also additional room for dithering.

m  Thelarge accumulator (a 24 bit by 24 bit product + 8 bits of guard = 56 bits of
accumulator length) provided a large guard band for filters of high order.

Other positive aspects of the 56000 include memory moves in paralel with arith-
metic operations and modular addressing modes [Kloker and Posen, 1988]. The 56000
was used by the NeXT MusicKit [Smith et al., 1989] very effectively.

The Zoran 38000 has an internal data path of 20 bits as well as a 20 bit address
bus. The two accumulators have 48 bits. It can perform aDolby AC-3 [Vernon, 1995]
five channel decoder in real time, although the memory space is also limited to one
Megaword. It has a small (16 instruction) loop buffer as well as a single instruction
repeat. The instruction set has support for block floating point as well as providing
simultaneous add and subtract for FFT butterfly computation.

Sony introduced a DSP (the CXD1160) that was quietly listed in the 1992 catalog
[Sony, 1992]. It has an astonishingly short instruction memory — only 64 instructions.
Likewise, the coefficient and data memories are also 64 locations. The CXD1160 is
unusual since it has a DRAM interface directly on chip. It also has a special 40 hit wide
serial interface that permits an external host to download instructions, coefficients or
data into the chip. This path is used to great effect in the (see section 5.19). The
serial 1/0 is designed to output stereo samples in one sample time; another uncommon
feature. The CDX1160 was superceded by the CXD2705 [Hingley, 1994] but was
never released to the public.

Other manufacturers have introduced 16 bit fixed point processors. IBM’s Mwave
is supposed to be for “Multimedia’ operations but can only address 32K (15 bits) of
data memory. The product register is aso only 32 bits (datais assumed to be fractional
form of only 15 hits) so constant rescaling is necessary. Perhaps its most noteworthy
addition is the wide use of saturation arithmetic in the instruction set and the large
number of DMA channels.

Analog Devices aso has a 16 bit DSP (the ADSP-2100 series [Roesgen, 1986]) that
has found some limited use in audio applications. The 2100 series has limited on chip
memory and alimited number of pins (14) for the external memory. Use of acommon
bus for arithmetic results limits the amount of processor parallelism. However, unlike
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other 16 bit processors, the ADSP-2100 series can be nicely programmed for multiple
precision operations.

The desire to keep many functional units operating in parallel through software
scheduling inspired Very Long Instruction Word (VLIW) architectures [Fisher, 1983].
Recently, new VLIW architectures for fixed point signal processing have been released.
MPACT [Kalapathy, 1997] (by Chromatic) is a VLIW machine designed for both audio
and video. As shown in figure 5.14, it has alarge ALU and a fast memory interface.

Bx72
4x72 72 3x72 2x72 s — 2x72 72
3 i
4K Inst. Shift/ Add Multiply Muttiply Motion
Cache Decode Align Logical Add stage 1 Estimator
SRAM
4x72 2x72 2x72 72 2x72 4x72 272

Figure 5.14 MPACT block diagram

Notice how the outputs of the functional units are connected to a huge 792 (72 by
11) wire bus. This acts as a crossbar between outputs and inputs permitting arbitrary
connections. The large number of bus wires also permits a very large bus traffic rate
reaching one Gigabyte/second in the second generation part.

Floating Point. Integrated floating point units first arrived as separate coprocessors
under the direct control of the microprocessor. However, these processors performed
arithmetic with numerous sequential operations, resulting in performance too slow for
real-time signal processing.

AT&T introduced the first commercially available floating point DSP in 1986 [Bod-
die et a., 1986]. An important characteristic of the DSP-32 is the exposed four stage
pipe. This means scheduling is left up to the compiler or assembler. It was notable,
at the time, for its computational speed, but not its ease of use. The DSP-32 ran at 4
million multiply accumulates (MAcs) per second. The integer section executed 4 MIPs
at peak rate. The processor has double buffered seriadl DMA so the processor need
not be directly involved with stuffing data into 1/0 registers. Originally fabricated in
NMOS, it was recreated in CMOS as the DSP-32C [Fuccio et al., 1988]. The DSP-32C
ran at twice the speed of the NMOS version and also increased the address space to 24
bits. Note that the DSP-32 performed floating point arithmetic in an internal format
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that was not compatible with IEEE-754 [IEEE Computer Society Standards Commit-
tee, 1985]. The DSP-32C kept this incompatibility but introduced new instructions
to convert back and forth from the internal format to the IEEE 32 bit format. The
DSP-32C aso introduced interrupts which the DSP-32 did not implement.

Texas Instruments C30/C40/C80

The TMS320C30 [Papamichalis and Simar, 1988] follows the basic architecture
of the TMS-320 series. Unlike the DSP-32, it uses pipeline interlocks. Like the
DSP-32, it features its own internal format for floating point numbers. Because of
the four stage pipeline organization, it can perform a number of operationsin parallel.
It also features a delayed branch - something of a novelty in DSP processors. The
TMS320C40 [Simar et al., 1992] has six parallel bidirectional 1/0 ports controlled by
DMA on top of the basic TMS-320C30 architecture. These ports have been used for
multiprocessor communication.

Motorola 96000

Motorola introduced the 96002 [Sohie and Kloker, 1988] as an extension to the
existing 56000 architecture. The instruction set is an extension of the 56000 instruc-
tions, adding floating point instructions and implementing the |EEE 754 floating point
standard directly instead of converting to an internal format (like the DSP-32). It has
two parallel ports for multiprocessing.

ADSP-21000

The Analog Devices ADSP-21000 series offers IEEE arithmetic like the 96000
while maintaining the instruction format and addressing modes of the earlier 2100
series. The 21020 processor has a large external memory bus and can process a large
I/O rate. The relatively new Analog Devices SHARC (ak.a. 21060) contains 256K
of static memory integrated on the chip aong with the processor. The fast internal
memory avoids problems with memory stalls, but at the cost of alarge die and a hefty
price tag. The SHARC also has a large number of pins resulting from the large number
of paralel ports (6 nibble wide ports and one byte port). This too increases chip cost
but like the TM S320C40 can be used for multiprocessor communication.

Applications. Besides the use of single DSPs as processor adjuncts (as in the NeXT
machine [Smith et al., 1989]), the WaveFrame Corporation introduced a modular
system [Lindemann, 1987] that uses the notion of a time division multiplexed bus
(like the FRMBoX). Each slot was 354 ns. A single mixer board [Baudot, 1987]
had two memories, one for coefficients and the other for delayed sampled and past
outputs. These memories were multiplied together by a 32 by 32 bit multiplier and a
67 bit (3 guard bits) multiplier accumulator. The coefficients can be updated via a one
Megabit/second serial link (using 24 bit coefficients, that means one update every 24
microseconds.) The updates are calculated with a DSP chip. However, the DSP chip
was not fast enough to do the linear interpolation, so the interpolator was done with a
hardware multiplier.
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Custom chips. Because of the computational demand of multichannel or multivoice
audio processing, custom silicon has been proposed as one way to solve this basically
intractable problem. Also, going to custom silicon provides a manufacturer with a
not-so-subtle way to hide proprietary algorithms — it's harder to reverse engineer a
chip than it isaprogram for acommercially available processor.

Yamaha. Yamaha has designed numerous custom chips to support its commercial
line of music boxes. A number of relevant details can be found in Yamaha's patents.
The famous DX-7 has two chips: the first one was an envelope generator; the second
one generated the actual samples. The interconnection between these two sections can
be found in patents from 1986 and 1988 [Uchiyama and Suzuki, 1986][Uchiyama and
Suzuki, 1988]. These patents also describes the use of logarithmic numerical represen-
tation to reduce or eliminate multiplication and the use of Time Division Multiplexing
(TDM) for multivoice computation. The use of logarithmic representation can be seen
in the FM equation (equation 5.18). This is calculated from the inside out as follows
from a phase angle whpt:

1. Lookup wmtinthelogarithmic sine table

2. Read the modulation factor | (t) and convert to logarithmic form

3. Add (1) to (2) giving log(sin wmt) + log(1(t))

4. Convert back to linear form via an anti-log table giving I(t) Sin(wmt)

5. A shift Scan be applied, multiplying the output by a power of 2 resulting in
S1(t) sin(wmt)

6. The carrier is added in, et forming cct + S I (t) sin(Wmt)

7. Thisislooked up in the logarithmic sine table in preparation for envelope scaling:
log(sin(w.t + S 1(t) sin(wnt)))

8. Finally, the log of the amplitude term A(t) is added to the previous step and
looked up in the anti-log table giving A(t) sin(wct + S I (1) Sin(wmt))

As remarked earlier, the use of logarithmic arithmetic to avoid multiplication fits in
well with floating point converters.

Y amaha has also patented sampling architectures (see Massie's chapter for more
information on sample rate conversion and interpolation in samplers). A recent patent
[Fujita, 1996] illustrates how fractional addressing from a phase accumulator is used
by an interpolation circuit to perform wide range pitch shifting.
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Wawrzynek. Wawrzynek [Wawrzynek and Mead, 1985][Wawrzynek, 1986]
[Wawrzynek, 1989] proposed the use of “Universal Processing Elements’ (UPES).
A UPE implements the following equation (5.20):

y:a+(m*b)+(l—m)*d (5.20)

where a can be used to sum previous results, mis the scaling factor and b and d
are arbitrary constants. When d = 0, then the UPE computes a sum and a product.
When d # 0, then the UPE computes a linear interpolation between b and d. The
UPEs are implemented in serial fashion, as first advocated by Jackson, Kaiser and
McDonald [Jackson et al., 1968] and further expounded by Lyon [Lyon, 1981]. The
UPEs can be used to implement filters, mixers and any sum of products. Note that
tables are lacking, therefore trigonometric functions must be approximated via their
Taylor series expansions or via a recursive oscillator (mentioned in section 5.3.3). A
second generation chip was proposed by Wawrzynek and von Eicken [Wawrzynek and
von Eicken, 1989] that included interprocessor communication however the parameter
update bandwidth was severely limited.

E-mu. E-mu Systems (now a subsidiary of Creative Technologies) has designed and
patented a number of custom chips for use in their synthesizers and samplers. One
example [Rossum, 1992] uses filter coefficient interpolation; the data path provides
for dual use of the multiplier; in one use, it is part of the interpolation machinery, in
the other path it is used to form the convolutional product and sum. A later example
[Rossum, 1994a] uses four times oversampling, pipelining and a pointer arithmetic to
implement a basic looping looping (see the chapter by Massie for more information
on sampler implementation) There are four memories on-chip: one for the current
address, one for the fractional part of the address (as part of the phase interpolator),
one for the phase increment and finally, an end point. When the address exceeds the
end point, then the memory pointer address is reset. Only one ALU is used on the
chip and the output is fed back to the input of the RAMSs. It should be noted that this
patent also includes the use of logarithmic representations to avoid multiplication: al
sounds are stored |logarithmically so they can be scaled by the amplitude waveform
with a simple addition.

Rossum also proposed the use of a cache memory [Rossum, 1994b] as part of
the memory lookup path in a sampler interpolator. Since in many cases, the phase
increment is less than one, the cache will be hit on the integer part of the table address,
consequently, the memory will be free to use for other voices.

Thisisillustrated in figure 5.15.

IRIS X-20. The X-20 [Cavaliere et da., 1992] was designed by the IRIS group as
a fundamental component of the MARS workstation. It can be considered a VLSI
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Figure 5.15 Rossum’s cached interpolator

follow-on of the 4n series of IRCAM. It had two data memories, one ROM, a 16 by
16 multiplier with a 24 bit output and a 24 bit ALU. It executed from an external fast
static memory of 512 instructions. With a clock rate of 20 MHz, it executed at a 40
KHz sample rate.

Sony OXF. Sony designed a custom chip for use in the OXF mixer [Eastty et al.,
1995]. It is quite interesting with two different sections: one section devoted to signal
processing and the other devoted to interpolation of coefficients. This is shown in
figure 5.16.

All signal paths in the processor are 32 hits with a few exceptions. There are four
basic sources: one from the vertical bus, one from the horizontal bus, one from DRAM
and one fed back from the output of the ALU or multiplier. Note that products must
be shifted before they can be accumulated.

The interpolation processor has a double buffered memory that permits updates
during processing. Note that interpolation happens on every sample, thereby avoiding
“zipper noise” due to coefficient quantization. This is an expensive strategy, however
it always works.

Ensoniq ESP2. Ensoniq described a custom chip in a patent [Andreas et al., 1996]
that included the following features: A single cycle average instruction (add and shift
right 1) and a limit instruction (used for checking end points of ramps). It included a
specia purpose address generator unit (AGEN) that is connected directly to the memory
address bus. The AGEN was designed with reverb implementation in mind. Memory
is divided into 8 different regions,; addresses are wrapped within region boundaries.
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Figure 5.16 Sony OXF DSP block diagram

The AGEN offers the ability to update the base register or address register during the
memory cycle.

Parallel machines. Interprocessor communication becomes the problem to solve
(for algorithms that won’t fit on a single processor, this assumes that the algorithm can
be decomposed for multiple processors and intermediate results can be communicated
between cooperating processors).

Typical approaches to loosely coupled multiprocessor architectures assume that
communication from one processor to another must be dynamic in nature, in particu-
lar, that the destination address of one datum can and will change from time to time.
Furthermore, such machines also assume that communication is generally uncontrolled
and the frequency of communication can vary from sporadic to overwhelming. This
isthe most general case, but suffers because the interconnection network must accom-
modate ever changing destination addresses in packets. If the algorithm has static
addressing patterns, the need for dynamic routing hardware can be totally eliminated,
thereby saving cost and complexity.



228 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

Cavaliere [Cavaliere, 1991] briefly reviews severa parallel DSP architectures for
audio processing with an eye toward examining the interconnection strategies and their
use for audio algorithms.

Serial Interconnects. Audio serial rates (768 Kilobits/second per channel at 48 Kilo-
samples/second) present an opportunity for parallel DSP. By using standard telecom-
munication time division multiplexing (TDM), it’s possible to “trunk” multiple chan-
nels as well as use switching techniques.

DSP.* [Kahrs, 1988] (The name is a throwback to Cm* [Gehringer et al., 1987])
was designed around the TDM philosophy exemplified by Moore's (see section 5.3.4).
An architectural block diagram of the system is shown in figure 5.17.

Serial VME
Highway bus
Processor Host Serial port
Switch R ——
L Modules Processor

Figure 5.17 DSP.* block diagram

As shown in figure 5.17 processor modules are connected to the serial highway.
Each processor module has a unique address on the highway (this address is wired
on the card). There are two traces on the backplane per processor: one for the input
to the processor (from the switch) and one from the processor (to the switch). All
interprocessor communication is via the switch. The switch sits between the host
VME bus and the host processor and is programmed by the host processor.

All processors must use the same serial clocks to stay in synchronization with the
sample frame clocks. These clocks are buffered by the host interface card and put on
the backplane. The card also generates the processor clocks, so the processors can also
run in synchronization.

There are two DSP-32s per “processor module’. The “master” (with external
memory) is connected to the serial lines going to and from the crossbar switch. The
“slave” is connected to external 1/0O devices such as A/D and D/A converters. It is
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responsible for various /O operations such as pre and post filtering. The 8 bit parallel
data ports of both DSP-32s are indirectly connected to the VME bus. The master DSP-
32 can aso select which word (load) clocks to use on the transmit side to the switch via
the memory mapped 1/O; this helps limit the transmission bandwidth (Although serial
DMA doesn’t directly involve the arithmetic sections of the DSP-32, it does cause wait
states to be inserted.)

The time dot interchange switch uses a commercially available telephone switch,
the Siemens PEB2040. Besides being able to operate up to 8 megabits per second, it
can be programmed to be either atime division, space division or “mixed” time/space
division switch.

Unfortunately, the output connections must be fixed depending on the interconnec-
tion scheme chosen (time, space or mixed). A “mixed” space/time switch for 16 lines
(processors) at 8 Mbits/second requires 32 integrated circuits.

In the worst case, changing a single connection in the switch can take afull frame
time. This means that changing the entire topology of the switch is not an action to be
taken lightly. However, simple changes can be done relatively rapidly.

Gnusic

The purpose of the Gnusic [Kahrs and Killian, 1992] project was to build a music I/O
device for an experimental workstation capable of “orchestral synthesis’. “Orchestral
synthesis’ means the synthesis of large number of voices in real time. The basic
architecture is shown in figure 5.18.

Workstation AES/EBU

[N

control final FM DSP-16
card mix Array Array

Backplane bus

Figure 5.18 Gnusic block diagram

Control and data signals from the 68020 based workstation are bused over to a
control card that buffers the signals and places them on the backplane (not illustrated).
The instrument cards are plugged into the backplane and controlled by the host pro-
cessor. Each instrument card has a digital signal processor (an AT& T DSP-16) for
mixing the digital outputs as follow: This processor must () mix the output from
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the card “upstream” with the sample generated localy, and (b) perform any effects
desired with the leftover time. Such effects might include filtering or feedback control
of the on-board oscillators. The basic DSP interface includes a pseudo-dual-ported
static program memory for the DSP-16. Because the DSP-16 has a totally synchronous
memory interface, memory access must be shared between the 8-hit processor bus and
DSP; when the processor sets the DSP to “run”, it also prevents itself from accessing
the memory.

The “final mix” card islast in the chain. It has the basic (“core”) DSP-16 circuitry
found on all instrument cards. A block diagram is found below:

Backplane bus

bus
interface
1] T Internal bus
DSP-16 control
static memory register
rial connector <—= serial DSP-16 paraliel Parallel bus
Serial connect: port portﬁ—_>

Figure 5.19 Gnusic core block diagram

The host can write into the memory of the DSP-16, but only when the DSP-16
is stopped. The DSP-16 is too fast to allow true dual port access. This is perfectly
acceptable since the core program typically doesn’'t change when the synthesizer is
running. The host can also set a control register which contains the run flag and other
useful bits.

The DSP-16 can either be a master (called “active” in DSP-16 terminology) or a
dave (“passive’). All the DSP-16s except the final mix DSP are in passive mode. They
are fed clocks from the final mix DSP. This guarantees that all DSPs are on the same
output clock. The final mix DSP also provides the left/right clock so that the channels
are synchronized as well. The serial data output of the DSP-16 is fed to the serial data
input of the next DSP-16 in line. All of the serial I/O is done viaflat ribbon cables on
the end of the cards.

There are two basic kinds of instrument cards: an FM card and an array of DSP-
16s. The DSP-16 array uses the TDM serial bus feature of the DSP-16 and therefore
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is discussed extensively below. The DSP-16 array card has four DSP-16s and a core
DSP-16. The core DSP addresses the 4 satellite DSPs via the 16 bit wide parallel 1/0
bus of the DSP-16. The core can address any of the satellites as well as address a
large external memory specifically designed for reverberation. The serial 1/0 of the
satellites are connected together in a TDM bus using the on chip logic of the DSP-16.
The DSP-16 multiprocessor interface permits up to eight processors to be connected
on a serial bus.

The data, clock, serial address and sync pins are al bused together. Each processor
has its own address; data can be sent from one processor to another in a specific
slot. Slots must be reserved (i.e., statically allocated) beforehand as there is no bus
contention mechanism. Furthermore, each processor must have a unique time slot
“address’.

The host has the same interface to the memory of the satellites as it does to the
memory of the core DSP-16. It also has a 2K x 8 FIFO attached to the parallel 1/0
bus of the core for us in parameter passing from the host. Status bits from the FIFO
can be used to interrupt the core DSP should the FIFO become too full and risk data
overrun.

Sony SLIP-1000

The Sony SDP-1000 [Sony, 1989] was an interesting multiprocessor designed
around a seria crossbar interconnect. The controlling machine itself can be divided
into three sections:

1. A host section featuring a host processor with a graphics processor and video
RAM

2. A separate 1/O section controlled by a microcontroller including digitizing the
trackball and 8 slide potentiometers

3. DSP processing section.

The DSP processing section is shown in figure 5.20. Basically, the 24 serial inputs
and 24 seria outputs of the DSPs are connected to a custom crossbar chip. Also
included are 8 seria inputs from the outside world and 8 more serial outputs to the
outside world which are the final output of the machine.

The crossbar interconnect is under the control of the microprocessor. The DSPs
are programmed remotely, via the microprocessor by the processor’s serial port (see
section 5.13). The processors all run lock-step and are sample synchronous. Note that
only four processors have external memory (and only 64K). This severely limits the
reverberation time but in fairness, this machine was not designed for effects processing.
Also note that coefficient conversion from real time inputs must take place in the host
processor and then be converted into serial form and placed in the specific DSP.
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Figure 5.20 Sony SDP-1000 DSP block diagram

Parallel Interconnects. Seria interconnects have the distinct advantage of being
easy to connect and easy to multiplex. However, it must be remembered that seria
must be converted back to parallel sometime and therefore parallel interconnects can
be used if the conversion latency isto be avoided.

The DSP3 [Glinski and Roe, 1994][Segelken et a., 1992] uses a custom interconnect
that provides for a four port (NEWS) interconnect. Each board has a 4 x 4 array of
these processors, memories and interconnects. Of the 16 possible outputs at the card
edge, eight go to the backplane and the other eight are connected in atoroidal fashion.
The backplane has a capacity to handle eight of these boards for a grand total of 128
processors.

The IRCAM Signal Processing Workstation (ISPW) [Lindemann et a., 1991] was
designed around a pair of Intel i860s [Intel, 1991]. The i860 was, for its time, an
extremely fast and extremely large and expensive chip. It featured a 128 hit internal
data bus, a 64 bit instruction bus and internal on chip caching. Its pipeline permitted
both scalar and vector operations but the pipeline must be managed explicitly (such as
register forwarding and pipe interlocks). The interconnect is a 64 bit by 64 bit crossbar
under the control of the host (in this case a NeXT cube). Crosshar interconnects are
very flexible (see C.mmp [Wulf et a., 1981]) but can’'t be expanded. So this makes the
two processor 64 bit interconnect a unique design for itstime.

Snell [Snell, 1989] also used a crosshar (also influenced by C.mmp) to interconnect
56000s. He connected three 56001s and three DRAM banks to an integrated crossbar
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with a 7th port connected to a disk drive interface and the 8th port to an expansion
port for connection to another crossbar switch for further multiprocessor expansion.
Mechanical design limited this expansion technique to severa levels, sufficient for
interconnection of over a hundred signal processors in atightly coupled system. He
separated the static RAM from the dynamic RAM so that other processors can access
the dynamic ram via the crossbar. However, both processors must agree beforehand
otherwise a conflict will result. A subsequent design (J. Snell, personal communication,
1997) fixed this problem by integrating FIFOs, a DMA unit and DRAM controller into
the crossbar switch.

The Reson8 machine [Barriére et al., 1989] is of many multiprocessors built using
Motorola 56000s. Eight Motorola 56000s (see section 5.13) are interconnected on
a single shared bus. One of the 56000s is the master, the remaining seven are slaves.
The master is also responsible for moving data from one processor to another. It's
worth noting that they avoided the use of DRAM because of the added complexity
(the limitation in agorithm implementation was considered). Dual-port RAM was
used for interprocessor communication, perhaps an influence from their earlier work
a Waveframe.

Eastty, € al. [Eastty et a., 1995] describe a very large digital mixer composed of
custom chips (see section 5.15 for a description of the custom chip). The interconnect
isshownin figure 5.21.
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Figure 5.21 Sony's OXF interconnect block diagram

Each board is composed of a5 by 5 array of processor chips (shown on the left of
figure 5.21) connected to the backplane via a horizontal and vertical bus (so each card
has 10 buses x 33 bits/bus = 330 signal pins). In turn, the backplane connects the cards
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in a4 by 4 matrix where the each bus connects to 3 other cards and an input/output
card (shown on the right of figure 5.21).

5.4 CONCLUSION

The processing of audio signals has made great strides since the development of digital
synthesizers and their implementation on commodity DSPs. Further improvement
will result from better tuning architectures to the specific demands in audio processing,
including attention to parameter updates, coefficient calculation and well designed
arithmetic. This also includes A/D and D/A converters with improved “sonic” capa-
hilities; the move to 96 KHz sampling rates and longer samples will again push the
state of the art in converter design.

This work has been partialy supported by ARPA grant DAALO01-93-K-3370. John
Snell offered many detailed comments on a draft of this chapter.
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Abstract: This chapter deals with signal processing for hearing aids. The primary
goal of ahearing aid is to improve the understanding of speech by an individual with a
hearing impairment, although the perception of music and environmental soundsis also
a concern. The basic signal-processing system consists of linear filtering followed by
amplification, with more sophisticated techniques used to try to compensate for the nature
of the hearing impairment and to improve speech intelligibility in noise.20

The chapter starts with a review of auditory physiology and the nature of hearing
loss. Linear amplification systems are then discussed along with hearing-aid design ob-
jectives and the limitations of conventional technology. Feedback cancellation, which
can improve hearing-aid system stability, is presented next. Dynamic-range compres-
sion is an important signal-processing approach since the impaired ear has a reduced
dynamic range in comparison with the normal ear, and single-channel and multi-channel
compression agorithms are described. Noise suppression is aso a very important area
of research, and several single-microphone approaches are described, including adaptive
analog filters, spectral subtraction, and spectral enhancement. Multi-microphone noise-
suppression techniques, such as adaptive noise cancellation, are discussed next. Noise
can be more effectively suppressed using spatial filtering, and directional microphones
and multi-microphone arrays are described. The chapter concludes with a brief summary
of the work being done in cochlear implants.
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Table 6.1 Hearing thresholds, descriptive terms, and probable handicaps (after Good-
man, 1965)

Descriptive Term Hearing Loss (dB) Probable Handicap

Normal Limits -10to 26

Mild Loss 27-40 Has difficulty hearing faint or
distant speech

Moderate Loss 40-55 Understands conversational
speech at a distance of 3-5
feet

Moderately Severe Loss 55-70 Conversation must be loud to

be understood and there is
great difficulty in group and
classroom discussion

Severe Loss 70-90 May hear a loud voice about
1 foot from the ear, may iden-
tify environmental noises,
may distinguish vowels but
not consonants

Profound Loss > 90 May hear loud sounds, does
not rely on hearing as pri-
mary channel for communi-
cation

6.1 INTRODUCTION

Hearing loss is typically measured as the shift in auditory threshold relative to that of
anormal ear for the detection of a pure tone. Hearing loss varies in severity, and the
classification of hearing impairment is presented in Table 6.1{Goodman, 1965].

Approximately 7.5 percent of the population has some degree of hearing loss, and
about 1.0 percent has aloss that is moderately-severe or greater[Plomp, 1978]. There
are approximately 28 million persons in the United States who have some degree
of hearing impairment[National Institutes of Health, 1989]. The majority of the
hearing-impaired population has mild or moderate hearing losses, and would benefit
significantly from improved methods of acoustic amplification. Hearing aids, however,
are not as widely used as they might be. Even within the population of hearing-aid
users, there is widespread discontent with the quality of hearing-aid amplification
[Kochkin, 1992].

One of the most common complaintsis that speech is especially difficult to under-
stand in a noisy environment. Pearsons et al. [Pearsons et a., 1976] have shown that
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in noisy environments encountered in everyday situations, most talkers adjust their
voices to maintain a speech-to-noise ratio of 7 to 11 dB. While normal-hearing indi-
viduals usually have little difficulty in understanding speech under these conditions,
users of hearing aids, or other sensory aids such as cochlear implants, often have great
difficulty. In general, the signal-to-noise ratio (SNR) needed by a hearing-impaired
person to give speech intelligibility in noise comparable to that for speech in quiet is
substantially greater than the corresponding SNR required by a normal-hearing person
[Plomp, 1978].

While most commercial hearing aids are still based on analog signal processing
strategies, much research involves digital signal processing. This research is motivated
by the desire for improved agorithms, especialy for dealing with the problem of
understanding speech in noise. Cosmetic considerations, however, limit what can be
actually implemented in a practical hearing aid. Most users of hearing aids want a
device that is invisible to bystanders and thus does not advertise their impairment. As
a result, the strongest pressure on manufacturers is to put simple processing into the
smallest possible package, rather than develop sophisticated algorithms that require
a larger package. Thus practical signal processing, as opposed to research systems,
is constrained by the space available for the circuitry and the power available from
a single small battery. In order to be accepted in such a market, digital signal-
processing systems will have to demonstrate enough performance benefits over their
analog counterparts to justify their larger size, shorter battery life, and higher cost.

The emphasis in this chapter is on digital processing algorithms for moderate hearing
losses caused by damage to the auditory periphery. Analog processing is also described
to give a basis for comparison. The chapter begins with a discussion of peripheral
hearing loss, since the behavior of the auditory system motivates hearing-aid algorithm
development. Linear hearing aids are then described, followed by the presentation of
feedback cancellation to improve the linear system performance. Single-channel and
multi-channel compression systems are then presented. Improved speech intelligibility
in noise is the next subject, with both single-microphone and multi-microphone noise
suppression discussed. The chapter concludes with a brief discussion of cochlear
implants and a summary of the hearing-aid material presented.

6.2 HEARING AND HEARING LOSS

The design of a hearing aid should start with a specification of the signal processing
objectives. A useful conceptual objective for a peripheral hearing lossisto process the
incoming signal so as to give a perfect match between the neural outputs of the impaired
ear and those of areference normal ear. Implementing thisideal system would require
access to the complete set of neural fibersin the impaired ear and to a corresponding set
of outputs from an accurate simulated normal ear. The simulated neural outputs could
then be substituted directly for the neural responses of the impaired ear. In designing
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a hearing aid, however, one can only indirectly affect the neural outputs by modifying
the acoustic input to the ear. Hearing-aid processing is thus a compromise in which the

acoustic input is manipulated to produce improvements in the assumed neural outputs
of the impaired ear.

6.2.1 Outer and Middle Ear

The nature of the signal processing, and its potential effectiveness, depends on the
characteristics of the auditory system. The ear transforms the incoming acoustic signal
into mechanical motion, and this motion ultimately triggers neural pulses that carry
the auditory information to the brain. The essential components of the ear are shown
inFig6.1.

Pinna Middie Ear Oval Window
Ossicles {with stapes)

Cochlea

Eustachian
Tube

Middle Ear
Cavity

Window

Figure 6.1 Major features of the human auditory system

The ear is divided into three sections, these being the outer, middle, and inner ear.
The outer ear consists of the pinna and ear canal. The sound wave enters the pinna
and travels through the ear canal to the ear drum (tympanic membrane). The outer ear
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forms a resonant acoustic system that provides approximately 0-dB gain at the ear drum
below 1 kHz, rising to 15-20 dB of gain in the vicinity of 2.5 kHz, and then falling in a
complex pattern of resonances at higher frequenciesShaw, 1974]. The sound energy
impinging upon the ear drum is conducted mechanically to the oval window of the
cochlea by the three middle ear bones (ossicles). The mechanical transduction in the
human middle ear can be roughly approximated by a pressure transformer combined
with a second-order high pass filter having a Q of 0.7 and a cutoff frequency of 350
Hz [Lynch et al., 1982][Kates, 1991b].

Problems with the outer or middle ear can lead to a hearing loss even when the inner
ear (cochlea) is functioning properly. Such a hearing loss is termed conductive since
the sound signal conducted to the inner ear is attenuated. One common pathology,
especially in children, is otitis media, in which the middle ear fills with fluid, pus, or
adhesions related to infection. Another pathology is otosclerosis, in which the ossicles
cease to move freely. Conductive losses are not normally treated with hearing aids
since they can usually be corrected medically or surgicaly.

6.3 INNER EAR
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Figure 6.2 Features of the cochlea: transverse cross-section of the cochlea
(Reprinted with permission from [Rasmussen, 1943], ©1943, McGraw-Hill)
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A transverse cross section through the cochlea is shown in Fig. 6.2. Two fluid-
filled spaces, the scala vestibuli and the scala tympani, are separated by the cochlear
partition. The cochlear partition is bounded on the top by Reissner’s membrane and
on the bottom by the basilar membrane, which in turn forms part of the organ of Corti.

A more detailed view of the organ of Corti (after Rasmussen[Rasmussen, 1943]) is
presented in Fig. 6.3.

Tectorial membra Outer hair celis

Vestibular lip

Spieal limbus

Quter tunnel

Celis of
Hensen

—

Sylmylmmsetra—
Y o ol SR BTSN

Basilar cells l Inucteus
Piltar (rod Connective tissue Basiia
Nerve fibers of Corti} Transvarse fibers rar
entering the vessel Homogeneous substance membrane
epithelium of

argan of Corti Inner phalangeal celis Quter phalangeal cells
Organ of Corti
Figure 6.3 Features of the cochlea: the organ of  Corti

(Reprinted with permission from [Rasmussen, 1943], © 1943, McGraw-Hill)

The tectorial membrane rests at the top of the organ of Corti, and the basilar mem-
brane forms the base. Two types of hair cells are found along the basilar membrane.
There are three rows of outer hair cells and one row of inner hair cells. The outer hair
cells form part of the mechanical system of the cochlear partition, while the inner hair
cells provide transduction from mechanical motion into neural firing patterns. There
are about 30,000 nerve fibers in the human ear. The vast mgjority are afferent fibers
that conduct the inner hair cell neural pulses towards the brain; approximately 20 fibers
are connected to each of the 1,500 inner hair cells. Approximately 1,800 efferent fibers
conduct neural pulses from the brain to the outer hair cellg[Pickles, 1988].

The organ of Corti forms a highly-tuned resonant system. A set of neura tuning
curves for the cat cochlea[Kiang, 1980] is presented in Fig. 6.4.
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Figure 6.4 Sample tuning curves for single units in the auditory nerve of the cat
(Reprinted with permission from [Kiang, 1980]. © 1980 Acoustical Society of Amer-
ica)

A tuning curve is generated by placing an electrode on a single afferent nerve fiber,
finding the frequency to which that fiber responds most readily, and then adjusting
the stimulus level as the test frequency is varied to maintain the neura firing rate at
alevel just above threshold. The tip of the tuning curve is the region most sensitive
to the excitation, and the tail of the tuning curve is the plateau region starting about
one octave below the tip and extending lower in frequency. The ratio of the signal
amplitude required to generate a response in the tail region to that required in the region
of the tip of the tuning curve is approximately 60 dB. The slopes of the high-frequency
portion of the tuning curves are approximately 100-300 dB/octave. The sharpness of
the tuning curves, the steepness of the slopes, and the tip-to-tail ratio all decrease at
lower characteristic frequencies of the fibers.

An example of what can happen to the tuning curvesin adamaged ear is shownin
Fig. 6.5[Liberman and Dodds, 1984]. The stereocilia (protruding hairs) of outer and
inner hair cells were damaged mechanicaly in this experiment; the tuning curve for an



242 APPLICATIONS OF DSP TO AUDIO AND ACOUSTICS

100
80

80 -

40

Threshold {dB SPL)

20

o] EETITITEE
0.1 .o 4.0

Threshold {dB SPL)

100 -
3 8o
wr -
S sot
- i
% 40}
<
3 i
£ 0l
r
ol vl 1
0.1 1.0 4.0

Frequency (kHz)

Figure 6.5 Neural tuning curves resulting from damaged hair ceils
(Reprinted from [Liberman and Dodds, 1984], with kind permission from Elsevier
Science— NL, Sara Burgerhartstraat 25, 1055 KV, Amsterdam, The Netherlands)
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undamaged cochleais shown as the dotted line and the tuning curve for the damaged
condition is the solid line, In 6.5(A) the outer hair cells have been completely destroyed,
resulting in a tuning curve that is much broader and having a response peak shifted to a
lower frequency. In 6.5(B) thereis partial damage to the outer hair cells, resulting in a
“w"-shaped tuning curve having a sharply tuned tip at a greatly reduced sensitivity. In
6.5(C) the inner hair cells have been damaged while the outer hair cells remain mostly
intact, resulting in atuning curve having a nearly-normal shape at all frequencies but
which has a much lower sensitivity.

Acoustic trauma and ototoxic drugs usually cause damage to the outer hair cells
in the cochlea [Pickles, 1988] similar to that illustrated in Fig 4(A), resulting in a
system that is less sharply tuned and which provides much less apparent gain. The
auditory filters, which give a high-Q band-pass response in the norma ear, have become
much more like low-pass filters, with a resultant reduction in both gain and frequency
resolution. The loss of frequency resolution may be related to the excess upward
spread of masking[Egan and Hake, 1950] observed in impaired ears [Gagné, 1988],
in which low-frequency sounds interfere with perception of simultaneously occurring
higher-frequency sounds to a greater than normal degree.

The tuning curves in a healthy ear exhibit compressive gain behavior [Rhode, 1971]
[Sellick et al., 1982][Johnstone et a., 1986]. As the signal level increases, the tuning
curves become broader and the system exhibits reduced gain in the region of the tip
of thetuning curve. The gain in the region of the tail of the tuning curveis essentially
unaffected. The compression ratio ranges from about 1.5:1 at low frequencies to about
4:1 at high frequencies, and is about 2.5:1 in the central portion of the speech frequency
range [Cooper and Y ates, 1994]. In the damaged ear the compression ratio is reduced
aong with the gain, so the auditory system becomes more linear with increasing
hearing loss.

The loss of compression in the damaged ear is a possible cause of the phenomenon
of loudness recruitment. Loudness is the perceptual correlate of sound intensity.
Loudness recruitment is defined as the unusually rapid growth of loudness with an
increase in sound intensity [Moore et a., 1985], and often accompanies sensorineural
hearing impairment

An example of recruitment is presented in Fig. 6.6, for which normal-hearing and
hearing-impaired subjects were asked to rate the loudness of narrowband noise on a
50-point scalgfKiessling, 1993]. Asthe hearing loss increases in severity, the subjects
need increasingly intense stimuli to achieve identical estimated loudness scores for
sounds near auditory threshold. At high stimulus levels, however, the rated loudness
is similar for all degrees of hearing loss. Thus the rate of growth of loudness with
increasing stimulus level increases with increasing hearing loss.

In addition to the loss of gain, reduction in compression, and loss of frequency
resolution, the impaired ear can also demonstrate a loss of temporal resolution. Gap
detection experiments [Fitzgibbons and Wightman, 1982], in which the subjects are
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Figure 6.6 Loudness level functions on a 50-point rating scale for different classes of
hearing loss.

(Reprinted with permission from [Kiessling, 1993]. © 1993, Canadian Association of
Speech-Language Pathol ogists and Audiol ogists)
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asked to determine if a short pause is present in an otherwise continuous signal, have
shown that hearing-impaired listeners require longer gaps for detection in a band-pass
filtered noise signal than normal-hearing subjects. However, the difference in perfor-
mance appears to be closely related to the inability of the hearing-impaired listeners
to detect the high-frequency transient portions of the gated test signal [Florentine and
Buus, 1984].

As shown in Fig. 6.6, when the presentation levels are corrected for the hearing
loss the forward masking results for the hearing-impaired and normal-hearing subjects
become nearly identical. In the figure, dB SPL refers to the absolute signal level
while dB SL (sensation level) refers to the level above the subject’s auditory threshold.
Presentation of the stimuli to the normal ear at sensation levels corresponding to those
used in the impaired ear results in masking curves that are nearly identical in shape
and differ only in the offset used to compensate for auditory threshold.

The effects of sensorineural hearing lossin speech perception areillustrated in Fig.
6.8 to Fig. 6.10 for a simulation of a normal and impaired cochlea [Kates, 1991b]
[Kates, 1993a][Kates, 1995]. The time-frequency simulated neural response to the
stimulus /da/ at a level of 65 dB SPL is shown for @ a normal ear, b) an ear with
a simulated hearing loss obtained by turning off the outer hair cell function in the
cochlear model, and c) the stimulus given 30 dB of gain and presented as input to the
simulated hearing loss. The speech stimulus is the syllable /da/ digitally generated
using a speech synthesizer [Klatt, 1980].

The figure shows the first 25 ms of the neural responses for a simulated normal ear
and for animpaired ear in which the outer hair cells have been eliminated. The normal
ear of Fig. 6.8 shows regions of synchronized firing activity corresponding to the initial
frequencies of each of the three formants (500 Hz, 1.6 kHz, and 2.8 kHz) that give the
peaks of the syllable spectrum. In addition, there are high ridges corresponding to the
glottal pulses exciting the vocal tract at a fundamental frequency of 120 Hz. Thus the
neural firing patterns in the normal ear appear to code the speech formant frequencies
both by the region of maximum activity and in the periodic nature of the firing within
each of these regions.

The simulated firing pattern for the impaired ear with the outer hair cell function
eliminated but with the inner hair cells intact is presented in Fig. 6.9. The complete
outer hair cell damage corresponds to a nearly flat hearing loss of about 55-60 dB. The
shift in auditory threshold, combined with the auditory filter shapes changing from
band-pass to low-pass, has resulted in the first formant dominating the simulated firing
behavior. The presence of the second formant can be discerned in a slight broadening
of the ridges in the vicinity of 1.6 kHz, while the third formant can not be seen at all.
Thus a significant amount of both frequency and temporal information has been lost.
Amplifying the input signal for presentation to the impaired ear results in Fig. 6.10.
The neural firing rate is substantially increased, but there is little if any information
visible beyond that for the unamplified stimulus. Thus amplification can increase the
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Figure 6.7 Mean results for five subjects with unilateral cochlear impairments
(Reprinted with permission from [Glasberg et al., 1987]. © 1987 Acoustical Society
of America)

Forward masking, in which a sound can interfere with the perception of sounds that
follow it, can aso be greater in hearing-impaired subjects. However, this also appears
to primarily be a level effect [Glasberg et al., 1987]. Mean results for five subjects
with unilateral cochlear impairments showing the threshold for a 10-ms signal as a
function of its temporal position relative to a 210-ms masker. Thresholds are plotted
as a function of masker-onset to signal-onset delay. The three leftmost points are
for simultaneous masking and the three rightmost points are for forward masking.
The curves labeled “Normal” are for the subjects normal ears, while those labeled
“Impaired” are for the impaired ears of the same subjects. (after Glasberg et a., 1987)



FREQUENCY., kHz

SIGNAL PROCESSING FOR HEARING AIDS 247

0. 100

fff
(rt
((((
|

—-—M—\,\\ \\,\\ £

= \\\\“\\\\“ A TR A
= Ly
PSS IS AV VEINEED
5.00
VD".)DOO 5.00 10.0 15.0 20.0 25.Q

TIME., msec

Figure 6.8 Simulated neural response for the normal ear

sensation level above the impaired auditory threshold, but it may not be able to restore
the information that has been lost due to the changes in auditory frequency resolution.

6.3.1 Retrocochlear and Central Losses

Hearing loss can also be caused by problems in the auditory pathway carrying the
neural signals to the brain, or by problems within the brain itself. Retrocochlear
lesions due to tumors in the auditory nerve can cause hearing loss [Green and Huerta,
1994)], as can brainstem, cortical, or hemispherical lesions [Musiek and Lamb, 1994].
Furthermore, there is some evidence that the elderly can have increased difficulty in
understanding speech even when the auditory periphery exhibits normal or nearly-
normal function [Jerger et al., 1989]. Successful signal-processing strategies have not
been developed for these central auditory processing deficits, and much more study
is needed to characterize the hearing losses and to determine if specialized signal-
processing strategies are warranted.
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Figure 6.9 Simulated neural response for impaired outer cell function

6.3.2 Summary

The analogy of eyeglasses is often used when discussing hearing aids. As can be
seen from the material in this section, however, hearing loss is typically a much more
complicated problem than correctable vision. In vision alens, that is, a passive linear
system, provides nearly perfect compensation for the inability of the eye to focus
properly at all distances. Hearing loss, on the other hand, involves shifts in auditory
threshold, changesin the system input/output gain behavior, and the loss of frequency
and temporal resolution. The development of signal processing to compensate for
these changes in the impaired ear presents a significant engineering challenge.

6.4 LINEAR AMPLIFICATION

The basic hearing-aid circuit is alinear amplifier, and the simplest hearing aid consists
of a microphone, amplifier, and receiver (output transducer). In addition to being
commonly prescribed on its own, the linear hearing aid also forms the fundamental
building block for more-advanced designs. Thus many of the problems associated with
linear amplification will also affect other processing approaches when implemented
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Figure 6.10 Simulated neural response for 30 dB of gain

in practical devices. Conversely, improvements in linear instruments will lead to
improvementsin all hearing aids.

6.4.1 System Description

A schematic diagram of an in-the-ear (ITE) hearing aid designed to fit within the
confines of the pinna and ear canal is shown in Fig. 6.11. Hearing aids are also
designed to fit behind the ear (BTE), in a body-worn electronics package, or completely
within the ear canal (ITC or CIC). The magjor external features of the hearing aid are
the microphone opening, battery compartment, volume control, and vent opening. The
vent is used to provide an unamplified acoustic signal at low frequencies (for individuals
having high-frequency hearing losses and who therefore need amplification only at high
frequencies), and also provides a more natural frequency response for monitoring the
user’s own voice. Because of potential feedback problems, discussed in the section on
Feedback Cancellation, avent isnot present in all hearing aids.
The microphone is positioned near the top of the hearing-aid faceplate above the
battery compartment, and the volume control and the vent are at the bottom. This
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Figure 6.11 Cross-section of an in-the-ear hearing aid

placement maximizes the separation between the microphone and vent opening and
helps reduce acoustic feedback problems. Not shown is the circuitry internal to the
hearing aid; it is positioned where there is available space since the shell of the hearing
aid is molded to fit an impression of the individual ear. The receiver is located in the
canal portion of the hearing aid, and the receiver output is conducted into the ear canal
via a short tube. The vent runs from the faceplate to the ear canal.

A block diagram of the hearing aid inserted into the ear is presented in Fig. 6.12. The
input to the microphone is the sound pressure at the side of the head. The positioning of
the hearing aid in the ear canal has destroyed the normal pinna and ear canal resonance
at 2.5 kHz. The resultant insertion loss caused by blocking the natura resonance of
the outer ear in this frequency region is 15-20 dB, and the corresponding gain should
be reintroduced in the frequency response of the electroacoustic system. In addition
to the amplified signal path, there is also an unamplified signal path directly through
the vent, so the sound pressure in the ear canal is the sum of the amplified and direct
signals. Mechanical feedback from the receiver vibrations can excite the microphone
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Figure 6.12 Block diagram of an ITE hearing aid inserted into the ear canal

diaphragm in addition to the input sound pressure. Acoustic feedback is also present
since the sound pressure generated in the ear cana travels out through acoustic leaks
or through the vent, where it is reradiated at the vent opening in the faceplate. The
receiver, connected to the ear canal by a short tube, isloaded acoustically by the tube,
vent, and ear canal, and the ear canal is terminated by the input impedance of the ear
drum. Severa simulations have been developed to assist in the design and evaluation
of hearing aid acoustics [Egolf et a., 1978][Egolf et al., 1985][Egolf et al., 1986]
[Kates, 1988][Kates, 1990].

The signal processing in a linear hearing aid consists of frequency-response shaping
and amplification. In general, one-pole or two-pole high-pass or low-pass filters
are used to shape the frequency response to match the desired response for a given
hearing loss. Multi-channel hearing aids are also available that allow the independent
adjustment of the gain in each frequency channel. Acoustic modifications to the tubing
that connect the output of a BTE instrument to the ear canal can also be used to adjust
the hearing-aid frequency response [Killion, 1981][Dillon, 1985].

6.4.2 Dynamic Range

The dynamic range of ahearing aid is bounded by noise at low input signal levelsand
by amplifier saturation at high signal levels. A typical hearing-aid microphone has a
noise level of about 20 dB SPL, which is comparable to that of the human ear [Killion,
1976]. The addition of the hearing-aid processing and amplification circuits gives
equivalent noise levels of between 25 and 30 dB SPL. More complicated processing,
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such as a multi-channel filter bank, may generate higher noise levels due to the specific
circuit fabrication technology used and the number of circuit components required.
The equivalent hearing-aid noise level, after amplification, is therefore about 10 dB
higher than that of the normal unaided ear. This noise level tends to limit the maximum
gain that a hearing-aid user will select under quiet conditions since, in the absence of
the masking provided by intense inputs, a user will reduce the gain in order to reduce
the annoyance of the background noise.

At the other extreme, amplifier saturation limits the maximum gain that can be
achieved by the hearing aid. A typica hearing aid amplifier clips the signal when the
peak input level exceeds about 85 dB SPL. A speech-like signal at an input of 70 dB
SPL is therefore amplified cleanly, but alevel of 80 dB SPL causes large amounts of
distortion [Preves and Newton, 1989]. Speech input at 65 to 70 dB SPL is typical of
normal conversational levels [Pearsons et al., 1976];[Cornelisse et a., 1991], but the
spectra of individual speech sounds can be as much as 15 dB higher when monitoring
the talker’s own voice at the ear canal [Medwetsky and Boothroyd, 1991]. Thus the
typical hearing aid amplifier does not have enough headroom to guarantee that the
user’s own voice will be amplified without distortion.

The available hearing-aid dynamic range is thus about 55 dB from the noise floor
to the saturation threshold. Selecting an amplifier with more gain, and turning down
the volume control, will raise the saturation threshold, but will aso raise the noise
level by asimilar amount. Thus atypical hearing aid, due to the compromises made in
battery size and circuit design, can only handle half the dynamic range of a normal ear.
Some progress is being made, however, since the development of class-D hearing-aid
amplifiers [Carlson, 1988] provides 10 to 20 dB more output at saturation than does
a class-A amplifier having comparable gain [Fortune and Preves, 1992]. The small
class-B amplifiers that are becoming available in hearing aids also greatly reduce the
problems associated with amplifier saturation[Cole, 1993].

6.4.3 Distortion

Amplifier saturation most often takes the form of symmetric peak clipping (S. Arm-
strong, personal communication, 1989). If a single sinusoid is input to the hearing
aid, the clipping will generate harmonic distortion, and for two or more simultaneous
sinusoids, intermodulation (IM) distortion will also result. The amount of distortion
influences judgments made about hearing-aid quality. Fortune and Preves [Fortune and
Preves, 1992], for example, found that reduced coherence in the hearing-aid output
signal was related to a lower hearing-aid amplifier saturation level and a lower loudness
discomfort level (LDL). LDL is the maximum level at which an individua is willing
to listen to speech for an extended period of time. This result suggests that hearing-aid
users will select reduced gain in order to reduce the distortion. In another study, a
large majority of hearing-aid users indicated that good sound quality was the most im-
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portant property of hearing aids, with clarity being the most important sound-quality
factor [Hagerman and Gabrielsson, 1984]. Thus reduced distortion would be expected
to lead to greater user comfort and satisfaction, and could lead to improved speech
intelligibility at high sound levels.

6.4.4 Bandwidth

The bandwidth of a hearing aid should be wide enough for good speech intelligibility
and accurate reproduction of other sounds of interest to the user. French and Stein-
berg [French and Steinberg, 1947] determined that a frequency range of 250-7000 Hz
gave full speech intelligibility for normal-hearing subjects, and more recent studies
[Pavlovic, 1987] extend this range to 200-8000 Hz for nonsense syllables or continuous
discourse. For music, a frequency range of 60-8000 Hz reproduced over an experimen-
tal hearing aid was found to compare favorably with a wide-range loudspeaker system,
again using normal-hearing listeners as subjects [Killion, 1988]. Thus a reasonable
objective for ahearing aid is a 60-8000 Hz bandwidth.

Most hearing aids have adequate low-frequency but inadequate high-frequency
response for optimal speech intelligibility, with the high-frequency response typically
decreasing rapidly above 4-6 kHz. Increasing the high-frequency gain and bandwidth
in laboratory systems generally yieldsimproved speech intelligibility [Skinner, 1980].
However, the benefits of increased bandwidth will accrue in hearing aids only if the
amplifier can cope with the increased power demands without undue distortion and
if the system would remain stable in the presence of increased levels of acoustic and
mechanical feedback. Thus increasing the hearing-aid bandwidth, while desirable,
must wait for other problemsto first b